1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_PGTABLE_H 6 #define __ASM_PGTABLE_H 7 8 #include <asm/bug.h> 9 #include <asm/proc-fns.h> 10 11 #include <asm/memory.h> 12 #include <asm/mte.h> 13 #include <asm/pgtable-hwdef.h> 14 #include <asm/pgtable-prot.h> 15 #include <asm/tlbflush.h> 16 17 /* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap 22 */ 23 #define VMALLOC_START (MODULES_END) 24 #if VA_BITS == VA_BITS_MIN 25 #define VMALLOC_END (VMEMMAP_START - SZ_8M) 26 #else 27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT) 28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M) 29 #endif 30 31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 32 33 #ifndef __ASSEMBLY__ 34 35 #include <asm/cmpxchg.h> 36 #include <asm/fixmap.h> 37 #include <asm/por.h> 38 #include <linux/mmdebug.h> 39 #include <linux/mm_types.h> 40 #include <linux/sched.h> 41 #include <linux/page_table_check.h> 42 43 static inline void emit_pte_barriers(void) 44 { 45 /* 46 * These barriers are emitted under certain conditions after a pte entry 47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store 48 * visible to the table walker. The isb ensures that any previous 49 * speculative "invalid translation" marker that is in the CPU's 50 * pipeline gets cleared, so that any access to that address after 51 * setting the pte to valid won't cause a spurious fault. If the thread 52 * gets preempted after storing to the pgtable but before emitting these 53 * barriers, __switch_to() emits a dsb which ensure the walker gets to 54 * see the store. There is no guarantee of an isb being issued though. 55 * This is safe because it will still get issued (albeit on a 56 * potentially different CPU) when the thread starts running again, 57 * before any access to the address. 58 */ 59 dsb(ishst); 60 isb(); 61 } 62 63 static inline void queue_pte_barriers(void) 64 { 65 unsigned long flags; 66 67 if (in_interrupt()) { 68 emit_pte_barriers(); 69 return; 70 } 71 72 flags = read_thread_flags(); 73 74 if (flags & BIT(TIF_LAZY_MMU)) { 75 /* Avoid the atomic op if already set. */ 76 if (!(flags & BIT(TIF_LAZY_MMU_PENDING))) 77 set_thread_flag(TIF_LAZY_MMU_PENDING); 78 } else { 79 emit_pte_barriers(); 80 } 81 } 82 83 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE 84 static inline void arch_enter_lazy_mmu_mode(void) 85 { 86 /* 87 * lazy_mmu_mode is not supposed to permit nesting. But in practice this 88 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation 89 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change 90 * permissions on the linear map with apply_to_page_range(), which 91 * re-enters lazy_mmu_mode. So we tolerate nesting in our 92 * implementation. The first call to arch_leave_lazy_mmu_mode() will 93 * flush and clear the flag such that the remainder of the work in the 94 * outer nest behaves as if outside of lazy mmu mode. This is safe and 95 * keeps tracking simple. 96 */ 97 98 if (in_interrupt()) 99 return; 100 101 set_thread_flag(TIF_LAZY_MMU); 102 } 103 104 static inline void arch_flush_lazy_mmu_mode(void) 105 { 106 if (in_interrupt()) 107 return; 108 109 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING)) 110 emit_pte_barriers(); 111 } 112 113 static inline void arch_leave_lazy_mmu_mode(void) 114 { 115 if (in_interrupt()) 116 return; 117 118 arch_flush_lazy_mmu_mode(); 119 clear_thread_flag(TIF_LAZY_MMU); 120 } 121 122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 124 125 /* Set stride and tlb_level in flush_*_tlb_range */ 126 #define flush_pmd_tlb_range(vma, addr, end) \ 127 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 128 #define flush_pud_tlb_range(vma, addr, end) \ 129 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 131 132 /* 133 * Outside of a few very special situations (e.g. hibernation), we always 134 * use broadcast TLB invalidation instructions, therefore a spurious page 135 * fault on one CPU which has been handled concurrently by another CPU 136 * does not need to perform additional invalidation. 137 */ 138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) 139 140 /* 141 * ZERO_PAGE is a global shared page that is always zero: used 142 * for zero-mapped memory areas etc.. 143 */ 144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 145 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 146 147 #define pte_ERROR(e) \ 148 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 149 150 #ifdef CONFIG_ARM64_PA_BITS_52 151 static inline phys_addr_t __pte_to_phys(pte_t pte) 152 { 153 pte_val(pte) &= ~PTE_MAYBE_SHARED; 154 return (pte_val(pte) & PTE_ADDR_LOW) | 155 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT); 156 } 157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 158 { 159 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK; 160 } 161 #else 162 static inline phys_addr_t __pte_to_phys(pte_t pte) 163 { 164 return pte_val(pte) & PTE_ADDR_LOW; 165 } 166 167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 168 { 169 return phys; 170 } 171 #endif 172 173 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 174 #define pfn_pte(pfn,prot) \ 175 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 176 177 #define pte_none(pte) (!pte_val(pte)) 178 #define __pte_clear(mm, addr, ptep) \ 179 __set_pte(ptep, __pte(0)) 180 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 181 182 /* 183 * The following only work if pte_present(). Undefined behaviour otherwise. 184 */ 185 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte)) 186 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 187 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 188 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 189 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY)) 190 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER)) 191 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 192 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 193 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) 194 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 195 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 196 197 #define pte_cont_addr_end(addr, end) \ 198 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 199 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 200 }) 201 202 #define pmd_cont_addr_end(addr, end) \ 203 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 204 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 205 }) 206 207 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte)) 208 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 209 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 210 211 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 212 #define pte_present_invalid(pte) \ 213 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID) 214 /* 215 * Execute-only user mappings do not have the PTE_USER bit set. All valid 216 * kernel mappings have the PTE_UXN bit set. 217 */ 218 #define pte_valid_not_user(pte) \ 219 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 220 /* 221 * Returns true if the pte is valid and has the contiguous bit set. 222 */ 223 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte)) 224 /* 225 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 226 * so that we don't erroneously return false for pages that have been 227 * remapped as PROT_NONE but are yet to be flushed from the TLB. 228 * Note that we can't make any assumptions based on the state of the access 229 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the 230 * TLB. 231 */ 232 #define pte_accessible(mm, pte) \ 233 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 234 235 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute) 236 { 237 u64 por; 238 239 if (!system_supports_poe()) 240 return true; 241 242 por = read_sysreg_s(SYS_POR_EL0); 243 244 if (write) 245 return por_elx_allows_write(por, pkey); 246 247 if (execute) 248 return por_elx_allows_exec(por, pkey); 249 250 return por_elx_allows_read(por, pkey); 251 } 252 253 /* 254 * p??