xref: /linux/arch/arm64/include/asm/pgtable.h (revision 288cb34ead03c0d09932317b239f1f4d38fc9d4f)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
44 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45 
46 /* Set stride and tlb_level in flush_*_tlb_range */
47 #define flush_pmd_tlb_range(vma, addr, end)	\
48 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49 #define flush_pud_tlb_range(vma, addr, end)	\
50 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52 
53 /*
54  * Outside of a few very special situations (e.g. hibernation), we always
55  * use broadcast TLB invalidation instructions, therefore a spurious page
56  * fault on one CPU which has been handled concurrently by another CPU
57  * does not need to perform additional invalidation.
58  */
59 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60 
61 /*
62  * ZERO_PAGE is a global shared page that is always zero: used
63  * for zero-mapped memory areas etc..
64  */
65 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
67 
68 #define pte_ERROR(e)	\
69 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70 
71 /*
72  * Macros to convert between a physical address and its placement in a
73  * page table entry, taking care of 52-bit addresses.
74  */
75 #ifdef CONFIG_ARM64_PA_BITS_52
76 static inline phys_addr_t __pte_to_phys(pte_t pte)
77 {
78 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
79 	return (pte_val(pte) & PTE_ADDR_LOW) |
80 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81 }
82 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83 {
84 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
85 }
86 #else
87 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_LOW)
88 #define __phys_to_pte_val(phys)	(phys)
89 #endif
90 
91 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
92 #define pfn_pte(pfn,prot)	\
93 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94 
95 #define pte_none(pte)		(!pte_val(pte))
96 #define __pte_clear(mm, addr, ptep) \
97 				__set_pte(ptep, __pte(0))
98 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
99 
100 /*
101  * The following only work if pte_present(). Undefined behaviour otherwise.
102  */
103 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
104 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
105 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
106 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
107 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
108 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
109 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
110 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
111 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
112 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
113 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
114 
115 #define pte_cont_addr_end(addr, end)						\
116 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
117 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
118 })
119 
120 #define pmd_cont_addr_end(addr, end)						\
121 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
122 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
123 })
124 
125 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
126 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
127 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
128 
129 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
130 #define pte_present_invalid(pte) \
131 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
132 /*
133  * Execute-only user mappings do not have the PTE_USER bit set. All valid
134  * kernel mappings have the PTE_UXN bit set.
135  */
136 #define pte_valid_not_user(pte) \
137 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
138 /*
139  * Returns true if the pte is valid and has the contiguous bit set.
140  */
141 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
142 /*
143  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
144  * so that we don't erroneously return false for pages that have been
145  * remapped as PROT_NONE but are yet to be flushed from the TLB.
146  * Note that we can't make any assumptions based on the state of the access
147  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
148  * TLB.
149  */
150 #define pte_accessible(mm, pte)	\
151 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
152 
153 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
154 {
155 	u64 por;
156 
157 	if (!system_supports_poe())
158 		return true;
159 
160 	por = read_sysreg_s(SYS_POR_EL0);
161 
162 	if (write)
163 		return por_elx_allows_write(por, pkey);
164 
165 	if (execute)
166 		return por_elx_allows_exec(por, pkey);
167 
168 	return por_elx_allows_read(por, pkey);
169 }
170 
171 /*
172  * p??_access_permitted() is true for valid user mappings (PTE_USER
173  * bit set, subject to the write permission check). For execute-only
174  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
175  * not set) must return false. PROT_NONE mappings do not have the
176  * PTE_VALID bit set.
177  */
178 #define pte_access_permitted_no_overlay(pte, write) \
179 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
180 #define pte_access_permitted(pte, write) \
181 	(pte_access_permitted_no_overlay(pte, write) && \
182 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
183 #define pmd_access_permitted(pmd, write) \
184 	(pte_access_permitted(pmd_pte(pmd), (write)))
185 #define pud_access_permitted(pud, write) \
186 	(pte_access_permitted(pud_pte(pud), (write)))
187 
188 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
189 {
190 	pte_val(pte) &= ~pgprot_val(prot);
191 	return pte;
192 }
193 
194 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
195 {
196 	pte_val(pte) |= pgprot_val(prot);
197 	return pte;
198 }
199 
200 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
201 {
202 	pmd_val(pmd) &= ~pgprot_val(prot);
203 	return pmd;
204 }
205 
206 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
207 {
208 	pmd_val(pmd) |= pgprot_val(prot);
209 	return pmd;
210 }
211 
212 static inline pte_t pte_mkwrite_novma(pte_t pte)
213 {
214 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
215 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
216 	return pte;
217 }
218 
219 static inline pte_t pte_mkclean(pte_t pte)
220 {
221 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
222 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
223 
224 	return pte;
225 }
226 
227 static inline pte_t pte_mkdirty(pte_t pte)
228 {
229 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
230 
231 	if (pte_write(pte))
232 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
233 
234 	return pte;
235 }
236 
237 static inline pte_t pte_wrprotect(pte_t pte)
238 {
239 	/*
240 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
241 	 * clear), set the PTE_DIRTY bit.
