xref: /linux/arch/arm64/include/asm/pgtable.h (revision 4f372263ef92ed2af55a8c226750b72021ff8d0f)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
43 static inline void emit_pte_barriers(void)
44 {
45 	/*
46 	 * These barriers are emitted under certain conditions after a pte entry
47 	 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 	 * visible to the table walker. The isb ensures that any previous
49 	 * speculative "invalid translation" marker that is in the CPU's
50 	 * pipeline gets cleared, so that any access to that address after
51 	 * setting the pte to valid won't cause a spurious fault. If the thread
52 	 * gets preempted after storing to the pgtable but before emitting these
53 	 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 	 * see the store. There is no guarantee of an isb being issued though.
55 	 * This is safe because it will still get issued (albeit on a
56 	 * potentially different CPU) when the thread starts running again,
57 	 * before any access to the address.
58 	 */
59 	dsb(ishst);
60 	isb();
61 }
62 
63 static inline void queue_pte_barriers(void)
64 {
65 	unsigned long flags;
66 
67 	if (in_interrupt()) {
68 		emit_pte_barriers();
69 		return;
70 	}
71 
72 	flags = read_thread_flags();
73 
74 	if (flags & BIT(TIF_LAZY_MMU)) {
75 		/* Avoid the atomic op if already set. */
76 		if (!(flags & BIT(TIF_LAZY_MMU_PENDING)))
77 			set_thread_flag(TIF_LAZY_MMU_PENDING);
78 	} else {
79 		emit_pte_barriers();
80 	}
81 }
82 
83 #define  __HAVE_ARCH_ENTER_LAZY_MMU_MODE
84 static inline void arch_enter_lazy_mmu_mode(void)
85 {
86 	/*
87 	 * lazy_mmu_mode is not supposed to permit nesting. But in practice this
88 	 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation
89 	 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change
90 	 * permissions on the linear map with apply_to_page_range(), which
91 	 * re-enters lazy_mmu_mode. So we tolerate nesting in our
92 	 * implementation. The first call to arch_leave_lazy_mmu_mode() will
93 	 * flush and clear the flag such that the remainder of the work in the
94 	 * outer nest behaves as if outside of lazy mmu mode. This is safe and
95 	 * keeps tracking simple.
96 	 */
97 
98 	if (in_interrupt())
99 		return;
100 
101 	set_thread_flag(TIF_LAZY_MMU);
102 }
103 
104 static inline void arch_flush_lazy_mmu_mode(void)
105 {
106 	if (in_interrupt())
107 		return;
108 
109 	if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
110 		emit_pte_barriers();
111 }
112 
113 static inline void arch_leave_lazy_mmu_mode(void)
114 {
115 	if (in_interrupt())
116 		return;
117 
118 	arch_flush_lazy_mmu_mode();
119 	clear_thread_flag(TIF_LAZY_MMU);
120 }
121 
122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
124 
125 /* Set stride and tlb_level in flush_*_tlb_range */
126 #define flush_pmd_tlb_range(vma, addr, end)	\
127 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
128 #define flush_pud_tlb_range(vma, addr, end)	\
129 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
131 
132 /*
133  * Outside of a few very special situations (e.g. hibernation), we always
134  * use broadcast TLB invalidation instructions, therefore a spurious page
135  * fault on one CPU which has been handled concurrently by another CPU
136  * does not need to perform additional invalidation.
137  */
138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
139 
140 /*
141  * ZERO_PAGE is a global shared page that is always zero: used
142  * for zero-mapped memory areas etc..
143  */
144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
145 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
146 
147 #define pte_ERROR(e)	\
148 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
149 
150 #ifdef CONFIG_ARM64_PA_BITS_52
151 static inline phys_addr_t __pte_to_phys(pte_t pte)
152 {
153 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
154 	return (pte_val(pte) & PTE_ADDR_LOW) |
155 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
156 }
157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
158 {
159 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
160 }
161 #else
162 static inline phys_addr_t __pte_to_phys(pte_t pte)
163 {
164 	return pte_val(pte) & PTE_ADDR_LOW;
165 }
166 
167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
168 {
169 	return phys;
170 }
171 #endif
172 
173 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
174 #define pfn_pte(pfn,prot)	\
175 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
176 
177 #define pte_none(pte)		(!pte_val(pte))
178 #define __pte_clear(mm, addr, ptep) \
179 				__set_pte(ptep, __pte(0))
180 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
181 
182 /*
183  * The following only work if pte_present(). Undefined behaviour otherwise.
184  */
185 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
186 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
187 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
188 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
189 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
190 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
191 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
192 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
193 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
194 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
195 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
196 
197 #define pte_cont_addr_end(addr, end)						\
198 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
199 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
200 })
201 
202 #define pmd_cont_addr_end(addr, end)						\
203 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
204 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
205 })
206 
207 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
208 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
209 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
210 
211 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
212 #define pte_present_invalid(pte) \
213 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
214 /*
215  * Execute-only user mappings do not have the PTE_USER bit set. All valid
216  * kernel mappings have the PTE_UXN bit set.
217  */
218 #define pte_valid_not_user(pte) \
219 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
220 /*
221  * Returns true if the pte is valid and has the contiguous bit set.
222  */
223 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
224 /*
225  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
226  * so that we don't erroneously return false for pages that have been
227  * remapped as PROT_NONE but are yet to be flushed from the TLB.
228  * Note that we can't make any assumptions based on the state of the access
229  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
230  * TLB.
231  */
232 #define pte_accessible(mm, pte)	\
233 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
234 
235 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
236 {
237 	u64 por;
238 
239 	if (!system_supports_poe())
240 		return true;
241 
242 	por = read_sysreg_s(SYS_POR_EL0);
243 
244 	if (write)
245 		return por_elx_allows_write(por, pkey);
246 
247 	if (execute)
248 		return por_elx_allows_exec(por, pkey);
249 
250 	return por_elx_allows_read(por, pkey);
251 }
252 
253 /*
254  * p??_access_permitted() is true for valid user mappings (PTE_USER
255  * bit set, subject to the write permission check). For execute-only
256  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
257  * not set) must return false. PROT_NONE mappings do not have the
258  * PTE_VALID bit set.
