xref: /linux/arch/arm64/include/asm/pgtable.h (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <linux/mmdebug.h>
38 #include <linux/mm_types.h>
39 #include <linux/sched.h>
40 #include <linux/page_table_check.h>
41 
42 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
43 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
44 
45 /* Set stride and tlb_level in flush_*_tlb_range */
46 #define flush_pmd_tlb_range(vma, addr, end)	\
47 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
48 #define flush_pud_tlb_range(vma, addr, end)	\
49 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
50 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
51 
52 static inline bool arch_thp_swp_supported(void)
53 {
54 	return !system_supports_mte();
55 }
56 #define arch_thp_swp_supported arch_thp_swp_supported
57 
58 /*
59  * Outside of a few very special situations (e.g. hibernation), we always
60  * use broadcast TLB invalidation instructions, therefore a spurious page
61  * fault on one CPU which has been handled concurrently by another CPU
62  * does not need to perform additional invalidation.
63  */
64 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
65 
66 /*
67  * ZERO_PAGE is a global shared page that is always zero: used
68  * for zero-mapped memory areas etc..
69  */
70 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
71 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
72 
73 #define pte_ERROR(e)	\
74 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
75 
76 /*
77  * Macros to convert between a physical address and its placement in a
78  * page table entry, taking care of 52-bit addresses.
79  */
80 #ifdef CONFIG_ARM64_PA_BITS_52
81 static inline phys_addr_t __pte_to_phys(pte_t pte)
82 {
83 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
84 	return (pte_val(pte) & PTE_ADDR_LOW) |
85 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
86 }
87 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
88 {
89 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
90 }
91 #else
92 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
93 #define __phys_to_pte_val(phys)	(phys)
94 #endif
95 
96 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
97 #define pfn_pte(pfn,prot)	\
98 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
99 
100 #define pte_none(pte)		(!pte_val(pte))
101 #define __pte_clear(mm, addr, ptep) \
102 				__set_pte(ptep, __pte(0))
103 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
104 
105 /*
106  * The following only work if pte_present(). Undefined behaviour otherwise.
107  */
108 #define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
109 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
110 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
111 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
112 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
113 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
114 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
115 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
116 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
117 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
118 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
119 
120 #define pte_cont_addr_end(addr, end)						\
121 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
122 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
123 })
124 
125 #define pmd_cont_addr_end(addr, end)						\
126 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
127 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
128 })
129 
130 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
131 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
132 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
133 
134 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
135 /*
136  * Execute-only user mappings do not have the PTE_USER bit set. All valid
137  * kernel mappings have the PTE_UXN bit set.
138  */
139 #define pte_valid_not_user(pte) \
140 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
141 /*
142  * Returns true if the pte is valid and has the contiguous bit set.
143  */
144 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
145 /*
146  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
147  * so that we don't erroneously return false for pages that have been
148  * remapped as PROT_NONE but are yet to be flushed from the TLB.
149  * Note that we can't make any assumptions based on the state of the access
150  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
151  * TLB.
152  */
153 #define pte_accessible(mm, pte)	\
154 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
155 
156 /*
157  * p??_access_permitted() is true for valid user mappings (PTE_USER
158  * bit set, subject to the write permission check). For execute-only
159  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
160  * not set) must return false. PROT_NONE mappings do not have the
161  * PTE_VALID bit set.
162  */
163 #define pte_access_permitted(pte, write) \
164 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
165 #define pmd_access_permitted(pmd, write) \
166 	(pte_access_permitted(pmd_pte(pmd), (write)))
167 #define pud_access_permitted(pud, write) \
168 	(pte_access_permitted(pud_pte(pud), (write)))
169 
170 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
171 {
172 	pte_val(pte) &= ~pgprot_val(prot);
173 	return pte;
174 }
175 
176 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
177 {
178 	pte_val(pte) |= pgprot_val(prot);
179 	return pte;
180 }
181 
182 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
183 {
184 	pmd_val(pmd) &= ~pgprot_val(prot);
185 	return pmd;
186 }
187 
188 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
189 {
190 	pmd_val(pmd) |= pgprot_val(prot);
191 	return pmd;
192 }
193 
194 static inline pte_t pte_mkwrite_novma(pte_t pte)
195 {
196 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
197 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
198 	return pte;
199 }
200 
201 static inline pte_t pte_mkclean(pte_t pte)
202 {
203 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
204 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
205 
206 	return pte;
207 }
208 
209 static inline pte_t pte_mkdirty(pte_t pte)
210 {
211 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
212 
213 	if (pte_write(pte))
214 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
215 
216 	return pte;
217 }
218 
219 static inline pte_t pte_wrprotect(pte_t pte)
220 {
221 	/*
222 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
223 	 * clear), set the PTE_DIRTY bit.
