xref: /linux/arch/arm64/include/asm/pgtable.h (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
44 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45 
46 /* Set stride and tlb_level in flush_*_tlb_range */
47 #define flush_pmd_tlb_range(vma, addr, end)	\
48 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49 #define flush_pud_tlb_range(vma, addr, end)	\
50 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52 
53 /*
54  * Outside of a few very special situations (e.g. hibernation), we always
55  * use broadcast TLB invalidation instructions, therefore a spurious page
56  * fault on one CPU which has been handled concurrently by another CPU
57  * does not need to perform additional invalidation.
58  */
59 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60 
61 /*
62  * ZERO_PAGE is a global shared page that is always zero: used
63  * for zero-mapped memory areas etc..
64  */
65 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
67 
68 #define pte_ERROR(e)	\
69 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70 
71 /*
72  * Macros to convert between a physical address and its placement in a
73  * page table entry, taking care of 52-bit addresses.
74  */
75 #ifdef CONFIG_ARM64_PA_BITS_52
76 static inline phys_addr_t __pte_to_phys(pte_t pte)
77 {
78 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
79 	return (pte_val(pte) & PTE_ADDR_LOW) |
80 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81 }
82 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83 {
84 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
85 }
86 #else
87 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
88 #define __phys_to_pte_val(phys)	(phys)
89 #endif
90 
91 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
92 #define pfn_pte(pfn,prot)	\
93 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94 
95 #define pte_none(pte)		(!pte_val(pte))
96 #define __pte_clear(mm, addr, ptep) \
97 				__set_pte(ptep, __pte(0))
98 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
99 
100 /*
101  * The following only work if pte_present(). Undefined behaviour otherwise.
102  */
103 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
104 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
105 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
106 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
107 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
108 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
109 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
110 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
111 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
112 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
113 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
114 
115 #define pte_cont_addr_end(addr, end)						\
116 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
117 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
118 })
119 
120 #define pmd_cont_addr_end(addr, end)						\
121 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
122 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
123 })
124 
125 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
126 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
127 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
128 
129 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
130 #define pte_present_invalid(pte) \
131 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
132 /*
133  * Execute-only user mappings do not have the PTE_USER bit set. All valid
134  * kernel mappings have the PTE_UXN bit set.
135  */
136 #define pte_valid_not_user(pte) \
137 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
138 /*
139  * Returns true if the pte is valid and has the contiguous bit set.
140  */
141 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
142 /*
143  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
144  * so that we don't erroneously return false for pages that have been
145  * remapped as PROT_NONE but are yet to be flushed from the TLB.
146  * Note that we can't make any assumptions based on the state of the access
147  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
148  * TLB.
149  */
150 #define pte_accessible(mm, pte)	\
151 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
152 
153 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
154 {
155 	u64 por;
156 
157 	if (!system_supports_poe())
158 		return true;
159 
160 	por = read_sysreg_s(SYS_POR_EL0);
161 
162 	if (write)
163 		return por_elx_allows_write(por, pkey);
164 
165 	if (execute)
166 		return por_elx_allows_exec(por, pkey);
167 
168 	return por_elx_allows_read(por, pkey);
169 }
170 
171 /*
172  * p??_access_permitted() is true for valid user mappings (PTE_USER
173  * bit set, subject to the write permission check). For execute-only
174  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
175  * not set) must return false. PROT_NONE mappings do not have the
176  * PTE_VALID bit set.
177  */
178 #define pte_access_permitted_no_overlay(pte, write) \
179 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
180 #define pte_access_permitted(pte, write) \
181 	(pte_access_permitted_no_overlay(pte, write) && \
182 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
183 #define pmd_access_permitted(pmd, write) \
184 	(pte_access_permitted(pmd_pte(pmd), (write)))
185 #define pud_access_permitted(pud, write) \
186 	(pte_access_permitted(pud_pte(pud), (write)))
187 
188 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
189 {
190 	pte_val(pte) &= ~pgprot_val(prot);
191 	return pte;
192 }
193 
194 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
195 {
196 	pte_val(pte) |= pgprot_val(prot);
197 	return pte;
198 }
199 
200 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
201 {
202 	pmd_val(pmd) &= ~pgprot_val(prot);
203 	return pmd;
204 }
205 
206 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
207 {
208 	pmd_val(pmd) |= pgprot_val(prot);
209 	return pmd;
210 }
211 
212 static inline pte_t pte_mkwrite_novma(pte_t pte)
213 {
214 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
215 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
216 	return pte;
217 }
218 
219 static inline pte_t pte_mkclean(pte_t pte)
220 {
221 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
222 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
223 
224 	return pte;
225 }
226 
227 static inline pte_t pte_mkdirty(pte_t pte)
228 {
229 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
230 
231 	if (pte_write(pte))
232 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
233 
234 	return pte;
235 }
236 
237 static inline pte_t pte_wrprotect(pte_t pte)
238 {
239 	/*
240 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
241 	 * clear), set the PTE_DIRTY bit.