259  */
260 #define pte_access_permitted_no_overlay(pte, write) \
261 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
262 #define pte_access_permitted(pte, write) \
263 	(pte_access_permitted_no_overlay(pte, write) && \
264 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
265 #define pmd_access_permitted(pmd, write) \
266 	(pte_access_permitted(pmd_pte(pmd), (write)))
267 #define pud_access_permitted(pud, write) \
268 	(pte_access_permitted(pud_pte(pud), (write)))
269 
270 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
271 {
272 	pte_val(pte) &= ~pgprot_val(prot);
273 	return pte;
274 }
275 
276 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
277 {
278 	pte_val(pte) |= pgprot_val(prot);
279 	return pte;
280 }
281 
282 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
283 {
284 	pmd_val(pmd) &= ~pgprot_val(prot);
285 	return pmd;
286 }
287 
288 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
289 {
290 	pmd_val(pmd) |= pgprot_val(prot);
291 	return pmd;
292 }
293 
294 static inline pte_t pte_mkwrite_novma(pte_t pte)
295 {
296 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
297 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
298 	return pte;
299 }
300 
301 static inline pte_t pte_mkclean(pte_t pte)
302 {
303 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
304 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
305 
306 	return pte;
307 }
308 
309 static inline pte_t pte_mkdirty(pte_t pte)
310 {
311 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
312 
313 	if (pte_write(pte))
314 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
315 
316 	return pte;
317 }
318 
319 static inline pte_t pte_wrprotect(pte_t pte)
320 {
321 	/*
322 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
323 	 * clear), set the PTE_DIRTY bit.
324 	 */
325 	if (pte_hw_dirty(pte))
326 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
327 
328 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
329 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
330 	return pte;
331 }
332 
333 static inline pte_t pte_mkold(pte_t pte)
334 {
335 	return clear_pte_bit(pte, __pgprot(PTE_AF));
336 }
337 
338 static inline pte_t pte_mkyoung(pte_t pte)
339 {
340 	return set_pte_bit(pte, __pgprot(PTE_AF));
341 }
342 
343 static inline pte_t pte_mkspecial(pte_t pte)
344 {
345 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
346 }
347 
348 static inline pte_t pte_mkcont(pte_t pte)
349 {
350 	return set_pte_bit(pte, __pgprot(PTE_CONT));
351 }
352 
353 static inline pte_t pte_mknoncont(pte_t pte)
354 {
355 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
356 }
357 
358 static inline pte_t pte_mkvalid(pte_t pte)
359 {
360 	return set_pte_bit(pte, __pgprot(PTE_VALID));
361 }
362 
363 static inline pte_t pte_mkinvalid(pte_t pte)
364 {
365 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
366 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
367 	return pte;
368 }
369 
370 static inline pmd_t pmd_mkcont(pmd_t pmd)
371 {
372 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
373 }
374 
375 static inline pte_t pte_mkdevmap(pte_t pte)
376 {
377 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
378 }
379 
380 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
381 static inline int pte_uffd_wp(pte_t pte)
382 {
383 	return !!(pte_val(pte) & PTE_UFFD_WP);
384 }
385 
386 static inline pte_t pte_mkuffd_wp(pte_t pte)
387 {
388 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
389 }
390 
391 static inline pte_t pte_clear_uffd_wp(pte_t pte)
392 {
393 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
394 }
395 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
396 
397 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
398 {
399 	WRITE_ONCE(*ptep, pte);
400 }
401 
402 static inline void __set_pte_complete(pte_t pte)
403 {
404 	/*
405 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
406 	 * has the necessary barriers.
407 	 */
408 	if (pte_valid_not_user(pte))
409 		queue_pte_barriers();
410 }
411 
412 static inline void __set_pte(pte_t *ptep, pte_t pte)
413 {
414 	__set_pte_nosync(ptep, pte);
415 	__set_pte_complete(pte);
416 }
417 
418 static inline pte_t __ptep_get(pte_t *ptep)
419 {
420 	return READ_ONCE(*ptep);
421 }
422 
423 extern void __sync_icache_dcache(pte_t pteval);
424 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
425 
426 /*
427  * PTE bits configuration in the presence of hardware Dirty Bit Management
428  * (PTE_WRITE == PTE_DBM):
429  *
430  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
431  *   0      0      |   1           0          0
432  *   0      1      |   1           1          0
433  *   1      0      |   1           0          1
434  *   1      1      |   0           1          x
435  *
436  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
437  * the page fault mechanism. Checking the dirty status of a pte becomes:
438  *
439  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
440  */
441 
442 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
443 					   pte_t pte)
444 {
445 	pte_t old_pte;
446 
447 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
448 		return;
449 
450 	old_pte = __ptep_get(ptep);
451 
452 	if (!pte_valid(old_pte) || !pte_valid(pte))
453 		return;
454 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
455 		return;
456 
457 	/*
458 	 * Check for potential race with hardware updates of the pte
459 	 * (__ptep_set_access_flags safely changes valid ptes without going
460 	 * through an invalid entry).
461 	 */
462 	VM_WARN_ONCE(!pte_young(pte),
463 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
464 		     __func__, pte_val(old_pte), pte_val(pte));
465 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
466 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
467 		     __func__, pte_val(old_pte), pte_val(pte));
468 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
469 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
470 		     __func__, pte_val(old_pte), pte_val(pte));
471 }
472 
473 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
474 {
475 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
476 		__sync_icache_dcache(pte);
477 
478 	/*
479 	 * If the PTE would provide user space access to the tags associated
480 	 * with it then ensure that the MTE tags are synchronised.  Although
481 	 * pte_access_permitted_no_overlay() returns false for exec only
482 	 * mappings, they don't expose tags (instruction fetches don't check
483 	 * tags).
484 	 */
485 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
486 	    !pte_special(pte) && pte_tagged(pte))
487 		mte_sync_tags(pte, nr_pages);
488 }
489 
490 /*
491  * Select all bits except the pfn
492  */
493 #define pte_pgprot pte_pgprot
494 static inline pgprot_t pte_pgprot(pte_t pte)
495 {
496 	unsigned long pfn = pte_pfn(pte);
497 
498 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
499 }
500 
501 #define pte_advance_pfn pte_advance_pfn
502 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
503 {
504 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
505 }
506 
507 /*
508  * Hugetlb definitions.