224 	 */
225 	if (pte_hw_dirty(pte))
226 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
227 
228 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
229 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
230 	return pte;
231 }
232 
233 static inline pte_t pte_mkold(pte_t pte)
234 {
235 	return clear_pte_bit(pte, __pgprot(PTE_AF));
236 }
237 
238 static inline pte_t pte_mkyoung(pte_t pte)
239 {
240 	return set_pte_bit(pte, __pgprot(PTE_AF));
241 }
242 
243 static inline pte_t pte_mkspecial(pte_t pte)
244 {
245 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
246 }
247 
248 static inline pte_t pte_mkcont(pte_t pte)
249 {
250 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
251 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
252 }
253 
254 static inline pte_t pte_mknoncont(pte_t pte)
255 {
256 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
257 }
258 
259 static inline pte_t pte_mkpresent(pte_t pte)
260 {
261 	return set_pte_bit(pte, __pgprot(PTE_VALID));
262 }
263 
264 static inline pmd_t pmd_mkcont(pmd_t pmd)
265 {
266 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
267 }
268 
269 static inline pte_t pte_mkdevmap(pte_t pte)
270 {
271 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
272 }
273 
274 static inline void __set_pte(pte_t *ptep, pte_t pte)
275 {
276 	WRITE_ONCE(*ptep, pte);
277 
278 	/*
279 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
280 	 * or update_mmu_cache() have the necessary barriers.
281 	 */
282 	if (pte_valid_not_user(pte)) {
283 		dsb(ishst);
284 		isb();
285 	}
286 }
287 
288 static inline pte_t __ptep_get(pte_t *ptep)
289 {
290 	return READ_ONCE(*ptep);
291 }
292 
293 extern void __sync_icache_dcache(pte_t pteval);
294 bool pgattr_change_is_safe(u64 old, u64 new);
295 
296 /*
297  * PTE bits configuration in the presence of hardware Dirty Bit Management
298  * (PTE_WRITE == PTE_DBM):
299  *
300  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
301  *   0      0      |   1           0          0
302  *   0      1      |   1           1          0
303  *   1      0      |   1           0          1
304  *   1      1      |   0           1          x
305  *
306  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
307  * the page fault mechanism. Checking the dirty status of a pte becomes:
308  *
309  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
310  */
311 
312 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
313 					   pte_t pte)
314 {
315 	pte_t old_pte;
316 
317 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
318 		return;
319 
320 	old_pte = __ptep_get(ptep);
321 
322 	if (!pte_valid(old_pte) || !pte_valid(pte))
323 		return;
324 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
325 		return;
326 
327 	/*
328 	 * Check for potential race with hardware updates of the pte
329 	 * (__ptep_set_access_flags safely changes valid ptes without going
330 	 * through an invalid entry).
331 	 */
332 	VM_WARN_ONCE(!pte_young(pte),
333 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
334 		     __func__, pte_val(old_pte), pte_val(pte));
335 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
336 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
337 		     __func__, pte_val(old_pte), pte_val(pte));
338 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
339 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
340 		     __func__, pte_val(old_pte), pte_val(pte));
341 }
342 
343 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
344 {
345 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
346 		__sync_icache_dcache(pte);
347 
348 	/*
349 	 * If the PTE would provide user space access to the tags associated
350 	 * with it then ensure that the MTE tags are synchronised.  Although
351 	 * pte_access_permitted() returns false for exec only mappings, they
352 	 * don't expose tags (instruction fetches don't check tags).
353 	 */
354 	if (system_supports_mte() && pte_access_permitted(pte, false) &&
355 	    !pte_special(pte) && pte_tagged(pte))
356 		mte_sync_tags(pte, nr_pages);
357 }
358 
359 /*
360  * Select all bits except the pfn
361  */
362 static inline pgprot_t pte_pgprot(pte_t pte)
363 {
364 	unsigned long pfn = pte_pfn(pte);
365 
366 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
367 }
368 
369 #define pte_advance_pfn pte_advance_pfn
370 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
371 {
372 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
373 }
374 
375 static inline void __set_ptes(struct mm_struct *mm,
376 			      unsigned long __always_unused addr,
377 			      pte_t *ptep, pte_t pte, unsigned int nr)
378 {
379 	page_table_check_ptes_set(mm, ptep, pte, nr);
380 	__sync_cache_and_tags(pte, nr);
381 
382 	for (;;) {
383 		__check_safe_pte_update(mm, ptep, pte);
384 		__set_pte(ptep, pte);
385 		if (--nr == 0)
386 			break;
387 		ptep++;
388 		pte = pte_advance_pfn(pte, 1);
389 	}
390 }
391 
392 /*
393  * Huge pte definitions.
394  */
395 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
396 
397 /*
398  * Hugetlb definitions.