242 	 */
243 	if (pte_hw_dirty(pte))
244 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
245 
246 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
247 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
248 	return pte;
249 }
250 
251 static inline pte_t pte_mkold(pte_t pte)
252 {
253 	return clear_pte_bit(pte, __pgprot(PTE_AF));
254 }
255 
256 static inline pte_t pte_mkyoung(pte_t pte)
257 {
258 	return set_pte_bit(pte, __pgprot(PTE_AF));
259 }
260 
261 static inline pte_t pte_mkspecial(pte_t pte)
262 {
263 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
264 }
265 
266 static inline pte_t pte_mkcont(pte_t pte)
267 {
268 	return set_pte_bit(pte, __pgprot(PTE_CONT));
269 }
270 
271 static inline pte_t pte_mknoncont(pte_t pte)
272 {
273 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
274 }
275 
276 static inline pte_t pte_mkpresent(pte_t pte)
277 {
278 	return set_pte_bit(pte, __pgprot(PTE_VALID));
279 }
280 
281 static inline pte_t pte_mkinvalid(pte_t pte)
282 {
283 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
284 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
285 	return pte;
286 }
287 
288 static inline pmd_t pmd_mkcont(pmd_t pmd)
289 {
290 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
291 }
292 
293 static inline pte_t pte_mkdevmap(pte_t pte)
294 {
295 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
296 }
297 
298 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
299 static inline int pte_uffd_wp(pte_t pte)
300 {
301 	return !!(pte_val(pte) & PTE_UFFD_WP);
302 }
303 
304 static inline pte_t pte_mkuffd_wp(pte_t pte)
305 {
306 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
307 }
308 
309 static inline pte_t pte_clear_uffd_wp(pte_t pte)
310 {
311 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
312 }
313 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
314 
315 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
316 {
317 	WRITE_ONCE(*ptep, pte);
318 }
319 
320 static inline void __set_pte(pte_t *ptep, pte_t pte)
321 {
322 	__set_pte_nosync(ptep, pte);
323 
324 	/*
325 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
326 	 * or update_mmu_cache() have the necessary barriers.
327 	 */
328 	if (pte_valid_not_user(pte)) {
329 		dsb(ishst);
330 		isb();
331 	}
332 }
333 
334 static inline pte_t __ptep_get(pte_t *ptep)
335 {
336 	return READ_ONCE(*ptep);
337 }
338 
339 extern void __sync_icache_dcache(pte_t pteval);
340 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
341 
342 /*
343  * PTE bits configuration in the presence of hardware Dirty Bit Management
344  * (PTE_WRITE == PTE_DBM):
345  *
346  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
347  *   0      0      |   1           0          0
348  *   0      1      |   1           1          0
349  *   1      0      |   1           0          1
350  *   1      1      |   0           1          x
351  *
352  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
353  * the page fault mechanism. Checking the dirty status of a pte becomes:
354  *
355  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
356  */
357 
358 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
359 					   pte_t pte)
360 {
361 	pte_t old_pte;
362 
363 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
364 		return;
365 
366 	old_pte = __ptep_get(ptep);
367 
368 	if (!pte_valid(old_pte) || !pte_valid(pte))
369 		return;
370 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
371 		return;
372 
373 	/*
374 	 * Check for potential race with hardware updates of the pte
375 	 * (__ptep_set_access_flags safely changes valid ptes without going
376 	 * through an invalid entry).
377 	 */
378 	VM_WARN_ONCE(!pte_young(pte),
379 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
380 		     __func__, pte_val(old_pte), pte_val(pte));
381 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
382 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
383 		     __func__, pte_val(old_pte), pte_val(pte));
384 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
385 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
386 		     __func__, pte_val(old_pte), pte_val(pte));
387 }
388 
389 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
390 {
391 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
392 		__sync_icache_dcache(pte);
393 
394 	/*
395 	 * If the PTE would provide user space access to the tags associated
396 	 * with it then ensure that the MTE tags are synchronised.  Although
397 	 * pte_access_permitted_no_overlay() returns false for exec only
398 	 * mappings, they don't expose tags (instruction fetches don't check
399 	 * tags).
400 	 */
401 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
402 	    !pte_special(pte) && pte_tagged(pte))
403 		mte_sync_tags(pte, nr_pages);
404 }
405 
406 /*
407  * Select all bits except the pfn
408  */
409 #define pte_pgprot pte_pgprot
410 static inline pgprot_t pte_pgprot(pte_t pte)
411 {
412 	unsigned long pfn = pte_pfn(pte);
413 
414 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
415 }
416 
417 #define pte_advance_pfn pte_advance_pfn
418 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
419 {
420 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
421 }
422 
423 static inline void __set_ptes(struct mm_struct *mm,
424 			      unsigned long __always_unused addr,
425 			      pte_t *ptep, pte_t pte, unsigned int nr)
426 {
427 	page_table_check_ptes_set(mm, ptep, pte, nr);
428 	__sync_cache_and_tags(pte, nr);
429 
430 	for (;;) {
431 		__check_safe_pte_update(mm, ptep, pte);
432 		__set_pte(ptep, pte);
433 		if (--nr == 0)
434 			break;
435 		ptep++;
436 		pte = pte_advance_pfn(pte, 1);
437 	}
438 }
439 
440 /*
441  * Hugetlb definitions.
442  */
443 #define HUGE_MAX_HSTATE		4
444 #define HPAGE_SHIFT		PMD_SHIFT
445 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
446 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
447 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
448 
449 static inline pte_t pgd_pte(pgd_t pgd)
450 {
451 	return __pte(pgd_val(pgd));
452 }
453 
454 static inline pte_t p4d_pte(p4d_t p4d)
455 {
456 	return __pte(p4d_val(p4d));
457 }
458 
459 static inline pte_t pud_pte(pud_t pud)
460 {
461 	return __pte(pud_val(pud));
462 }
463 
464 static inline pud_t pte_pud(pte_t pte)
465 {
466 	return __pud(pte_val(pte));
467 }
468 
469 static inline pmd_t pud_pmd(pud_t pud)
470 {
471 	return __pmd(pud_val(pud));
472 }
473 
474 static inline pte_t pmd_pte(pmd_t pmd)
475 {
476 	return __pte(pmd_val(pmd));
477 }
478 
479 static inline pmd_t pte_pmd(pte_t pte)
480 {
481 	return __pmd(pte_val(pte));
482 }
483 
484 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
485 {
486 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
487 }
488 
489 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
490 {
491 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
492 }
493 
494 static inline pte_t pte_swp_mkexclusive(pte_t pte)
495 {
496 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
497 }
498 
499 static inline int pte_swp_exclusive(pte_t pte)
500 {
501 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
502 }
503 
504 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
505 {
506 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
507 }
508 
509 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
510 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
511 {
512 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
513 }
514 
515 static inline int pte_swp_uffd_wp(pte_t pte)
516 {
517 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
518 }
519 
520 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
521 {
522 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
523 }
524 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
525 
526 #ifdef CONFIG_NUMA_BALANCING
527 /*
528  * See the comment in include/linux/pgtable.h
529  */
530 static inline int pte_protnone(pte_t pte)
531 {
532 	/*
533 	 * pte_present_invalid() tells us that the pte is invalid from HW
534 	 * perspective but present from SW perspective, so the fields are to be
535 	 * interpretted as per the HW layout. The second 2 checks are the unique
536 	 * encoding that we use for PROT_NONE. It is insufficient to only use
537 	 * the first check because we share the same encoding scheme with pmds
538 	 * which support pmd_mkinvalid(), so can be present-invalid without
539 	 * being PROT_NONE.
