1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_PGTABLE_H 6 #define __ASM_PGTABLE_H 7 8 #include <asm/bug.h> 9 #include <asm/proc-fns.h> 10 11 #include <asm/memory.h> 12 #include <asm/mte.h> 13 #include <asm/pgtable-hwdef.h> 14 #include <asm/pgtable-prot.h> 15 #include <asm/tlbflush.h> 16 17 /* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap 22 */ 23 #define VMALLOC_START (MODULES_END) 24 #if VA_BITS == VA_BITS_MIN 25 #define VMALLOC_END (VMEMMAP_START - SZ_8M) 26 #else 27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT) 28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M) 29 #endif 30 31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 32 33 #ifndef __ASSEMBLER__ 34 35 #include <asm/cmpxchg.h> 36 #include <asm/fixmap.h> 37 #include <asm/por.h> 38 #include <linux/mmdebug.h> 39 #include <linux/mm_types.h> 40 #include <linux/sched.h> 41 #include <linux/page_table_check.h> 42 43 static inline void emit_pte_barriers(void) 44 { 45 /* 46 * These barriers are emitted under certain conditions after a pte entry 47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store 48 * visible to the table walker. The isb ensures that any previous 49 * speculative "invalid translation" marker that is in the CPU's 50 * pipeline gets cleared, so that any access to that address after 51 * setting the pte to valid won't cause a spurious fault. If the thread 52 * gets preempted after storing to the pgtable but before emitting these 53 * barriers, __switch_to() emits a dsb which ensure the walker gets to 54 * see the store. There is no guarantee of an isb being issued though. 55 * This is safe because it will still get issued (albeit on a 56 * potentially different CPU) when the thread starts running again, 57 * before any access to the address. 58 */ 59 dsb(ishst); 60 isb(); 61 } 62 63 static inline void queue_pte_barriers(void) 64 { 65 unsigned long flags; 66 67 if (in_interrupt()) { 68 emit_pte_barriers(); 69 return; 70 } 71 72 flags = read_thread_flags(); 73 74 if (flags & BIT(TIF_LAZY_MMU)) { 75 /* Avoid the atomic op if already set. */ 76 if (!(flags & BIT(TIF_LAZY_MMU_PENDING))) 77 set_thread_flag(TIF_LAZY_MMU_PENDING); 78 } else { 79 emit_pte_barriers(); 80 } 81 } 82 83 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE 84 static inline void arch_enter_lazy_mmu_mode(void) 85 { 86 /* 87 * lazy_mmu_mode is not supposed to permit nesting. But in practice this 88 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation 89 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change 90 * permissions on the linear map with apply_to_page_range(), which 91 * re-enters lazy_mmu_mode. So we tolerate nesting in our 92 * implementation. The first call to arch_leave_lazy_mmu_mode() will 93 * flush and clear the flag such that the remainder of the work in the 94 * outer nest behaves as if outside of lazy mmu mode. This is safe and 95 * keeps tracking simple. 96 */ 97 98 if (in_interrupt()) 99 return; 100 101 set_thread_flag(TIF_LAZY_MMU); 102 } 103 104 static inline void arch_flush_lazy_mmu_mode(void) 105 { 106 if (in_interrupt()) 107 return; 108 109 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING)) 110 emit_pte_barriers(); 111 } 112 113 static inline void arch_leave_lazy_mmu_mode(void) 114 { 115 if (in_interrupt()) 116 return; 117 118 arch_flush_lazy_mmu_mode(); 119 clear_thread_flag(TIF_LAZY_MMU); 120 } 121 122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 124 125 /* Set stride and tlb_level in flush_*_tlb_range */ 126 #define flush_pmd_tlb_range(vma, addr, end) \ 127 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 128 #define flush_pud_tlb_range(vma, addr, end) \ 129 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 131 132 /* 133 * We use local TLB invalidation instruction when reusing page in 134 * write protection fault handler to avoid TLBI broadcast in the hot 135 * path. This will cause spurious page faults if stale read-only TLB 136 * entries exist. 137 */ 138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) \ 139 local_flush_tlb_page_nonotify(vma, address) 140 141 #define flush_tlb_fix_spurious_fault_pmd(vma, address, pmdp) \ 142 local_flush_tlb_page_nonotify(vma, address) 143 144 /* 145 * ZERO_PAGE is a global shared page that is always zero: used 146 * for zero-mapped memory areas etc.. 147 */ 148 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 149 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 150 151 #define pte_ERROR(e) \ 152 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 153 154 #ifdef CONFIG_ARM64_PA_BITS_52 155 static inline phys_addr_t __pte_to_phys(pte_t pte) 156 { 157 pte_val(pte) &= ~PTE_MAYBE_SHARED; 158 return (pte_val(pte) & PTE_ADDR_LOW) | 159 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT); 160 } 161 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 162 { 163 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK; 164 } 165 #else 166 static inline phys_addr_t __pte_to_phys(pte_t pte) 167 { 168 return pte_val(pte) & PTE_ADDR_LOW; 169 } 170 171 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 172 { 173 return phys; 174 } 175 #endif 176 177 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 178 #define pfn_pte(pfn,prot) \ 179 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 180 181 #define pte_none(pte) (!pte_val(pte)) 182 #define __pte_clear(mm, addr, ptep) \ 183 __set_pte(ptep, __pte(0)) 184 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 185 186 /* 187 * The following only work if pte_present(). Undefined behaviour otherwise. 188 */ 189 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte)) 190 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 191 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 192 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 193 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY)) 194 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER)) 195 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 196 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 197 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 198 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 199 200 #define pte_cont_addr_end(addr, end) \ 201 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 202 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 203 }) 204 205 #define pmd_cont_addr_end(addr, end) \ 206 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 207 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 208 }) 209 210 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte)) 211 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 212 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 213 214 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 215 #define pte_present_invalid(pte) \ 216 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID) 217 /* 218 * Execute-only user mappings do not have the PTE_USER bit set. All valid 219 * kernel mappings have the PTE_UXN bit set. 220 */ 221 #define pte_valid_not_user(pte) \ 222 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 223 /* 224 * Returns true if the pte is valid and has the contiguous bit set. 225 */ 226 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte)) 227 /* 228 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 229 * so that we don't erroneously return false for pages that have been 230 * remapped as PROT_NONE but are yet to be flushed from the TLB. 231 * Note that we can't make any assumptions based on the state of the access 232 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the 233 * TLB. 234 */ 235 #define pte_accessible(mm, pte) \ 236 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 237 238 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute) 239 { 240 u64 por; 241 242 if (!system_supports_poe()) 243 return true; 244 245 por = read_sysreg_s(SYS_POR_EL0); 246 247 if (write) 248 return por_elx_allows_write(por, pkey); 249 250 if (execute) 251 return por_elx_allows_exec(por, pkey); 252 253 return por_elx_allows_read(por, pkey); 254 } 255 256 /* 257 * p??