399  */
400 #define HUGE_MAX_HSTATE		4
401 #define HPAGE_SHIFT		PMD_SHIFT
402 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
403 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
404 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
405 
406 static inline pte_t pgd_pte(pgd_t pgd)
407 {
408 	return __pte(pgd_val(pgd));
409 }
410 
411 static inline pte_t p4d_pte(p4d_t p4d)
412 {
413 	return __pte(p4d_val(p4d));
414 }
415 
416 static inline pte_t pud_pte(pud_t pud)
417 {
418 	return __pte(pud_val(pud));
419 }
420 
421 static inline pud_t pte_pud(pte_t pte)
422 {
423 	return __pud(pte_val(pte));
424 }
425 
426 static inline pmd_t pud_pmd(pud_t pud)
427 {
428 	return __pmd(pud_val(pud));
429 }
430 
431 static inline pte_t pmd_pte(pmd_t pmd)
432 {
433 	return __pte(pmd_val(pmd));
434 }
435 
436 static inline pmd_t pte_pmd(pte_t pte)
437 {
438 	return __pmd(pte_val(pte));
439 }
440 
441 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
442 {
443 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
444 }
445 
446 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
447 {
448 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
449 }
450 
451 static inline pte_t pte_swp_mkexclusive(pte_t pte)
452 {
453 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
454 }
455 
456 static inline int pte_swp_exclusive(pte_t pte)
457 {
458 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
459 }
460 
461 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
462 {
463 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
464 }
465 
466 #ifdef CONFIG_NUMA_BALANCING
467 /*
468  * See the comment in include/linux/pgtable.h
469  */
470 static inline int pte_protnone(pte_t pte)
471 {
472 	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
473 }
474 
475 static inline int pmd_protnone(pmd_t pmd)
476 {
477 	return pte_protnone(pmd_pte(pmd));
478 }
479 #endif
480 
481 #define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
482 
483 static inline int pmd_present(pmd_t pmd)
484 {
485 	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
486 }
487 
488 /*
489  * THP definitions.
490  */
491 
492 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
493 static inline int pmd_trans_huge(pmd_t pmd)
494 {
495 	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
496 }
497 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
498 
499 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
500 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
501 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
502 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
503 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
504 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
505 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
506 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
507 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
508 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
509 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
510 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
511 
512 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
513 {
514 	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
515 	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
516 
517 	return pmd;
518 }
519 
520 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
521 
522 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
523 
524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
526 #endif
527 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
528 {
529 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
530 }
531 
532 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
533 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
534 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
535 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
536 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
537 
538 #define pud_young(pud)		pte_young(pud_pte(pud))
539 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
540 #define pud_write(pud)		pte_write(pud_pte(pud))
541 
542 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
543 
544 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
545 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
546 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
547 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
548 
549 static inline void __set_pte_at(struct mm_struct *mm,
550 				unsigned long __always_unused addr,
551 				pte_t *ptep, pte_t pte, unsigned int nr)
552 {
553 	__sync_cache_and_tags(pte, nr);
554 	__check_safe_pte_update(mm, ptep, pte);
555 	__set_pte(ptep, pte);
556 }
557 
558 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
559 			      pmd_t *pmdp, pmd_t pmd)
560 {
561 	page_table_check_pmd_set(mm, pmdp, pmd);
562 	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
563 						PMD_SIZE >> PAGE_SHIFT);
564 }
565 
566 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
567 			      pud_t *pudp, pud_t pud)
568 {
569 	page_table_check_pud_set(mm, pudp, pud);
570 	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
571 						PUD_SIZE >> PAGE_SHIFT);
572 }
573 
574 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
575 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
576 
577 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
578 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
579 
580 #define __pgprot_modify(prot,mask,bits) \
581 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
582 
583 #define pgprot_nx(prot) \
584 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
585 
586 /*
587  * Mark the prot value as uncacheable and unbufferable.
588  */
589 #define pgprot_noncached(prot) \
590 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
591 #define pgprot_writecombine(prot) \
592 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
593 #define pgprot_device(prot) \
594 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
595 #define pgprot_tagged(prot) \
596 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
597 #define pgprot_mhp	pgprot_tagged
598 /*
599  * DMA allocations for non-coherent devices use what the Arm architecture calls
600  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
601  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
602  * is intended for MMIO and thus forbids speculation, preserves access size,
603  * requires strict alignment and can also force write responses to come from the
604  * endpoint.
605  */
606 #define pgprot_dmacoherent(prot) \
607 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
608 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
609 
610 #define __HAVE_PHYS_MEM_ACCESS_PROT
611 struct file;
612 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
613 				     unsigned long size, pgprot_t vma_prot);
614 
615 #define pmd_none(pmd)		(!pmd_val(pmd))
616 
617 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
618 				 PMD_TYPE_TABLE)
619 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
620 				 PMD_TYPE_SECT)
621 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
622 #define pmd_bad(pmd)		(!pmd_table(pmd))
623 
624 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
625 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
626 
627 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
628 static inline bool pud_sect(pud_t pud) { return false; }
629 static inline bool pud_table(pud_t pud) { return true; }
630 #else
631 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
632 				 PUD_TYPE_SECT)
633 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
634 				 PUD_TYPE_TABLE)
635 #endif
636 
637 extern pgd_t init_pg_dir[];
638 extern pgd_t init_pg_end[];
639 extern pgd_t swapper_pg_dir[];
640 extern pgd_t idmap_pg_dir[];
641 extern pgd_t tramp_pg_dir[];
642 extern pgd_t reserved_pg_dir[];
643 
644 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
645 
646 static inline bool in_swapper_pgdir(void *addr)
647 {
648 	return ((unsigned long)addr & PAGE_MASK) ==
649 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
650 }
651 
652 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
653 {
654 #ifdef __PAGETABLE_PMD_FOLDED
655 	if (in_swapper_pgdir(pmdp)) {
656 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
657 		return;
658 	}
659 #endif /* __PAGETABLE_PMD_FOLDED */
660 
661 	WRITE_ONCE(*pmdp, pmd);
662 
663 	if (pmd_valid(pmd)) {
664 		dsb(ishst);
665 		isb();
666 	}
667 }
668 
669 static inline void pmd_clear(pmd_t *pmdp)
670 {
671 	set_pmd(pmdp, __pmd(0));
672 }
673 
674 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
675 {
676 	return __pmd_to_phys(pmd);
677 }
678 
679 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
680 {
681 	return (unsigned long)__va(pmd_page_paddr(pmd));
682 }
683 
684 /* Find an entry in the third-level page table. */
685 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
686 
687 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
688 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
689 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
690 
691 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
692 
693 /* use ONLY for statically allocated translation tables */
694 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
695 
696 /*
697  * Conversion functions: convert a page and protection to a page entry,
698  * and a page entry and page directory to the page they refer to.