540 	 */
541 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
542 }
543 
544 static inline int pmd_protnone(pmd_t pmd)
545 {
546 	return pte_protnone(pmd_pte(pmd));
547 }
548 #endif
549 
550 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
551 
552 /*
553  * THP definitions.
554  */
555 
556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
557 static inline int pmd_trans_huge(pmd_t pmd)
558 {
559 	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
560 }
561 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
562 
563 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
564 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
565 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
566 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
567 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
568 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
569 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
570 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
571 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
572 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
573 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
574 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
575 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
576 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
577 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
578 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
579 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
580 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
581 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
582 #define pmd_swp_clear_uffd_wp(pmd) \
583 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
584 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
585 
586 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
587 
588 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
589 
590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
591 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
592 #endif
593 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
594 {
595 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
596 }
597 
598 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
599 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
600 static inline pmd_t pmd_mkspecial(pmd_t pmd)
601 {
602 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
603 }
604 #endif
605 
606 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
607 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
608 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
609 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
610 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
611 
612 #define pud_young(pud)		pte_young(pud_pte(pud))
613 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
614 #define pud_write(pud)		pte_write(pud_pte(pud))
615 
616 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
617 
618 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
619 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
620 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
621 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
622 
623 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
624 #define pud_special(pte)	pte_special(pud_pte(pud))
625 #define pud_mkspecial(pte)	pte_pud(pte_mkspecial(pud_pte(pud)))
626 #endif
627 
628 #define pmd_pgprot pmd_pgprot
629 static inline pgprot_t pmd_pgprot(pmd_t pmd)
630 {
631 	unsigned long pfn = pmd_pfn(pmd);
632 
633 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
634 }
635 
636 #define pud_pgprot pud_pgprot
637 static inline pgprot_t pud_pgprot(pud_t pud)
638 {
639 	unsigned long pfn = pud_pfn(pud);
640 
641 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
642 }
643 
644 static inline void __set_pte_at(struct mm_struct *mm,
645 				unsigned long __always_unused addr,
646 				pte_t *ptep, pte_t pte, unsigned int nr)
647 {
648 	__sync_cache_and_tags(pte, nr);
649 	__check_safe_pte_update(mm, ptep, pte);
650 	__set_pte(ptep, pte);
651 }
652 
653 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
654 			      pmd_t *pmdp, pmd_t pmd)
655 {
656 	page_table_check_pmd_set(mm, pmdp, pmd);
657 	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
658 						PMD_SIZE >> PAGE_SHIFT);
659 }
660 
661 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
662 			      pud_t *pudp, pud_t pud)
663 {
664 	page_table_check_pud_set(mm, pudp, pud);
665 	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
666 						PUD_SIZE >> PAGE_SHIFT);
667 }
668 
669 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
670 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
671 
672 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
673 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
674 
675 #define __pgprot_modify(prot,mask,bits) \
676 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
677 
678 #define pgprot_nx(prot) \
679 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
680 
681 #define pgprot_decrypted(prot) \
682 	__pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
683 #define pgprot_encrypted(prot) \
684 	__pgprot_modify(prot, PROT_NS_SHARED, 0)
685 
686 /*
687  * Mark the prot value as uncacheable and unbufferable.
688  */
689 #define pgprot_noncached(prot) \
690 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
691 #define pgprot_writecombine(prot) \
692 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
693 #define pgprot_device(prot) \
694 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
695 #define pgprot_tagged(prot) \
696 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
697 #define pgprot_mhp	pgprot_tagged
698 /*
699  * DMA allocations for non-coherent devices use what the Arm architecture calls
700  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
701  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
702  * is intended for MMIO and thus forbids speculation, preserves access size,
703  * requires strict alignment and can also force write responses to come from the
704  * endpoint.