509  */
510 #define HUGE_MAX_HSTATE		4
511 #define HPAGE_SHIFT		PMD_SHIFT
512 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
513 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
514 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
515 
516 static inline pte_t pgd_pte(pgd_t pgd)
517 {
518 	return __pte(pgd_val(pgd));
519 }
520 
521 static inline pte_t p4d_pte(p4d_t p4d)
522 {
523 	return __pte(p4d_val(p4d));
524 }
525 
526 static inline pte_t pud_pte(pud_t pud)
527 {
528 	return __pte(pud_val(pud));
529 }
530 
531 static inline pud_t pte_pud(pte_t pte)
532 {
533 	return __pud(pte_val(pte));
534 }
535 
536 static inline pmd_t pud_pmd(pud_t pud)
537 {
538 	return __pmd(pud_val(pud));
539 }
540 
541 static inline pte_t pmd_pte(pmd_t pmd)
542 {
543 	return __pte(pmd_val(pmd));
544 }
545 
546 static inline pmd_t pte_pmd(pte_t pte)
547 {
548 	return __pmd(pte_val(pte));
549 }
550 
551 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
552 {
553 	return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
554 }
555 
556 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
557 {
558 	return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
559 }
560 
561 static inline pte_t pte_swp_mkexclusive(pte_t pte)
562 {
563 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
564 }
565 
566 static inline int pte_swp_exclusive(pte_t pte)
567 {
568 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
569 }
570 
571 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
572 {
573 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
574 }
575 
576 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
577 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
578 {
579 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
580 }
581 
582 static inline int pte_swp_uffd_wp(pte_t pte)
583 {
584 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
585 }
586 
587 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
588 {
589 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
590 }
591 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
592 
593 #ifdef CONFIG_NUMA_BALANCING
594 /*
595  * See the comment in include/linux/pgtable.h
596  */
597 static inline int pte_protnone(pte_t pte)
598 {
599 	/*
600 	 * pte_present_invalid() tells us that the pte is invalid from HW
601 	 * perspective but present from SW perspective, so the fields are to be
602 	 * interpretted as per the HW layout. The second 2 checks are the unique
603 	 * encoding that we use for PROT_NONE. It is insufficient to only use
604 	 * the first check because we share the same encoding scheme with pmds
605 	 * which support pmd_mkinvalid(), so can be present-invalid without
606 	 * being PROT_NONE.
607 	 */
608 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
609 }
610 
611 static inline int pmd_protnone(pmd_t pmd)
612 {
613 	return pte_protnone(pmd_pte(pmd));
614 }
615 #endif
616 
617 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
618 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
619 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
620 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
621 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
622 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
623 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
624 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
625 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
626 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
627 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
628 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
629 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
630 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
631 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
632 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
633 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
634 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
635 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
636 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
637 #define pmd_swp_clear_uffd_wp(pmd) \
638 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
639 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
640 
641 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
642 
643 static inline pmd_t pmd_mkhuge(pmd_t pmd)
644 {
645 	/*
646 	 * It's possible that the pmd is present-invalid on entry
647 	 * and in that case it needs to remain present-invalid on
648 	 * exit. So ensure the VALID bit does not get modified.
649 	 */
650 	pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
651 	pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
652 
653 	return __pmd((pmd_val(pmd) & ~mask) | val);
654 }
655 
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
657 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
658 #endif
659 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
660 {
661 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
662 }
663 
664 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
665 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
666 static inline pmd_t pmd_mkspecial(pmd_t pmd)
667 {
668 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
669 }
670 #endif
671 
672 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
673 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
674 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
675 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
676 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
677 
678 #define pud_young(pud)		pte_young(pud_pte(pud))
679 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
680 #define pud_write(pud)		pte_write(pud_pte(pud))
681 
682 static inline pud_t pud_mkhuge(pud_t pud)
683 {
684 	/*
685 	 * It's possible that the pud is present-invalid on entry
686 	 * and in that case it needs to remain present-invalid on
687 	 * exit. So ensure the VALID bit does not get modified.
688 	 */
689 	pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
690 	pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
691 
692 	return __pud((pud_val(pud) & ~mask) | val);
693 }
694 
695 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
696 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
697 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
698 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
699 
700 #define pmd_pgprot pmd_pgprot
701 static inline pgprot_t pmd_pgprot(pmd_t pmd)
702 {
703 	unsigned long pfn = pmd_pfn(pmd);
704 
705 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
706 }
707 
708 #define pud_pgprot pud_pgprot
709 static inline pgprot_t pud_pgprot(pud_t pud)
710 {
711 	unsigned long pfn = pud_pfn(pud);
712 
713 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
714 }
715 
716 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep,
717 				    pte_t pte, unsigned int nr,
718 				    unsigned long pgsize)
719 {
720 	unsigned long stride = pgsize >> PAGE_SHIFT;
721 
722 	switch (pgsize) {
723 	case PAGE_SIZE:
724 		page_table_check_ptes_set(mm, ptep, pte, nr);
725 		break;
726 	case PMD_SIZE:
727 		page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr);
728 		break;
729 #ifndef __PAGETABLE_PMD_FOLDED
730 	case PUD_SIZE:
731 		page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr);
732 		break;
733 #endif
734 	default:
735 		VM_WARN_ON(1);
736 	}
737 
738 	__sync_cache_and_tags(pte, nr * stride);
739 
740 	for (;;) {
741 		__check_safe_pte_update(mm, ptep, pte);
742 		__set_pte_nosync(ptep, pte);
743 		if (--nr == 0)
744 			break;
745 		ptep++;
746 		pte = pte_advance_pfn(pte, stride);
747 	}
748 
749 	__set_pte_complete(pte);
750 }
751 
752 static inline void __set_ptes(struct mm_struct *mm,
753 			      unsigned long __always_unused addr,
754 			      pte_t *ptep, pte_t pte, unsigned int nr)
755 {
756 	__set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE);
757 }
758 
759 static inline void __set_pmds(struct mm_struct *mm,
760 			      unsigned long __always_unused addr,
761 			      pmd_t *pmdp, pmd_t pmd, unsigned int nr)
762 {
763 	__set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
764 }
765 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
766 
767 static inline void __set_puds(struct mm_struct *mm,
768 			      unsigned long __always_unused addr,
769 			      pud_t *pudp, pud_t pud, unsigned int nr)
770 {
771 	__set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
772 }
773 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
774 
775 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
776 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
777 
778 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
779 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
780 
781 #define __pgprot_modify(prot,mask,bits) \
782 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
783 
784 #define pgprot_nx(prot) \
785 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
786 
787 #define pgprot_decrypted(prot) \
788 	__pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
789 #define pgprot_encrypted(prot) \
790 	__pgprot_modify(prot, PROT_NS_SHARED, 0)
791 
792 /*
793  * Mark the prot value as uncacheable and unbufferable.