699  */
700 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
701 
702 #if CONFIG_PGTABLE_LEVELS > 2
703 
704 #define pmd_ERROR(e)	\
705 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
706 
707 #define pud_none(pud)		(!pud_val(pud))
708 #define pud_bad(pud)		(!pud_table(pud))
709 #define pud_present(pud)	pte_present(pud_pte(pud))
710 #ifndef __PAGETABLE_PMD_FOLDED
711 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
712 #else
713 #define pud_leaf(pud)		false
714 #endif
715 #define pud_valid(pud)		pte_valid(pud_pte(pud))
716 #define pud_user(pud)		pte_user(pud_pte(pud))
717 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
718 
719 static inline bool pgtable_l4_enabled(void);
720 
721 static inline void set_pud(pud_t *pudp, pud_t pud)
722 {
723 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
724 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
725 		return;
726 	}
727 
728 	WRITE_ONCE(*pudp, pud);
729 
730 	if (pud_valid(pud)) {
731 		dsb(ishst);
732 		isb();
733 	}
734 }
735 
736 static inline void pud_clear(pud_t *pudp)
737 {
738 	set_pud(pudp, __pud(0));
739 }
740 
741 static inline phys_addr_t pud_page_paddr(pud_t pud)
742 {
743 	return __pud_to_phys(pud);
744 }
745 
746 static inline pmd_t *pud_pgtable(pud_t pud)
747 {
748 	return (pmd_t *)__va(pud_page_paddr(pud));
749 }
750 
751 /* Find an entry in the second-level page table. */
752 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
753 
754 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
755 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
756 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
757 
758 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
759 
760 /* use ONLY for statically allocated translation tables */
761 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
762 
763 #else
764 
765 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
766 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
767 
768 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
769 #define pmd_set_fixmap(addr)		NULL
770 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
771 #define pmd_clear_fixmap()
772 
773 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
774 
775 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
776 
777 #if CONFIG_PGTABLE_LEVELS > 3
778 
779 static __always_inline bool pgtable_l4_enabled(void)
780 {
781 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
782 		return true;
783 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
784 		return vabits_actual == VA_BITS;
785 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
786 }
787 
788 static inline bool mm_pud_folded(const struct mm_struct *mm)
789 {
790 	return !pgtable_l4_enabled();
791 }
792 #define mm_pud_folded  mm_pud_folded
793 
794 #define pud_ERROR(e)	\
795 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
796 
797 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
798 #define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
799 #define p4d_present(p4d)	(!p4d_none(p4d))
800 
801 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
802 {
803 	if (in_swapper_pgdir(p4dp)) {
804 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
805 		return;
806 	}
807 
808 	WRITE_ONCE(*p4dp, p4d);
809 	dsb(ishst);
810 	isb();
811 }
812 
813 static inline void p4d_clear(p4d_t *p4dp)
814 {
815 	if (pgtable_l4_enabled())
816 		set_p4d(p4dp, __p4d(0));
817 }
818 
819 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
820 {
821 	return __p4d_to_phys(p4d);
822 }
823 
824 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
825 
826 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
827 {
828 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
829 }
830 
831 static inline pud_t *p4d_pgtable(p4d_t p4d)
832 {
833 	return (pud_t *)__va(p4d_page_paddr(p4d));
834 }
835 
836 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
837 {
838 	BUG_ON(!pgtable_l4_enabled());
839 
840 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
841 }
842 
843 static inline
844 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
845 {
846 	if (!pgtable_l4_enabled())
847 		return p4d_to_folded_pud(p4dp, addr);
848 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
849 }
850 #define pud_offset_lockless pud_offset_lockless
851 
852 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
853 {
854 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
855 }
856 #define pud_offset	pud_offset
857 
858 static inline pud_t *pud_set_fixmap(unsigned long addr)
859 {
860 	if (!pgtable_l4_enabled())
861 		return NULL;
862 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
863 }
864 
865 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
866 {
867 	if (!pgtable_l4_enabled())
868 		return p4d_to_folded_pud(p4dp, addr);
869 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
870 }
871 
872 static inline void pud_clear_fixmap(void)
873 {
874 	if (pgtable_l4_enabled())
875 		clear_fixmap(FIX_PUD);
876 }
877 
878 /* use ONLY for statically allocated translation tables */
879 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
880 {
881 	if (!pgtable_l4_enabled())
882 		return p4d_to_folded_pud(p4dp, addr);
883 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
884 }
885 
886 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
887 
888 #else
889 
890 static inline bool pgtable_l4_enabled(void) { return false; }
891 
892 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
893 
894 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
895 #define pud_set_fixmap(addr)		NULL
896 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
897 #define pud_clear_fixmap()
898 