705  */
706 #define pgprot_dmacoherent(prot) \
707 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
708 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
709 
710 #define __HAVE_PHYS_MEM_ACCESS_PROT
711 struct file;
712 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
713 				     unsigned long size, pgprot_t vma_prot);
714 
715 #define pmd_none(pmd)		(!pmd_val(pmd))
716 
717 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
718 				 PMD_TYPE_TABLE)
719 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
720 				 PMD_TYPE_SECT)
721 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
722 #define pmd_bad(pmd)		(!pmd_table(pmd))
723 
724 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
725 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
726 
727 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
728 static inline bool pud_sect(pud_t pud) { return false; }
729 static inline bool pud_table(pud_t pud) { return true; }
730 #else
731 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
732 				 PUD_TYPE_SECT)
733 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
734 				 PUD_TYPE_TABLE)
735 #endif
736 
737 extern pgd_t init_pg_dir[];
738 extern pgd_t init_pg_end[];
739 extern pgd_t swapper_pg_dir[];
740 extern pgd_t idmap_pg_dir[];
741 extern pgd_t tramp_pg_dir[];
742 extern pgd_t reserved_pg_dir[];
743 
744 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
745 
746 static inline bool in_swapper_pgdir(void *addr)
747 {
748 	return ((unsigned long)addr & PAGE_MASK) ==
749 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
750 }
751 
752 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
753 {
754 #ifdef __PAGETABLE_PMD_FOLDED
755 	if (in_swapper_pgdir(pmdp)) {
756 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
757 		return;
758 	}
759 #endif /* __PAGETABLE_PMD_FOLDED */
760 
761 	WRITE_ONCE(*pmdp, pmd);
762 
763 	if (pmd_valid(pmd)) {
764 		dsb(ishst);
765 		isb();
766 	}
767 }
768 
769 static inline void pmd_clear(pmd_t *pmdp)
770 {
771 	set_pmd(pmdp, __pmd(0));
772 }
773 
774 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
775 {
776 	return __pmd_to_phys(pmd);
777 }
778 
779 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
780 {
781 	return (unsigned long)__va(pmd_page_paddr(pmd));
782 }
783 
784 /* Find an entry in the third-level page table. */
785 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
786 
787 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
788 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
789 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
790 
791 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
792 
793 /* use ONLY for statically allocated translation tables */
794 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
795 
796 /*
797  * Conversion functions: convert a page and protection to a page entry,
798  * and a page entry and page directory to the page they refer to.
799  */
800 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
801 
802 #if CONFIG_PGTABLE_LEVELS > 2
803 
804 #define pmd_ERROR(e)	\
805 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
806 
807 #define pud_none(pud)		(!pud_val(pud))
808 #define pud_bad(pud)		(!pud_table(pud))
809 #define pud_present(pud)	pte_present(pud_pte(pud))
810 #ifndef __PAGETABLE_PMD_FOLDED
811 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
812 #else
813 #define pud_leaf(pud)		false
814 #endif
815 #define pud_valid(pud)		pte_valid(pud_pte(pud))
816 #define pud_user(pud)		pte_user(pud_pte(pud))
817 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
818 
819 static inline bool pgtable_l4_enabled(void);
820 
821 static inline void set_pud(pud_t *pudp, pud_t pud)
822 {
823 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
824 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
825 		return;
826 	}
827 
828 	WRITE_ONCE(*pudp, pud);
829 
830 	if (pud_valid(pud)) {
831 		dsb(ishst);
832 		isb();
833 	}
834 }
835 
836 static inline void pud_clear(pud_t *pudp)
837 {
838 	set_pud(pudp, __pud(0));
839 }
840 
841 static inline phys_addr_t pud_page_paddr(pud_t pud)
842 {
843 	return __pud_to_phys(pud);
844 }
845 
846 static inline pmd_t *pud_pgtable(pud_t pud)
847 {
848 	return (pmd_t *)__va(pud_page_paddr(pud));
849 }
850 
851 /* Find an entry in the second-level page table. */
852 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
853 
854 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
855 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
856 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
857 
858 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
859 
860 /* use ONLY for statically allocated translation tables */
861 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
862 
863 #else
864 
865 #define pud_valid(pud)		false
866 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
867 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
868 
869 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
870 #define pmd_set_fixmap(addr)		NULL
871 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
872 #define pmd_clear_fixmap()
873 
874 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
875 
876 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
877 
878 #if CONFIG_PGTABLE_LEVELS > 3
879 
880 static __always_inline bool pgtable_l4_enabled(void)
881 {
882 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
883 		return true;
884 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
885 		return vabits_actual == VA_BITS;
886 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
887 }
888 
889 static inline bool mm_pud_folded(const struct mm_struct *mm)
890 {
891 	return !pgtable_l4_enabled();
892 }
893 #define mm_pud_folded  mm_pud_folded
894 
895 #define pud_ERROR(e)	\
896 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
897 
898 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
899 #define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
900 #define p4d_present(p4d)	(!p4d_none(p4d))
901 
902 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
903 {
904 	if (in_swapper_pgdir(p4dp)) {
905 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
906 		return;
907 	}
908 
909 	WRITE_ONCE(*p4dp, p4d);
910 	dsb(ishst);
911 	isb();
912 }
913 
914 static inline void p4d_clear(p4d_t *p4dp)
915 {
916 	if (pgtable_l4_enabled())
917 		set_p4d(p4dp, __p4d(0));
918 }
919 
920 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
921 {
922 	return __p4d_to_phys(p4d);
923 }
924 
925 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
926 
927 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
928 {
929 	/* Ensure that 'p4dp' indexes a page table according to 'addr' */
930 	VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
931 
932 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
933 }
934 
935 static inline pud_t *p4d_pgtable(p4d_t p4d)
936 {
937 	return (pud_t *)__va(p4d_page_paddr(p4d));
938 }
939 
940 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
941 {
942 	BUG_ON(!pgtable_l4_enabled());
943 
944 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
945 }
946 
947 static inline
948 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
949 {
950 	if (!pgtable_l4_enabled())
951 		return p4d_to_folded_pud(p4dp, addr);
952 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
953 }
954 #define pud_offset_lockless pud_offset_lockless
955 
956 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
957 {
958 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
959 }
960 #define pud_offset	pud_offset
961 
962 static inline pud_t *pud_set_fixmap(unsigned long addr)
963 {
964 	if (!pgtable_l4_enabled())
965 		return NULL;
966 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
967 }
968 
969 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
970 {
971 	if (!pgtable_l4_enabled())