_access_permitted() is true for valid user mappings (PTE_USER 255 * bit set, subject to the write permission check). For execute-only 256 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 257 * not set) must return false. PROT_NONE mappings do not have the 258 * PTE_VALID bit set. 259 */ 260 #define pte_access_permitted_no_overlay(pte, write) \ 261 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 262 #define pte_access_permitted(pte, write) \ 263 (pte_access_permitted_no_overlay(pte, write) && \ 264 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false)) 265 #define pmd_access_permitted(pmd, write) \ 266 (pte_access_permitted(pmd_pte(pmd), (write))) 267 #define pud_access_permitted(pud, write) \ 268 (pte_access_permitted(pud_pte(pud), (write))) 269 270 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 271 { 272 pte_val(pte) &= ~pgprot_val(prot); 273 return pte; 274 } 275 276 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 277 { 278 pte_val(pte) |= pgprot_val(prot); 279 return pte; 280 } 281 282 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 283 { 284 pmd_val(pmd) &= ~pgprot_val(prot); 285 return pmd; 286 } 287 288 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 289 { 290 pmd_val(pmd) |= pgprot_val(prot); 291 return pmd; 292 } 293 294 static inline pte_t pte_mkwrite_novma(pte_t pte) 295 { 296 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 297 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 298 return pte; 299 } 300 301 static inline pte_t pte_mkclean(pte_t pte) 302 { 303 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 304 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 305 306 return pte; 307 } 308 309 static inline pte_t pte_mkdirty(pte_t pte) 310 { 311 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 312 313 if (pte_write(pte)) 314 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 315 316 return pte; 317 } 318 319 static inline pte_t pte_wrprotect(pte_t pte) 320 { 321 /* 322 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 323 * clear), set the PTE_DIRTY bit. 324 */ 325 if (pte_hw_dirty(pte)) 326 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 327 328 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 329 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 330 return pte; 331 } 332 333 static inline pte_t pte_mkold(pte_t pte) 334 { 335 return clear_pte_bit(pte, __pgprot(PTE_AF)); 336 } 337 338 static inline pte_t pte_mkyoung(pte_t pte) 339 { 340 return set_pte_bit(pte, __pgprot(PTE_AF)); 341 } 342 343 static inline pte_t pte_mkspecial(pte_t pte) 344 { 345 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 346 } 347 348 static inline pte_t pte_mkcont(pte_t pte) 349 { 350 return set_pte_bit(pte, __pgprot(PTE_CONT)); 351 } 352 353 static inline pte_t pte_mknoncont(pte_t pte) 354 { 355 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 356 } 357 358 static inline pte_t pte_mkvalid(pte_t pte) 359 { 360 return set_pte_bit(pte, __pgprot(PTE_VALID)); 361 } 362 363 static inline pte_t pte_mkinvalid(pte_t pte) 364 { 365 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID)); 366 pte = clear_pte_bit(pte, __pgprot(PTE_VALID)); 367 return pte; 368 } 369 370 static inline pmd_t pmd_mkcont(pmd_t pmd) 371 { 372 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 373 } 374 375 static inline pte_t pte_mkdevmap(pte_t pte) 376 { 377 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); 378 } 379 380 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 381 static inline int pte_uffd_wp(pte_t pte) 382 { 383 return !!(pte_val(pte) & PTE_UFFD_WP); 384 } 385 386 static inline pte_t pte_mkuffd_wp(pte_t pte) 387 { 388 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP))); 389 } 390 391 static inline pte_t pte_clear_uffd_wp(pte_t pte) 392 { 393 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP)); 394 } 395 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 396 397 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte) 398 { 399 WRITE_ONCE(*ptep, pte); 400 } 401 402 static inline void __set_pte_complete(pte_t pte) 403 { 404 /* 405 * Only if the new pte is valid and kernel, otherwise TLB maintenance 406 * has the necessary barriers. 407 */ 408 if (pte_valid_not_user(pte)) 409 queue_pte_barriers(); 410 } 411 412 static inline void __set_pte(pte_t *ptep, pte_t pte) 413 { 414 __set_pte_nosync(ptep, pte); 415 __set_pte_complete(pte); 416 } 417 418 static inline pte_t __ptep_get(pte_t *ptep) 419 { 420 return READ_ONCE(*ptep); 421 } 422 423 extern void __sync_icache_dcache(pte_t pteval); 424 bool pgattr_change_is_safe(pteval_t old, pteval_t new); 425 426 /* 427 * PTE bits configuration in the presence of hardware Dirty Bit Management 428 * (PTE_WRITE == PTE_DBM): 429 * 430 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 431 * 0 0 | 1 0 0 432 * 0 1 | 1 1 0 433 * 1 0 | 1 0 1 434 * 1 1 | 0 1 x 435 * 436 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 437 * the page fault mechanism. Checking the dirty status of a pte becomes: 438 * 439 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 440 */ 441 442 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep, 443 pte_t pte) 444 { 445 pte_t old_pte; 446 447 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 448 return; 449 450 old_pte = __ptep_get(ptep); 451 452 if (!pte_valid(old_pte) || !pte_valid(pte)) 453 return; 454 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 455 return; 456 457 /* 458 * Check for potential race with hardware updates of the pte 459 * (__ptep_set_access_flags safely changes valid ptes without going 460 * through an invalid entry). 461 */ 462 VM_WARN_ONCE(!pte_young(pte), 463 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 464 __func__, pte_val(old_pte), pte_val(pte)); 465 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 466 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 467 __func__, pte_val(old_pte), pte_val(pte)); 468 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)), 469 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx", 470 __func__, pte_val(old_pte), pte_val(pte)); 471 } 472 473 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages) 474 { 475 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 476 __sync_icache_dcache(pte); 477 478 /* 479 * If the PTE would provide user space access to the tags associated 480 * with it then ensure that the MTE tags are synchronised. Although 481 * pte_access_permitted_no_overlay() returns false for exec only 482 * mappings, they don't expose tags (instruction fetches don't check 483 * tags). 484 */ 485 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) && 486 !pte_special(pte) && pte_tagged(pte)) 487 mte_sync_tags(pte, nr_pages); 488 } 489 490 /* 491 * Select all bits except the pfn 492 */ 493 #define pte_pgprot pte_pgprot 494 static inline pgprot_t pte_pgprot(pte_t pte) 495 { 496 unsigned long pfn = pte_pfn(pte); 497 498 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 499 } 500 501 #define pte_advance_pfn pte_advance_pfn 502 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 503 { 504 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte)); 505 } 506 507 /* 508 * Hugetlb definitions. 