xref: /linux/arch/arm64/include/asm/pgtable.h (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLER__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
43 static inline void emit_pte_barriers(void)
44 {
45 	/*
46 	 * These barriers are emitted under certain conditions after a pte entry
47 	 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 	 * visible to the table walker. The isb ensures that any previous
49 	 * speculative "invalid translation" marker that is in the CPU's
50 	 * pipeline gets cleared, so that any access to that address after
51 	 * setting the pte to valid won't cause a spurious fault. If the thread
52 	 * gets preempted after storing to the pgtable but before emitting these
53 	 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 	 * see the store. There is no guarantee of an isb being issued though.
55 	 * This is safe because it will still get issued (albeit on a
56 	 * potentially different CPU) when the thread starts running again,
57 	 * before any access to the address.
58 	 */
59 	dsb(ishst);
60 	isb();
61 }
62 
63 static inline void queue_pte_barriers(void)
64 {
65 	unsigned long flags;
66 
67 	if (in_interrupt()) {
68 		emit_pte_barriers();
69 		return;
70 	}
71 
72 	flags = read_thread_flags();
73 
74 	if (flags & BIT(TIF_LAZY_MMU)) {
75 		/* Avoid the atomic op if already set. */
76 		if (!(flags & BIT(TIF_LAZY_MMU_PENDING)))
77 			set_thread_flag(TIF_LAZY_MMU_PENDING);
78 	} else {
79 		emit_pte_barriers();
80 	}
81 }
82 
83 #define  __HAVE_ARCH_ENTER_LAZY_MMU_MODE
84 static inline void arch_enter_lazy_mmu_mode(void)
85 {
86 	/*
87 	 * lazy_mmu_mode is not supposed to permit nesting. But in practice this
88 	 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation
89 	 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change
90 	 * permissions on the linear map with apply_to_page_range(), which
91 	 * re-enters lazy_mmu_mode. So we tolerate nesting in our
92 	 * implementation. The first call to arch_leave_lazy_mmu_mode() will
93 	 * flush and clear the flag such that the remainder of the work in the
94 	 * outer nest behaves as if outside of lazy mmu mode. This is safe and
95 	 * keeps tracking simple.
96 	 */
97 
98 	if (in_interrupt())
99 		return;
100 
101 	set_thread_flag(TIF_LAZY_MMU);
102 }
103 
104 static inline void arch_flush_lazy_mmu_mode(void)
105 {
106 	if (in_interrupt())
107 		return;
108 
109 	if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
110 		emit_pte_barriers();
111 }
112 
113 static inline void arch_leave_lazy_mmu_mode(void)
114 {
115 	if (in_interrupt())
116 		return;
117 
118 	arch_flush_lazy_mmu_mode();
119 	clear_thread_flag(TIF_LAZY_MMU);
120 }
121 
122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
124 
125 /* Set stride and tlb_level in flush_*_tlb_range */
126 #define flush_pmd_tlb_range(vma, addr, end)	\
127 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
128 #define flush_pud_tlb_range(vma, addr, end)	\
129 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
131 
132 /*
133  * We use local TLB invalidation instruction when reusing page in
134  * write protection fault handler to avoid TLBI broadcast in the hot
135  * path.  This will cause spurious page faults if stale read-only TLB
136  * entries exist.
137  */
138 #define flush_tlb_fix_spurious_fault(vma, address, ptep)	\
139 	local_flush_tlb_page_nonotify(vma, address)
140 
141 #define flush_tlb_fix_spurious_fault_pmd(vma, address, pmdp)	\
142 	local_flush_tlb_page_nonotify(vma, address)
143 
144 /*
145  * ZERO_PAGE is a global shared page that is always zero: used
146  * for zero-mapped memory areas etc..
147  */
148 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
149 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
150 
151 #define pte_ERROR(e)	\
152 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
153 
154 #ifdef CONFIG_ARM64_PA_BITS_52
155 static inline phys_addr_t __pte_to_phys(pte_t pte)
156 {
157 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
158 	return (pte_val(pte) & PTE_ADDR_LOW) |
159 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
160 }
161 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
162 {
163 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
164 }
165 #else
166 static inline phys_addr_t __pte_to_phys(pte_t pte)
167 {
168 	return pte_val(pte) & PTE_ADDR_LOW;
169 }
170 
171 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
172 {
173 	return phys;
174 }
175 #endif
176 
177 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
178 #define pfn_pte(pfn,prot)	\
179 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
180 
181 #define pte_none(pte)		(!pte_val(pte))
182 #define __pte_clear(mm, addr, ptep) \
183 				__set_pte(ptep, __pte(0))
184 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
185 
186 /*
187  * The following only work if pte_present(). Undefined behaviour otherwise.
188  */
189 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
190 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
191 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
192 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
193 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
194 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
195 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
196 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
197 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
198 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
199 
200 #define pte_cont_addr_end(addr, end)						\
201 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
202 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
203 })
204 
205 #define pmd_cont_addr_end(addr, end)						\
206 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
207 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
208 })
209 
210 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
211 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
212 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
213 
214 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
215 #define pte_present_invalid(pte) \
216 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
217 /*
218  * Execute-only user mappings do not have the PTE_USER bit set. All valid
219  * kernel mappings have the PTE_UXN bit set.
220  */
221 #define pte_valid_not_user(pte) \
222 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
223 /*
224  * Returns true if the pte is valid and has the contiguous bit set.
225  */
226 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
227 /*
228  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
229  * so that we don't erroneously return false for pages that have been
230  * remapped as PROT_NONE but are yet to be flushed from the TLB.
231  * Note that we can't make any assumptions based on the state of the access
232  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
233  * TLB.
234  */
235 #define pte_accessible(mm, pte)	\
236 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
237 
238 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
239 {
240 	u64 por;
241 
242 	if (!system_supports_poe())
243 		return true;
244 
245 	por = read_sysreg_s(SYS_POR_EL0);
246 
247 	if (write)
248 		return por_elx_allows_write(por, pkey);
249 
250 	if (execute)
251 		return por_elx_allows_exec(por, pkey);
252 
253 	return por_elx_allows_read(por, pkey);
254 }
255 
256 /*
257  * p??_access_permitted() is true for valid user mappings (PTE_USER
258  * bit set, subject to the write permission check). For execute-only
259  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
260  * not set) must return false. PROT_NONE mappings do not have the
261  * PTE_VALID bit set.