972 		return p4d_to_folded_pud(p4dp, addr);
973 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
974 }
975 
976 static inline void pud_clear_fixmap(void)
977 {
978 	if (pgtable_l4_enabled())
979 		clear_fixmap(FIX_PUD);
980 }
981 
982 /* use ONLY for statically allocated translation tables */
983 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
984 {
985 	if (!pgtable_l4_enabled())
986 		return p4d_to_folded_pud(p4dp, addr);
987 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
988 }
989 
990 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
991 
992 #else
993 
994 static inline bool pgtable_l4_enabled(void) { return false; }
995 
996 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
997 
998 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
999 #define pud_set_fixmap(addr)		NULL
1000 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
1001 #define pud_clear_fixmap()
1002 
1003 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1004 
1005 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1006 
1007 #if CONFIG_PGTABLE_LEVELS > 4
1008 
1009 static __always_inline bool pgtable_l5_enabled(void)
1010 {
1011 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1012 		return vabits_actual == VA_BITS;
1013 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1014 }
1015 
1016 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1017 {
1018 	return !pgtable_l5_enabled();
1019 }
1020 #define mm_p4d_folded  mm_p4d_folded
1021 
1022 #define p4d_ERROR(e)	\
1023 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1024 
1025 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1026 #define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
1027 #define pgd_present(pgd)	(!pgd_none(pgd))
1028 
1029 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1030 {
1031 	if (in_swapper_pgdir(pgdp)) {
1032 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1033 		return;
1034 	}
1035 
1036 	WRITE_ONCE(*pgdp, pgd);
1037 	dsb(ishst);
1038 	isb();
1039 }
1040 
1041 static inline void pgd_clear(pgd_t *pgdp)
1042 {
1043 	if (pgtable_l5_enabled())
1044 		set_pgd(pgdp, __pgd(0));
1045 }
1046 
1047 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1048 {
1049 	return __pgd_to_phys(pgd);
1050 }
1051 
1052 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1053 
1054 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1055 {
1056 	/* Ensure that 'pgdp' indexes a page table according to 'addr' */
1057 	VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1058 
1059 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1060 }
1061 
1062 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1063 {
1064 	BUG_ON(!pgtable_l5_enabled());
1065 
1066 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1067 }
1068 
1069 static inline
1070 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1071 {
1072 	if (!pgtable_l5_enabled())
1073 		return pgd_to_folded_p4d(pgdp, addr);
1074 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1075 }
1076 #define p4d_offset_lockless p4d_offset_lockless
1077 
1078 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1079 {
1080 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1081 }
1082 
1083 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1084 {
1085 	if (!pgtable_l5_enabled())
1086 		return NULL;
1087 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1088 }
1089 
1090 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1091 {
1092 	if (!pgtable_l5_enabled())
1093 		return pgd_to_folded_p4d(pgdp, addr);
1094 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1095 }
1096 
1097 static inline void p4d_clear_fixmap(void)
1098 {
1099 	if (pgtable_l5_enabled())
1100 		clear_fixmap(FIX_P4D);
1101 }
1102 
1103 /* use ONLY for statically allocated translation tables */
1104 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1105 {
1106 	if (!pgtable_l5_enabled())
1107 		return pgd_to_folded_p4d(pgdp, addr);
1108 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1109 }
1110 
1111 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1112 
1113 #else
1114 
1115 static inline bool pgtable_l5_enabled(void) { return false; }
1116 
1117 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1118 
1119 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1120 #define p4d_set_fixmap(addr)		NULL
1121 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1122 #define p4d_clear_fixmap()
1123 
1124 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1125 
1126 static inline
1127 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1128 {
1129 	/*
1130 	 * With runtime folding of the pud, pud_offset_lockless() passes
1131 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1132 	 * will offset the pointer assuming that it points into
1133 	 * a page-table page. However, the fast GUP path passes us a
1134 	 * pgd_t allocated on the stack and so we must use the original
1135 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1136 	 * using the generic p4d_offset_lockless() implementation.
1137 	 *
1138 	 * Note: reusing the original pointer means that we may
1139 	 * dereference the same (live) page-table entry multiple times.
1140 	 * This is safe because it is still only loaded once in the
1141 	 * context of each level and the CPU guarantees same-address
1142 	 * read-after-read ordering.
1143 	 */
1144 	return p4d_offset(pgdp, addr);
1145 }
1146 #define p4d_offset_lockless p4d_offset_lockless_folded
1147 
1148 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1149 
1150 #define pgd_ERROR(e)	\
1151 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1152 
1153 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1154 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1155 
1156 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1157 {
1158 	/*
1159 	 * Normal and Normal-Tagged are two different memory types and indices
1160 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1161 	 */
1162 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1163 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1164 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1165 
1166 	/* preserve the hardware dirty information */
1167 	if (pte_hw_dirty(pte))
1168 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1169 
1170 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1171 	/*
1172 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1173 	 * dirtiness again.
1174 	 */
1175 	if (pte_sw_dirty(pte))
1176 		pte = pte_mkdirty(pte);
1177 	return pte;
1178 }
1179 
1180 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1181 {
1182 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1183 }
1184 
1185 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1186 				 unsigned long address, pte_t *ptep,
1187 				 pte_t entry, int dirty);
1188 
1189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1190 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1191 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1192 					unsigned long address, pmd_t *pmdp,
1193 					pmd_t entry, int dirty)
1194 {
1195 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1196 							pmd_pte(entry), dirty);
1197 }
1198 
1199 static inline int pud_devmap(pud_t pud)
1200 {
1201 	return 0;
1202 }
1203 
1204 static inline int pgd_devmap(pgd_t pgd)
1205 {
1206 	return 0;
1207 }
1208 #endif
1209 
1210 #ifdef CONFIG_PAGE_TABLE_CHECK
1211 static inline bool pte_user_accessible_page(pte_t pte)
1212 {
1213 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1214 }
1215 
1216 static inline bool pmd_user_accessible_page(pmd_t pmd)
1217 {
1218 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1219 }
1220 
1221 static inline bool pud_user_accessible_page(pud_t pud)
1222 {
1223 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1224 }
1225 #endif
1226 
1227 /*
1228  * Atomic pte/pmd modifications.