242 	 */
243 	if (pte_hw_dirty(pte))
244 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
245 
246 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
247 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
248 	return pte;
249 }
250 
251 static inline pte_t pte_mkold(pte_t pte)
252 {
253 	return clear_pte_bit(pte, __pgprot(PTE_AF));
254 }
255 
256 static inline pte_t pte_mkyoung(pte_t pte)
257 {
258 	return set_pte_bit(pte, __pgprot(PTE_AF));
259 }
260 
261 static inline pte_t pte_mkspecial(pte_t pte)
262 {
263 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
264 }
265 
266 static inline pte_t pte_mkcont(pte_t pte)
267 {
268 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
269 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
270 }
271 
272 static inline pte_t pte_mknoncont(pte_t pte)
273 {
274 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
275 }
276 
277 static inline pte_t pte_mkpresent(pte_t pte)
278 {
279 	return set_pte_bit(pte, __pgprot(PTE_VALID));
280 }
281 
282 static inline pte_t pte_mkinvalid(pte_t pte)
283 {
284 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
285 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
286 	return pte;
287 }
288 
289 static inline pmd_t pmd_mkcont(pmd_t pmd)
290 {
291 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
292 }
293 
294 static inline pte_t pte_mkdevmap(pte_t pte)
295 {
296 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
297 }
298 
299 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
300 static inline int pte_uffd_wp(pte_t pte)
301 {
302 	return !!(pte_val(pte) & PTE_UFFD_WP);
303 }
304 
305 static inline pte_t pte_mkuffd_wp(pte_t pte)
306 {
307 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
308 }
309 
310 static inline pte_t pte_clear_uffd_wp(pte_t pte)
311 {
312 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
313 }
314 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
315 
316 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
317 {
318 	WRITE_ONCE(*ptep, pte);
319 }
320 
321 static inline void __set_pte(pte_t *ptep, pte_t pte)
322 {
323 	__set_pte_nosync(ptep, pte);
324 
325 	/*
326 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
327 	 * or update_mmu_cache() have the necessary barriers.
328 	 */
329 	if (pte_valid_not_user(pte)) {
330 		dsb(ishst);
331 		isb();
332 	}
333 }
334 
335 static inline pte_t __ptep_get(pte_t *ptep)
336 {
337 	return READ_ONCE(*ptep);
338 }
339 
340 extern void __sync_icache_dcache(pte_t pteval);
341 bool pgattr_change_is_safe(u64 old, u64 new);
342 
343 /*
344  * PTE bits configuration in the presence of hardware Dirty Bit Management
345  * (PTE_WRITE == PTE_DBM):
346  *
347  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
348  *   0      0      |   1           0          0
349  *   0      1      |   1           1          0
350  *   1      0      |   1           0          1
351  *   1      1      |   0           1          x
352  *
353  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
354  * the page fault mechanism. Checking the dirty status of a pte becomes:
355  *
356  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
357  */
358 
359 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
360 					   pte_t pte)
361 {
362 	pte_t old_pte;
363 
364 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
365 		return;
366 
367 	old_pte = __ptep_get(ptep);
368 
369 	if (!pte_valid(old_pte) || !pte_valid(pte))
370 		return;
371 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
372 		return;
373 
374 	/*
375 	 * Check for potential race with hardware updates of the pte
376 	 * (__ptep_set_access_flags safely changes valid ptes without going
377 	 * through an invalid entry).
378 	 */
379 	VM_WARN_ONCE(!pte_young(pte),
380 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
381 		     __func__, pte_val(old_pte), pte_val(pte));
382 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
383 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
384 		     __func__, pte_val(old_pte), pte_val(pte));
385 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
386 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
387 		     __func__, pte_val(old_pte), pte_val(pte));
388 }
389 
390 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
391 {
392 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
393 		__sync_icache_dcache(pte);
394 
395 	/*
396 	 * If the PTE would provide user space access to the tags associated
397 	 * with it then ensure that the MTE tags are synchronised.  Although
398 	 * pte_access_permitted_no_overlay() returns false for exec only
399 	 * mappings, they don't expose tags (instruction fetches don't check
400 	 * tags).