262  */
263 #define pte_access_permitted_no_overlay(pte, write) \
264 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
265 #define pte_access_permitted(pte, write) \
266 	(pte_access_permitted_no_overlay(pte, write) && \
267 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
268 #define pmd_access_permitted(pmd, write) \
269 	(pte_access_permitted(pmd_pte(pmd), (write)))
270 #define pud_access_permitted(pud, write) \
271 	(pte_access_permitted(pud_pte(pud), (write)))
272 
273 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
274 {
275 	pte_val(pte) &= ~pgprot_val(prot);
276 	return pte;
277 }
278 
279 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
280 {
281 	pte_val(pte) |= pgprot_val(prot);
282 	return pte;
283 }
284 
285 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
286 {
287 	pmd_val(pmd) &= ~pgprot_val(prot);
288 	return pmd;
289 }
290 
291 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
292 {
293 	pmd_val(pmd) |= pgprot_val(prot);
294 	return pmd;
295 }
296 
297 static inline pte_t pte_mkwrite_novma(pte_t pte)
298 {
299 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
300 	if (pte_sw_dirty(pte))
301 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
302 	return pte;
303 }
304 
305 static inline pte_t pte_mkclean(pte_t pte)
306 {
307 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
308 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
309 
310 	return pte;
311 }
312 
313 static inline pte_t pte_mkdirty(pte_t pte)
314 {
315 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
316 
317 	if (pte_write(pte))
318 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
319 
320 	return pte;
321 }
322 
323 static inline pte_t pte_wrprotect(pte_t pte)
324 {
325 	/*
326 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
327 	 * clear), set the PTE_DIRTY bit.
328 	 */
329 	if (pte_hw_dirty(pte))
330 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
331 
332 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
333 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
334 	return pte;
335 }
336 
337 static inline pte_t pte_mkold(pte_t pte)
338 {
339 	return clear_pte_bit(pte, __pgprot(PTE_AF));
340 }
341 
342 static inline pte_t pte_mkyoung(pte_t pte)
343 {
344 	return set_pte_bit(pte, __pgprot(PTE_AF));
345 }
346 
347 static inline pte_t pte_mkspecial(pte_t pte)
348 {
349 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
350 }
351 
352 static inline pte_t pte_mkcont(pte_t pte)
353 {
354 	return set_pte_bit(pte, __pgprot(PTE_CONT));
355 }
356 
357 static inline pte_t pte_mknoncont(pte_t pte)
358 {
359 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
360 }
361 
362 static inline pte_t pte_mkvalid(pte_t pte)
363 {
364 	return set_pte_bit(pte, __pgprot(PTE_VALID));
365 }
366 
367 static inline pte_t pte_mkinvalid(pte_t pte)
368 {
369 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
370 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
371 	return pte;
372 }
373 
374 static inline pmd_t pmd_mkcont(pmd_t pmd)
375 {
376 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
377 }
378 
379 static inline pmd_t pmd_mknoncont(pmd_t pmd)
380 {
381 	return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT);
382 }
383 
384 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
385 static inline int pte_uffd_wp(pte_t pte)
386 {
387 	return !!(pte_val(pte) & PTE_UFFD_WP);
388 }
389 
390 static inline pte_t pte_mkuffd_wp(pte_t pte)
391 {
392 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
393 }
394 
395 static inline pte_t pte_clear_uffd_wp(pte_t pte)
396 {
397 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
398 }
399 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
400 
401 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
402 {
403 	WRITE_ONCE(*ptep, pte);
404 }
405 
406 static inline void __set_pte_complete(pte_t pte)
407 {
408 	/*
409 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
410 	 * has the necessary barriers.
411 	 */
412 	if (pte_valid_not_user(pte))
413 		queue_pte_barriers();
414 }
415 
416 static inline void __set_pte(pte_t *ptep, pte_t pte)
417 {
418 	__set_pte_nosync(ptep, pte);
419 	__set_pte_complete(pte);
420 }
421 
422 static inline pte_t __ptep_get(pte_t *ptep)
423 {
424 	return READ_ONCE(*ptep);
425 }
426 
427 extern void __sync_icache_dcache(pte_t pteval);
428 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
429 
430 /*
431  * PTE bits configuration in the presence of hardware Dirty Bit Management
432  * (PTE_WRITE == PTE_DBM):
433  *
434  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
435  *   0      0      |   1           0          0
436  *   0      1      |   1           1          0
437  *   1      0      |   1           0          1
438  *   1      1      |   0           1          x
439  *
440  * When hardware DBM is not present, the software PTE_DIRTY bit is updated via
441  * the page fault mechanism. Checking the dirty status of a pte becomes:
442  *
443  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
444  */
445 
446 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
447 					   pte_t pte)
448 {
449 	pte_t old_pte;
450 
451 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
452 		return;
453 
454 	old_pte = __ptep_get(ptep);
455 
456 	if (!pte_valid(old_pte) || !pte_valid(pte))
457 		return;
458 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
459 		return;
460 
461 	/*
462 	 * Check for potential race with hardware updates of the pte
463 	 * (__ptep_set_access_flags safely changes valid ptes without going
464 	 * through an invalid entry).
465 	 */
466 	VM_WARN_ONCE(!pte_young(pte),
467 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
468 		     __func__, pte_val(old_pte), pte_val(pte));
469 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
470 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
471 		     __func__, pte_val(old_pte), pte_val(pte));
472 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
473 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
474 		     __func__, pte_val(old_pte), pte_val(pte));
475 }
476 
477 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
478 {
479 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
480 		__sync_icache_dcache(pte);
481 
482 	/*
483 	 * If the PTE would provide user space access to the tags associated
484 	 * with it then ensure that the MTE tags are synchronised.  Although
485 	 * pte_access_permitted_no_overlay() returns false for exec only
486 	 * mappings, they don't expose tags (instruction fetches don't check
487 	 * tags).
488 	 */
489 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
490 	    !pte_special(pte) && pte_tagged(pte))
491 		mte_sync_tags(pte, nr_pages);
492 }
493 
494 /*
495  * Select all bits except the pfn
496  */
497 #define pte_pgprot pte_pgprot
498 static inline pgprot_t pte_pgprot(pte_t pte)
499 {
500 	unsigned long pfn = pte_pfn(pte);
501 
502 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
503 }
504 
505 #define pte_advance_pfn pte_advance_pfn
506 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
507 {
508 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
509 }
510 
511 /*
512  * Hugetlb definitions.