1229  */
1230 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1231 					      unsigned long address,
1232 					      pte_t *ptep)
1233 {
1234 	pte_t old_pte, pte;
1235 
1236 	pte = __ptep_get(ptep);
1237 	do {
1238 		old_pte = pte;
1239 		pte = pte_mkold(pte);
1240 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1241 					       pte_val(old_pte), pte_val(pte));
1242 	} while (pte_val(pte) != pte_val(old_pte));
1243 
1244 	return pte_young(pte);
1245 }
1246 
1247 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1248 					 unsigned long address, pte_t *ptep)
1249 {
1250 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1251 
1252 	if (young) {
1253 		/*
1254 		 * We can elide the trailing DSB here since the worst that can
1255 		 * happen is that a CPU continues to use the young entry in its
1256 		 * TLB and we mistakenly reclaim the associated page. The
1257 		 * window for such an event is bounded by the next
1258 		 * context-switch, which provides a DSB to complete the TLB
1259 		 * invalidation.
1260 		 */
1261 		flush_tlb_page_nosync(vma, address);
1262 	}
1263 
1264 	return young;
1265 }
1266 
1267 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1268 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1269 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1270 					    unsigned long address,
1271 					    pmd_t *pmdp)
1272 {
1273 	/* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1274 	VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1275 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1276 }
1277 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1278 
1279 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1280 				       unsigned long address, pte_t *ptep)
1281 {
1282 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1283 
1284 	page_table_check_pte_clear(mm, pte);
1285 
1286 	return pte;
1287 }
1288 
1289 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1290 				pte_t *ptep, unsigned int nr, int full)
1291 {
1292 	for (;;) {
1293 		__ptep_get_and_clear(mm, addr, ptep);
1294 		if (--nr == 0)
1295 			break;
1296 		ptep++;
1297 		addr += PAGE_SIZE;
1298 	}
1299 }
1300 
1301 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1302 				unsigned long addr, pte_t *ptep,
1303 				unsigned int nr, int full)
1304 {
1305 	pte_t pte, tmp_pte;
1306 
1307 	pte = __ptep_get_and_clear(mm, addr, ptep);
1308 	while (--nr) {
1309 		ptep++;
1310 		addr += PAGE_SIZE;
1311 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1312 		if (pte_dirty(tmp_pte))
1313 			pte = pte_mkdirty(pte);
1314 		if (pte_young(tmp_pte))
1315 			pte = pte_mkyoung(pte);
1316 	}
1317 	return pte;
1318 }
1319 
1320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1321 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1322 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1323 					    unsigned long address, pmd_t *pmdp)
1324 {
1325 	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1326 
1327 	page_table_check_pmd_clear(mm, pmd);
1328 
1329 	return pmd;
1330 }
1331 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1332 
1333 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1334 					unsigned long address, pte_t *ptep,
1335 					pte_t pte)
1336 {
1337 	pte_t old_pte;
1338 
1339 	do {
1340 		old_pte = pte;
1341 		pte = pte_wrprotect(pte);
1342 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1343 					       pte_val(old_pte), pte_val(pte));
1344 	} while (pte_val(pte) != pte_val(old_pte));
1345 }
1346 
1347 /*
1348  * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1349  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1350  */
1351 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1352 					unsigned long address, pte_t *ptep)
1353 {
1354 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1355 }
1356 
1357 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1358 				pte_t *ptep, unsigned int nr)
1359 {
1360 	unsigned int i;
1361 
1362 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1363 		__ptep_set_wrprotect(mm, address, ptep);
1364 }
1365 
1366 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1367 					   unsigned long addr, pte_t *ptep,
1368 					   pte_t pte, cydp_t flags)
1369 {
1370 	pte_t old_pte;
1371 
1372 	do {
1373 		old_pte = pte;
1374 
1375 		if (flags & CYDP_CLEAR_YOUNG)
1376 			pte = pte_mkold(pte);
1377 		if (flags & CYDP_CLEAR_DIRTY)
1378 			pte = pte_mkclean(pte);
1379 
1380 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1381 					       pte_val(old_pte), pte_val(pte));
1382 	} while (pte_val(pte) != pte_val(old_pte));
1383 }
1384 
1385 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1386 					    unsigned long addr, pte_t *ptep,
1387 					    unsigned int nr, cydp_t flags)
1388 {
1389 	pte_t pte;
1390 
1391 	for (;;) {
1392 		pte = __ptep_get(ptep);
1393 
1394 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1395 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1396 		else
1397 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1398 
1399 		if (--nr == 0)
1400 			break;
1401 		ptep++;
1402 		addr += PAGE_SIZE;
1403 	}
1404 }
1405 
1406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1407 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1408 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1409 				      unsigned long address, pmd_t *pmdp)
1410 {
1411 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1412 }
1413 
1414 #define pmdp_establish pmdp_establish
1415 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1416 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1417 {
1418 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1419 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1420 }
1421 #endif
1422 
1423 /*
1424  * Encode and decode a swap entry:
1425  *	bits 0-1:	present (must be zero)
1426  *	bits 2:		remember PG_anon_exclusive
1427  *	bit  3:		remember uffd-wp state
1428  *	bits 6-10:	swap type
1429  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1430  *	bits 12-61:	swap offset
1431  */
1432 #define __SWP_TYPE_SHIFT	6
1433 #define __SWP_TYPE_BITS		5
1434 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1435 #define __SWP_OFFSET_SHIFT	12
1436 #define __SWP_OFFSET_BITS	50
1437 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1438 
1439 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1440 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1441 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1442 
1443 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1444 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1445 
1446 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1447 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1448 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1449 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1450 
1451 /*
1452  * Ensure that there are not more swap files than can be encoded in the kernel
1453  * PTEs.