509 */ 510 #define HUGE_MAX_HSTATE 4 511 #define HPAGE_SHIFT PMD_SHIFT 512 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 513 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 514 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 515 516 static inline pte_t pgd_pte(pgd_t pgd) 517 { 518 return __pte(pgd_val(pgd)); 519 } 520 521 static inline pte_t p4d_pte(p4d_t p4d) 522 { 523 return __pte(p4d_val(p4d)); 524 } 525 526 static inline pte_t pud_pte(pud_t pud) 527 { 528 return __pte(pud_val(pud)); 529 } 530 531 static inline pud_t pte_pud(pte_t pte) 532 { 533 return __pud(pte_val(pte)); 534 } 535 536 static inline pmd_t pud_pmd(pud_t pud) 537 { 538 return __pmd(pud_val(pud)); 539 } 540 541 static inline pte_t pmd_pte(pmd_t pmd) 542 { 543 return __pte(pmd_val(pmd)); 544 } 545 546 static inline pmd_t pte_pmd(pte_t pte) 547 { 548 return __pmd(pte_val(pte)); 549 } 550 551 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 552 { 553 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT); 554 } 555 556 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 557 { 558 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT); 559 } 560 561 static inline pte_t pte_swp_mkexclusive(pte_t pte) 562 { 563 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 564 } 565 566 static inline int pte_swp_exclusive(pte_t pte) 567 { 568 return pte_val(pte) & PTE_SWP_EXCLUSIVE; 569 } 570 571 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 572 { 573 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 574 } 575 576 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 577 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 578 { 579 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 580 } 581 582 static inline int pte_swp_uffd_wp(pte_t pte) 583 { 584 return !!(pte_val(pte) & PTE_SWP_UFFD_WP); 585 } 586 587 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 588 { 589 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 590 } 591 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 592 593 #ifdef CONFIG_NUMA_BALANCING 594 /* 595 * See the comment in include/linux/pgtable.h 596 */ 597 static inline int pte_protnone(pte_t pte) 598 { 599 /* 600 * pte_present_invalid() tells us that the pte is invalid from HW 601 * perspective but present from SW perspective, so the fields are to be 602 * interpretted as per the HW layout. The second 2 checks are the unique 603 * encoding that we use for PROT_NONE. It is insufficient to only use 604 * the first check because we share the same encoding scheme with pmds 605 * which support pmd_mkinvalid(), so can be present-invalid without 606 * being PROT_NONE. 607 */ 608 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte); 609 } 610 611 static inline int pmd_protnone(pmd_t pmd) 612 { 613 return pte_protnone(pmd_pte(pmd)); 614 } 615 #endif 616 617 #define pmd_present(pmd) pte_present(pmd_pte(pmd)) 618 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 619 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 620 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 621 #define pmd_user(pmd) pte_user(pmd_pte(pmd)) 622 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd)) 623 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 624 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 625 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 626 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) 627 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 628 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 629 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 630 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd))) 631 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 632 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd)) 633 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd))) 634 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd))) 635 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd)) 636 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd))) 637 #define pmd_swp_clear_uffd_wp(pmd) \ 638 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd))) 639 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 640 641 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 642 643 static inline pmd_t pmd_mkhuge(pmd_t pmd) 644 { 645 /* 646 * It's possible that the pmd is present-invalid on entry 647 * and in that case it needs to remain present-invalid on 648 * exit. So ensure the VALID bit does not get modified. 649 */ 650 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID; 651 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID; 652 653 return __pmd((pmd_val(pmd) & ~mask) | val); 654 } 655 656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 657 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) 658 #endif 659 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 660 { 661 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); 662 } 663 664 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 665 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL))) 666 static inline pmd_t pmd_mkspecial(pmd_t pmd) 667 { 668 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL)); 669 } 670 #endif 671 672 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 673 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 674 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 675 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 676 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 677 678 #define pud_young(pud) pte_young(pud_pte(pud)) 679 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 680 #define pud_write(pud) pte_write(pud_pte(pud)) 681 682 static inline pud_t pud_mkhuge(pud_t pud) 683 { 684 /* 685 * It's possible that the pud is present-invalid on entry 686 * and in that case it needs to remain present-invalid on 687 * exit. So ensure the VALID bit does not get modified. 688 */ 689 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID; 690 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID; 691 692 return __pud((pud_val(pud) & ~mask) | val); 693 } 694 695 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 696 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 697 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 698 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 699 700 #define pmd_pgprot pmd_pgprot 701 static inline pgprot_t pmd_pgprot(pmd_t pmd) 702 { 703 unsigned long pfn = pmd_pfn(pmd); 704 705 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd)); 706 } 707 708 #define pud_pgprot pud_pgprot 709 static inline pgprot_t pud_pgprot(pud_t pud) 710 { 711 unsigned long pfn = pud_pfn(pud); 712 713 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud)); 714 } 715 716 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep, 717 pte_t pte, unsigned int nr, 718 unsigned long pgsize) 719 { 720 unsigned long stride = pgsize >> PAGE_SHIFT; 721 722 switch (pgsize) { 723 case PAGE_SIZE: 724 page_table_check_ptes_set(mm, ptep, pte, nr); 725 break; 726 case PMD_SIZE: 727 page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr); 728 break; 729 #ifndef __PAGETABLE_PMD_FOLDED 730 case PUD_SIZE: 731 page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr); 732 break; 733 #endif 734 default: 735 VM_WARN_ON(1); 736 } 737 738 __sync_cache_and_tags(pte, nr * stride); 739 740 for (;;) { 741 __check_safe_pte_update(mm, ptep, pte); 742 __set_pte_nosync(ptep, pte); 743 if (--nr == 0) 744 break; 745 ptep++; 746 pte = pte_advance_pfn(pte, stride); 747 } 748 749 __set_pte_complete(pte); 750 } 751 752 static inline void __set_ptes(struct mm_struct *mm, 753 unsigned long __always_unused addr, 754 pte_t *ptep, pte_t pte, unsigned int nr) 755 { 756 __set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE); 757 } 758 759 static inline void __set_pmds(struct mm_struct *mm, 760 unsigned long __always_unused addr, 761 pmd_t *pmdp, pmd_t pmd, unsigned int nr) 762 { 763 __set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE); 764 } 765 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1) 766 767 static inline void __set_puds(struct mm_struct *mm, 768 unsigned long __always_unused addr, 769 pud_t *pudp, pud_t pud, unsigned int nr) 770 { 771 __set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE); 772 } 773 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1) 774 775 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 776 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 777 778 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 779 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 780 781 #define __pgprot_modify(prot,mask,bits) \ 782 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 783 784 #define pgprot_nx(prot) \ 785 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 786 787 #define pgprot_decrypted(prot) \ 788 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED) 789 #define pgprot_encrypted(prot) \ 790 __pgprot_modify(prot, PROT_NS_SHARED, 0) 791 792 /* 793 * Mark the prot value as uncacheable and unbufferable. 