513  */
514 #define HUGE_MAX_HSTATE		4
515 #define HPAGE_SHIFT		PMD_SHIFT
516 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
517 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
518 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
519 
520 static inline pte_t pgd_pte(pgd_t pgd)
521 {
522 	return __pte(pgd_val(pgd));
523 }
524 
525 static inline pte_t p4d_pte(p4d_t p4d)
526 {
527 	return __pte(p4d_val(p4d));
528 }
529 
530 static inline pte_t pud_pte(pud_t pud)
531 {
532 	return __pte(pud_val(pud));
533 }
534 
535 static inline pud_t pte_pud(pte_t pte)
536 {
537 	return __pud(pte_val(pte));
538 }
539 
540 static inline pmd_t pud_pmd(pud_t pud)
541 {
542 	return __pmd(pud_val(pud));
543 }
544 
545 static inline pte_t pmd_pte(pmd_t pmd)
546 {
547 	return __pte(pmd_val(pmd));
548 }
549 
550 static inline pmd_t pte_pmd(pte_t pte)
551 {
552 	return __pmd(pte_val(pte));
553 }
554 
555 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
556 {
557 	return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
558 }
559 
560 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
561 {
562 	return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
563 }
564 
565 static inline pte_t pte_swp_mkexclusive(pte_t pte)
566 {
567 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
568 }
569 
570 static inline bool pte_swp_exclusive(pte_t pte)
571 {
572 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
573 }
574 
575 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
576 {
577 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
578 }
579 
580 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
581 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
582 {
583 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
584 }
585 
586 static inline int pte_swp_uffd_wp(pte_t pte)
587 {
588 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
589 }
590 
591 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
592 {
593 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
594 }
595 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
596 
597 #ifdef CONFIG_NUMA_BALANCING
598 /*
599  * See the comment in include/linux/pgtable.h
600  */
601 static inline int pte_protnone(pte_t pte)
602 {
603 	/*
604 	 * pte_present_invalid() tells us that the pte is invalid from HW
605 	 * perspective but present from SW perspective, so the fields are to be
606 	 * interpreted as per the HW layout. The second 2 checks are the unique
607 	 * encoding that we use for PROT_NONE. It is insufficient to only use
608 	 * the first check because we share the same encoding scheme with pmds
609 	 * which support pmd_mkinvalid(), so can be present-invalid without
610 	 * being PROT_NONE.
611 	 */
612 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
613 }
614 
615 static inline int pmd_protnone(pmd_t pmd)
616 {
617 	return pte_protnone(pmd_pte(pmd));
618 }
619 #endif
620 
621 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
622 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
623 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
624 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
625 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
626 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
627 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
628 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
629 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
630 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
631 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
632 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
633 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
634 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
635 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
636 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
637 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
638 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
639 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
640 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
641 #define pmd_swp_clear_uffd_wp(pmd) \
642 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
643 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
644 
645 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
646 
647 static inline pmd_t pmd_mkhuge(pmd_t pmd)
648 {
649 	/*
650 	 * It's possible that the pmd is present-invalid on entry
651 	 * and in that case it needs to remain present-invalid on
652 	 * exit. So ensure the VALID bit does not get modified.
653 	 */
654 	pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
655 	pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
656 
657 	return __pmd((pmd_val(pmd) & ~mask) | val);
658 }
659 
660 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
661 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
662 static inline pmd_t pmd_mkspecial(pmd_t pmd)
663 {
664 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
665 }
666 #endif
667 
668 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
669 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
670 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
671 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
672 
673 #define pud_young(pud)		pte_young(pud_pte(pud))
674 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
675 #define pud_write(pud)		pte_write(pud_pte(pud))
676 
677 static inline pud_t pud_mkhuge(pud_t pud)
678 {
679 	/*
680 	 * It's possible that the pud is present-invalid on entry
681 	 * and in that case it needs to remain present-invalid on
682 	 * exit. So ensure the VALID bit does not get modified.
683 	 */
684 	pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
685 	pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
686 
687 	return __pud((pud_val(pud) & ~mask) | val);
688 }
689 
690 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
691 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
692 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
693 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
694 
695 #define pmd_pgprot pmd_pgprot
696 static inline pgprot_t pmd_pgprot(pmd_t pmd)
697 {
698 	unsigned long pfn = pmd_pfn(pmd);
699 
700 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
701 }
702 
703 #define pud_pgprot pud_pgprot
704 static inline pgprot_t pud_pgprot(pud_t pud)
705 {
706 	unsigned long pfn = pud_pfn(pud);
707 
708 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
709 }
710 
711 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep,
712 				    pte_t pte, unsigned int nr,
713 				    unsigned long pgsize)
714 {
715 	unsigned long stride = pgsize >> PAGE_SHIFT;
716 
717 	switch (pgsize) {
718 	case PAGE_SIZE:
719 		page_table_check_ptes_set(mm, ptep, pte, nr);
720 		break;
721 	case PMD_SIZE:
722 		page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr);
723 		break;
724 #ifndef __PAGETABLE_PMD_FOLDED
725 	case PUD_SIZE:
726 		page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr);
727 		break;
728 #endif
729 	default:
730 		VM_WARN_ON(1);
731 	}
732 
733 	__sync_cache_and_tags(pte, nr * stride);
734 
735 	for (;;) {
736 		__check_safe_pte_update(mm, ptep, pte);
737 		__set_pte_nosync(ptep, pte);
738 		if (--nr == 0)
739 			break;
740 		ptep++;
741 		pte = pte_advance_pfn(pte, stride);
742 	}
743 
744 	__set_pte_complete(pte);
745 }
746 
747 static inline void __set_ptes(struct mm_struct *mm,
748 			      unsigned long __always_unused addr,
749 			      pte_t *ptep, pte_t pte, unsigned int nr)
750 {
751 	__set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE);
752 }
753 
754 static inline void __set_pmds(struct mm_struct *mm,
755 			      unsigned long __always_unused addr,
756 			      pmd_t *pmdp, pmd_t pmd, unsigned int nr)
757 {
758 	__set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
759 }
760 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
761 
762 static inline void __set_puds(struct mm_struct *mm,
763 			      unsigned long __always_unused addr,
764 			      pud_t *pudp, pud_t pud, unsigned int nr)
765 {
766 	__set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
767 }
768 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
769 
770 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
771 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
772 
773 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
774 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
775 
776 #define __pgprot_modify(prot,mask,bits) \
777 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
778 
779 #define pgprot_nx(prot) \
780 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
781 
782 #define pgprot_decrypted(prot) \
783 	__pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
784 #define pgprot_encrypted(prot) \
785 	__pgprot_modify(prot, PROT_NS_SHARED, 0)
786 
787 /*
788  * Mark the prot value as uncacheable and unbufferable.