1454  */
1455 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1456 
1457 #ifdef CONFIG_ARM64_MTE
1458 
1459 #define __HAVE_ARCH_PREPARE_TO_SWAP
1460 extern int arch_prepare_to_swap(struct folio *folio);
1461 
1462 #define __HAVE_ARCH_SWAP_INVALIDATE
1463 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1464 {
1465 	if (system_supports_mte())
1466 		mte_invalidate_tags(type, offset);
1467 }
1468 
1469 static inline void arch_swap_invalidate_area(int type)
1470 {
1471 	if (system_supports_mte())
1472 		mte_invalidate_tags_area(type);
1473 }
1474 
1475 #define __HAVE_ARCH_SWAP_RESTORE
1476 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1477 
1478 #endif /* CONFIG_ARM64_MTE */
1479 
1480 /*
1481  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1482  */
1483 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1484 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1485 		unsigned int nr)
1486 {
1487 	/*
1488 	 * We don't do anything here, so there's a very small chance of
1489 	 * us retaking a user fault which we just fixed up. The alternative
1490 	 * is doing a dsb(ishst), but that penalises the fastpath.
1491 	 */
1492 }
1493 
1494 #define update_mmu_cache(vma, addr, ptep) \
1495 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1496 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1497 
1498 #ifdef CONFIG_ARM64_PA_BITS_52
1499 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1500 #else
1501 #define phys_to_ttbr(addr)	(addr)
1502 #endif
1503 
1504 /*
1505  * On arm64 without hardware Access Flag, copying from user will fail because
1506  * the pte is old and cannot be marked young. So we always end up with zeroed
1507  * page after fork() + CoW for pfn mappings. We don't always have a
1508  * hardware-managed access flag on arm64.
1509  */
1510 #define arch_has_hw_pte_young		cpu_has_hw_af
1511 
1512 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1513 #define arch_has_hw_nonleaf_pmd_young	system_supports_haft
1514 #endif
1515 
1516 /*
1517  * Experimentally, it's cheap to set the access flag in hardware and we
1518  * benefit from prefaulting mappings as 'old' to start with.
1519  */
1520 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1521 
1522 static inline bool pud_sect_supported(void)
1523 {
1524 	return PAGE_SIZE == SZ_4K;
1525 }
1526 
1527 
1528 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1529 #define ptep_modify_prot_start ptep_modify_prot_start
1530 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1531 				    unsigned long addr, pte_t *ptep);
1532 
1533 #define ptep_modify_prot_commit ptep_modify_prot_commit
1534 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1535 				    unsigned long addr, pte_t *ptep,
1536 				    pte_t old_pte, pte_t new_pte);
1537 
1538 #ifdef CONFIG_ARM64_CONTPTE
1539 
1540 /*
1541  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1542  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1543  * a private implementation detail of the public ptep API (see below).
1544  */
1545 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1546 				pte_t *ptep, pte_t pte);
1547 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1548 				pte_t *ptep, pte_t pte);
1549 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1550 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1551 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1552 				pte_t *ptep, pte_t pte, unsigned int nr);
1553 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1554 				pte_t *ptep, unsigned int nr, int full);
1555 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1556 				unsigned long addr, pte_t *ptep,
1557 				unsigned int nr, int full);
1558 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1559 				unsigned long addr, pte_t *ptep);
1560 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1561 				unsigned long addr, pte_t *ptep);
1562 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1563 				pte_t *ptep, unsigned int nr);
1564 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1565 				unsigned long addr, pte_t *ptep,
1566 				pte_t entry, int dirty);
1567 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1568 				unsigned long addr, pte_t *ptep,
1569 				unsigned int nr, cydp_t flags);
1570 
1571 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1572 				unsigned long addr, pte_t *ptep, pte_t pte)
1573 {
1574 	/*
1575 	 * Only bother trying if both the virtual and physical addresses are
1576 	 * aligned and correspond to the last entry in a contig range. The core
1577 	 * code mostly modifies ranges from low to high, so this is the likely
1578 	 * the last modification in the contig range, so a good time to fold.
1579 	 * We can't fold special mappings, because there is no associated folio.
1580 	 */
1581 
1582 	const unsigned long contmask = CONT_PTES - 1;
1583 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1584 
1585 	if (unlikely(valign)) {
1586 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1587 
1588 		if (unlikely(palign &&
1589 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1590 			__contpte_try_fold(mm, addr, ptep, pte);
1591 	}
1592 }
1593 
1594 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1595 				unsigned long addr, pte_t *ptep, pte_t pte)
1596 {
1597 	if (unlikely(pte_valid_cont(pte)))
1598 		__contpte_try_unfold(mm, addr, ptep, pte);
1599 }
1600 
1601 #define pte_batch_hint pte_batch_hint
1602 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1603 {
1604 	if (!pte_valid_cont(pte))
1605 		return 1;
1606 
1607 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1608 }
1609 
1610 /*
1611  * The below functions constitute the public API that arm64 presents to the
1612  * core-mm to manipulate PTE entries within their page tables (or at least this
1613  * is the subset of the API that arm64 needs to implement). These public
1614  * versions will automatically and transparently apply the contiguous bit where
1615  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1616  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1617  * private versions, which are prefixed with double underscore. All of these
1618  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1619  * held. Although the contiguous bit is considered private to the
1620  * implementation, it is deliberately allowed to leak through the getters (e.g.
1621  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1622  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1623  * its possible a pte will be passed to a setter with the contiguous bit set, so
1624  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1625  * setting it in the pgtable.