794  */
795 #define pgprot_noncached(prot) \
796 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
797 #define pgprot_writecombine(prot) \
798 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
799 #define pgprot_device(prot) \
800 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
801 #define pgprot_tagged(prot) \
802 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
803 #define pgprot_mhp	pgprot_tagged
804 /*
805  * DMA allocations for non-coherent devices use what the Arm architecture calls
806  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
807  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
808  * is intended for MMIO and thus forbids speculation, preserves access size,
809  * requires strict alignment and can also force write responses to come from the
810  * endpoint.
811  */
812 #define pgprot_dmacoherent(prot) \
813 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
814 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
815 
816 #define __HAVE_PHYS_MEM_ACCESS_PROT
817 struct file;
818 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
819 				     unsigned long size, pgprot_t vma_prot);
820 
821 #define pmd_none(pmd)		(!pmd_val(pmd))
822 
823 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
824 				 PMD_TYPE_TABLE)
825 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
826 				 PMD_TYPE_SECT)
827 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
828 #define pmd_bad(pmd)		(!pmd_table(pmd))
829 
830 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
831 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
832 
833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
834 static inline int pmd_trans_huge(pmd_t pmd)
835 {
836 	/*
837 	 * If pmd is present-invalid, pmd_table() won't detect it
838 	 * as a table, so force the valid bit for the comparison.
839 	 */
840 	return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
841 }
842 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
843 
844 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
845 static inline bool pud_sect(pud_t pud) { return false; }
846 static inline bool pud_table(pud_t pud) { return true; }
847 #else
848 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
849 				 PUD_TYPE_SECT)
850 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
851 				 PUD_TYPE_TABLE)
852 #endif
853 
854 extern pgd_t swapper_pg_dir[];
855 extern pgd_t idmap_pg_dir[];
856 extern pgd_t tramp_pg_dir[];
857 extern pgd_t reserved_pg_dir[];
858 
859 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
860 
861 static inline bool in_swapper_pgdir(void *addr)
862 {
863 	return ((unsigned long)addr & PAGE_MASK) ==
864 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
865 }
866 
867 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
868 {
869 #ifdef __PAGETABLE_PMD_FOLDED
870 	if (in_swapper_pgdir(pmdp)) {
871 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
872 		return;
873 	}
874 #endif /* __PAGETABLE_PMD_FOLDED */
875 
876 	WRITE_ONCE(*pmdp, pmd);
877 
878 	if (pmd_valid(pmd))
879 		queue_pte_barriers();
880 }
881 
882 static inline void pmd_clear(pmd_t *pmdp)
883 {
884 	set_pmd(pmdp, __pmd(0));
885 }
886 
887 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
888 {
889 	return __pmd_to_phys(pmd);
890 }
891 
892 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
893 {
894 	return (unsigned long)__va(pmd_page_paddr(pmd));
895 }
896 
897 /* Find an entry in the third-level page table. */
898 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
899 
900 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
901 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
902 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
903 
904 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
905 
906 /* use ONLY for statically allocated translation tables */
907 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
908 
909 /*
910  * Conversion functions: convert a page and protection to a page entry,
911  * and a page entry and page directory to the page they refer to.
912  */
913 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
914 
915 #if CONFIG_PGTABLE_LEVELS > 2
916 
917 #define pmd_ERROR(e)	\
918 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
919 
920 #define pud_none(pud)		(!pud_val(pud))
921 #define pud_bad(pud)		((pud_val(pud) & PUD_TYPE_MASK) != \
922 				 PUD_TYPE_TABLE)
923 #define pud_present(pud)	pte_present(pud_pte(pud))
924 #ifndef __PAGETABLE_PMD_FOLDED
925 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
926 #else
927 #define pud_leaf(pud)		false
928 #endif
929 #define pud_valid(pud)		pte_valid(pud_pte(pud))
930 #define pud_user(pud)		pte_user(pud_pte(pud))
931 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
932 
933 static inline bool pgtable_l4_enabled(void);
934 
935 static inline void set_pud(pud_t *pudp, pud_t pud)
936 {
937 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
938 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
939 		return;
940 	}
941 
942 	WRITE_ONCE(*pudp, pud);
943 
944 	if (pud_valid(pud))
945 		queue_pte_barriers();
946 }
947 
948 static inline void pud_clear(pud_t *pudp)
949 {
950 	set_pud(pudp, __pud(0));
951 }
952 
953 static inline phys_addr_t pud_page_paddr(pud_t pud)
954 {
955 	return __pud_to_phys(pud);
956 }
957 
958 static inline pmd_t *pud_pgtable(pud_t pud)
959 {
960 	return (pmd_t *)__va(pud_page_paddr(pud));
961 }
962 
963 /* Find an entry in the second-level page table. */
964 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
965 
966 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
967 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
968 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
969 
970 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
971 
972 /* use ONLY for statically allocated translation tables */
973 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
974 
975 #else
976 
977 #define pud_valid(pud)		false
978 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
979 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
980 
981 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
982 #define pmd_set_fixmap(addr)		NULL
983 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
984 #define pmd_clear_fixmap()
985 
986 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
987 
988 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
989 
990 #if CONFIG_PGTABLE_LEVELS > 3
991 
992 static __always_inline bool pgtable_l4_enabled(void)
993 {
994 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
995 		return true;
996 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
997 		return vabits_actual == VA_BITS;
998 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
999 }
1000 
1001 static inline bool mm_pud_folded(const struct mm_struct *mm)
1002 {
1003 	return !pgtable_l4_enabled();
1004 }
1005 #define mm_pud_folded  mm_pud_folded
1006 
1007 #define pud_ERROR(e)	\
1008 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
1009 
1010 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
1011 #define p4d_bad(p4d)		(pgtable_l4_enabled() && \
1012 				((p4d_val(p4d) & P4D_TYPE_MASK) != \
1013 				 P4D_TYPE_TABLE))
1014 #define p4d_present(p4d)	(!p4d_none(p4d))
1015 
1016 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1017 {
1018 	if (in_swapper_pgdir(p4dp)) {
1019 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
1020 		return;
1021 	}
1022 
1023 	WRITE_ONCE(*p4dp, p4d);
1024 	queue_pte_barriers();
1025 }
1026 
1027 static inline void p4d_clear(p4d_t *p4dp)
1028 {
1029 	if (pgtable_l4_enabled())
1030 		set_p4d(p4dp, __p4d(0));
1031 }
1032 
1033 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
1034 {
1035 	return __p4d_to_phys(p4d);
1036 }
1037 
1038 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
1039 