794 */ 795 #define pgprot_noncached(prot) \ 796 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 797 #define pgprot_writecombine(prot) \ 798 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 799 #define pgprot_device(prot) \ 800 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 801 #define pgprot_tagged(prot) \ 802 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 803 #define pgprot_mhp pgprot_tagged 804 /* 805 * DMA allocations for non-coherent devices use what the Arm architecture calls 806 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 807 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 808 * is intended for MMIO and thus forbids speculation, preserves access size, 809 * requires strict alignment and can also force write responses to come from the 810 * endpoint. 811 */ 812 #define pgprot_dmacoherent(prot) \ 813 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 814 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 815 816 #define __HAVE_PHYS_MEM_ACCESS_PROT 817 struct file; 818 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 819 unsigned long size, pgprot_t vma_prot); 820 821 #define pmd_none(pmd) (!pmd_val(pmd)) 822 823 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 824 PMD_TYPE_TABLE) 825 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 826 PMD_TYPE_SECT) 827 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd)) 828 #define pmd_bad(pmd) (!pmd_table(pmd)) 829 830 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 831 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 832 833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 834 static inline int pmd_trans_huge(pmd_t pmd) 835 { 836 /* 837 * If pmd is present-invalid, pmd_table() won't detect it 838 * as a table, so force the valid bit for the comparison. 839 */ 840 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID)); 841 } 842 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 843 844 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 845 static inline bool pud_sect(pud_t pud) { return false; } 846 static inline bool pud_table(pud_t pud) { return true; } 847 #else 848 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 849 PUD_TYPE_SECT) 850 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 851 PUD_TYPE_TABLE) 852 #endif 853 854 extern pgd_t swapper_pg_dir[]; 855 extern pgd_t idmap_pg_dir[]; 856 extern pgd_t tramp_pg_dir[]; 857 extern pgd_t reserved_pg_dir[]; 858 859 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 860 861 static inline bool in_swapper_pgdir(void *addr) 862 { 863 return ((unsigned long)addr & PAGE_MASK) == 864 ((unsigned long)swapper_pg_dir & PAGE_MASK); 865 } 866 867 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 868 { 869 #ifdef __PAGETABLE_PMD_FOLDED 870 if (in_swapper_pgdir(pmdp)) { 871 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 872 return; 873 } 874 #endif /* __PAGETABLE_PMD_FOLDED */ 875 876 WRITE_ONCE(*pmdp, pmd); 877 878 if (pmd_valid(pmd)) 879 queue_pte_barriers(); 880 } 881 882 static inline void pmd_clear(pmd_t *pmdp) 883 { 884 set_pmd(pmdp, __pmd(0)); 885 } 886 887 static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 888 { 889 return __pmd_to_phys(pmd); 890 } 891 892 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 893 { 894 return (unsigned long)__va(pmd_page_paddr(pmd)); 895 } 896 897 /* Find an entry in the third-level page table. */ 898 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 899 900 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 901 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 902 #define pte_clear_fixmap() clear_fixmap(FIX_PTE) 903 904 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 905 906 /* use ONLY for statically allocated translation tables */ 907 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 908 909 /* 910 * Conversion functions: convert a page and protection to a page entry, 911 * and a page entry and page directory to the page they refer to. 912 */ 913 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 914 915 #if CONFIG_PGTABLE_LEVELS > 2 916 917 #define pmd_ERROR(e) \ 918 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 919 920 #define pud_none(pud) (!pud_val(pud)) 921 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \ 922 PUD_TYPE_TABLE) 923 #define pud_present(pud) pte_present(pud_pte(pud)) 924 #ifndef __PAGETABLE_PMD_FOLDED 925 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud)) 926 #else 927 #define pud_leaf(pud) false 928 #endif 929 #define pud_valid(pud) pte_valid(pud_pte(pud)) 930 #define pud_user(pud) pte_user(pud_pte(pud)) 931 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud)) 932 933 static inline bool pgtable_l4_enabled(void); 934 935 static inline void set_pud(pud_t *pudp, pud_t pud) 936 { 937 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) { 938 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 939 return; 940 } 941 942 WRITE_ONCE(*pudp, pud); 943 944 if (pud_valid(pud)) 945 queue_pte_barriers(); 946 } 947 948 static inline void pud_clear(pud_t *pudp) 949 { 950 set_pud(pudp, __pud(0)); 951 } 952 953 static inline phys_addr_t pud_page_paddr(pud_t pud) 954 { 955 return __pud_to_phys(pud); 956 } 957 958 static inline pmd_t *pud_pgtable(pud_t pud) 959 { 960 return (pmd_t *)__va(pud_page_paddr(pud)); 961 } 962 963 /* Find an entry in the second-level page table. */ 964 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 965 966 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 967 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 968 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 969 970 #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 971 972 /* use ONLY for statically allocated translation tables */ 973 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 974 975 #else 976 977 #define pud_valid(pud) false 978 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 979 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */ 980 981 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 982 #define pmd_set_fixmap(addr) NULL 983 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 984 #define pmd_clear_fixmap() 985 986 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 987 988 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 989 990 #if CONFIG_PGTABLE_LEVELS > 3 991 992 static __always_inline bool pgtable_l4_enabled(void) 993 { 994 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2)) 995 return true; 996 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 997 return vabits_actual == VA_BITS; 998 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 999 } 1000 1001 static inline bool mm_pud_folded(const struct