789  */
790 #define pgprot_noncached(prot) \
791 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
792 #define pgprot_writecombine(prot) \
793 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
794 #define pgprot_device(prot) \
795 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
796 #define pgprot_tagged(prot) \
797 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
798 #define pgprot_mhp	pgprot_tagged
799 /*
800  * DMA allocations for non-coherent devices use what the Arm architecture calls
801  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
802  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
803  * is intended for MMIO and thus forbids speculation, preserves access size,
804  * requires strict alignment and can also force write responses to come from the
805  * endpoint.
806  */
807 #define pgprot_dmacoherent(prot) \
808 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
809 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
810 
811 #define __HAVE_PHYS_MEM_ACCESS_PROT
812 struct file;
813 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
814 				     unsigned long size, pgprot_t vma_prot);
815 
816 #define pmd_none(pmd)		(!pmd_val(pmd))
817 
818 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
819 				 PMD_TYPE_TABLE)
820 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
821 				 PMD_TYPE_SECT)
822 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
823 #define pmd_bad(pmd)		(!pmd_table(pmd))
824 
825 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
826 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
827 
828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
829 static inline int pmd_trans_huge(pmd_t pmd)
830 {
831 	/*
832 	 * If pmd is present-invalid, pmd_table() won't detect it
833 	 * as a table, so force the valid bit for the comparison.
834 	 */
835 	return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
836 }
837 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
838 
839 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
840 static inline bool pud_sect(pud_t pud) { return false; }
841 static inline bool pud_table(pud_t pud) { return true; }
842 #else
843 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
844 				 PUD_TYPE_SECT)
845 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
846 				 PUD_TYPE_TABLE)
847 #endif
848 
849 extern pgd_t swapper_pg_dir[];
850 extern pgd_t idmap_pg_dir[];
851 extern pgd_t tramp_pg_dir[];
852 extern pgd_t reserved_pg_dir[];
853 
854 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
855 
856 static inline bool in_swapper_pgdir(void *addr)
857 {
858 	return ((unsigned long)addr & PAGE_MASK) ==
859 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
860 }
861 
862 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
863 {
864 #ifdef __PAGETABLE_PMD_FOLDED
865 	if (in_swapper_pgdir(pmdp)) {
866 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
867 		return;
868 	}
869 #endif /* __PAGETABLE_PMD_FOLDED */
870 
871 	WRITE_ONCE(*pmdp, pmd);
872 
873 	if (pmd_valid(pmd))
874 		queue_pte_barriers();
875 }
876 
877 static inline void pmd_clear(pmd_t *pmdp)
878 {
879 	set_pmd(pmdp, __pmd(0));
880 }
881 
882 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
883 {
884 	return __pmd_to_phys(pmd);
885 }
886 
887 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
888 {
889 	return (unsigned long)__va(pmd_page_paddr(pmd));
890 }
891 
892 /* Find an entry in the third-level page table. */
893 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
894 
895 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
896 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
897 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
898 
899 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
900 
901 /* use ONLY for statically allocated translation tables */
902 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
903 
904 #if CONFIG_PGTABLE_LEVELS > 2
905 
906 #define pmd_ERROR(e)	\
907 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
908 
909 #define pud_none(pud)		(!pud_val(pud))
910 #define pud_bad(pud)		((pud_val(pud) & PUD_TYPE_MASK) != \
911 				 PUD_TYPE_TABLE)
912 #define pud_present(pud)	pte_present(pud_pte(pud))
913 #ifndef __PAGETABLE_PMD_FOLDED
914 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
915 #else
916 #define pud_leaf(pud)		false
917 #endif
918 #define pud_valid(pud)		pte_valid(pud_pte(pud))
919 #define pud_user(pud)		pte_user(pud_pte(pud))
920 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
921 
922 static inline bool pgtable_l4_enabled(void);
923 
924 static inline void set_pud(pud_t *pudp, pud_t pud)
925 {
926 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
927 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
928 		return;
929 	}
930 
931 	WRITE_ONCE(*pudp, pud);
932 
933 	if (pud_valid(pud))
934 		queue_pte_barriers();
935 }
936 
937 static inline void pud_clear(pud_t *pudp)
938 {
939 	set_pud(pudp, __pud(0));
940 }
941 
942 static inline phys_addr_t pud_page_paddr(pud_t pud)
943 {
944 	return __pud_to_phys(pud);
945 }
946 
947 static inline pmd_t *pud_pgtable(pud_t pud)
948 {
949 	return (pmd_t *)__va(pud_page_paddr(pud));
950 }
951 
952 /* Find an entry in the second-level page table. */
953 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
954 
955 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
956 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
957 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
958 
959 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
960 
961 /* use ONLY for statically allocated translation tables */
962 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
963 
964 #else
965 
966 #define pud_valid(pud)		false
967 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
968 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
969 
970 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
971 #define pmd_set_fixmap(addr)		NULL
972 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
973 #define pmd_clear_fixmap()
974 
975 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
976 
977 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
978 
979 #if CONFIG_PGTABLE_LEVELS > 3
980 
981 static __always_inline bool pgtable_l4_enabled(void)
982 {
983 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
984 		return true;
985 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
986 		return vabits_actual == VA_BITS;
987 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
988 }
989 
990 static inline bool mm_pud_folded(const struct mm_struct *mm)
991 {
992 	return !pgtable_l4_enabled();
993 }
994 #define mm_pud_folded  mm_pud_folded
995 
996 #define pud_ERROR(e)	\
997 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
998 
999 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
1000 #define p4d_bad(p4d)		(pgtable_l4_enabled() && \
1001 				((p4d_val(p4d) & P4D_TYPE_MASK) != \
1002 				 P4D_TYPE_TABLE))
1003 #define p4d_present(p4d)	(!p4d_none(p4d))
1004 
1005 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1006 {
1007 	if (in_swapper_pgdir(p4dp)) {
1008 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
1009 		return;
1010 	}
1011 
1012 	WRITE_ONCE(*p4dp, p4d);
1013 	queue_pte_barriers();
1014 }
1015 
1016 static inline void p4d_clear(p4d_t *p4dp)
1017 {
1018 	if (pgtable_l4_enabled())
1019 		set_p4d(p4dp, __p4d(0));
1020 }
1021 
1022 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
1023 {
1024 	return __p4d_to_phys(p4d);
1025 }
1026 
1027 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
1028 
1029 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
1030 {
1031 	/* Ensure that 'p4dp' indexes a page table according to 'addr' */