1040 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
1041 {
1042 	/* Ensure that 'p4dp' indexes a page table according to 'addr' */
1043 	VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
1044 
1045 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
1046 }
1047 
1048 static inline pud_t *p4d_pgtable(p4d_t p4d)
1049 {
1050 	return (pud_t *)__va(p4d_page_paddr(p4d));
1051 }
1052 
1053 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1054 {
1055 	BUG_ON(!pgtable_l4_enabled());
1056 
1057 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1058 }
1059 
1060 static inline
1061 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1062 {
1063 	if (!pgtable_l4_enabled())
1064 		return p4d_to_folded_pud(p4dp, addr);
1065 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1066 }
1067 #define pud_offset_lockless pud_offset_lockless
1068 
1069 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1070 {
1071 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1072 }
1073 #define pud_offset	pud_offset
1074 
1075 static inline pud_t *pud_set_fixmap(unsigned long addr)
1076 {
1077 	if (!pgtable_l4_enabled())
1078 		return NULL;
1079 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1080 }
1081 
1082 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1083 {
1084 	if (!pgtable_l4_enabled())
1085 		return p4d_to_folded_pud(p4dp, addr);
1086 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1087 }
1088 
1089 static inline void pud_clear_fixmap(void)
1090 {
1091 	if (pgtable_l4_enabled())
1092 		clear_fixmap(FIX_PUD);
1093 }
1094 
1095 /* use ONLY for statically allocated translation tables */
1096 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1097 {
1098 	if (!pgtable_l4_enabled())
1099 		return p4d_to_folded_pud(p4dp, addr);
1100 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1101 }
1102 
1103 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1104 
1105 #else
1106 
1107 static inline bool pgtable_l4_enabled(void) { return false; }
1108 
1109 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
1110 
1111 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1112 #define pud_set_fixmap(addr)		NULL
1113 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
1114 #define pud_clear_fixmap()
1115 
1116 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1117 
1118 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1119 
1120 #if CONFIG_PGTABLE_LEVELS > 4
1121 
1122 static __always_inline bool pgtable_l5_enabled(void)
1123 {
1124 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1125 		return vabits_actual == VA_BITS;
1126 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1127 }
1128 
1129 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1130 {
1131 	return !pgtable_l5_enabled();
1132 }
1133 #define mm_p4d_folded  mm_p4d_folded
1134 
1135 #define p4d_ERROR(e)	\
1136 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1137 
1138 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1139 #define pgd_bad(pgd)		(pgtable_l5_enabled() && \
1140 				((pgd_val(pgd) & PGD_TYPE_MASK) != \
1141 				 PGD_TYPE_TABLE))
1142 #define pgd_present(pgd)	(!pgd_none(pgd))
1143 
1144 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1145 {
1146 	if (in_swapper_pgdir(pgdp)) {
1147 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1148 		return;
1149 	}
1150 
1151 	WRITE_ONCE(*pgdp, pgd);
1152 	queue_pte_barriers();
1153 }
1154 
1155 static inline void pgd_clear(pgd_t *pgdp)
1156 {
1157 	if (pgtable_l5_enabled())
1158 		set_pgd(pgdp, __pgd(0));
1159 }
1160 
1161 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1162 {
1163 	return __pgd_to_phys(pgd);
1164 }
1165 
1166 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1167 
1168 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1169 {
1170 	/* Ensure that 'pgdp' indexes a page table according to 'addr' */
1171 	VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1172 
1173 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1174 }
1175 
1176 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1177 {
1178 	BUG_ON(!pgtable_l5_enabled());
1179 
1180 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1181 }
1182 
1183 static inline
1184 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1185 {
1186 	if (!pgtable_l5_enabled())
1187 		return pgd_to_folded_p4d(pgdp, addr);
1188 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1189 }
1190 #define p4d_offset_lockless p4d_offset_lockless
1191 
1192 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1193 {
1194 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1195 }
1196 
1197 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1198 {
1199 	if (!pgtable_l5_enabled())
1200 		return NULL;
1201 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1202 }
1203 
1204 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1205 {
1206 	if (!pgtable_l5_enabled())
1207 		return pgd_to_folded_p4d(pgdp, addr);
1208 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1209 }
1210 
1211 static inline void p4d_clear_fixmap(void)
1212 {
1213 	if (pgtable_l5_enabled())
1214 		clear_fixmap(FIX_P4D);
1215 }
1216 
1217 /* use ONLY for statically allocated translation tables */
1218 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1219 {
1220 	if (!pgtable_l5_enabled())
1221 		return pgd_to_folded_p4d(pgdp, addr);
1222 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1223 }
1224 
1225 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1226 
1227 #else
1228 
1229 static inline bool pgtable_l5_enabled(void) { return false; }
1230 
1231 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1232 
1233 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1234 #define p4d_set_fixmap(addr)		NULL
1235 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1236 #define p4d_clear_fixmap()
1237 
1238 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1239 
1240 static inline
1241 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1242 {
1243 	/*
1244 	 * With runtime folding of the pud, pud_offset_lockless() passes
1245 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1246 	 * will offset the pointer assuming that it points into
1247 	 * a page-table page. However, the fast GUP path passes us a
1248 	 * pgd_t allocated on the stack and so we must use the original
1249 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1250 	 * using the generic p4d_offset_lockless() implementation.
1251 	 *
1252 	 * Note: reusing the original pointer means that we may
1253 	 * dereference the same (live) page-table entry multiple times.
1254 	 * This is safe because it is still only loaded once in the
1255 	 * context of each level and the CPU guarantees same-address
1256 	 * read-after-read ordering.
1257 	 */
1258 	return p4d_offset(pgdp, addr);
1259 }
1260 #define p4d_offset_lockless p4d_offset_lockless_folded
1261 
1262 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1263 
1264 #define pgd_ERROR(e)	\
1265 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1266 
1267 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1268 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1269 
1270 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1271 {
1272 	/*
1273 	 * Normal and Normal-Tagged are two different memory types and indices
1274 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1275 	 */
1276 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1277 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1278 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1279 
1280 	/* preserve the hardware dirty information */
1281 	if (pte_hw_dirty(pte))
1282 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1283 
1284 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1285 	/*
1286 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1287 	 * dirtiness again.