mm_struct *mm) 1002 { 1003 return !pgtable_l4_enabled(); 1004 } 1005 #define mm_pud_folded mm_pud_folded 1006 1007 #define pud_ERROR(e) \ 1008 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 1009 1010 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d)) 1011 #define p4d_bad(p4d) (pgtable_l4_enabled() && \ 1012 ((p4d_val(p4d) & P4D_TYPE_MASK) != \ 1013 P4D_TYPE_TABLE)) 1014 #define p4d_present(p4d) (!p4d_none(p4d)) 1015 1016 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 1017 { 1018 if (in_swapper_pgdir(p4dp)) { 1019 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 1020 return; 1021 } 1022 1023 WRITE_ONCE(*p4dp, p4d); 1024 queue_pte_barriers(); 1025 } 1026 1027 static inline void p4d_clear(p4d_t *p4dp) 1028 { 1029 if (pgtable_l4_enabled()) 1030 set_p4d(p4dp, __p4d(0)); 1031 } 1032 1033 static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 1034 { 1035 return __p4d_to_phys(p4d); 1036 } 1037 1038 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 1039 1040 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr) 1041 { 1042 /* Ensure that 'p4dp' indexes a page table according to 'addr' */ 1043 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D); 1044 1045 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr); 1046 } 1047 1048 static inline pud_t *p4d_pgtable(p4d_t p4d) 1049 { 1050 return (pud_t *)__va(p4d_page_paddr(p4d)); 1051 } 1052 1053 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr) 1054 { 1055 BUG_ON(!pgtable_l4_enabled()); 1056 1057 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t); 1058 } 1059 1060 static inline 1061 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr) 1062 { 1063 if (!pgtable_l4_enabled()) 1064 return p4d_to_folded_pud(p4dp, addr); 1065 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr); 1066 } 1067 #define pud_offset_lockless pud_offset_lockless 1068 1069 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr) 1070 { 1071 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr); 1072 } 1073 #define pud_offset pud_offset 1074 1075 static inline pud_t *pud_set_fixmap(unsigned long addr) 1076 { 1077 if (!pgtable_l4_enabled()) 1078 return NULL; 1079 return (pud_t *)set_fixmap_offset(FIX_PUD, addr); 1080 } 1081 1082 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr) 1083 { 1084 if (!pgtable_l4_enabled()) 1085 return p4d_to_folded_pud(p4dp, addr); 1086 return pud_set_fixmap(pud_offset_phys(p4dp, addr)); 1087 } 1088 1089 static inline void pud_clear_fixmap(void) 1090 { 1091 if (pgtable_l4_enabled()) 1092 clear_fixmap(FIX_PUD); 1093 } 1094 1095 /* use ONLY for statically allocated translation tables */ 1096 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr) 1097 { 1098 if (!pgtable_l4_enabled()) 1099 return p4d_to_folded_pud(p4dp, addr); 1100 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr)); 1101 } 1102 1103 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 1104 1105 #else 1106 1107 static inline bool pgtable_l4_enabled(void) { return false; } 1108 1109 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 1110 1111 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 1112 #define pud_set_fixmap(addr) NULL 1113 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 1114 #define pud_clear_fixmap() 1115 1116 #define pud_offset_kimg(dir,addr) ((pud_t *)dir) 1117 1118 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 1119 1120 #if CONFIG_PGTABLE_LEVELS > 4 1121 1122 static __always_inline bool pgtable_l5_enabled(void) 1123 { 1124 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 1125 return vabits_actual == VA_BITS; 1126 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 1127 } 1128 1129 static inline bool mm_p4d_folded(const struct mm_struct *mm) 1130 { 1131 return !pgtable_l5_enabled(); 1132 } 1133 #define mm_p4d_folded mm_p4d_folded 1134 1135 #define p4d_ERROR(e) \ 1136 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e)) 1137 1138 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd)) 1139 #define pgd_bad(pgd) (pgtable_l5_enabled() && \ 1140 ((pgd_val(pgd) & PGD_TYPE_MASK) != \ 1141 PGD_TYPE_TABLE)) 1142 #define pgd_present(pgd) (!pgd_none(pgd)) 1143 1144 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 1145 { 1146 if (in_swapper_pgdir(pgdp)) { 1147 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd))); 1148 return; 1149 } 1150 1151 WRITE_ONCE(*pgdp, pgd); 1152 queue_pte_barriers(); 1153 } 1154 1155 static inline void pgd_clear(pgd_t *pgdp) 1156 { 1157 if (pgtable_l5_enabled()) 1158 set_pgd(pgdp, __pgd(0)); 1159 } 1160 1161 static inline phys_addr_t pgd_page_paddr(pgd_t pgd) 1162 { 1163 return __pgd_to_phys(pgd); 1164 } 1165 1166 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1167 1168 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr) 1169 { 1170 /* Ensure that 'pgdp' indexes a page table according to 'addr' */ 1171 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD); 1172 1173 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr); 1174 } 1175 1176 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr) 1177 { 1178 BUG_ON(!pgtable_l5_enabled()); 1179 1180 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t); 1181 } 1182 1183 static inline 1184 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1185 { 1186 if (!pgtable_l5_enabled()) 1187 return pgd_to_folded_p4d(pgdp, addr); 1188 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr); 1189 } 1190 #define p4d_offset_lockless p4d_offset_lockless 1191 1192 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr) 1193 { 1194 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr); 1195 } 1196 1197 static inline p4d_t *p4d_set_fixmap(unsigned long addr) 1198 { 1199 if (!pgtable_l5_enabled()) 1200 return NULL; 1201 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr); 1202 } 1203 1204 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr) 1205 { 1206 if (!pgtable_l5_enabled()) 1207 return pgd_to_folded_p4d(pgdp, addr); 1208 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr)); 1209 } 1210 1211 static inline void p4d_clear_fixmap(void) 1212 { 1213 if (pgtable_l5_enabled()) 1214 clear_fixmap(FIX_P4D); 1215 } 1216 1217 /* use ONLY for statically allocated translation tables */ 1218 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr) 1219 { 1220 if (!pgtable_l5_enabled()) 1221 return pgd_to_folded_p4d(pgdp, addr); 1222 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr)); 1223 } 1224 1225 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd))) 1226 1227 #else 1228 1229 static inline bool pgtable_l5_enabled(void) { return false; } 1230 1231 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1232 1233 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */ 1234 #define p4d_set_fixmap(addr) NULL 1235 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp) 1236 #define p4d_clear_fixmap() 1237 1238 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir) 1239 1240 static inline 1241 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1242 { 1243 /* 1244 * With runtime folding of the pud, pud_offset_lockless() passes 1245 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which 1246 * will offset the pointer assuming that it points into 1247 * a page-table page. However, the fast GUP path passes us a 1248 * pgd_t allocated on the stack and so we must use the original 1249 * pointer in 'pgdp' to construct the p4d pointer instead of 1250 * using the generic p4d_offset_lockless() implementation. 1251 * 1252 * Note: reusing the original pointer means that we may 1253 * dereference the same (live) page-table entry multiple times. 1254 * This is safe because it is still only loaded once in the 1255 * context of each level and the CPU guarantees same-address 1256 * read-after-read ordering. 