401 	 */
402 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
403 	    !pte_special(pte) && pte_tagged(pte))
404 		mte_sync_tags(pte, nr_pages);
405 }
406 
407 /*
408  * Select all bits except the pfn
409  */
410 static inline pgprot_t pte_pgprot(pte_t pte)
411 {
412 	unsigned long pfn = pte_pfn(pte);
413 
414 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
415 }
416 
417 #define pte_advance_pfn pte_advance_pfn
418 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
419 {
420 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
421 }
422 
423 static inline void __set_ptes(struct mm_struct *mm,
424 			      unsigned long __always_unused addr,
425 			      pte_t *ptep, pte_t pte, unsigned int nr)
426 {
427 	page_table_check_ptes_set(mm, ptep, pte, nr);
428 	__sync_cache_and_tags(pte, nr);
429 
430 	for (;;) {
431 		__check_safe_pte_update(mm, ptep, pte);
432 		__set_pte(ptep, pte);
433 		if (--nr == 0)
434 			break;
435 		ptep++;
436 		pte = pte_advance_pfn(pte, 1);
437 	}
438 }
439 
440 /*
441  * Huge pte definitions.
442  */
443 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
444 
445 /*
446  * Hugetlb definitions.
447  */
448 #define HUGE_MAX_HSTATE		4
449 #define HPAGE_SHIFT		PMD_SHIFT
450 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
451 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
452 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
453 
454 static inline pte_t pgd_pte(pgd_t pgd)
455 {
456 	return __pte(pgd_val(pgd));
457 }
458 
459 static inline pte_t p4d_pte(p4d_t p4d)
460 {
461 	return __pte(p4d_val(p4d));
462 }
463 
464 static inline pte_t pud_pte(pud_t pud)
465 {
466 	return __pte(pud_val(pud));
467 }
468 
469 static inline pud_t pte_pud(pte_t pte)
470 {
471 	return __pud(pte_val(pte));
472 }
473 
474 static inline pmd_t pud_pmd(pud_t pud)
475 {
476 	return __pmd(pud_val(pud));
477 }
478 
479 static inline pte_t pmd_pte(pmd_t pmd)
480 {
481 	return __pte(pmd_val(pmd));
482 }
483 
484 static inline pmd_t pte_pmd(pte_t pte)
485 {
486 	return __pmd(pte_val(pte));
487 }
488 
489 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
490 {
491 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
492 }
493 
494 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
495 {
496 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
497 }
498 
499 static inline pte_t pte_swp_mkexclusive(pte_t pte)
500 {
501 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
502 }
503 
504 static inline int pte_swp_exclusive(pte_t pte)
505 {
506 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
507 }
508 
509 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
510 {
511 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
512 }
513 
514 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
515 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
516 {
517 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
518 }
519 
520 static inline int pte_swp_uffd_wp(pte_t pte)
521 {
522 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
523 }
524 
525 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
526 {
527 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
528 }
529 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
530 
531 #ifdef CONFIG_NUMA_BALANCING
532 /*
533  * See the comment in include/linux/pgtable.h
534  */
535 static inline int pte_protnone(pte_t pte)
536 {
537 	/*
538 	 * pte_present_invalid() tells us that the pte is invalid from HW
539 	 * perspective but present from SW perspective, so the fields are to be
540 	 * interpretted as per the HW layout. The second 2 checks are the unique
541 	 * encoding that we use for PROT_NONE. It is insufficient to only use
542 	 * the first check because we share the same encoding scheme with pmds
543 	 * which support pmd_mkinvalid(), so can be present-invalid without
544 	 * being PROT_NONE.
545 	 */
546 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
547 }
548 
549 static inline int pmd_protnone(pmd_t pmd)
550 {
551 	return pte_protnone(pmd_pte(pmd));
552 }
553 #endif
554 
555 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
556 
557 /*
558  * THP definitions.