1288 	 */
1289 	if (pte_sw_dirty(pte))
1290 		pte = pte_mkdirty(pte);
1291 	return pte;
1292 }
1293 
1294 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1295 {
1296 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1297 }
1298 
1299 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1300 				 unsigned long address, pte_t *ptep,
1301 				 pte_t entry, int dirty);
1302 
1303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1304 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1305 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1306 					unsigned long address, pmd_t *pmdp,
1307 					pmd_t entry, int dirty)
1308 {
1309 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1310 							pmd_pte(entry), dirty);
1311 }
1312 
1313 static inline int pud_devmap(pud_t pud)
1314 {
1315 	return 0;
1316 }
1317 
1318 static inline int pgd_devmap(pgd_t pgd)
1319 {
1320 	return 0;
1321 }
1322 #endif
1323 
1324 #ifdef CONFIG_PAGE_TABLE_CHECK
1325 static inline bool pte_user_accessible_page(pte_t pte)
1326 {
1327 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1328 }
1329 
1330 static inline bool pmd_user_accessible_page(pmd_t pmd)
1331 {
1332 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1333 }
1334 
1335 static inline bool pud_user_accessible_page(pud_t pud)
1336 {
1337 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1338 }
1339 #endif
1340 
1341 /*
1342  * Atomic pte/pmd modifications.
1343  */
1344 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1345 					      unsigned long address,
1346 					      pte_t *ptep)
1347 {
1348 	pte_t old_pte, pte;
1349 
1350 	pte = __ptep_get(ptep);
1351 	do {
1352 		old_pte = pte;
1353 		pte = pte_mkold(pte);
1354 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1355 					       pte_val(old_pte), pte_val(pte));
1356 	} while (pte_val(pte) != pte_val(old_pte));
1357 
1358 	return pte_young(pte);
1359 }
1360 
1361 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1362 					 unsigned long address, pte_t *ptep)
1363 {
1364 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1365 
1366 	if (young) {
1367 		/*
1368 		 * We can elide the trailing DSB here since the worst that can
1369 		 * happen is that a CPU continues to use the young entry in its
1370 		 * TLB and we mistakenly reclaim the associated page. The
1371 		 * window for such an event is bounded by the next
1372 		 * context-switch, which provides a DSB to complete the TLB
1373 		 * invalidation.
1374 		 */
1375 		flush_tlb_page_nosync(vma, address);
1376 	}
1377 
1378 	return young;
1379 }
1380 
1381 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1382 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1383 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1384 					    unsigned long address,
1385 					    pmd_t *pmdp)
1386 {
1387 	/* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1388 	VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1389 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1390 }
1391 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1392 
1393 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1394 					       pte_t *ptep,
1395 					       unsigned long pgsize)
1396 {
1397 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1398 
1399 	switch (pgsize) {
1400 	case PAGE_SIZE:
1401 		page_table_check_pte_clear(mm, pte);
1402 		break;
1403 	case PMD_SIZE:
1404 		page_table_check_pmd_clear(mm, pte_pmd(pte));
1405 		break;
1406 #ifndef __PAGETABLE_PMD_FOLDED
1407 	case PUD_SIZE:
1408 		page_table_check_pud_clear(mm, pte_pud(pte));
1409 		break;
1410 #endif
1411 	default:
1412 		VM_WARN_ON(1);
1413 	}
1414 
1415 	return pte;
1416 }
1417 
1418 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1419 				       unsigned long address, pte_t *ptep)
1420 {
1421 	return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE);
1422 }
1423 
1424 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1425 				pte_t *ptep, unsigned int nr, int full)
1426 {
1427 	for (;;) {
1428 		__ptep_get_and_clear(mm, addr, ptep);
1429 		if (--nr == 0)
1430 			break;
1431 		ptep++;
1432 		addr += PAGE_SIZE;
1433 	}
1434 }
1435 
1436 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1437 				unsigned long addr, pte_t *ptep,
1438 				unsigned int nr, int full)
1439 {
1440 	pte_t pte, tmp_pte;
1441 
1442 	pte = __ptep_get_and_clear(mm, addr, ptep);
1443 	while (--nr) {
1444 		ptep++;
1445 		addr += PAGE_SIZE;
1446 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1447 		if (pte_dirty(tmp_pte))
1448 			pte = pte_mkdirty(pte);
1449 		if (pte_young(tmp_pte))
1450 			pte = pte_mkyoung(pte);
1451 	}
1452 	return pte;
1453 }
1454 
1455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1456 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1457 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1458 					    unsigned long address, pmd_t *pmdp)
1459 {
1460 	return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE));
1461 }
1462 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1463 
1464 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1465 					unsigned long address, pte_t *ptep,
1466 					pte_t pte)
1467 {
1468 	pte_t old_pte;
1469 
1470 	do {
1471 		old_pte = pte;
1472 		pte = pte_wrprotect(pte);
1473 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1474 					       pte_val(old_pte), pte_val(pte));
1475 	} while (pte_val(pte) != pte_val(old_pte));
1476 }
1477 
1478 /*
1479  * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1480  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1481  */
1482 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1483 					unsigned long address, pte_t *ptep)
1484 {
1485 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1486 }
1487 
1488 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1489 				pte_t *ptep, unsigned int nr)
1490 {
1491 	unsigned int i;
1492 
1493 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1494 		__ptep_set_wrprotect(mm, address, ptep);
1495 }
1496 
1497 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1498 					   unsigned long addr, pte_t *ptep,
1499 					   pte_t pte, cydp_t flags)
1500 {
1501 	pte_t old_pte;
1502 
1503 	do {
1504 		old_pte = pte;
1505 
1506 		if (flags & CYDP_CLEAR_YOUNG)
1507 			pte = pte_mkold(pte);
1508 		if (flags & CYDP_CLEAR_DIRTY)
1509 			pte = pte_mkclean(pte);
1510 
1511 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1512 					       pte_val(old_pte), pte_val(pte));
1513 	} while (pte_val(pte) != pte_val(old_pte));
1514 }
1515 
1516 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1517 					    unsigned long addr, pte_t *ptep,
1518 					    unsigned int nr, cydp_t flags)
1519 {
1520 	pte_t pte;
1521 
1522 	for (;;) {
1523 		pte = __ptep_get(ptep);
1524 
1525 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1526 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1527 		else
1528 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1529 
1530 		if (--nr == 0)
1531 			break;
1532 		ptep++;
1533 		addr += PAGE_SIZE;
1534 	}
1535 }
1536 
1537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1538 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1539 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1540 				      unsigned long address, pmd_t *pmdp)
1541 {
1542 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1543 }
1544 
1545 #define pmdp_establish pmdp_establish
1546 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1547 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1548 {
1549 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1550 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1551 }
1552 #endif
1553 
1554 /*
1555  * Encode and decode a swap entry:
1556  *	bits 0-1:	present (must be zero)
1557  *	bits 2:		remember PG_anon_exclusive
1558  *	bit  3:		remember uffd-wp state
1559  *	bits 6-10:	swap type
1560  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1561  *	bits 12-61:	swap offset
1562  */
1563 #define __SWP_TYPE_SHIFT	6
1564 #define __SWP_TYPE_BITS		5
1565 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1566 #define __SWP_OFFSET_SHIFT	12
1567 #define __SWP_OFFSET_BITS	50
1568 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1569 
1570 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1571 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1572 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1573 
1574 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1575 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1576 
1577 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1578 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1579 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1580 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1581 
1582 /*
1583  * Ensure that there are not more swap files than can be encoded in the kernel
1584  * PTEs.