899 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
900 
901 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
902 
903 #if CONFIG_PGTABLE_LEVELS > 4
904 
905 static __always_inline bool pgtable_l5_enabled(void)
906 {
907 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
908 		return vabits_actual == VA_BITS;
909 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
910 }
911 
912 static inline bool mm_p4d_folded(const struct mm_struct *mm)
913 {
914 	return !pgtable_l5_enabled();
915 }
916 #define mm_p4d_folded  mm_p4d_folded
917 
918 #define p4d_ERROR(e)	\
919 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
920 
921 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
922 #define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
923 #define pgd_present(pgd)	(!pgd_none(pgd))
924 
925 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
926 {
927 	if (in_swapper_pgdir(pgdp)) {
928 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
929 		return;
930 	}
931 
932 	WRITE_ONCE(*pgdp, pgd);
933 	dsb(ishst);
934 	isb();
935 }
936 
937 static inline void pgd_clear(pgd_t *pgdp)
938 {
939 	if (pgtable_l5_enabled())
940 		set_pgd(pgdp, __pgd(0));
941 }
942 
943 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
944 {
945 	return __pgd_to_phys(pgd);
946 }
947 
948 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
949 
950 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
951 {
952 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
953 }
954 
955 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
956 {
957 	BUG_ON(!pgtable_l5_enabled());
958 
959 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
960 }
961 
962 static inline
963 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
964 {
965 	if (!pgtable_l5_enabled())
966 		return pgd_to_folded_p4d(pgdp, addr);
967 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
968 }
969 #define p4d_offset_lockless p4d_offset_lockless
970 
971 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
972 {
973 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
974 }
975 
976 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
977 {
978 	if (!pgtable_l5_enabled())
979 		return NULL;
980 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
981 }
982 
983 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
984 {
985 	if (!pgtable_l5_enabled())
986 		return pgd_to_folded_p4d(pgdp, addr);
987 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
988 }
989 
990 static inline void p4d_clear_fixmap(void)
991 {
992 	if (pgtable_l5_enabled())
993 		clear_fixmap(FIX_P4D);
994 }
995 
996 /* use ONLY for statically allocated translation tables */
997 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
998 {
999 	if (!pgtable_l5_enabled())
1000 		return pgd_to_folded_p4d(pgdp, addr);
1001 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1002 }
1003 
1004 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1005 
1006 #else
1007 
1008 static inline bool pgtable_l5_enabled(void) { return false; }
1009 
1010 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1011 #define p4d_set_fixmap(addr)		NULL
1012 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1013 #define p4d_clear_fixmap()
1014 
1015 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1016 
1017 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1018 
1019 #define pgd_ERROR(e)	\
1020 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1021 
1022 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1023 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1024 
1025 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1026 {
1027 	/*
1028 	 * Normal and Normal-Tagged are two different memory types and indices
1029 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1030 	 */
1031 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1032 			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
1033 			      PTE_ATTRINDX_MASK;
1034 	/* preserve the hardware dirty information */
1035 	if (pte_hw_dirty(pte))
1036 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1037 
1038 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1039 	/*
1040 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1041 	 * dirtiness again.
1042 	 */
1043 	if (pte_sw_dirty(pte))
1044 		pte = pte_mkdirty(pte);
1045 	return pte;
1046 }
1047 
1048 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1049 {
1050 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1051 }
1052 
1053 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1054 				 unsigned long address, pte_t *ptep,
1055 				 pte_t entry, int dirty);
1056 
1057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1058 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1059 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1060 					unsigned long address, pmd_t *pmdp,
1061 					pmd_t entry, int dirty)
1062 {
1063 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1064 							pmd_pte(entry), dirty);
1065 }
1066 
1067 static inline int pud_devmap(pud_t pud)
1068 {
1069 	return 0;
1070 }
1071 
1072 static inline int pgd_devmap(pgd_t pgd)
1073 {
1074 	return 0;
1075 }
1076 #endif
1077 
1078 #ifdef CONFIG_PAGE_TABLE_CHECK
1079 static inline bool pte_user_accessible_page(pte_t pte)
1080 {
1081 	return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
1082 }
1083 
1084 static inline bool pmd_user_accessible_page(pmd_t pmd)
1085 {
1086 	return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1087 }
1088 
1089 static inline bool pud_user_accessible_page(pud_t pud)
1090 {
1091 	return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
1092 }
1093 #endif
1094 
1095 /*
1096  * Atomic pte/pmd modifications.