_access_permitted() is true for valid user mappings (PTE_USER 258 * bit set, subject to the write permission check). For execute-only 259 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 260 * not set) must return false. PROT_NONE mappings do not have the 261 * PTE_VALID bit set. 262 */ 263 #define pte_access_permitted_no_overlay(pte, write) \ 264 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 265 #define pte_access_permitted(pte, write) \ 266 (pte_access_permitted_no_overlay(pte, write) && \ 267 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false)) 268 #define pmd_access_permitted(pmd, write) \ 269 (pte_access_permitted(pmd_pte(pmd), (write))) 270 #define pud_access_permitted(pud, write) \ 271 (pte_access_permitted(pud_pte(pud), (write))) 272 273 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 274 { 275 pte_val(pte) &= ~pgprot_val(prot); 276 return pte; 277 } 278 279 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 280 { 281 pte_val(pte) |= pgprot_val(prot); 282 return pte; 283 } 284 285 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 286 { 287 pmd_val(pmd) &= ~pgprot_val(prot); 288 return pmd; 289 } 290 291 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 292 { 293 pmd_val(pmd) |= pgprot_val(prot); 294 return pmd; 295 } 296 297 static inline pte_t pte_mkwrite_novma(pte_t pte) 298 { 299 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 300 if (pte_sw_dirty(pte)) 301 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 302 return pte; 303 } 304 305 static inline pte_t pte_mkclean(pte_t pte) 306 { 307 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 308 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 309 310 return pte; 311 } 312 313 static inline pte_t pte_mkdirty(pte_t pte) 314 { 315 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 316 317 if (pte_write(pte)) 318 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 319 320 return pte; 321 } 322 323 static inline pte_t pte_wrprotect(pte_t pte) 324 { 325 /* 326 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 327 * clear), set the PTE_DIRTY bit. 328 */ 329 if (pte_hw_dirty(pte)) 330 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 331 332 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 333 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 334 return pte; 335 } 336 337 static inline pte_t pte_mkold(pte_t pte) 338 { 339 return clear_pte_bit(pte, __pgprot(PTE_AF)); 340 } 341 342 static inline pte_t pte_mkyoung(pte_t pte) 343 { 344 return set_pte_bit(pte, __pgprot(PTE_AF)); 345 } 346 347 static inline pte_t pte_mkspecial(pte_t pte) 348 { 349 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 350 } 351 352 static inline pte_t pte_mkcont(pte_t pte) 353 { 354 return set_pte_bit(pte, __pgprot(PTE_CONT)); 355 } 356 357 static inline pte_t pte_mknoncont(pte_t pte) 358 { 359 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 360 } 361 362 static inline pte_t pte_mkvalid(pte_t pte) 363 { 364 return set_pte_bit(pte, __pgprot(PTE_VALID)); 365 } 366 367 static inline pte_t pte_mkinvalid(pte_t pte) 368 { 369 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID)); 370 pte = clear_pte_bit(pte, __pgprot(PTE_VALID)); 371 return pte; 372 } 373 374 static inline pmd_t pmd_mkcont(pmd_t pmd) 375 { 376 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 377 } 378 379 static inline pmd_t pmd_mknoncont(pmd_t pmd) 380 { 381 return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT); 382 } 383 384 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 385 static inline int pte_uffd_wp(pte_t pte) 386 { 387 return !!(pte_val(pte) & PTE_UFFD_WP); 388 } 389 390 static inline pte_t pte_mkuffd_wp(pte_t pte) 391 { 392 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP))); 393 } 394 395 static inline pte_t pte_clear_uffd_wp(pte_t pte) 396 { 397 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP)); 398 } 399 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 400 401 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte) 402 { 403 WRITE_ONCE(*ptep, pte); 404 } 405 406 static inline void __set_pte_complete(pte_t pte) 407 { 408 /* 409 * Only if the new pte is valid and kernel, otherwise TLB maintenance 410 * has the necessary barriers. 411 */ 412 if (pte_valid_not_user(pte)) 413 queue_pte_barriers(); 414 } 415 416 static inline void __set_pte(pte_t *ptep, pte_t pte) 417 { 418 __set_pte_nosync(ptep, pte); 419 __set_pte_complete(pte); 420 } 421 422 static inline pte_t __ptep_get(pte_t *ptep) 423 { 424 return READ_ONCE(*ptep); 425 } 426 427 extern void __sync_icache_dcache(pte_t pteval); 428 bool pgattr_change_is_safe(pteval_t old, pteval_t new); 429 430 /* 431 * PTE bits configuration in the presence of hardware Dirty Bit Management 432 * (PTE_WRITE == PTE_DBM): 433 * 434 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 435 * 0 0 | 1 0 0 436 * 0 1 | 1 1 0 437 * 1 0 | 1 0 1 438 * 1 1 | 0 1 x 439 * 440 * When hardware DBM is not present, the software PTE_DIRTY bit is updated via 441 * the page fault mechanism. Checking the dirty status of a pte becomes: 442 * 443 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 444 */ 445 446 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep, 447 pte_t pte) 448 { 449 pte_t old_pte; 450 451 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 452 return; 453 454 old_pte = __ptep_get(ptep); 455 456 if (!pte_valid(old_pte) || !pte_valid(pte)) 457 return; 458 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 459 return; 460 461 /* 462 * Check for potential race with hardware updates of the pte 463 * (__ptep_set_access_flags safely changes valid ptes without going 464 * through an invalid entry). 465 */ 466 VM_WARN_ONCE(!pte_young(pte), 467 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 468 __func__, pte_val(old_pte), pte_val(pte)); 469 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 470 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 471 __func__, pte_val(old_pte), pte_val(pte)); 472 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)), 473 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx", 474 __func__, pte_val(old_pte), pte_val(pte)); 475 } 476 477 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages) 478 { 479 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 480 __sync_icache_dcache(pte); 481 482 /* 483 * If the PTE would provide user space access to the tags associated 484 * with it then ensure that the MTE tags are synchronised. Although 485 * pte_access_permitted_no_overlay() returns false for exec only 486 * mappings, they don't expose tags (instruction fetches don't check 487 * tags). 488 */ 489 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) && 490 !pte_special(pte) && pte_tagged(pte)) 491 mte_sync_tags(pte, nr_pages); 492 } 493 494 /* 495 * Select all bits except the pfn 496 */ 497 #define pte_pgprot pte_pgprot 498 static inline pgprot_t pte_pgprot(pte_t pte) 499 { 500 unsigned long pfn = pte_pfn(pte); 501 502 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 503 } 504 505 #define pte_advance_pfn pte_advance_pfn 506 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 507 { 508 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte)); 509 } 510 511 /* 512 * Hugetlb definitions. 