559  */
560 
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 static inline int pmd_trans_huge(pmd_t pmd)
563 {
564 	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
565 }
566 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
567 
568 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
569 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
570 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
571 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
572 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
573 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
574 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
575 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
576 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
577 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
578 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
579 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
580 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
581 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
582 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
583 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
584 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
585 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
586 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
587 #define pmd_swp_clear_uffd_wp(pmd) \
588 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
589 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
590 
591 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
592 
593 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
594 
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
597 #endif
598 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
599 {
600 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
601 }
602 
603 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
604 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
605 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
606 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
607 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
608 
609 #define pud_young(pud)		pte_young(pud_pte(pud))
610 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
611 #define pud_write(pud)		pte_write(pud_pte(pud))
612 
613 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
614 
615 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
616 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
617 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
618 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
619 
620 static inline void __set_pte_at(struct mm_struct *mm,
621 				unsigned long __always_unused addr,
622 				pte_t *ptep, pte_t pte, unsigned int nr)
623 {
624 	__sync_cache_and_tags(pte, nr);
625 	__check_safe_pte_update(mm, ptep, pte);
626 	__set_pte(ptep, pte);
627 }
628 
629 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
630 			      pmd_t *pmdp, pmd_t pmd)
631 {
632 	page_table_check_pmd_set(mm, pmdp, pmd);
633 	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
634 						PMD_SIZE >> PAGE_SHIFT);
635 }
636 
637 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
638 			      pud_t *pudp, pud_t pud)
639 {
640 	page_table_check_pud_set(mm, pudp, pud);
641 	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
642 						PUD_SIZE >> PAGE_SHIFT);
643 }
644 
645 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
646 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
647 
648 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
649 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
650 
651 #define __pgprot_modify(prot,mask,bits) \
652 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
653 
654 #define pgprot_nx(prot) \
655 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
656 
657 /*
658  * Mark the prot value as uncacheable and unbufferable.
659  */
660 #define pgprot_noncached(prot) \
661 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
662 #define pgprot_writecombine(prot) \
663 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
664 #define pgprot_device(prot) \
665 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
666 #define pgprot_tagged(prot) \
667 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
668 #define pgprot_mhp	pgprot_tagged
669 /*
670  * DMA allocations for non-coherent devices use what the Arm architecture calls
671  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
672  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
673  * is intended for MMIO and thus forbids speculation, preserves access size,
674  * requires strict alignment and can also force write responses to come from the
675  * endpoint.
676  */
677 #define pgprot_dmacoherent(prot) \
678 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
679 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
680 
681 #define __HAVE_PHYS_MEM_ACCESS_PROT
682 struct file;
683 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
684 				     unsigned long size, pgprot_t vma_prot);
685 
686 #define pmd_none(pmd)		(!pmd_val(pmd))
687 
688 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
689 				 PMD_TYPE_TABLE)
690 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
691 				 PMD_TYPE_SECT)
692 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
693 #define pmd_bad(pmd)		(!pmd_table(pmd))
694 
695 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
696 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
697 
698 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
699 static inline bool pud_sect(pud_t pud) { return false; }
700 static inline bool pud_table(pud_t pud) { return true; }
701 #else
702 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
703 				 PUD_TYPE_SECT)
704 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
705 				 PUD_TYPE_TABLE)
706 #endif
707 
708 extern pgd_t init_pg_dir[];
709 extern pgd_t init_pg_end[];
710 extern pgd_t swapper_pg_dir[];
711 extern pgd_t idmap_pg_dir[];
712 extern pgd_t tramp_pg_dir[];
713 extern pgd_t reserved_pg_dir[];
714 
715 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
716 
717 static inline bool in_swapper_pgdir(void *addr)
718 {
719 	return ((unsigned long)addr & PAGE_MASK) ==
720 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
721 }
722 
723 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
724 {
725 #ifdef __PAGETABLE_PMD_FOLDED
726 	if (in_swapper_pgdir(pmdp)) {
727 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
728 		return;
729 	}
730 #endif /* __PAGETABLE_PMD_FOLDED */
731 
732 	WRITE_ONCE(*pmdp, pmd);
733 
734 	if (pmd_valid(pmd)) {
735 		dsb(ishst);
736 		isb();
737 	}
738 }
739 
740 static inline void pmd_clear(pmd_t *pmdp)
741 {
742 	set_pmd(pmdp, __pmd(0));
743 }
744 
745 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
746 {
747 	return __pmd_to_phys(pmd);
748 }
749 
750 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
751 {
752 	return (unsigned long)__va(pmd_page_paddr(pmd));
753 }
754 
755 /* Find an entry in the third-level page table. */
756 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
757 
758 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
759 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
760 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
761 
762 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
763 
764 /* use ONLY for statically allocated translation tables */
765 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
766 
767 /*
768  * Conversion functions: convert a page and protection to a page entry,
769  * and a page entry and page directory to the page they refer to.