1097  */
1098 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1099 					      unsigned long address,
1100 					      pte_t *ptep)
1101 {
1102 	pte_t old_pte, pte;
1103 
1104 	pte = __ptep_get(ptep);
1105 	do {
1106 		old_pte = pte;
1107 		pte = pte_mkold(pte);
1108 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1109 					       pte_val(old_pte), pte_val(pte));
1110 	} while (pte_val(pte) != pte_val(old_pte));
1111 
1112 	return pte_young(pte);
1113 }
1114 
1115 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1116 					 unsigned long address, pte_t *ptep)
1117 {
1118 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1119 
1120 	if (young) {
1121 		/*
1122 		 * We can elide the trailing DSB here since the worst that can
1123 		 * happen is that a CPU continues to use the young entry in its
1124 		 * TLB and we mistakenly reclaim the associated page. The
1125 		 * window for such an event is bounded by the next
1126 		 * context-switch, which provides a DSB to complete the TLB
1127 		 * invalidation.
1128 		 */
1129 		flush_tlb_page_nosync(vma, address);
1130 	}
1131 
1132 	return young;
1133 }
1134 
1135 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1136 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1137 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1138 					    unsigned long address,
1139 					    pmd_t *pmdp)
1140 {
1141 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1142 }
1143 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1144 
1145 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1146 				       unsigned long address, pte_t *ptep)
1147 {
1148 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1149 
1150 	page_table_check_pte_clear(mm, pte);
1151 
1152 	return pte;
1153 }
1154 
1155 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1156 				pte_t *ptep, unsigned int nr, int full)
1157 {
1158 	for (;;) {
1159 		__ptep_get_and_clear(mm, addr, ptep);
1160 		if (--nr == 0)
1161 			break;
1162 		ptep++;
1163 		addr += PAGE_SIZE;
1164 	}
1165 }
1166 
1167 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1168 				unsigned long addr, pte_t *ptep,
1169 				unsigned int nr, int full)
1170 {
1171 	pte_t pte, tmp_pte;
1172 
1173 	pte = __ptep_get_and_clear(mm, addr, ptep);
1174 	while (--nr) {
1175 		ptep++;
1176 		addr += PAGE_SIZE;
1177 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1178 		if (pte_dirty(tmp_pte))
1179 			pte = pte_mkdirty(pte);
1180 		if (pte_young(tmp_pte))
1181 			pte = pte_mkyoung(pte);
1182 	}
1183 	return pte;
1184 }
1185 
1186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1187 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1188 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1189 					    unsigned long address, pmd_t *pmdp)
1190 {
1191 	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1192 
1193 	page_table_check_pmd_clear(mm, pmd);
1194 
1195 	return pmd;
1196 }
1197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1198 
1199 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1200 					unsigned long address, pte_t *ptep,
1201 					pte_t pte)
1202 {
1203 	pte_t old_pte;
1204 
1205 	do {
1206 		old_pte = pte;
1207 		pte = pte_wrprotect(pte);
1208 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1209 					       pte_val(old_pte), pte_val(pte));
1210 	} while (pte_val(pte) != pte_val(old_pte));
1211 }
1212 
1213 /*
1214  * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1215  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1216  */
1217 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1218 					unsigned long address, pte_t *ptep)
1219 {
1220 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1221 }
1222 
1223 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1224 				pte_t *ptep, unsigned int nr)
1225 {
1226 	unsigned int i;
1227 
1228 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1229 		__ptep_set_wrprotect(mm, address, ptep);
1230 }
1231 
1232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1233 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1234 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1235 				      unsigned long address, pmd_t *pmdp)
1236 {
1237 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1238 }
1239 
1240 #define pmdp_establish pmdp_establish
1241 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1242 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1243 {
1244 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1245 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1246 }
1247 #endif
1248 
1249 /*
1250  * Encode and decode a swap entry:
1251  *	bits 0-1:	present (must be zero)
1252  *	bits 2:		remember PG_anon_exclusive
1253  *	bits 3-7:	swap type
1254  *	bits 8-57:	swap offset
1255  *	bit  58:	PTE_PROT_NONE (must be zero)
1256  */
1257 #define __SWP_TYPE_SHIFT	3
1258 #define __SWP_TYPE_BITS		5
1259 #define __SWP_OFFSET_BITS	50
1260 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1261 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
1262 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1263 
1264 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1265 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1266 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1267 
1268 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1269 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1270 
1271 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1272 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1273 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1274 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1275 
1276 /*
1277  * Ensure that there are not more swap files than can be encoded in the kernel
1278  * PTEs.
1279  */
1280 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1281 
1282 #ifdef CONFIG_ARM64_MTE
1283 
1284 #define __HAVE_ARCH_PREPARE_TO_SWAP
1285 static inline int arch_prepare_to_swap(struct page *page)
1286 {
1287 	if (system_supports_mte())
1288 		return mte_save_tags(page);
1289 	return 0;
1290 }
1291 
1292 #define __HAVE_ARCH_SWAP_INVALIDATE
1293 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1294 {
1295 	if (system_supports_mte())
1296 		mte_invalidate_tags(type, offset);
1297 }
1298 
1299 static inline void arch_swap_invalidate_area(int type)
1300 {
1301 	if (system_supports_mte())
1302 		mte_invalidate_tags_area(type);
1303 }
1304 
1305 #define __HAVE_ARCH_SWAP_RESTORE
1306 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1307 {
1308 	if (system_supports_mte())
1309 		mte_restore_tags(entry, &folio->page);
1310 }
1311 
1312 #endif /* CONFIG_ARM64_MTE */
1313 
1314 /*
1315  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1316  */
1317 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1318 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1319 		unsigned int nr)
1320 {
1321 	/*
1322 	 * We don't do anything here, so there's a very small chance of
1323 	 * us retaking a user fault which we just fixed up. The alternative
1324 	 * is doing a dsb(ishst), but that penalises the fastpath.