513 */ 514 #define HUGE_MAX_HSTATE 4 515 #define HPAGE_SHIFT PMD_SHIFT 516 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 517 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 518 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 519 520 static inline pte_t pgd_pte(pgd_t pgd) 521 { 522 return __pte(pgd_val(pgd)); 523 } 524 525 static inline pte_t p4d_pte(p4d_t p4d) 526 { 527 return __pte(p4d_val(p4d)); 528 } 529 530 static inline pte_t pud_pte(pud_t pud) 531 { 532 return __pte(pud_val(pud)); 533 } 534 535 static inline pud_t pte_pud(pte_t pte) 536 { 537 return __pud(pte_val(pte)); 538 } 539 540 static inline pmd_t pud_pmd(pud_t pud) 541 { 542 return __pmd(pud_val(pud)); 543 } 544 545 static inline pte_t pmd_pte(pmd_t pmd) 546 { 547 return __pte(pmd_val(pmd)); 548 } 549 550 static inline pmd_t pte_pmd(pte_t pte) 551 { 552 return __pmd(pte_val(pte)); 553 } 554 555 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 556 { 557 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT); 558 } 559 560 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 561 { 562 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT); 563 } 564 565 static inline pte_t pte_swp_mkexclusive(pte_t pte) 566 { 567 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 568 } 569 570 static inline bool pte_swp_exclusive(pte_t pte) 571 { 572 return pte_val(pte) & PTE_SWP_EXCLUSIVE; 573 } 574 575 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 576 { 577 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 578 } 579 580 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 581 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 582 { 583 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 584 } 585 586 static inline int pte_swp_uffd_wp(pte_t pte) 587 { 588 return !!(pte_val(pte) & PTE_SWP_UFFD_WP); 589 } 590 591 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 592 { 593 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 594 } 595 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 596 597 #ifdef CONFIG_NUMA_BALANCING 598 /* 599 * See the comment in include/linux/pgtable.h 600 */ 601 static inline int pte_protnone(pte_t pte) 602 { 603 /* 604 * pte_present_invalid() tells us that the pte is invalid from HW 605 * perspective but present from SW perspective, so the fields are to be 606 * interpreted as per the HW layout. The second 2 checks are the unique 607 * encoding that we use for PROT_NONE. It is insufficient to only use 608 * the first check because we share the same encoding scheme with pmds 609 * which support pmd_mkinvalid(), so can be present-invalid without 610 * being PROT_NONE. 611 */ 612 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte); 613 } 614 615 static inline int pmd_protnone(pmd_t pmd) 616 { 617 return pte_protnone(pmd_pte(pmd)); 618 } 619 #endif 620 621 #define pmd_present(pmd) pte_present(pmd_pte(pmd)) 622 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 623 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 624 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 625 #define pmd_user(pmd) pte_user(pmd_pte(pmd)) 626 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd)) 627 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 628 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 629 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 630 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) 631 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 632 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 633 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 634 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd))) 635 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 636 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd)) 637 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd))) 638 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd))) 639 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd)) 640 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd))) 641 #define pmd_swp_clear_uffd_wp(pmd) \ 642 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd))) 643 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 644 645 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 646 647 static inline pmd_t pmd_mkhuge(pmd_t pmd) 648 { 649 /* 650 * It's possible that the pmd is present-invalid on entry 651 * and in that case it needs to remain present-invalid on 652 * exit. So ensure the VALID bit does not get modified. 653 */ 654 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID; 655 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID; 656 657 return __pmd((pmd_val(pmd) & ~mask) | val); 658 } 659 660 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 661 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL))) 662 static inline pmd_t pmd_mkspecial(pmd_t pmd) 663 { 664 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL)); 665 } 666 #endif 667 668 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 669 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 670 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 671 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 672 673 #define pud_young(pud) pte_young(pud_pte(pud)) 674 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 675 #define pud_write(pud) pte_write(pud_pte(pud)) 676 677 static inline pud_t pud_mkhuge(pud_t pud) 678 { 679 /* 680 * It's possible that the pud is present-invalid on entry 681 * and in that case it needs to remain present-invalid on 682 * exit. So ensure the VALID bit does not get modified. 683 */ 684 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID; 685 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID; 686 687 return __pud((pud_val(pud) & ~mask) | val); 688 } 689 690 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 691 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 692 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 693 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 694 695 #define pmd_pgprot pmd_pgprot 696 static inline pgprot_t pmd_pgprot(pmd_t pmd) 697 { 698 unsigned long pfn = pmd_pfn(pmd); 699 700 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd)); 701 } 702 703 #define pud_pgprot pud_pgprot 704 static inline pgprot_t pud_pgprot(pud_t pud) 705 { 706 unsigned long pfn = pud_pfn(pud); 707 708 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud)); 709 } 710 711 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep, 712 pte_t pte, unsigned int nr, 713 unsigned long pgsize) 714 { 715 unsigned long stride = pgsize >> PAGE_SHIFT; 716 717 switch (pgsize) { 718 case PAGE_SIZE: 719 page_table_check_ptes_set(mm, ptep, pte, nr); 720 break; 721 case PMD_SIZE: 722 page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr); 723 break; 724 #ifndef __PAGETABLE_PMD_FOLDED 725 case PUD_SIZE: 726 page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr); 727 break; 728 #endif 729 default: 730 VM_WARN_ON(1); 731 } 732 733 __sync_cache_and_tags(pte, nr * stride); 734 735 for (;;) { 736 __check_safe_pte_update(mm, ptep, pte); 737 __set_pte_nosync(ptep, pte); 738 if (--nr == 0) 739 break; 740 ptep++; 741 pte = pte_advance_pfn(pte, stride); 742 } 743 744 __set_pte_complete(pte); 745 } 746 747 static inline void __set_ptes(struct mm_struct *mm, 748 unsigned long __always_unused addr, 749 pte_t *ptep, pte_t pte, unsigned int nr) 750 { 751 __set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE); 752 } 753 754 static inline void __set_pmds(struct mm_struct *mm, 755 unsigned long __always_unused addr, 756 pmd_t *pmdp, pmd_t pmd, unsigned int nr) 757 { 758 __set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE); 759 } 760 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1) 761 762 static inline void __set_puds(struct mm_struct *mm, 763 unsigned long __always_unused addr, 764 pud_t *pudp, pud_t pud, unsigned int nr) 765 { 766 __set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE); 767 } 768 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1) 769 770 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 771 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 772 773 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 774 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 775 776 #define __pgprot_modify(prot,mask,bits) \ 777 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 778 779 #define pgprot_nx(prot) \ 780 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 781 782 #define pgprot_decrypted(prot) \ 783 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED) 784 #define pgprot_encrypted(prot) \ 785 __pgprot_modify(prot, PROT_NS_SHARED, 0) 786 787 /* 788 * Mark the prot value as uncacheable and unbufferable. 