1032 	VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
1033 
1034 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
1035 }
1036 
1037 static inline pud_t *p4d_pgtable(p4d_t p4d)
1038 {
1039 	return (pud_t *)__va(p4d_page_paddr(p4d));
1040 }
1041 
1042 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1043 {
1044 	BUG_ON(!pgtable_l4_enabled());
1045 
1046 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1047 }
1048 
1049 static inline
1050 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1051 {
1052 	if (!pgtable_l4_enabled())
1053 		return p4d_to_folded_pud(p4dp, addr);
1054 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1055 }
1056 #define pud_offset_lockless pud_offset_lockless
1057 
1058 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1059 {
1060 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1061 }
1062 #define pud_offset	pud_offset
1063 
1064 static inline pud_t *pud_set_fixmap(unsigned long addr)
1065 {
1066 	if (!pgtable_l4_enabled())
1067 		return NULL;
1068 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1069 }
1070 
1071 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1072 {
1073 	if (!pgtable_l4_enabled())
1074 		return p4d_to_folded_pud(p4dp, addr);
1075 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1076 }
1077 
1078 static inline void pud_clear_fixmap(void)
1079 {
1080 	if (pgtable_l4_enabled())
1081 		clear_fixmap(FIX_PUD);
1082 }
1083 
1084 /* use ONLY for statically allocated translation tables */
1085 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1086 {
1087 	if (!pgtable_l4_enabled())
1088 		return p4d_to_folded_pud(p4dp, addr);
1089 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1090 }
1091 
1092 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1093 
1094 #else
1095 
1096 static inline bool pgtable_l4_enabled(void) { return false; }
1097 
1098 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
1099 
1100 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1101 #define pud_set_fixmap(addr)		NULL
1102 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
1103 #define pud_clear_fixmap()
1104 
1105 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1106 
1107 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1108 
1109 #if CONFIG_PGTABLE_LEVELS > 4
1110 
1111 static __always_inline bool pgtable_l5_enabled(void)
1112 {
1113 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1114 		return vabits_actual == VA_BITS;
1115 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1116 }
1117 
1118 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1119 {
1120 	return !pgtable_l5_enabled();
1121 }
1122 #define mm_p4d_folded  mm_p4d_folded
1123 
1124 #define p4d_ERROR(e)	\
1125 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1126 
1127 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1128 #define pgd_bad(pgd)		(pgtable_l5_enabled() && \
1129 				((pgd_val(pgd) & PGD_TYPE_MASK) != \
1130 				 PGD_TYPE_TABLE))
1131 #define pgd_present(pgd)	(!pgd_none(pgd))
1132 
1133 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1134 {
1135 	if (in_swapper_pgdir(pgdp)) {
1136 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1137 		return;
1138 	}
1139 
1140 	WRITE_ONCE(*pgdp, pgd);
1141 	queue_pte_barriers();
1142 }
1143 
1144 static inline void pgd_clear(pgd_t *pgdp)
1145 {
1146 	if (pgtable_l5_enabled())
1147 		set_pgd(pgdp, __pgd(0));
1148 }
1149 
1150 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1151 {
1152 	return __pgd_to_phys(pgd);
1153 }
1154 
1155 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1156 
1157 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1158 {
1159 	/* Ensure that 'pgdp' indexes a page table according to 'addr' */
1160 	VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1161 
1162 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1163 }
1164 
1165 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1166 {
1167 	BUG_ON(!pgtable_l5_enabled());
1168 
1169 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1170 }
1171 
1172 static inline
1173 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1174 {
1175 	if (!pgtable_l5_enabled())
1176 		return pgd_to_folded_p4d(pgdp, addr);
1177 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1178 }
1179 #define p4d_offset_lockless p4d_offset_lockless
1180 
1181 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1182 {
1183 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1184 }
1185 
1186 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1187 {
1188 	if (!pgtable_l5_enabled())
1189 		return NULL;
1190 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1191 }
1192 
1193 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1194 {
1195 	if (!pgtable_l5_enabled())
1196 		return pgd_to_folded_p4d(pgdp, addr);
1197 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1198 }
1199 
1200 static inline void p4d_clear_fixmap(void)
1201 {
1202 	if (pgtable_l5_enabled())
1203 		clear_fixmap(FIX_P4D);
1204 }
1205 
1206 /* use ONLY for statically allocated translation tables */
1207 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1208 {
1209 	if (!pgtable_l5_enabled())
1210 		return pgd_to_folded_p4d(pgdp, addr);
1211 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1212 }
1213 
1214 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1215 
1216 #else
1217 
1218 static inline bool pgtable_l5_enabled(void) { return false; }
1219 
1220 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1221 
1222 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1223 #define p4d_set_fixmap(addr)		NULL
1224 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1225 #define p4d_clear_fixmap()
1226 
1227 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1228 
1229 static inline
1230 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1231 {
1232 	/*
1233 	 * With runtime folding of the pud, pud_offset_lockless() passes
1234 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1235 	 * will offset the pointer assuming that it points into
1236 	 * a page-table page. However, the fast GUP path passes us a
1237 	 * pgd_t allocated on the stack and so we must use the original
1238 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1239 	 * using the generic p4d_offset_lockless() implementation.
1240 	 *
1241 	 * Note: reusing the original pointer means that we may
1242 	 * dereference the same (live) page-table entry multiple times.
1243 	 * This is safe because it is still only loaded once in the
1244 	 * context of each level and the CPU guarantees same-address
1245 	 * read-after-read ordering.
1246 	 */
1247 	return p4d_offset(pgdp, addr);
1248 }
1249 #define p4d_offset_lockless p4d_offset_lockless_folded
1250 
1251 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1252 
1253 #define pgd_ERROR(e)	\
1254 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1255 
1256 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1257 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1258 
1259 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1260 {
1261 	/*
1262 	 * Normal and Normal-Tagged are two different memory types and indices
1263 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1264 	 */
1265 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1266 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1267 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1268 
1269 	/* preserve the hardware dirty information */
1270 	if (pte_hw_dirty(pte))
1271 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1272 
1273 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1274 	/*
1275 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1276 	 * dirtiness again.