1257 */ 1258 return p4d_offset(pgdp, addr); 1259 } 1260 #define p4d_offset_lockless p4d_offset_lockless_folded 1261 1262 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1263 1264 #define pgd_ERROR(e) \ 1265 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 1266 1267 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 1268 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 1269 1270 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 1271 { 1272 /* 1273 * Normal and Normal-Tagged are two different memory types and indices 1274 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 1275 */ 1276 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 1277 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE | 1278 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK; 1279 1280 /* preserve the hardware dirty information */ 1281 if (pte_hw_dirty(pte)) 1282 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 1283 1284 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 1285 /* 1286 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware 1287 * dirtiness again. 1288 */ 1289 if (pte_sw_dirty(pte)) 1290 pte = pte_mkdirty(pte); 1291 return pte; 1292 } 1293 1294 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1295 { 1296 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 1297 } 1298 1299 extern int __ptep_set_access_flags(struct vm_area_struct *vma, 1300 unsigned long address, pte_t *ptep, 1301 pte_t entry, int dirty); 1302 1303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1304 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1305 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1306 unsigned long address, pmd_t *pmdp, 1307 pmd_t entry, int dirty) 1308 { 1309 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp, 1310 pmd_pte(entry), dirty); 1311 } 1312 1313 static inline int pud_devmap(pud_t pud) 1314 { 1315 return 0; 1316 } 1317 1318 static inline int pgd_devmap(pgd_t pgd) 1319 { 1320 return 0; 1321 } 1322 #endif 1323 1324 #ifdef CONFIG_PAGE_TABLE_CHECK 1325 static inline bool pte_user_accessible_page(pte_t pte) 1326 { 1327 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte)); 1328 } 1329 1330 static inline bool pmd_user_accessible_page(pmd_t pmd) 1331 { 1332 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd)); 1333 } 1334 1335 static inline bool pud_user_accessible_page(pud_t pud) 1336 { 1337 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud)); 1338 } 1339 #endif 1340 1341 /* 1342 * Atomic pte/pmd modifications. 1343 */ 1344 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma, 1345 unsigned long address, 1346 pte_t *ptep) 1347 { 1348 pte_t old_pte, pte; 1349 1350 pte = __ptep_get(ptep); 1351 do { 1352 old_pte = pte; 1353 pte = pte_mkold(pte); 1354 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1355 pte_val(old_pte), pte_val(pte)); 1356 } while (pte_val(pte) != pte_val(old_pte)); 1357 1358 return pte_young(pte); 1359 } 1360 1361 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma, 1362 unsigned long address, pte_t *ptep) 1363 { 1364 int young = __ptep_test_and_clear_young(vma, address, ptep); 1365 1366 if (young) { 1367 /* 1368 * We can elide the trailing DSB here since the worst that can 1369 * happen is that a CPU continues to use the young entry in its 1370 * TLB and we mistakenly reclaim the associated page. The 1371 * window for such an event is bounded by the next 1372 * context-switch, which provides a DSB to complete the TLB 1373 * invalidation. 1374 */ 1375 flush_tlb_page_nosync(vma, address); 1376 } 1377 1378 return young; 1379 } 1380 1381 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 1382 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1383 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1384 unsigned long address, 1385 pmd_t *pmdp) 1386 { 1387 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */ 1388 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft()); 1389 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 1390 } 1391 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 1392 1393 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm, 1394 pte_t *ptep, 1395 unsigned long pgsize) 1396 { 1397 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0)); 1398 1399 switch (pgsize) { 1400 case PAGE_SIZE: 1401 page_table_check_pte_clear(mm, pte); 1402 break; 1403 case PMD_SIZE: 1404 page_table_check_pmd_clear(mm, pte_pmd(pte)); 1405 break; 1406 #ifndef __PAGETABLE_PMD_FOLDED 1407 case PUD_SIZE: 1408 page_table_check_pud_clear(mm, pte_pud(pte)); 1409 break; 1410 #endif 1411 default: 1412 VM_WARN_ON(1); 1413 } 1414 1415 return pte; 1416 } 1417 1418 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm, 1419 unsigned long address, pte_t *ptep) 1420 { 1421 return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE); 1422 } 1423 1424 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1425 pte_t *ptep, unsigned int nr, int full) 1426 { 1427 for (;;) { 1428 __ptep_get_and_clear(mm, addr, ptep); 1429 if (--nr == 0) 1430 break; 1431 ptep++; 1432 addr += PAGE_SIZE; 1433 } 1434 } 1435 1436 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm, 1437 unsigned long addr, pte_t *ptep, 1438 unsigned int nr, int full) 1439 { 1440 pte_t pte, tmp_pte; 1441 1442 pte = __ptep_get_and_clear(mm, addr, ptep); 1443 while (--nr) { 1444 ptep++; 1445 addr += PAGE_SIZE; 1446 tmp_pte = __ptep_get_and_clear(mm, addr, ptep); 1447 if (pte_dirty(tmp_pte)) 1448 pte = pte_mkdirty(pte); 1449 if (pte_young(tmp_pte)) 1450 pte = pte_mkyoung(pte); 1451 } 1452 return pte; 1453 } 1454 1455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1456 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1457 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1458 unsigned long address, pmd_t *pmdp) 1459 { 1460 return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE)); 1461 } 1462 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1463 1464 static inline void ___ptep_set_wrprotect(struct mm_struct *mm, 1465 unsigned long address, pte_t *ptep, 1466 pte_t pte) 1467 { 1468 pte_t old_pte; 1469 1470 do { 1471 old_pte = pte; 1472 pte = pte_wrprotect(pte); 1473 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1474 pte_val(old_pte), pte_val(pte)); 1475 } while (pte_val(pte) != pte_val(old_pte)); 1476 } 1477 1478 /* 1479 * __ptep_set_wrprotect - mark read-only while transferring potential hardware 1480 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 1481 */ 1482 static inline void __ptep_set_wrprotect(struct mm_struct *mm, 1483 unsigned long address, pte_t *ptep) 1484 { 1485 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep)); 1486 } 1487 1488 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address, 1489 pte_t *ptep, unsigned int nr) 1490 { 1491 unsigned int i; 1492 1493 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++) 1494 __ptep_set_wrprotect(mm, address, ptep); 1495 } 1496 1497 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma, 1498 unsigned long addr, pte_t *ptep, 1499 pte_t pte, cydp_t flags) 1500 { 1501 pte_t old_pte; 1502 1503 do { 1504 old_pte = pte; 1505 1506 if (flags & CYDP_CLEAR_YOUNG) 1507 pte = pte_mkold(pte); 1508 if (flags & CYDP_CLEAR_DIRTY) 1509 pte = pte_mkclean(pte); 1510 1511 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1512 pte_val(old_pte), pte_val(pte)); 1513 } while (pte_val(pte) != pte_val(old_pte)); 1514 } 1515 1516 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma, 1517 unsigned long addr, pte_t *ptep, 1518 unsigned int nr, cydp_t flags) 1519 { 1520 pte_t pte; 1521 1522 for (;;) { 1523 pte = __ptep_get(ptep); 1524 1525 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY)) 1526 __set_pte(ptep, pte_mkclean(pte_mkold(pte))); 