1325 	 */
1326 }
1327 
1328 #define update_mmu_cache(vma, addr, ptep) \
1329 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1330 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1331 
1332 #ifdef CONFIG_ARM64_PA_BITS_52
1333 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1334 #else
1335 #define phys_to_ttbr(addr)	(addr)
1336 #endif
1337 
1338 /*
1339  * On arm64 without hardware Access Flag, copying from user will fail because
1340  * the pte is old and cannot be marked young. So we always end up with zeroed
1341  * page after fork() + CoW for pfn mappings. We don't always have a
1342  * hardware-managed access flag on arm64.
1343  */
1344 #define arch_has_hw_pte_young		cpu_has_hw_af
1345 
1346 /*
1347  * Experimentally, it's cheap to set the access flag in hardware and we
1348  * benefit from prefaulting mappings as 'old' to start with.
1349  */
1350 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1351 
1352 static inline bool pud_sect_supported(void)
1353 {
1354 	return PAGE_SIZE == SZ_4K;
1355 }
1356 
1357 
1358 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1359 #define ptep_modify_prot_start ptep_modify_prot_start
1360 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1361 				    unsigned long addr, pte_t *ptep);
1362 
1363 #define ptep_modify_prot_commit ptep_modify_prot_commit
1364 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1365 				    unsigned long addr, pte_t *ptep,
1366 				    pte_t old_pte, pte_t new_pte);
1367 
1368 #ifdef CONFIG_ARM64_CONTPTE
1369 
1370 /*
1371  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1372  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1373  * a private implementation detail of the public ptep API (see below).
1374  */
1375 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1376 				pte_t *ptep, pte_t pte);
1377 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1378 				pte_t *ptep, pte_t pte);
1379 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1380 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1381 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1382 				pte_t *ptep, pte_t pte, unsigned int nr);
1383 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1384 				pte_t *ptep, unsigned int nr, int full);
1385 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1386 				unsigned long addr, pte_t *ptep,
1387 				unsigned int nr, int full);
1388 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1389 				unsigned long addr, pte_t *ptep);
1390 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1391 				unsigned long addr, pte_t *ptep);
1392 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1393 				pte_t *ptep, unsigned int nr);
1394 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1395 				unsigned long addr, pte_t *ptep,
1396 				pte_t entry, int dirty);
1397 
1398 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1399 				unsigned long addr, pte_t *ptep, pte_t pte)
1400 {
1401 	/*
1402 	 * Only bother trying if both the virtual and physical addresses are
1403 	 * aligned and correspond to the last entry in a contig range. The core
1404 	 * code mostly modifies ranges from low to high, so this is the likely
1405 	 * the last modification in the contig range, so a good time to fold.
1406 	 * We can't fold special mappings, because there is no associated folio.
1407 	 */
1408 
1409 	const unsigned long contmask = CONT_PTES - 1;
1410 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1411 
1412 	if (unlikely(valign)) {
1413 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1414 
1415 		if (unlikely(palign &&
1416 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1417 			__contpte_try_fold(mm, addr, ptep, pte);
1418 	}
1419 }
1420 
1421 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1422 				unsigned long addr, pte_t *ptep, pte_t pte)
1423 {
1424 	if (unlikely(pte_valid_cont(pte)))
1425 		__contpte_try_unfold(mm, addr, ptep, pte);
1426 }
1427 
1428 #define pte_batch_hint pte_batch_hint
1429 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1430 {
1431 	if (!pte_valid_cont(pte))
1432 		return 1;
1433 
1434 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1435 }
1436 
1437 /*
1438  * The below functions constitute the public API that arm64 presents to the
1439  * core-mm to manipulate PTE entries within their page tables (or at least this
1440  * is the subset of the API that arm64 needs to implement). These public
1441  * versions will automatically and transparently apply the contiguous bit where
1442  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1443  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1444  * private versions, which are prefixed with double underscore. All of these
1445  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1446  * held. Although the contiguous bit is considered private to the
1447  * implementation, it is deliberately allowed to leak through the getters (e.g.
1448  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1449  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1450  * its possible a pte will be passed to a setter with the contiguous bit set, so
1451  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1452  * setting it in the pgtable.
1453  */
1454 
1455 #define ptep_get ptep_get
1456 static inline pte_t ptep_get(pte_t *ptep)
1457 {
1458 	pte_t pte = __ptep_get(ptep);
1459 
1460 	if (likely(!pte_valid_cont(pte)))
1461 		return pte;
1462 
1463 	return contpte_ptep_get(ptep, pte);
1464 }
1465 
1466 #define ptep_get_lockless ptep_get_lockless
1467 static inline pte_t ptep_get_lockless(pte_t *ptep)
1468 {
1469 	pte_t pte = __ptep_get(ptep);
1470 
1471 	if (likely(!pte_valid_cont(pte)))
1472 		return pte;
1473 
1474 	return contpte_ptep_get_lockless(ptep);
1475 }
1476 
1477 static inline void set_pte(pte_t *ptep, pte_t pte)
1478 {
1479 	/*
1480 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1481 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1482 	 * this should never even be called. Regardless do our best to service
1483 	 * any call and emit a warning if there is any attempt to set a pte on
1484 	 * top of an existing contig range.