1277 	 */
1278 	if (pte_sw_dirty(pte))
1279 		pte = pte_mkdirty(pte);
1280 	return pte;
1281 }
1282 
1283 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1284 {
1285 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1286 }
1287 
1288 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1289 				 unsigned long address, pte_t *ptep,
1290 				 pte_t entry, int dirty);
1291 
1292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1293 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1294 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1295 					unsigned long address, pmd_t *pmdp,
1296 					pmd_t entry, int dirty)
1297 {
1298 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1299 							pmd_pte(entry), dirty);
1300 }
1301 #endif
1302 
1303 #ifdef CONFIG_PAGE_TABLE_CHECK
1304 static inline bool pte_user_accessible_page(pte_t pte)
1305 {
1306 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1307 }
1308 
1309 static inline bool pmd_user_accessible_page(pmd_t pmd)
1310 {
1311 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1312 }
1313 
1314 static inline bool pud_user_accessible_page(pud_t pud)
1315 {
1316 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1317 }
1318 #endif
1319 
1320 /*
1321  * Atomic pte/pmd modifications.
1322  */
1323 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1324 					      unsigned long address,
1325 					      pte_t *ptep)
1326 {
1327 	pte_t old_pte, pte;
1328 
1329 	pte = __ptep_get(ptep);
1330 	do {
1331 		old_pte = pte;
1332 		pte = pte_mkold(pte);
1333 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1334 					       pte_val(old_pte), pte_val(pte));
1335 	} while (pte_val(pte) != pte_val(old_pte));
1336 
1337 	return pte_young(pte);
1338 }
1339 
1340 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1341 					 unsigned long address, pte_t *ptep)
1342 {
1343 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1344 
1345 	if (young) {
1346 		/*
1347 		 * We can elide the trailing DSB here since the worst that can
1348 		 * happen is that a CPU continues to use the young entry in its
1349 		 * TLB and we mistakenly reclaim the associated page. The
1350 		 * window for such an event is bounded by the next
1351 		 * context-switch, which provides a DSB to complete the TLB
1352 		 * invalidation.
1353 		 */
1354 		flush_tlb_page_nosync(vma, address);
1355 	}
1356 
1357 	return young;
1358 }
1359 
1360 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1361 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1362 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1363 					    unsigned long address,
1364 					    pmd_t *pmdp)
1365 {
1366 	/* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1367 	VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1368 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1369 }
1370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1371 
1372 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1373 					       pte_t *ptep,
1374 					       unsigned long pgsize)
1375 {
1376 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1377 
1378 	switch (pgsize) {
1379 	case PAGE_SIZE:
1380 		page_table_check_pte_clear(mm, pte);
1381 		break;
1382 	case PMD_SIZE:
1383 		page_table_check_pmd_clear(mm, pte_pmd(pte));
1384 		break;
1385 #ifndef __PAGETABLE_PMD_FOLDED
1386 	case PUD_SIZE:
1387 		page_table_check_pud_clear(mm, pte_pud(pte));
1388 		break;
1389 #endif
1390 	default:
1391 		VM_WARN_ON(1);
1392 	}
1393 
1394 	return pte;
1395 }
1396 
1397 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1398 				       unsigned long address, pte_t *ptep)
1399 {
1400 	return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE);
1401 }
1402 
1403 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1404 				pte_t *ptep, unsigned int nr, int full)
1405 {
1406 	for (;;) {
1407 		__ptep_get_and_clear(mm, addr, ptep);
1408 		if (--nr == 0)
1409 			break;
1410 		ptep++;
1411 		addr += PAGE_SIZE;
1412 	}
1413 }
1414 
1415 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1416 				unsigned long addr, pte_t *ptep,
1417 				unsigned int nr, int full)
1418 {
1419 	pte_t pte, tmp_pte;
1420 
1421 	pte = __ptep_get_and_clear(mm, addr, ptep);
1422 	while (--nr) {
1423 		ptep++;
1424 		addr += PAGE_SIZE;
1425 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1426 		if (pte_dirty(tmp_pte))
1427 			pte = pte_mkdirty(pte);
1428 		if (pte_young(tmp_pte))
1429 			pte = pte_mkyoung(pte);
1430 	}
1431 	return pte;
1432 }
1433 
1434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1435 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1436 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1437 					    unsigned long address, pmd_t *pmdp)
1438 {
1439 	return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE));
1440 }
1441 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1442 
1443 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1444 					unsigned long address, pte_t *ptep,
1445 					pte_t pte)
1446 {
1447 	pte_t old_pte;
1448 
1449 	do {
1450 		old_pte = pte;
1451 		pte = pte_wrprotect(pte);
1452 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1453 					       pte_val(old_pte), pte_val(pte));
1454 	} while (pte_val(pte) != pte_val(old_pte));
1455 }
1456 
1457 /*
1458  * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1459  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1460  */
1461 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1462 					unsigned long address, pte_t *ptep)
1463 {
1464 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1465 }
1466 
1467 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1468 				pte_t *ptep, unsigned int nr)
1469 {
1470 	unsigned int i;
1471 
1472 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1473 		__ptep_set_wrprotect(mm, address, ptep);
1474 }
1475 
1476 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1477 					   unsigned long addr, pte_t *ptep,
1478 					   pte_t pte, cydp_t flags)
1479 {
1480 	pte_t old_pte;
1481 
1482 	do {
1483 		old_pte = pte;
1484 
1485 		if (flags & CYDP_CLEAR_YOUNG)
1486 			pte = pte_mkold(pte);
1487 		if (flags & CYDP_CLEAR_DIRTY)
1488 			pte = pte_mkclean(pte);
1489 
1490 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1491 					       pte_val(old_pte), pte_val(pte));
1492 	} while (pte_val(pte) != pte_val(old_pte));
1493 }
1494 
1495 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1496 					    unsigned long addr, pte_t *ptep,
1497 					    unsigned int nr, cydp_t flags)
1498 {
1499 	pte_t pte;
1500 
1501 	for (;;) {
1502 		pte = __ptep_get(ptep);
1503 
1504 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1505 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1506 		else
1507 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1508 
1509 		if (--nr == 0)
1510 			break;
1511 		ptep++;
1512 		addr += PAGE_SIZE;
1513 	}
1514 }
1515 
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1518 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1519 				      unsigned long address, pmd_t *pmdp)
1520 {
1521 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1522 }
1523 
1524 #define pmdp_establish pmdp_establish
1525 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1526 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1527 {
1528 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1529 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1530 }
1531 #endif
1532 
1533 /*
1534  * Encode and decode a swap entry:
1535  *	bits 0-1:	present (must be zero)
1536  *	bits 2:		remember PG_anon_exclusive
1537  *	bit  3:		remember uffd-wp state
1538  *	bits 6-10:	swap type
1539  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1540  *	bits 12-61:	swap offset
1541  */
1542 #define __SWP_TYPE_SHIFT	6
1543 #define __SWP_TYPE_BITS		5
1544 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1545 #define __SWP_OFFSET_SHIFT	12
1546 #define __SWP_OFFSET_BITS	50
1547 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1548 
1549 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1550 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1551 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1552 
1553 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1554 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1555 
1556 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1557 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1558 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1559 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1560 
1561 /*
1562  * Ensure that there are not more swap files than can be encoded in the kernel
1563  * PTEs.