789 */ 790 #define pgprot_noncached(prot) \ 791 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 792 #define pgprot_writecombine(prot) \ 793 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 794 #define pgprot_device(prot) \ 795 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 796 #define pgprot_tagged(prot) \ 797 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 798 #define pgprot_mhp pgprot_tagged 799 /* 800 * DMA allocations for non-coherent devices use what the Arm architecture calls 801 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 802 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 803 * is intended for MMIO and thus forbids speculation, preserves access size, 804 * requires strict alignment and can also force write responses to come from the 805 * endpoint. 806 */ 807 #define pgprot_dmacoherent(prot) \ 808 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 809 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 810 811 #define __HAVE_PHYS_MEM_ACCESS_PROT 812 struct file; 813 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 814 unsigned long size, pgprot_t vma_prot); 815 816 #define pmd_none(pmd) (!pmd_val(pmd)) 817 818 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 819 PMD_TYPE_TABLE) 820 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 821 PMD_TYPE_SECT) 822 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd)) 823 #define pmd_bad(pmd) (!pmd_table(pmd)) 824 825 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 826 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 827 828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 829 static inline int pmd_trans_huge(pmd_t pmd) 830 { 831 /* 832 * If pmd is present-invalid, pmd_table() won't detect it 833 * as a table, so force the valid bit for the comparison. 834 */ 835 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID)); 836 } 837 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 838 839 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 840 static inline bool pud_sect(pud_t pud) { return false; } 841 static inline bool pud_table(pud_t pud) { return true; } 842 #else 843 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 844 PUD_TYPE_SECT) 845 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 846 PUD_TYPE_TABLE) 847 #endif 848 849 extern pgd_t swapper_pg_dir[]; 850 extern pgd_t idmap_pg_dir[]; 851 extern pgd_t tramp_pg_dir[]; 852 extern pgd_t reserved_pg_dir[]; 853 854 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 855 856 static inline bool in_swapper_pgdir(void *addr) 857 { 858 return ((unsigned long)addr & PAGE_MASK) == 859 ((unsigned long)swapper_pg_dir & PAGE_MASK); 860 } 861 862 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 863 { 864 #ifdef __PAGETABLE_PMD_FOLDED 865 if (in_swapper_pgdir(pmdp)) { 866 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 867 return; 868 } 869 #endif /* __PAGETABLE_PMD_FOLDED */ 870 871 WRITE_ONCE(*pmdp, pmd); 872 873 if (pmd_valid(pmd)) 874 queue_pte_barriers(); 875 } 876 877 static inline void pmd_clear(pmd_t *pmdp) 878 { 879 set_pmd(pmdp, __pmd(0)); 880 } 881 882 static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 883 { 884 return __pmd_to_phys(pmd); 885 } 886 887 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 888 { 889 return (unsigned long)__va(pmd_page_paddr(pmd)); 890 } 891 892 /* Find an entry in the third-level page table. */ 893 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 894 895 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 896 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 897 #define pte_clear_fixmap() clear_fixmap(FIX_PTE) 898 899 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 900 901 /* use ONLY for statically allocated translation tables */ 902 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 903 904 #if CONFIG_PGTABLE_LEVELS > 2 905 906 #define pmd_ERROR(e) \ 907 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 908 909 #define pud_none(pud) (!pud_val(pud)) 910 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \ 911 PUD_TYPE_TABLE) 912 #define pud_present(pud) pte_present(pud_pte(pud)) 913 #ifndef __PAGETABLE_PMD_FOLDED 914 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud)) 915 #else 916 #define pud_leaf(pud) false 917 #endif 918 #define pud_valid(pud) pte_valid(pud_pte(pud)) 919 #define pud_user(pud) pte_user(pud_pte(pud)) 920 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud)) 921 922 static inline bool pgtable_l4_enabled(void); 923 924 static inline void set_pud(pud_t *pudp, pud_t pud) 925 { 926 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) { 927 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 928 return; 929 } 930 931 WRITE_ONCE(*pudp, pud); 932 933 if (pud_valid(pud)) 934 queue_pte_barriers(); 935 } 936 937 static inline void pud_clear(pud_t *pudp) 938 { 939 set_pud(pudp, __pud(0)); 940 } 941 942 static inline phys_addr_t pud_page_paddr(pud_t pud) 943 { 944 return __pud_to_phys(pud); 945 } 946 947 static inline pmd_t *pud_pgtable(pud_t pud) 948 { 949 return (pmd_t *)__va(pud_page_paddr(pud)); 950 } 951 952 /* Find an entry in the second-level page table. */ 953 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 954 955 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 956 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 957 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 958 959 #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 960 961 /* use ONLY for statically allocated translation tables */ 962 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 963 964 #else 965 966 #define pud_valid(pud) false 967 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 968 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */ 969 970 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 971 #define pmd_set_fixmap(addr) NULL 972 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 973 #define pmd_clear_fixmap() 974 975 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 976 977 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 978 979 #if CONFIG_PGTABLE_LEVELS > 3 980 981 static __always_inline bool pgtable_l4_enabled(void) 982 { 983 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2)) 984 return true; 985 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 986 return vabits_actual == VA_BITS; 987 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 988 } 989 990 static inline bool mm_pud_folded(const struct mm_struct *mm) 991 { 992 return !pgtable_l4_enabled(); 993 } 994 #define mm_pud_folded mm_pud_folded 995 996 #define pud_ERROR(e) \ 997 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 998 999 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d)) 1000 #define p4d_bad(p4d) (pgtable_l4_enabled() && \ 1001 ((p4d_val(p4d) & P4D_TYPE_MASK) != \ 1002 P4D_TYPE_TABLE)) 1003 #define p4d_present(p4d) (!p4d_none(p4d)) 1004 1005 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 