1527 else 1528 __clear_young_dirty_pte(vma, addr, ptep, pte, flags); 1529 1530 if (--nr == 0) 1531 break; 1532 ptep++; 1533 addr += PAGE_SIZE; 1534 } 1535 } 1536 1537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1538 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1539 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1540 unsigned long address, pmd_t *pmdp) 1541 { 1542 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 1543 } 1544 1545 #define pmdp_establish pmdp_establish 1546 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1547 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1548 { 1549 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 1550 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 1551 } 1552 #endif 1553 1554 /* 1555 * Encode and decode a swap entry: 1556 * bits 0-1: present (must be zero) 1557 * bits 2: remember PG_anon_exclusive 1558 * bit 3: remember uffd-wp state 1559 * bits 6-10: swap type 1560 * bit 11: PTE_PRESENT_INVALID (must be zero) 1561 * bits 12-61: swap offset 1562 */ 1563 #define __SWP_TYPE_SHIFT 6 1564 #define __SWP_TYPE_BITS 5 1565 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 1566 #define __SWP_OFFSET_SHIFT 12 1567 #define __SWP_OFFSET_BITS 50 1568 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 1569 1570 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 1571 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 1572 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 1573 1574 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1575 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 1576 1577 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1578 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 1579 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 1580 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 1581 1582 /* 1583 * Ensure that there are not more swap files than can be encoded in the kernel 1584 * PTEs. 1585 */ 1586 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 1587 1588 #ifdef CONFIG_ARM64_MTE 1589 1590 #define __HAVE_ARCH_PREPARE_TO_SWAP 1591 extern int arch_prepare_to_swap(struct folio *folio); 1592 1593 #define __HAVE_ARCH_SWAP_INVALIDATE 1594 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1595 { 1596 if (system_supports_mte()) 1597 mte_invalidate_tags(type, offset); 1598 } 1599 1600 static inline void arch_swap_invalidate_area(int type) 1601 { 1602 if (system_supports_mte()) 1603 mte_invalidate_tags_area(type); 1604 } 1605 1606 #define __HAVE_ARCH_SWAP_RESTORE 1607 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio); 1608 1609 #endif /* CONFIG_ARM64_MTE */ 1610 1611 /* 1612 * On AArch64, the cache coherency is handled via the __set_ptes() function. 1613 */ 1614 static inline void update_mmu_cache_range(struct vm_fault *vmf, 1615 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, 1616 unsigned int nr) 1617 { 1618 /* 1619 * We don't do anything here, so there's a very small chance of 1620 * us retaking a user fault which we just fixed up. The alternative 1621 * is doing a dsb(ishst), but that penalises the fastpath. 1622 */ 1623 } 1624 1625 #define update_mmu_cache(vma, addr, ptep) \ 1626 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 1627 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 1628 1629 #ifdef CONFIG_ARM64_PA_BITS_52 1630 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 1631 #else 1632 #define phys_to_ttbr(addr) (addr) 1633 #endif 1634 1635 /* 1636 * On arm64 without hardware Access Flag, copying from user will fail because 1637 * the pte is old and cannot be marked young. So we always end up with zeroed 1638 * page after fork() + CoW for pfn mappings. We don't always have a 1639 * hardware-managed access flag on arm64. 1640 */ 1641 #define arch_has_hw_pte_young cpu_has_hw_af 1642 1643 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG 1644 #define arch_has_hw_nonleaf_pmd_young system_supports_haft 1645 #endif 1646 1647 /* 1648 * Experimentally, it's cheap to set the access flag in hardware and we 1649 * benefit from prefaulting mappings as 'old' to start with. 1650 */ 1651 #define arch_wants_old_prefaulted_pte cpu_has_hw_af 1652 1653 static inline bool pud_sect_supported(void) 1654 { 1655 return PAGE_SIZE == SZ_4K; 1656 } 1657 1658 1659 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1660 #define ptep_modify_prot_start ptep_modify_prot_start 1661 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1662 unsigned long addr, pte_t *ptep); 1663 1664 #define ptep_modify_prot_commit ptep_modify_prot_commit 1665 extern void ptep_modify_prot_commit(struct vm_area_struct *vma, 1666 unsigned long addr, pte_t *ptep, 1667 pte_t old_pte, pte_t new_pte); 1668 1669 #ifdef CONFIG_ARM64_CONTPTE 1670 1671 /* 1672 * The contpte APIs are used to transparently manage the contiguous bit in ptes 1673 * where it is possible and makes sense to do so. The PTE_CONT bit is considered 1674 * a private implementation detail of the public ptep API (see below). 1675 */ 1676 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr, 1677 pte_t *ptep, pte_t pte); 1678 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr, 1679 pte_t *ptep, pte_t pte); 1680 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte); 1681 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep); 1682 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr, 1683 pte_t *ptep, pte_t pte, unsigned int nr); 1684 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1685 pte_t *ptep, unsigned int nr, int full); 1686 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm, 1687 unsigned long addr, pte_t *ptep, 1688 unsigned int nr, int full); 1689 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma, 1690 unsigned long addr, pte_t *ptep); 1691 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma, 1692 unsigned long addr, pte_t *ptep); 1693 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 1694 pte_t *ptep, unsigned int nr); 1695 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma, 1696 unsigned long addr, pte_t *ptep, 1697 pte_t entry, int dirty); 1698 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma, 1699 unsigned long addr, pte_t *ptep, 1700 unsigned int nr, cydp_t flags); 1701 1702 static __always_inline void contpte_try_fold(struct mm_struct *mm, 1703 unsigned long addr, pte_t *ptep, pte_t pte) 1704 { 1705 /* 1706 * Only bother trying if both the virtual and physical addresses are 1707 * aligned and correspond to the last entry in a contig range. The core 1708 * code mostly modifies ranges from low to high, so this is the likely 1709 * the last modification in the contig range, so a good time to fold. 1710 * We can't fold special mappings, because there is no associated folio. 