1564  */
1565 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1566 
1567 #ifdef CONFIG_ARM64_MTE
1568 
1569 #define __HAVE_ARCH_PREPARE_TO_SWAP
1570 extern int arch_prepare_to_swap(struct folio *folio);
1571 
1572 #define __HAVE_ARCH_SWAP_INVALIDATE
1573 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1574 {
1575 	if (system_supports_mte())
1576 		mte_invalidate_tags(type, offset);
1577 }
1578 
1579 static inline void arch_swap_invalidate_area(int type)
1580 {
1581 	if (system_supports_mte())
1582 		mte_invalidate_tags_area(type);
1583 }
1584 
1585 #define __HAVE_ARCH_SWAP_RESTORE
1586 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1587 
1588 #endif /* CONFIG_ARM64_MTE */
1589 
1590 /*
1591  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1592  */
1593 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1594 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1595 		unsigned int nr)
1596 {
1597 	/*
1598 	 * We don't do anything here, so there's a very small chance of
1599 	 * us retaking a user fault which we just fixed up. The alternative
1600 	 * is doing a dsb(ishst), but that penalises the fastpath.
1601 	 */
1602 }
1603 
1604 #define update_mmu_cache(vma, addr, ptep) \
1605 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1606 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1607 
1608 #ifdef CONFIG_ARM64_PA_BITS_52
1609 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1610 #else
1611 #define phys_to_ttbr(addr)	(addr)
1612 #endif
1613 
1614 /*
1615  * On arm64 without hardware Access Flag, copying from user will fail because
1616  * the pte is old and cannot be marked young. So we always end up with zeroed
1617  * page after fork() + CoW for pfn mappings. We don't always have a
1618  * hardware-managed access flag on arm64.
1619  */
1620 #define arch_has_hw_pte_young		cpu_has_hw_af
1621 
1622 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1623 #define arch_has_hw_nonleaf_pmd_young	system_supports_haft
1624 #endif
1625 
1626 /*
1627  * Experimentally, it's cheap to set the access flag in hardware and we
1628  * benefit from prefaulting mappings as 'old' to start with.
1629  */
1630 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1631 
1632 /*
1633  * Request exec memory is read into pagecache in at least 64K folios. This size
1634  * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB
1635  * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base
1636  * pages are in use.
1637  */
1638 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT)
1639 
1640 static inline bool pud_sect_supported(void)
1641 {
1642 	return PAGE_SIZE == SZ_4K;
1643 }
1644 
1645 
1646 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1647 #define ptep_modify_prot_start ptep_modify_prot_start
1648 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1649 				    unsigned long addr, pte_t *ptep);
1650 
1651 #define ptep_modify_prot_commit ptep_modify_prot_commit
1652 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1653 				    unsigned long addr, pte_t *ptep,
1654 				    pte_t old_pte, pte_t new_pte);
1655 
1656 #define modify_prot_start_ptes modify_prot_start_ptes
1657 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1658 				    unsigned long addr, pte_t *ptep,
1659 				    unsigned int nr);
1660 
1661 #define modify_prot_commit_ptes modify_prot_commit_ptes
1662 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1663 				    pte_t *ptep, pte_t old_pte, pte_t pte,
1664 				    unsigned int nr);
1665 
1666 #ifdef CONFIG_ARM64_CONTPTE
1667 
1668 /*
1669  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1670  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1671  * a private implementation detail of the public ptep API (see below).
1672  */
1673 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1674 				pte_t *ptep, pte_t pte);
1675 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1676 				pte_t *ptep, pte_t pte);
1677 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1678 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1679 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1680 				pte_t *ptep, pte_t pte, unsigned int nr);
1681 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1682 				pte_t *ptep, unsigned int nr, int full);
1683 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1684 				unsigned long addr, pte_t *ptep,
1685 				unsigned int nr, int full);
1686 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1687 				unsigned long addr, pte_t *ptep);
1688 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1689 				unsigned long addr, pte_t *ptep);
1690 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1691 				pte_t *ptep, unsigned int nr);
1692 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1693 				unsigned long addr, pte_t *ptep,
1694 				pte_t entry, int dirty);
1695 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1696 				unsigned long addr, pte_t *ptep,
1697 				unsigned int nr, cydp_t flags);
1698 
1699 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1700 				unsigned long addr, pte_t *ptep, pte_t pte)
1701 {
1702 	/*
1703 	 * Only bother trying if both the virtual and physical addresses are
1704 	 * aligned and correspond to the last entry in a contig range. The core
1705 	 * code mostly modifies ranges from low to high, so this is the likely
1706 	 * the last modification in the contig range, so a good time to fold.
1707 	 * We can't fold special mappings, because there is no associated folio.
1708 	 */
1709 
1710 	const unsigned long contmask = CONT_PTES - 1;
1711 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1712 
1713 	if (unlikely(valign)) {
1714 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1715 
1716 		if (unlikely(palign &&
1717 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1718 			__contpte_try_fold(mm, addr, ptep, pte);
1719 	}
1720 }
1721 
1722 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1723 				unsigned long addr, pte_t *ptep, pte_t pte)
1724 {
1725 	if (unlikely(pte_valid_cont(pte)))
1726 		__contpte_try_unfold(mm, addr, ptep, pte);
1727 }
1728 
1729 #define pte_batch_hint pte_batch_hint
1730 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1731 {
1732 	if (!pte_valid_cont(pte))
1733 		return 1;
1734 
1735 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1736 }
1737 
1738 /*
1739  * The below functions constitute the public API that arm64 presents to the
1740  * core-mm to manipulate PTE entries within their page tables (or at least this
1741  * is the subset of the API that arm64 needs to implement). These public
1742  * versions will automatically and transparently apply the contiguous bit where
1743  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1744  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1745  * private versions, which are prefixed with double underscore. All of these
1746  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1747  * held. Although the contiguous bit is considered private to the
1748  * implementation, it is deliberately allowed to leak through the getters (e.g.