1006 { 1007 if (in_swapper_pgdir(p4dp)) { 1008 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 1009 return; 1010 } 1011 1012 WRITE_ONCE(*p4dp, p4d); 1013 queue_pte_barriers(); 1014 } 1015 1016 static inline void p4d_clear(p4d_t *p4dp) 1017 { 1018 if (pgtable_l4_enabled()) 1019 set_p4d(p4dp, __p4d(0)); 1020 } 1021 1022 static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 1023 { 1024 return __p4d_to_phys(p4d); 1025 } 1026 1027 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 1028 1029 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr) 1030 { 1031 /* Ensure that 'p4dp' indexes a page table according to 'addr' */ 1032 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D); 1033 1034 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr); 1035 } 1036 1037 static inline pud_t *p4d_pgtable(p4d_t p4d) 1038 { 1039 return (pud_t *)__va(p4d_page_paddr(p4d)); 1040 } 1041 1042 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr) 1043 { 1044 BUG_ON(!pgtable_l4_enabled()); 1045 1046 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t); 1047 } 1048 1049 static inline 1050 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr) 1051 { 1052 if (!pgtable_l4_enabled()) 1053 return p4d_to_folded_pud(p4dp, addr); 1054 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr); 1055 } 1056 #define pud_offset_lockless pud_offset_lockless 1057 1058 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr) 1059 { 1060 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr); 1061 } 1062 #define pud_offset pud_offset 1063 1064 static inline pud_t *pud_set_fixmap(unsigned long addr) 1065 { 1066 if (!pgtable_l4_enabled()) 1067 return NULL; 1068 return (pud_t *)set_fixmap_offset(FIX_PUD, addr); 1069 } 1070 1071 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr) 1072 { 1073 if (!pgtable_l4_enabled()) 1074 return p4d_to_folded_pud(p4dp, addr); 1075 return pud_set_fixmap(pud_offset_phys(p4dp, addr)); 1076 } 1077 1078 static inline void pud_clear_fixmap(void) 1079 { 1080 if (pgtable_l4_enabled()) 1081 clear_fixmap(FIX_PUD); 1082 } 1083 1084 /* use ONLY for statically allocated translation tables */ 1085 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr) 1086 { 1087 if (!pgtable_l4_enabled()) 1088 return p4d_to_folded_pud(p4dp, addr); 1089 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr)); 1090 } 1091 1092 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 1093 1094 #else 1095 1096 static inline bool pgtable_l4_enabled(void) { return false; } 1097 1098 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 1099 1100 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 1101 #define pud_set_fixmap(addr) NULL 1102 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 1103 #define pud_clear_fixmap() 1104 1105 #define pud_offset_kimg(dir,addr) ((pud_t *)dir) 1106 1107 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 1108 1109 #if CONFIG_PGTABLE_LEVELS > 4 1110 1111 static __always_inline bool pgtable_l5_enabled(void) 1112 { 1113 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 1114 return vabits_actual == VA_BITS; 1115 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 1116 } 1117 1118 static inline bool mm_p4d_folded(const struct mm_struct *mm) 1119 { 1120 return !pgtable_l5_enabled(); 1121 } 1122 #define mm_p4d_folded mm_p4d_folded 1123 1124 #define p4d_ERROR(e) \ 1125 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e)) 1126 1127 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd)) 1128 #define pgd_bad(pgd) (pgtable_l5_enabled() && \ 1129 ((pgd_val(pgd) & PGD_TYPE_MASK) != \ 1130 PGD_TYPE_TABLE)) 1131 #define pgd_present(pgd) (!pgd_none(pgd)) 1132 1133 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 1134 { 1135 if (in_swapper_pgdir(pgdp)) { 1136 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd))); 1137 return; 1138 } 1139 1140 WRITE_ONCE(*pgdp, pgd); 1141 queue_pte_barriers(); 1142 } 1143 1144 static inline void pgd_clear(pgd_t *pgdp) 1145 { 1146 if (pgtable_l5_enabled()) 1147 set_pgd(pgdp, __pgd(0)); 1148 } 1149 1150 static inline phys_addr_t pgd_page_paddr(pgd_t pgd) 1151 { 1152 return __pgd_to_phys(pgd); 1153 } 1154 1155 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1156 1157 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr) 1158 { 1159 /* Ensure that 'pgdp' indexes a page table according to 'addr' */ 1160 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD); 1161 1162 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr); 1163 } 1164 1165 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr) 1166 { 1167 BUG_ON(!pgtable_l5_enabled()); 1168 1169 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t); 1170 } 1171 1172 static inline 1173 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1174 { 1175 if (!pgtable_l5_enabled()) 1176 return pgd_to_folded_p4d(pgdp, addr); 1177 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr); 1178 } 1179 #define p4d_offset_lockless p4d_offset_lockless 1180 1181 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr) 1182 { 1183 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr); 1184 } 1185 1186 static inline p4d_t *p4d_set_fixmap(unsigned long addr) 1187 { 1188 if (!pgtable_l5_enabled()) 1189 return NULL; 1190 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr); 1191 } 1192 1193 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr) 1194 { 1195 if (!pgtable_l5_enabled()) 1196 return pgd_to_folded_p4d(pgdp, addr); 1197 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr)); 1198 } 1199 1200 static inline void p4d_clear_fixmap(void) 1201 { 1202 if (pgtable_l5_enabled()) 1203 clear_fixmap(FIX_P4D); 1204 } 1205 1206 /* use ONLY for statically allocated translation tables */ 1207 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr) 1208 { 1209 if (!pgtable_l5_enabled()) 1210 return pgd_to_folded_p4d(pgdp, addr); 1211 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr)); 1212 } 1213 1214 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd))) 1215 1216 #else 1217 1218 static inline bool pgtable_l5_enabled(void) { return false; } 1219 1220 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1221 1222 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */ 1223 #define p4d_set_fixmap(addr) NULL 1224 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp) 1225 #define p4d_clear_fixmap() 1226 1227 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir) 1228 1229 static inline 1230 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1231 { 1232 /* 1233 * With runtime folding of the pud, pud_offset_lockless() passes 1234 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which 1235 * will offset the pointer assuming that it points into 1236 * a page-table page. However, the fast GUP path passes us a 1237 * pgd_t allocated on the stack and so we must use the original 1238 * pointer in 'pgdp' to construct the p4d pointer instead of 1239 * using the generic p4d_offset_lockless() implementation. 1240 * 1241 * Note: reusing the original pointer means that we may 1242 * dereference the same (live) page-table entry multiple times. 1243 * This is safe because it is still only loaded once in the 1244 * context of each level and the CPU guarantees same-address 1245 * read-after-read ordering. 