1585  */
1586 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1587 
1588 #ifdef CONFIG_ARM64_MTE
1589 
1590 #define __HAVE_ARCH_PREPARE_TO_SWAP
1591 extern int arch_prepare_to_swap(struct folio *folio);
1592 
1593 #define __HAVE_ARCH_SWAP_INVALIDATE
1594 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1595 {
1596 	if (system_supports_mte())
1597 		mte_invalidate_tags(type, offset);
1598 }
1599 
1600 static inline void arch_swap_invalidate_area(int type)
1601 {
1602 	if (system_supports_mte())
1603 		mte_invalidate_tags_area(type);
1604 }
1605 
1606 #define __HAVE_ARCH_SWAP_RESTORE
1607 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1608 
1609 #endif /* CONFIG_ARM64_MTE */
1610 
1611 /*
1612  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1613  */
1614 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1615 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1616 		unsigned int nr)
1617 {
1618 	/*
1619 	 * We don't do anything here, so there's a very small chance of
1620 	 * us retaking a user fault which we just fixed up. The alternative
1621 	 * is doing a dsb(ishst), but that penalises the fastpath.
1622 	 */
1623 }
1624 
1625 #define update_mmu_cache(vma, addr, ptep) \
1626 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1627 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1628 
1629 #ifdef CONFIG_ARM64_PA_BITS_52
1630 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1631 #else
1632 #define phys_to_ttbr(addr)	(addr)
1633 #endif
1634 
1635 /*
1636  * On arm64 without hardware Access Flag, copying from user will fail because
1637  * the pte is old and cannot be marked young. So we always end up with zeroed
1638  * page after fork() + CoW for pfn mappings. We don't always have a
1639  * hardware-managed access flag on arm64.
1640  */
1641 #define arch_has_hw_pte_young		cpu_has_hw_af
1642 
1643 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1644 #define arch_has_hw_nonleaf_pmd_young	system_supports_haft
1645 #endif
1646 
1647 /*
1648  * Experimentally, it's cheap to set the access flag in hardware and we
1649  * benefit from prefaulting mappings as 'old' to start with.
1650  */
1651 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1652 
1653 static inline bool pud_sect_supported(void)
1654 {
1655 	return PAGE_SIZE == SZ_4K;
1656 }
1657 
1658 
1659 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1660 #define ptep_modify_prot_start ptep_modify_prot_start
1661 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1662 				    unsigned long addr, pte_t *ptep);
1663 
1664 #define ptep_modify_prot_commit ptep_modify_prot_commit
1665 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1666 				    unsigned long addr, pte_t *ptep,
1667 				    pte_t old_pte, pte_t new_pte);
1668 
1669 #ifdef CONFIG_ARM64_CONTPTE
1670 
1671 /*
1672  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1673  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1674  * a private implementation detail of the public ptep API (see below).
1675  */
1676 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1677 				pte_t *ptep, pte_t pte);
1678 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1679 				pte_t *ptep, pte_t pte);
1680 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1681 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1682 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1683 				pte_t *ptep, pte_t pte, unsigned int nr);
1684 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1685 				pte_t *ptep, unsigned int nr, int full);
1686 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1687 				unsigned long addr, pte_t *ptep,
1688 				unsigned int nr, int full);
1689 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1690 				unsigned long addr, pte_t *ptep);
1691 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1692 				unsigned long addr, pte_t *ptep);
1693 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1694 				pte_t *ptep, unsigned int nr);
1695 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1696 				unsigned long addr, pte_t *ptep,
1697 				pte_t entry, int dirty);
1698 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1699 				unsigned long addr, pte_t *ptep,
1700 				unsigned int nr, cydp_t flags);
1701 
1702 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1703 				unsigned long addr, pte_t *ptep, pte_t pte)
1704 {
1705 	/*
1706 	 * Only bother trying if both the virtual and physical addresses are
1707 	 * aligned and correspond to the last entry in a contig range. The core
1708 	 * code mostly modifies ranges from low to high, so this is the likely
1709 	 * the last modification in the contig range, so a good time to fold.
1710 	 * We can't fold special mappings, because there is no associated folio.
1711 	 */
1712 
1713 	const unsigned long contmask = CONT_PTES - 1;
1714 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1715 
1716 	if (unlikely(valign)) {
1717 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1718 
1719 		if (unlikely(palign &&
1720 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1721 			__contpte_try_fold(mm, addr, ptep, pte);
1722 	}
1723 }
1724 
1725 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1726 				unsigned long addr, pte_t *ptep, pte_t pte)
1727 {
1728 	if (unlikely(pte_valid_cont(pte)))
1729 		__contpte_try_unfold(mm, addr, ptep, pte);
1730 }
1731 
1732 #define pte_batch_hint pte_batch_hint
1733 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1734 {
1735 	if (!pte_valid_cont(pte))
1736 		return 1;
1737 
1738 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1739 }
1740 
1741 /*
1742  * The below functions constitute the public API that arm64 presents to the
1743  * core-mm to manipulate PTE entries within their page tables (or at least this
1744  * is the subset of the API that arm64 needs to implement). These public
1745  * versions will automatically and transparently apply the contiguous bit where
1746  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1747  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1748  * private versions, which are prefixed with double underscore. All of these
1749  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1750  * held. Although the contiguous bit is considered private to the
1751  * implementation, it is deliberately allowed to leak through the getters (e.g.