1626  */
1627 
1628 #define ptep_get ptep_get
1629 static inline pte_t ptep_get(pte_t *ptep)
1630 {
1631 	pte_t pte = __ptep_get(ptep);
1632 
1633 	if (likely(!pte_valid_cont(pte)))
1634 		return pte;
1635 
1636 	return contpte_ptep_get(ptep, pte);
1637 }
1638 
1639 #define ptep_get_lockless ptep_get_lockless
1640 static inline pte_t ptep_get_lockless(pte_t *ptep)
1641 {
1642 	pte_t pte = __ptep_get(ptep);
1643 
1644 	if (likely(!pte_valid_cont(pte)))
1645 		return pte;
1646 
1647 	return contpte_ptep_get_lockless(ptep);
1648 }
1649 
1650 static inline void set_pte(pte_t *ptep, pte_t pte)
1651 {
1652 	/*
1653 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1654 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1655 	 * this should never even be called. Regardless do our best to service
1656 	 * any call and emit a warning if there is any attempt to set a pte on
1657 	 * top of an existing contig range.
1658 	 */
1659 	pte_t orig_pte = __ptep_get(ptep);
1660 
1661 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1662 	__set_pte(ptep, pte_mknoncont(pte));
1663 }
1664 
1665 #define set_ptes set_ptes
1666 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1667 				pte_t *ptep, pte_t pte, unsigned int nr)
1668 {
1669 	pte = pte_mknoncont(pte);
1670 
1671 	if (likely(nr == 1)) {
1672 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1673 		__set_ptes(mm, addr, ptep, pte, 1);
1674 		contpte_try_fold(mm, addr, ptep, pte);
1675 	} else {
1676 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1677 	}
1678 }
1679 
1680 static inline void pte_clear(struct mm_struct *mm,
1681 				unsigned long addr, pte_t *ptep)
1682 {
1683 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1684 	__pte_clear(mm, addr, ptep);
1685 }
1686 
1687 #define clear_full_ptes clear_full_ptes
1688 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1689 				pte_t *ptep, unsigned int nr, int full)
1690 {
1691 	if (likely(nr == 1)) {
1692 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1693 		__clear_full_ptes(mm, addr, ptep, nr, full);
1694 	} else {
1695 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1696 	}
1697 }
1698 
1699 #define get_and_clear_full_ptes get_and_clear_full_ptes
1700 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1701 				unsigned long addr, pte_t *ptep,
1702 				unsigned int nr, int full)
1703 {
1704 	pte_t pte;
1705 
1706 	if (likely(nr == 1)) {
1707 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1708 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1709 	} else {
1710 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1711 	}
1712 
1713 	return pte;
1714 }
1715 
1716 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1717 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1718 				unsigned long addr, pte_t *ptep)
1719 {
1720 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1721 	return __ptep_get_and_clear(mm, addr, ptep);
1722 }
1723 
1724 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1725 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1726 				unsigned long addr, pte_t *ptep)
1727 {
1728 	pte_t orig_pte = __ptep_get(ptep);
1729 
1730 	if (likely(!pte_valid_cont(orig_pte)))
1731 		return __ptep_test_and_clear_young(vma, addr, ptep);
1732 
1733 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1734 }
1735 
1736 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1737 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1738 				unsigned long addr, pte_t *ptep)
1739 {
1740 	pte_t orig_pte = __ptep_get(ptep);
1741 
1742 	if (likely(!pte_valid_cont(orig_pte)))
1743 		return __ptep_clear_flush_young(vma, addr, ptep);
1744 
1745 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1746 }
1747 
1748 #define wrprotect_ptes wrprotect_ptes
1749 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1750 				unsigned long addr, pte_t *ptep, unsigned int nr)
1751 {
1752 	if (likely(nr == 1)) {
1753 		/*
1754 		 * Optimization: wrprotect_ptes() can only be called for present
1755 		 * ptes so we only need to check contig bit as condition for
1756 		 * unfold, and we can remove the contig bit from the pte we read
1757 		 * to avoid re-reading. This speeds up fork() which is sensitive
1758 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1759 		 */
1760 		pte_t orig_pte = __ptep_get(ptep);
1761 
1762 		if (unlikely(pte_cont(orig_pte))) {
1763 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1764 			orig_pte = pte_mknoncont(orig_pte);
1765 		}
1766 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1767 	} else {
1768 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1769 	}
1770 }
1771 
1772 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1773 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1774 				unsigned long addr, pte_t *ptep)
1775 {
1776 	wrprotect_ptes(mm, addr, ptep, 1);
1777 }
1778 
1779 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1780 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1781 				unsigned long addr, pte_t *ptep,
1782 				pte_t entry, int dirty)
1783 {
1784 	pte_t orig_pte = __ptep_get(ptep);
1785 
1786 	entry = pte_mknoncont(entry);
1787 
1788 	if (likely(!pte_valid_cont(orig_pte)))
1789 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1790 
1791 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1792 }
1793 
1794 #define clear_young_dirty_ptes clear_young_dirty_ptes
1795 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1796 					  unsigned long addr, pte_t *ptep,
1797 					  unsigned int nr, cydp_t flags)
1798 {
1799 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1800 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1801 	else
1802 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1803 }
1804 
1805 #else /* CONFIG_ARM64_CONTPTE */
1806 
1807 #define ptep_get				__ptep_get
1808 #define set_pte					__set_pte
1809 #define set_ptes				__set_ptes
1810 #define pte_clear				__pte_clear
1811 #define clear_full_ptes				__clear_full_ptes
1812 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1813 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1814 #define ptep_get_and_clear			__ptep_get_and_clear
1815 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1816 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1817 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1818 #define ptep_clear_flush_young			__ptep_clear_flush_young
1819 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1820 #define ptep_set_wrprotect			__ptep_set_wrprotect
1821 #define wrprotect_ptes				__wrprotect_ptes
1822 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1823 #define ptep_set_access_flags			__ptep_set_access_flags
1824 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1825 
1826 #endif /* CONFIG_ARM64_CONTPTE */
1827 
1828 #endif /* !__ASSEMBLY__ */
1829 
1830 #endif /* __ASM_PGTABLE_H */
1831