1246 */ 1247 return p4d_offset(pgdp, addr); 1248 } 1249 #define p4d_offset_lockless p4d_offset_lockless_folded 1250 1251 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1252 1253 #define pgd_ERROR(e) \ 1254 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 1255 1256 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 1257 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 1258 1259 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 1260 { 1261 /* 1262 * Normal and Normal-Tagged are two different memory types and indices 1263 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 1264 */ 1265 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 1266 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE | 1267 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK; 1268 1269 /* preserve the hardware dirty information */ 1270 if (pte_hw_dirty(pte)) 1271 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 1272 1273 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 1274 /* 1275 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware 1276 * dirtiness again. 1277 */ 1278 if (pte_sw_dirty(pte)) 1279 pte = pte_mkdirty(pte); 1280 return pte; 1281 } 1282 1283 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1284 { 1285 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 1286 } 1287 1288 extern int __ptep_set_access_flags(struct vm_area_struct *vma, 1289 unsigned long address, pte_t *ptep, 1290 pte_t entry, int dirty); 1291 1292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1293 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1294 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1295 unsigned long address, pmd_t *pmdp, 1296 pmd_t entry, int dirty) 1297 { 1298 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp, 1299 pmd_pte(entry), dirty); 1300 } 1301 #endif 1302 1303 #ifdef CONFIG_PAGE_TABLE_CHECK 1304 static inline bool pte_user_accessible_page(pte_t pte) 1305 { 1306 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte)); 1307 } 1308 1309 static inline bool pmd_user_accessible_page(pmd_t pmd) 1310 { 1311 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd)); 1312 } 1313 1314 static inline bool pud_user_accessible_page(pud_t pud) 1315 { 1316 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud)); 1317 } 1318 #endif 1319 1320 /* 1321 * Atomic pte/pmd modifications. 1322 */ 1323 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma, 1324 unsigned long address, 1325 pte_t *ptep) 1326 { 1327 pte_t old_pte, pte; 1328 1329 pte = __ptep_get(ptep); 1330 do { 1331 old_pte = pte; 1332 pte = pte_mkold(pte); 1333 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1334 pte_val(old_pte), pte_val(pte)); 1335 } while (pte_val(pte) != pte_val(old_pte)); 1336 1337 return pte_young(pte); 1338 } 1339 1340 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma, 1341 unsigned long address, pte_t *ptep) 1342 { 1343 int young = __ptep_test_and_clear_young(vma, address, ptep); 1344 1345 if (young) { 1346 /* 1347 * We can elide the trailing DSB here since the worst that can 1348 * happen is that a CPU continues to use the young entry in its 1349 * TLB and we mistakenly reclaim the associated page. The 1350 * window for such an event is bounded by the next 1351 * context-switch, which provides a DSB to complete the TLB 1352 * invalidation. 1353 */ 1354 flush_tlb_page_nosync(vma, address); 1355 } 1356 1357 return young; 1358 } 1359 1360 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 1361 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1362 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1363 unsigned long address, 1364 pmd_t *pmdp) 1365 { 1366 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */ 1367 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft()); 1368 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 1369 } 1370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 1371 1372 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm, 1373 pte_t *ptep, 1374 unsigned long pgsize) 1375 { 1376 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0)); 1377 1378 switch (pgsize) { 1379 case PAGE_SIZE: 1380 page_table_check_pte_clear(mm, pte); 1381 break; 1382 case PMD_SIZE: 1383 page_table_check_pmd_clear(mm, pte_pmd(pte)); 1384 break; 1385 #ifndef __PAGETABLE_PMD_FOLDED 1386 case PUD_SIZE: 1387 page_table_check_pud_clear(mm, pte_pud(pte)); 1388 break; 1389 #endif 1390 default: 1391 VM_WARN_ON(1); 1392 } 1393 1394 return pte; 1395 } 1396 1397 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm, 1398 unsigned long address, pte_t *ptep) 1399 { 1400 return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE); 1401 } 1402 1403 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1404 pte_t *ptep, unsigned int nr, int full) 1405 { 1406 for (;;) { 1407 __ptep_get_and_clear(mm, addr, ptep); 1408 if (--nr == 0) 1409 break; 1410 ptep++; 1411 addr += PAGE_SIZE; 1412 } 1413 } 1414 1415 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm, 1416 unsigned long addr, pte_t *ptep, 1417 unsigned int nr, int full) 1418 { 1419 pte_t pte, tmp_pte; 1420 1421 pte = __ptep_get_and_clear(mm, addr, ptep); 1422 while (--nr) { 1423 ptep++; 1424 addr += PAGE_SIZE; 1425 tmp_pte = __ptep_get_and_clear(mm, addr, ptep); 1426 if (pte_dirty(tmp_pte)) 1427 pte = pte_mkdirty(pte); 1428 if (pte_young(tmp_pte)) 1429 pte = pte_mkyoung(pte); 1430 } 1431 return pte; 1432 } 1433 1434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1435 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1436 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1437 unsigned long address, pmd_t *pmdp) 1438 { 1439 return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE)); 1440 } 1441 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1442 1443 static inline void ___ptep_set_wrprotect(struct mm_struct *mm, 1444 unsigned long address, pte_t *ptep, 1445 pte_t pte) 1446 { 1447 pte_t old_pte; 1448 1449 do { 1450 old_pte = pte; 1451 pte = pte_wrprotect(pte); 1452 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1453 pte_val(old_pte), pte_val(pte)); 1454 } while (pte_val(pte) != pte_val(old_pte)); 1455 } 1456 1457 /* 1458 * __ptep_set_wrprotect - mark read-only while transferring potential hardware 1459 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 1460 */ 1461 static inline void __ptep_set_wrprotect(struct mm_struct *mm, 1462 unsigned long address, pte_t *ptep) 1463 { 1464 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep)); 1465 } 1466 1467 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address, 1468 pte_t *ptep, unsigned int nr) 1469 { 1470 unsigned int i; 1471 1472 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++) 1473 __ptep_set_wrprotect(mm, address, ptep); 1474 } 1475 1476 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma, 1477 unsigned long addr, pte_t *ptep, 1478 pte_t pte, cydp_t flags) 1479 { 1480 pte_t old_pte; 1481 1482 do { 1483 old_pte = pte; 1484 1485 if (flags & CYDP_CLEAR_YOUNG) 1486 pte = pte_mkold(pte); 1487 if (flags & CYDP_CLEAR_DIRTY) 1488 pte = pte_mkclean(pte); 1489 1490 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1491 pte_val(old_pte), pte_val(pte)); 1492 } while (pte_val(pte) != pte_val(old_pte)); 1493 } 1494 1495 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma, 1496 unsigned long addr, pte_t *ptep, 1497 unsigned int nr, cydp_t flags) 1498 { 1499 pte_t pte; 1500 1501 for (;;) { 1502 pte = __ptep_get(ptep); 1503 1504 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY)) 1505 __set_pte(ptep, pte_mkclean(pte_mkold(pte))); 1506 else 1507 __clear_young_dirty_pte(vma, addr, ptep, pte, flags); 1508 1509 if (--nr == 0) 1510 break; 1511 ptep++; 1512 addr += PAGE_SIZE; 1513 } 1514 } 1515 1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1517 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1518 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1519 unsigned long address, pmd_t *pmdp) 1520 { 1521 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 1522 } 1523 1524 #define pmdp_establish pmdp_establish 1525 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1526 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1527 { 1528 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 