1485 	 */
1486 	pte_t orig_pte = __ptep_get(ptep);
1487 
1488 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1489 	__set_pte(ptep, pte_mknoncont(pte));
1490 }
1491 
1492 #define set_ptes set_ptes
1493 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1494 				pte_t *ptep, pte_t pte, unsigned int nr)
1495 {
1496 	pte = pte_mknoncont(pte);
1497 
1498 	if (likely(nr == 1)) {
1499 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1500 		__set_ptes(mm, addr, ptep, pte, 1);
1501 		contpte_try_fold(mm, addr, ptep, pte);
1502 	} else {
1503 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1504 	}
1505 }
1506 
1507 static inline void pte_clear(struct mm_struct *mm,
1508 				unsigned long addr, pte_t *ptep)
1509 {
1510 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1511 	__pte_clear(mm, addr, ptep);
1512 }
1513 
1514 #define clear_full_ptes clear_full_ptes
1515 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1516 				pte_t *ptep, unsigned int nr, int full)
1517 {
1518 	if (likely(nr == 1)) {
1519 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1520 		__clear_full_ptes(mm, addr, ptep, nr, full);
1521 	} else {
1522 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1523 	}
1524 }
1525 
1526 #define get_and_clear_full_ptes get_and_clear_full_ptes
1527 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1528 				unsigned long addr, pte_t *ptep,
1529 				unsigned int nr, int full)
1530 {
1531 	pte_t pte;
1532 
1533 	if (likely(nr == 1)) {
1534 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1535 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1536 	} else {
1537 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1538 	}
1539 
1540 	return pte;
1541 }
1542 
1543 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1544 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1545 				unsigned long addr, pte_t *ptep)
1546 {
1547 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1548 	return __ptep_get_and_clear(mm, addr, ptep);
1549 }
1550 
1551 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1552 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1553 				unsigned long addr, pte_t *ptep)
1554 {
1555 	pte_t orig_pte = __ptep_get(ptep);
1556 
1557 	if (likely(!pte_valid_cont(orig_pte)))
1558 		return __ptep_test_and_clear_young(vma, addr, ptep);
1559 
1560 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1561 }
1562 
1563 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1564 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1565 				unsigned long addr, pte_t *ptep)
1566 {
1567 	pte_t orig_pte = __ptep_get(ptep);
1568 
1569 	if (likely(!pte_valid_cont(orig_pte)))
1570 		return __ptep_clear_flush_young(vma, addr, ptep);
1571 
1572 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1573 }
1574 
1575 #define wrprotect_ptes wrprotect_ptes
1576 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1577 				unsigned long addr, pte_t *ptep, unsigned int nr)
1578 {
1579 	if (likely(nr == 1)) {
1580 		/*
1581 		 * Optimization: wrprotect_ptes() can only be called for present
1582 		 * ptes so we only need to check contig bit as condition for
1583 		 * unfold, and we can remove the contig bit from the pte we read
1584 		 * to avoid re-reading. This speeds up fork() which is sensitive
1585 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1586 		 */
1587 		pte_t orig_pte = __ptep_get(ptep);
1588 
1589 		if (unlikely(pte_cont(orig_pte))) {
1590 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1591 			orig_pte = pte_mknoncont(orig_pte);
1592 		}
1593 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1594 	} else {
1595 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1596 	}
1597 }
1598 
1599 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1600 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1601 				unsigned long addr, pte_t *ptep)
1602 {
1603 	wrprotect_ptes(mm, addr, ptep, 1);
1604 }
1605 
1606 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1607 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1608 				unsigned long addr, pte_t *ptep,
1609 				pte_t entry, int dirty)
1610 {
1611 	pte_t orig_pte = __ptep_get(ptep);
1612 
1613 	entry = pte_mknoncont(entry);
1614 
1615 	if (likely(!pte_valid_cont(orig_pte)))
1616 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1617 
1618 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1619 }
1620 
1621 #else /* CONFIG_ARM64_CONTPTE */
1622 
1623 #define ptep_get				__ptep_get
1624 #define set_pte					__set_pte
1625 #define set_ptes				__set_ptes
1626 #define pte_clear				__pte_clear
1627 #define clear_full_ptes				__clear_full_ptes
1628 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1629 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1630 #define ptep_get_and_clear			__ptep_get_and_clear
1631 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1632 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1633 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1634 #define ptep_clear_flush_young			__ptep_clear_flush_young
1635 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1636 #define ptep_set_wrprotect			__ptep_set_wrprotect
1637 #define wrprotect_ptes				__wrprotect_ptes
1638 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1639 #define ptep_set_access_flags			__ptep_set_access_flags
1640 
1641 #endif /* CONFIG_ARM64_CONTPTE */
1642 
1643 #endif /* !__ASSEMBLY__ */
1644 
1645 #endif /* __ASM_PGTABLE_H */
1646