1711 */ 1712 1713 const unsigned long contmask = CONT_PTES - 1; 1714 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask; 1715 1716 if (unlikely(valign)) { 1717 bool palign = (pte_pfn(pte) & contmask) == contmask; 1718 1719 if (unlikely(palign && 1720 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte))) 1721 __contpte_try_fold(mm, addr, ptep, pte); 1722 } 1723 } 1724 1725 static __always_inline void contpte_try_unfold(struct mm_struct *mm, 1726 unsigned long addr, pte_t *ptep, pte_t pte) 1727 { 1728 if (unlikely(pte_valid_cont(pte))) 1729 __contpte_try_unfold(mm, addr, ptep, pte); 1730 } 1731 1732 #define pte_batch_hint pte_batch_hint 1733 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 1734 { 1735 if (!pte_valid_cont(pte)) 1736 return 1; 1737 1738 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1)); 1739 } 1740 1741 /* 1742 * The below functions constitute the public API that arm64 presents to the 1743 * core-mm to manipulate PTE entries within their page tables (or at least this 1744 * is the subset of the API that arm64 needs to implement). These public 1745 * versions will automatically and transparently apply the contiguous bit where 1746 * it makes sense to do so. Therefore any users that are contig-aware (e.g. 1747 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the 1748 * private versions, which are prefixed with double underscore. All of these 1749 * APIs except for ptep_get_lockless() are expected to be called with the PTL 1750 * held. Although the contiguous bit is considered private to the 1751 * implementation, it is deliberately allowed to leak through the getters (e.g. 1752 * ptep_get()), back to core code. This is required so that pte_leaf_size() can 1753 * provide an accurate size for perf_get_pgtable_size(). But this leakage means 1754 * its possible a pte will be passed to a setter with the contiguous bit set, so 1755 * we explicitly clear the contiguous bit in those cases to prevent accidentally 1756 * setting it in the pgtable. 1757 */ 1758 1759 #define ptep_get ptep_get 1760 static inline pte_t ptep_get(pte_t *ptep) 1761 { 1762 pte_t pte = __ptep_get(ptep); 1763 1764 if (likely(!pte_valid_cont(pte))) 1765 return pte; 1766 1767 return contpte_ptep_get(ptep, pte); 1768 } 1769 1770 #define ptep_get_lockless ptep_get_lockless 1771 static inline pte_t ptep_get_lockless(pte_t *ptep) 1772 { 1773 pte_t pte = __ptep_get(ptep); 1774 1775 if (likely(!pte_valid_cont(pte))) 1776 return pte; 1777 1778 return contpte_ptep_get_lockless(ptep); 1779 } 1780 1781 static inline void set_pte(pte_t *ptep, pte_t pte) 1782 { 1783 /* 1784 * We don't have the mm or vaddr so cannot unfold contig entries (since 1785 * it requires tlb maintenance). set_pte() is not used in core code, so 1786 * this should never even be called. Regardless do our best to service 1787 * any call and emit a warning if there is any attempt to set a pte on 1788 * top of an existing contig range. 1789 */ 1790 pte_t orig_pte = __ptep_get(ptep); 1791 1792 WARN_ON_ONCE(pte_valid_cont(orig_pte)); 1793 __set_pte(ptep, pte_mknoncont(pte)); 1794 } 1795 1796 #define set_ptes set_ptes 1797 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1798 pte_t *ptep, pte_t pte, unsigned int nr) 1799 { 1800 pte = pte_mknoncont(pte); 1801 1802 if (likely(nr == 1)) { 1803 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1804 __set_ptes(mm, addr, ptep, pte, 1); 1805 contpte_try_fold(mm, addr, ptep, pte); 1806 } else { 1807 contpte_set_ptes(mm, addr, ptep, pte, nr); 1808 } 1809 } 1810 1811 static inline void pte_clear(struct mm_struct *mm, 1812 unsigned long addr, pte_t *ptep) 1813 { 1814 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1815 __pte_clear(mm, addr, ptep); 1816 } 1817 1818 #define clear_full_ptes clear_full_ptes 1819 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1820 pte_t *ptep, unsigned int nr, int full) 1821 { 1822 if (likely(nr == 1)) { 1823 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1824 __clear_full_ptes(mm, addr, ptep, nr, full); 1825 } else { 1826 contpte_clear_full_ptes(mm, addr, ptep, nr, full); 1827 } 1828 } 1829 1830 #define get_and_clear_full_ptes get_and_clear_full_ptes 1831 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 1832 unsigned long addr, pte_t *ptep, 1833 unsigned int nr, int full) 1834 { 1835 pte_t pte; 1836 1837 if (likely(nr == 1)) { 1838 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1839 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1840 } else { 1841 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1842 } 1843 1844 return pte; 1845 } 1846 1847 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1848 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1849 unsigned long addr, pte_t *ptep) 1850 { 1851 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1852 return __ptep_get_and_clear(mm, addr, ptep); 1853 } 1854 1855 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1856 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1857 unsigned long addr, pte_t *ptep) 1858 { 1859 pte_t orig_pte = __ptep_get(ptep); 1860 1861 if (likely(!pte_valid_cont(orig_pte))) 1862 return __ptep_test_and_clear_young(vma, addr, ptep); 1863 1864 return contpte_ptep_test_and_clear_young(vma, addr, ptep); 1865 } 1866 1867 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1868 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1869 unsigned long addr, pte_t *ptep) 1870 { 1871 pte_t orig_pte = __ptep_get(ptep); 1872 1873 if (likely(!pte_valid_cont(orig_pte))) 1874 return __ptep_clear_flush_young(vma, addr, ptep); 1875 1876 return contpte_ptep_clear_flush_young(vma, addr, ptep); 1877 } 1878 1879 #define wrprotect_ptes wrprotect_ptes 1880 static __always_inline void wrprotect_ptes(struct mm_struct *mm, 1881 unsigned long addr, pte_t *ptep, unsigned int nr) 1882 { 1883 if (likely(nr == 1)) { 1884 /* 1885 * Optimization: wrprotect_ptes() can only be called for present 1886 * ptes so we only need to check contig bit as condition for 1887 * unfold, and we can remove the contig bit from the pte we read 1888 * to avoid re-reading. This speeds up fork() which is sensitive 1889 * for order-0 folios. Equivalent to contpte_try_unfold(). 1890 */ 1891 pte_t orig_pte = __ptep_get(ptep); 1892 1893 if (unlikely(pte_cont(orig_pte))) { 1894 __contpte_try_unfold(mm, addr, ptep, orig_pte); 1895 orig_pte = pte_mknoncont(orig_pte); 1896 } 1897 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte); 1898 } else { 1899 contpte_wrprotect_ptes(mm, addr, ptep, nr); 1900 } 1901 } 1902 1903 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1904 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1905 unsigned long addr, pte_t *ptep) 1906 { 1907 wrprotect_ptes(mm, addr, ptep, 1); 1908 } 1909 1910 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1911 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1912 unsigned long addr, pte_t *ptep, 1913 pte_t entry, int dirty) 1914 { 1915 pte_t orig_pte = __ptep_get(ptep); 1916 1917 entry = pte_mknoncont(entry); 1918 1919 if (likely(!pte_valid_cont(orig_pte))) 1920 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1921 1922 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1923 } 1924 1925 #define clear_young_dirty_ptes clear_young_dirty_ptes 1926 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 1927 unsigned long addr, pte_t *ptep, 1928 unsigned int nr, cydp_t flags) 1929 { 1930 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep)))) 1931 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1932 else 1933 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1934 } 1935 1936 #else /* CONFIG_ARM64_CONTPTE */ 1937 1938 #define ptep_get __ptep_get 1939 #define set_pte __set_pte 1940 #define set_ptes __set_ptes 1941 #define pte_clear __pte_clear 1942 #define clear_full_ptes __clear_full_ptes 1943 #define get_and_clear_full_ptes __get_and_clear_full_ptes 1944 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1945 #define ptep_get_and_clear __ptep_get_and_clear 1946 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1947 #define ptep_test_and_clear_young __ptep_test_and_clear_young 1948 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1949 #define ptep_clear_flush_young __ptep_clear_flush_young 1950 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1951 #define ptep_set_wrprotect __ptep_set_wrprotect 1952 #define wrprotect_ptes __wrprotect_ptes 1953 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1954 #define ptep_set_access_flags __ptep_set_access_flags 1955 #define clear_young_dirty_ptes __clear_young_dirty_ptes 1956 1957 #endif /* CONFIG_ARM64_CONTPTE */ 1958 1959 #endif /* !__ASSEMBLY__ */ 1960 1961 #endif /* __ASM_PGTABLE_H */ 1962