1529 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 1530 } 1531 #endif 1532 1533 /* 1534 * Encode and decode a swap entry: 1535 * bits 0-1: present (must be zero) 1536 * bits 2: remember PG_anon_exclusive 1537 * bit 3: remember uffd-wp state 1538 * bits 6-10: swap type 1539 * bit 11: PTE_PRESENT_INVALID (must be zero) 1540 * bits 12-61: swap offset 1541 */ 1542 #define __SWP_TYPE_SHIFT 6 1543 #define __SWP_TYPE_BITS 5 1544 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 1545 #define __SWP_OFFSET_SHIFT 12 1546 #define __SWP_OFFSET_BITS 50 1547 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 1548 1549 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 1550 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 1551 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 1552 1553 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1554 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 1555 1556 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1557 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 1558 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 1559 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 1560 1561 /* 1562 * Ensure that there are not more swap files than can be encoded in the kernel 1563 * PTEs. 1564 */ 1565 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 1566 1567 #ifdef CONFIG_ARM64_MTE 1568 1569 #define __HAVE_ARCH_PREPARE_TO_SWAP 1570 extern int arch_prepare_to_swap(struct folio *folio); 1571 1572 #define __HAVE_ARCH_SWAP_INVALIDATE 1573 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1574 { 1575 if (system_supports_mte()) 1576 mte_invalidate_tags(type, offset); 1577 } 1578 1579 static inline void arch_swap_invalidate_area(int type) 1580 { 1581 if (system_supports_mte()) 1582 mte_invalidate_tags_area(type); 1583 } 1584 1585 #define __HAVE_ARCH_SWAP_RESTORE 1586 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio); 1587 1588 #endif /* CONFIG_ARM64_MTE */ 1589 1590 /* 1591 * On AArch64, the cache coherency is handled via the __set_ptes() function. 1592 */ 1593 static inline void update_mmu_cache_range(struct vm_fault *vmf, 1594 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, 1595 unsigned int nr) 1596 { 1597 /* 1598 * We don't do anything here, so there's a very small chance of 1599 * us retaking a user fault which we just fixed up. The alternative 1600 * is doing a dsb(ishst), but that penalises the fastpath. 1601 */ 1602 } 1603 1604 #define update_mmu_cache(vma, addr, ptep) \ 1605 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 1606 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 1607 1608 #ifdef CONFIG_ARM64_PA_BITS_52 1609 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 1610 #else 1611 #define phys_to_ttbr(addr) (addr) 1612 #endif 1613 1614 /* 1615 * On arm64 without hardware Access Flag, copying from user will fail because 1616 * the pte is old and cannot be marked young. So we always end up with zeroed 1617 * page after fork() + CoW for pfn mappings. We don't always have a 1618 * hardware-managed access flag on arm64. 1619 */ 1620 #define arch_has_hw_pte_young cpu_has_hw_af 1621 1622 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG 1623 #define arch_has_hw_nonleaf_pmd_young system_supports_haft 1624 #endif 1625 1626 /* 1627 * Experimentally, it's cheap to set the access flag in hardware and we 1628 * benefit from prefaulting mappings as 'old' to start with. 1629 */ 1630 #define arch_wants_old_prefaulted_pte cpu_has_hw_af 1631 1632 /* 1633 * Request exec memory is read into pagecache in at least 64K folios. This size 1634 * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB 1635 * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base 1636 * pages are in use. 1637 */ 1638 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT) 1639 1640 static inline bool pud_sect_supported(void) 1641 { 1642 return PAGE_SIZE == SZ_4K; 1643 } 1644 1645 1646 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1647 #define ptep_modify_prot_start ptep_modify_prot_start 1648 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1649 unsigned long addr, pte_t *ptep); 1650 1651 #define ptep_modify_prot_commit ptep_modify_prot_commit 1652 extern void ptep_modify_prot_commit(struct vm_area_struct *vma, 1653 unsigned long addr, pte_t *ptep, 1654 pte_t old_pte, pte_t new_pte); 1655 1656 #define modify_prot_start_ptes modify_prot_start_ptes 1657 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma, 1658 unsigned long addr, pte_t *ptep, 1659 unsigned int nr); 1660 1661 #define modify_prot_commit_ptes modify_prot_commit_ptes 1662 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr, 1663 pte_t *ptep, pte_t old_pte, pte_t pte, 1664 unsigned int nr); 1665 1666 #ifdef CONFIG_ARM64_CONTPTE 1667 1668 /* 1669 * The contpte APIs are used to transparently manage the contiguous bit in ptes 1670 * where it is possible and makes sense to do so. The PTE_CONT bit is considered 1671 * a private implementation detail of the public ptep API (see below). 1672 */ 1673 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr, 1674 pte_t *ptep, pte_t pte); 1675 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr, 1676 pte_t *ptep, pte_t pte); 1677 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte); 1678 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep); 1679 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr, 1680 pte_t *ptep, pte_t pte, unsigned int nr); 1681 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1682 pte_t *ptep, unsigned int nr, int full); 1683 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm, 1684 unsigned long addr, pte_t *ptep, 1685 unsigned int nr, int full); 1686 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma, 1687 unsigned long addr, pte_t *ptep); 1688 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma, 1689 unsigned long addr, pte_t *ptep); 1690 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 1691 pte_t *ptep, unsigned int nr); 1692 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma, 1693 unsigned long addr, pte_t *ptep, 1694 pte_t entry, int dirty); 1695 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma, 1696 unsigned long addr, pte_t *ptep, 1697 unsigned int nr, cydp_t flags); 1698 1699 static __always_inline void contpte_try_fold(struct mm_struct *mm, 1700 unsigned long addr, pte_t *ptep, pte_t pte) 1701 { 1702 /* 1703 * Only bother trying if both the virtual and physical addresses are 1704 * aligned and correspond to the last entry in a contig range. The core 1705 * code mostly modifies ranges from low to high, so this is the likely 1706 * the last modification in the contig range, so a good time to fold. 1707 * We can't fold special mappings, because there is no associated folio. 