1749  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1750  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1751  * its possible a pte will be passed to a setter with the contiguous bit set, so
1752  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1753  * setting it in the pgtable.
1754  */
1755 
1756 #define ptep_get ptep_get
1757 static inline pte_t ptep_get(pte_t *ptep)
1758 {
1759 	pte_t pte = __ptep_get(ptep);
1760 
1761 	if (likely(!pte_valid_cont(pte)))
1762 		return pte;
1763 
1764 	return contpte_ptep_get(ptep, pte);
1765 }
1766 
1767 #define ptep_get_lockless ptep_get_lockless
1768 static inline pte_t ptep_get_lockless(pte_t *ptep)
1769 {
1770 	pte_t pte = __ptep_get(ptep);
1771 
1772 	if (likely(!pte_valid_cont(pte)))
1773 		return pte;
1774 
1775 	return contpte_ptep_get_lockless(ptep);
1776 }
1777 
1778 static inline void set_pte(pte_t *ptep, pte_t pte)
1779 {
1780 	/*
1781 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1782 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1783 	 * this should never even be called. Regardless do our best to service
1784 	 * any call and emit a warning if there is any attempt to set a pte on
1785 	 * top of an existing contig range.
1786 	 */
1787 	pte_t orig_pte = __ptep_get(ptep);
1788 
1789 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1790 	__set_pte(ptep, pte_mknoncont(pte));
1791 }
1792 
1793 #define set_ptes set_ptes
1794 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1795 				pte_t *ptep, pte_t pte, unsigned int nr)
1796 {
1797 	pte = pte_mknoncont(pte);
1798 
1799 	if (likely(nr == 1)) {
1800 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1801 		__set_ptes(mm, addr, ptep, pte, 1);
1802 		contpte_try_fold(mm, addr, ptep, pte);
1803 	} else {
1804 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1805 	}
1806 }
1807 
1808 static inline void pte_clear(struct mm_struct *mm,
1809 				unsigned long addr, pte_t *ptep)
1810 {
1811 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1812 	__pte_clear(mm, addr, ptep);
1813 }
1814 
1815 #define clear_full_ptes clear_full_ptes
1816 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1817 				pte_t *ptep, unsigned int nr, int full)
1818 {
1819 	if (likely(nr == 1)) {
1820 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1821 		__clear_full_ptes(mm, addr, ptep, nr, full);
1822 	} else {
1823 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1824 	}
1825 }
1826 
1827 #define get_and_clear_full_ptes get_and_clear_full_ptes
1828 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1829 				unsigned long addr, pte_t *ptep,
1830 				unsigned int nr, int full)
1831 {
1832 	pte_t pte;
1833 
1834 	if (likely(nr == 1)) {
1835 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1836 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1837 	} else {
1838 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1839 	}
1840 
1841 	return pte;
1842 }
1843 
1844 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1845 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1846 				unsigned long addr, pte_t *ptep)
1847 {
1848 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1849 	return __ptep_get_and_clear(mm, addr, ptep);
1850 }
1851 
1852 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1853 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1854 				unsigned long addr, pte_t *ptep)
1855 {
1856 	pte_t orig_pte = __ptep_get(ptep);
1857 
1858 	if (likely(!pte_valid_cont(orig_pte)))
1859 		return __ptep_test_and_clear_young(vma, addr, ptep);
1860 
1861 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1862 }
1863 
1864 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1865 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1866 				unsigned long addr, pte_t *ptep)
1867 {
1868 	pte_t orig_pte = __ptep_get(ptep);
1869 
1870 	if (likely(!pte_valid_cont(orig_pte)))
1871 		return __ptep_clear_flush_young(vma, addr, ptep);
1872 
1873 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1874 }
1875 
1876 #define wrprotect_ptes wrprotect_ptes
1877 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1878 				unsigned long addr, pte_t *ptep, unsigned int nr)
1879 {
1880 	if (likely(nr == 1)) {
1881 		/*
1882 		 * Optimization: wrprotect_ptes() can only be called for present
1883 		 * ptes so we only need to check contig bit as condition for
1884 		 * unfold, and we can remove the contig bit from the pte we read
1885 		 * to avoid re-reading. This speeds up fork() which is sensitive
1886 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1887 		 */
1888 		pte_t orig_pte = __ptep_get(ptep);
1889 
1890 		if (unlikely(pte_cont(orig_pte))) {
1891 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1892 			orig_pte = pte_mknoncont(orig_pte);
1893 		}
1894 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1895 	} else {
1896 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1897 	}
1898 }
1899 
1900 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1901 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1902 				unsigned long addr, pte_t *ptep)
1903 {
1904 	wrprotect_ptes(mm, addr, ptep, 1);
1905 }
1906 
1907 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1908 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1909 				unsigned long addr, pte_t *ptep,
1910 				pte_t entry, int dirty)
1911 {
1912 	pte_t orig_pte = __ptep_get(ptep);
1913 
1914 	entry = pte_mknoncont(entry);
1915 
1916 	if (likely(!pte_valid_cont(orig_pte)))
1917 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1918 
1919 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1920 }
1921 
1922 #define clear_young_dirty_ptes clear_young_dirty_ptes
1923 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1924 					  unsigned long addr, pte_t *ptep,
1925 					  unsigned int nr, cydp_t flags)
1926 {
1927 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1928 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1929 	else
1930 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1931 }
1932 
1933 #else /* CONFIG_ARM64_CONTPTE */
1934 
1935 #define ptep_get				__ptep_get
1936 #define set_pte					__set_pte
1937 #define set_ptes				__set_ptes
1938 #define pte_clear				__pte_clear
1939 #define clear_full_ptes				__clear_full_ptes
1940 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1941 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1942 #define ptep_get_and_clear			__ptep_get_and_clear
1943 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1944 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1945 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1946 #define ptep_clear_flush_young			__ptep_clear_flush_young
1947 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1948 #define ptep_set_wrprotect			__ptep_set_wrprotect
1949 #define wrprotect_ptes				__wrprotect_ptes
1950 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1951 #define ptep_set_access_flags			__ptep_set_access_flags
1952 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1953 
1954 #endif /* CONFIG_ARM64_CONTPTE */
1955 
1956 #endif /* !__ASSEMBLER__ */
1957 
1958 #endif /* __ASM_PGTABLE_H */
1959