1752  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1753  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1754  * its possible a pte will be passed to a setter with the contiguous bit set, so
1755  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1756  * setting it in the pgtable.
1757  */
1758 
1759 #define ptep_get ptep_get
1760 static inline pte_t ptep_get(pte_t *ptep)
1761 {
1762 	pte_t pte = __ptep_get(ptep);
1763 
1764 	if (likely(!pte_valid_cont(pte)))
1765 		return pte;
1766 
1767 	return contpte_ptep_get(ptep, pte);
1768 }
1769 
1770 #define ptep_get_lockless ptep_get_lockless
1771 static inline pte_t ptep_get_lockless(pte_t *ptep)
1772 {
1773 	pte_t pte = __ptep_get(ptep);
1774 
1775 	if (likely(!pte_valid_cont(pte)))
1776 		return pte;
1777 
1778 	return contpte_ptep_get_lockless(ptep);
1779 }
1780 
1781 static inline void set_pte(pte_t *ptep, pte_t pte)
1782 {
1783 	/*
1784 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1785 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1786 	 * this should never even be called. Regardless do our best to service
1787 	 * any call and emit a warning if there is any attempt to set a pte on
1788 	 * top of an existing contig range.
1789 	 */
1790 	pte_t orig_pte = __ptep_get(ptep);
1791 
1792 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1793 	__set_pte(ptep, pte_mknoncont(pte));
1794 }
1795 
1796 #define set_ptes set_ptes
1797 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1798 				pte_t *ptep, pte_t pte, unsigned int nr)
1799 {
1800 	pte = pte_mknoncont(pte);
1801 
1802 	if (likely(nr == 1)) {
1803 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1804 		__set_ptes(mm, addr, ptep, pte, 1);
1805 		contpte_try_fold(mm, addr, ptep, pte);
1806 	} else {
1807 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1808 	}
1809 }
1810 
1811 static inline void pte_clear(struct mm_struct *mm,
1812 				unsigned long addr, pte_t *ptep)
1813 {
1814 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1815 	__pte_clear(mm, addr, ptep);
1816 }
1817 
1818 #define clear_full_ptes clear_full_ptes
1819 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1820 				pte_t *ptep, unsigned int nr, int full)
1821 {
1822 	if (likely(nr == 1)) {
1823 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1824 		__clear_full_ptes(mm, addr, ptep, nr, full);
1825 	} else {
1826 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1827 	}
1828 }
1829 
1830 #define get_and_clear_full_ptes get_and_clear_full_ptes
1831 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1832 				unsigned long addr, pte_t *ptep,
1833 				unsigned int nr, int full)
1834 {
1835 	pte_t pte;
1836 
1837 	if (likely(nr == 1)) {
1838 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1839 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1840 	} else {
1841 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1842 	}
1843 
1844 	return pte;
1845 }
1846 
1847 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1848 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1849 				unsigned long addr, pte_t *ptep)
1850 {
1851 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1852 	return __ptep_get_and_clear(mm, addr, ptep);
1853 }
1854 
1855 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1856 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1857 				unsigned long addr, pte_t *ptep)
1858 {
1859 	pte_t orig_pte = __ptep_get(ptep);
1860 
1861 	if (likely(!pte_valid_cont(orig_pte)))
1862 		return __ptep_test_and_clear_young(vma, addr, ptep);
1863 
1864 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1865 }
1866 
1867 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1868 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1869 				unsigned long addr, pte_t *ptep)
1870 {
1871 	pte_t orig_pte = __ptep_get(ptep);
1872 
1873 	if (likely(!pte_valid_cont(orig_pte)))
1874 		return __ptep_clear_flush_young(vma, addr, ptep);
1875 
1876 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1877 }
1878 
1879 #define wrprotect_ptes wrprotect_ptes
1880 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1881 				unsigned long addr, pte_t *ptep, unsigned int nr)
1882 {
1883 	if (likely(nr == 1)) {
1884 		/*
1885 		 * Optimization: wrprotect_ptes() can only be called for present
1886 		 * ptes so we only need to check contig bit as condition for
1887 		 * unfold, and we can remove the contig bit from the pte we read
1888 		 * to avoid re-reading. This speeds up fork() which is sensitive
1889 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1890 		 */
1891 		pte_t orig_pte = __ptep_get(ptep);
1892 
1893 		if (unlikely(pte_cont(orig_pte))) {
1894 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1895 			orig_pte = pte_mknoncont(orig_pte);
1896 		}
1897 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1898 	} else {
1899 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1900 	}
1901 }
1902 
1903 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1904 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1905 				unsigned long addr, pte_t *ptep)
1906 {
1907 	wrprotect_ptes(mm, addr, ptep, 1);
1908 }
1909 
1910 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1911 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1912 				unsigned long addr, pte_t *ptep,
1913 				pte_t entry, int dirty)
1914 {
1915 	pte_t orig_pte = __ptep_get(ptep);
1916 
1917 	entry = pte_mknoncont(entry);
1918 
1919 	if (likely(!pte_valid_cont(orig_pte)))
1920 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1921 
1922 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1923 }
1924 
1925 #define clear_young_dirty_ptes clear_young_dirty_ptes
1926 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1927 					  unsigned long addr, pte_t *ptep,
1928 					  unsigned int nr, cydp_t flags)
1929 {
1930 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1931 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1932 	else
1933 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1934 }
1935 
1936 #else /* CONFIG_ARM64_CONTPTE */
1937 
1938 #define ptep_get				__ptep_get
1939 #define set_pte					__set_pte
1940 #define set_ptes				__set_ptes
1941 #define pte_clear				__pte_clear
1942 #define clear_full_ptes				__clear_full_ptes
1943 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1944 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1945 #define ptep_get_and_clear			__ptep_get_and_clear
1946 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1947 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1948 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1949 #define ptep_clear_flush_young			__ptep_clear_flush_young
1950 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1951 #define ptep_set_wrprotect			__ptep_set_wrprotect
1952 #define wrprotect_ptes				__wrprotect_ptes
1953 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1954 #define ptep_set_access_flags			__ptep_set_access_flags
1955 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1956 
1957 #endif /* CONFIG_ARM64_CONTPTE */
1958 
1959 #endif /* !__ASSEMBLY__ */
1960 
1961 #endif /* __ASM_PGTABLE_H */
1962