1708 */ 1709 1710 const unsigned long contmask = CONT_PTES - 1; 1711 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask; 1712 1713 if (unlikely(valign)) { 1714 bool palign = (pte_pfn(pte) & contmask) == contmask; 1715 1716 if (unlikely(palign && 1717 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte))) 1718 __contpte_try_fold(mm, addr, ptep, pte); 1719 } 1720 } 1721 1722 static __always_inline void contpte_try_unfold(struct mm_struct *mm, 1723 unsigned long addr, pte_t *ptep, pte_t pte) 1724 { 1725 if (unlikely(pte_valid_cont(pte))) 1726 __contpte_try_unfold(mm, addr, ptep, pte); 1727 } 1728 1729 #define pte_batch_hint pte_batch_hint 1730 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 1731 { 1732 if (!pte_valid_cont(pte)) 1733 return 1; 1734 1735 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1)); 1736 } 1737 1738 /* 1739 * The below functions constitute the public API that arm64 presents to the 1740 * core-mm to manipulate PTE entries within their page tables (or at least this 1741 * is the subset of the API that arm64 needs to implement). These public 1742 * versions will automatically and transparently apply the contiguous bit where 1743 * it makes sense to do so. Therefore any users that are contig-aware (e.g. 1744 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the 1745 * private versions, which are prefixed with double underscore. All of these 1746 * APIs except for ptep_get_lockless() are expected to be called with the PTL 1747 * held. Although the contiguous bit is considered private to the 1748 * implementation, it is deliberately allowed to leak through the getters (e.g. 1749 * ptep_get()), back to core code. This is required so that pte_leaf_size() can 1750 * provide an accurate size for perf_get_pgtable_size(). But this leakage means 1751 * its possible a pte will be passed to a setter with the contiguous bit set, so 1752 * we explicitly clear the contiguous bit in those cases to prevent accidentally 1753 * setting it in the pgtable. 1754 */ 1755 1756 #define ptep_get ptep_get 1757 static inline pte_t ptep_get(pte_t *ptep) 1758 { 1759 pte_t pte = __ptep_get(ptep); 1760 1761 if (likely(!pte_valid_cont(pte))) 1762 return pte; 1763 1764 return contpte_ptep_get(ptep, pte); 1765 } 1766 1767 #define ptep_get_lockless ptep_get_lockless 1768 static inline pte_t ptep_get_lockless(pte_t *ptep) 1769 { 1770 pte_t pte = __ptep_get(ptep); 1771 1772 if (likely(!pte_valid_cont(pte))) 1773 return pte; 1774 1775 return contpte_ptep_get_lockless(ptep); 1776 } 1777 1778 static inline void set_pte(pte_t *ptep, pte_t pte) 1779 { 1780 /* 1781 * We don't have the mm or vaddr so cannot unfold contig entries (since 1782 * it requires tlb maintenance). set_pte() is not used in core code, so 1783 * this should never even be called. Regardless do our best to service 1784 * any call and emit a warning if there is any attempt to set a pte on 1785 * top of an existing contig range. 1786 */ 1787 pte_t orig_pte = __ptep_get(ptep); 1788 1789 WARN_ON_ONCE(pte_valid_cont(orig_pte)); 1790 __set_pte(ptep, pte_mknoncont(pte)); 1791 } 1792 1793 #define set_ptes set_ptes 1794 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1795 pte_t *ptep, pte_t pte, unsigned int nr) 1796 { 1797 pte = pte_mknoncont(pte); 1798 1799 if (likely(nr == 1)) { 1800 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1801 __set_ptes(mm, addr, ptep, pte, 1); 1802 contpte_try_fold(mm, addr, ptep, pte); 1803 } else { 1804 contpte_set_ptes(mm, addr, ptep, pte, nr); 1805 } 1806 } 1807 1808 static inline void pte_clear(struct mm_struct *mm, 1809 unsigned long addr, pte_t *ptep) 1810 { 1811 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1812 __pte_clear(mm, addr, ptep); 1813 } 1814 1815 #define clear_full_ptes clear_full_ptes 1816 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1817 pte_t *ptep, unsigned int nr, int full) 1818 { 1819 if (likely(nr == 1)) { 1820 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1821 __clear_full_ptes(mm, addr, ptep, nr, full); 1822 } else { 1823 contpte_clear_full_ptes(mm, addr, ptep, nr, full); 1824 } 1825 } 1826 1827 #define get_and_clear_full_ptes get_and_clear_full_ptes 1828 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 1829 unsigned long addr, pte_t *ptep, 1830 unsigned int nr, int full) 1831 { 1832 pte_t pte; 1833 1834 if (likely(nr == 1)) { 1835 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1836 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1837 } else { 1838 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1839 } 1840 1841 return pte; 1842 } 1843 1844 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1845 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1846 unsigned long addr, pte_t *ptep) 1847 { 1848 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1849 return __ptep_get_and_clear(mm, addr, ptep); 1850 } 1851 1852 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1853 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1854 unsigned long addr, pte_t *ptep) 1855 { 1856 pte_t orig_pte = __ptep_get(ptep); 1857 1858 if (likely(!pte_valid_cont(orig_pte))) 1859 return __ptep_test_and_clear_young(vma, addr, ptep); 1860 1861 return contpte_ptep_test_and_clear_young(vma, addr, ptep); 1862 } 1863 1864 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1865 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1866 unsigned long addr, pte_t *ptep) 1867 { 1868 pte_t orig_pte = __ptep_get(ptep); 1869 1870 if (likely(!pte_valid_cont(orig_pte))) 1871 return __ptep_clear_flush_young(vma, addr, ptep); 1872 1873 return contpte_ptep_clear_flush_young(vma, addr, ptep); 1874 } 1875 1876 #define wrprotect_ptes wrprotect_ptes 1877 static __always_inline void wrprotect_ptes(struct mm_struct *mm, 1878 unsigned long addr, pte_t *ptep, unsigned int nr) 1879 { 1880 if (likely(nr == 1)) { 1881 /* 1882 * Optimization: wrprotect_ptes() can only be called for present 1883 * ptes so we only need to check contig bit as condition for 1884 * unfold, and we can remove the contig bit from the pte we read 1885 * to avoid re-reading. This speeds up fork() which is sensitive 1886 * for order-0 folios. Equivalent to contpte_try_unfold(). 1887 */ 1888 pte_t orig_pte = __ptep_get(ptep); 1889 1890 if (unlikely(pte_cont(orig_pte))) { 1891 __contpte_try_unfold(mm, addr, ptep, orig_pte); 1892 orig_pte = pte_mknoncont(orig_pte); 1893 } 1894 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte); 1895 } else { 1896 contpte_wrprotect_ptes(mm, addr, ptep, nr); 1897 } 1898 } 1899 1900 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1901 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1902 unsigned long addr, pte_t *ptep) 1903 { 1904 wrprotect_ptes(mm, addr, ptep, 1); 1905 } 1906 1907 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1908 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1909 unsigned long addr, pte_t *ptep, 1910 pte_t entry, int dirty) 1911 { 1912 pte_t orig_pte = __ptep_get(ptep); 1913 1914 entry = pte_mknoncont(entry); 1915 1916 if (likely(!pte_valid_cont(orig_pte))) 1917 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1918 1919 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1920 } 1921 1922 #define clear_young_dirty_ptes clear_young_dirty_ptes 1923 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 1924 unsigned long addr, pte_t *ptep, 1925 unsigned int nr, cydp_t flags) 1926 { 1927 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep)))) 1928 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1929 else 1930 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1931 } 1932 1933 #else /* CONFIG_ARM64_CONTPTE */ 1934 1935 #define ptep_get __ptep_get 1936 #define set_pte __set_pte 1937 #define set_ptes __set_ptes 1938 #define pte_clear __pte_clear 1939 #define clear_full_ptes __clear_full_ptes 1940 #define get_and_clear_full_ptes __get_and_clear_full_ptes 1941 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1942 #define ptep_get_and_clear __ptep_get_and_clear 1943 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1944 #define ptep_test_and_clear_young __ptep_test_and_clear_young 1945 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1946 #define ptep_clear_flush_young __ptep_clear_flush_young 1947 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1948 #define ptep_set_wrprotect __ptep_set_wrprotect 1949 #define wrprotect_ptes __wrprotect_ptes 1950 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1951 #define ptep_set_access_flags __ptep_set_access_flags 1952 #define clear_young_dirty_ptes __clear_young_dirty_ptes 1953 1954 #endif /* CONFIG_ARM64_CONTPTE */ 1955 1956 #endif /* !__ASSEMBLER__ */ 1957 1958 #endif /* __ASM_PGTABLE_H */ 1959