770  */
771 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
772 
773 #if CONFIG_PGTABLE_LEVELS > 2
774 
775 #define pmd_ERROR(e)	\
776 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
777 
778 #define pud_none(pud)		(!pud_val(pud))
779 #define pud_bad(pud)		(!pud_table(pud))
780 #define pud_present(pud)	pte_present(pud_pte(pud))
781 #ifndef __PAGETABLE_PMD_FOLDED
782 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
783 #else
784 #define pud_leaf(pud)		false
785 #endif
786 #define pud_valid(pud)		pte_valid(pud_pte(pud))
787 #define pud_user(pud)		pte_user(pud_pte(pud))
788 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
789 
790 static inline bool pgtable_l4_enabled(void);
791 
792 static inline void set_pud(pud_t *pudp, pud_t pud)
793 {
794 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
795 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
796 		return;
797 	}
798 
799 	WRITE_ONCE(*pudp, pud);
800 
801 	if (pud_valid(pud)) {
802 		dsb(ishst);
803 		isb();
804 	}
805 }
806 
807 static inline void pud_clear(pud_t *pudp)
808 {
809 	set_pud(pudp, __pud(0));
810 }
811 
812 static inline phys_addr_t pud_page_paddr(pud_t pud)
813 {
814 	return __pud_to_phys(pud);
815 }
816 
817 static inline pmd_t *pud_pgtable(pud_t pud)
818 {
819 	return (pmd_t *)__va(pud_page_paddr(pud));
820 }
821 
822 /* Find an entry in the second-level page table. */
823 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
824 
825 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
826 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
827 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
828 
829 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
830 
831 /* use ONLY for statically allocated translation tables */
832 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
833 
834 #else
835 
836 #define pud_valid(pud)		false
837 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
838 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
839 
840 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
841 #define pmd_set_fixmap(addr)		NULL
842 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
843 #define pmd_clear_fixmap()
844 
845 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
846 
847 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
848 
849 #if CONFIG_PGTABLE_LEVELS > 3
850 
851 static __always_inline bool pgtable_l4_enabled(void)
852 {
853 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
854 		return true;
855 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
856 		return vabits_actual == VA_BITS;
857 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
858 }
859 
860 static inline bool mm_pud_folded(const struct mm_struct *mm)
861 {
862 	return !pgtable_l4_enabled();
863 }
864 #define mm_pud_folded  mm_pud_folded
865 
866 #define pud_ERROR(e)	\
867 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
868 
869 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
870 #define p4d_bad(p4d)		(pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
871 #define p4d_present(p4d)	(!p4d_none(p4d))
872 
873 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
874 {
875 	if (in_swapper_pgdir(p4dp)) {
876 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
877 		return;
878 	}
879 
880 	WRITE_ONCE(*p4dp, p4d);
881 	dsb(ishst);
882 	isb();
883 }
884 
885 static inline void p4d_clear(p4d_t *p4dp)
886 {
887 	if (pgtable_l4_enabled())
888 		set_p4d(p4dp, __p4d(0));
889 }
890 
891 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
892 {
893 	return __p4d_to_phys(p4d);
894 }
895 
896 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
897 
898 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
899 {
900 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
901 }
902 
903 static inline pud_t *p4d_pgtable(p4d_t p4d)
904 {
905 	return (pud_t *)__va(p4d_page_paddr(p4d));
906 }
907 
908 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
909 {
910 	BUG_ON(!pgtable_l4_enabled());
911 
912 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
913 }
914 
915 static inline
916 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
917 {
918 	if (!pgtable_l4_enabled())
919 		return p4d_to_folded_pud(p4dp, addr);
920 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
921 }
922 #define pud_offset_lockless pud_offset_lockless
923 
924 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
925 {
926 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
927 }
928 #define pud_offset	pud_offset
929 
930 static inline pud_t *pud_set_fixmap(unsigned long addr)
931 {
932 	if (!pgtable_l4_enabled())
933 		return NULL;
934 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
935 }
936 
937 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
938 {
939 	if (!pgtable_l4_enabled())
940 		return p4d_to_folded_pud(p4dp, addr);
941 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
942 }
943 
944 static inline void pud_clear_fixmap(void)
945 {
946 	if (pgtable_l4_enabled())
947 		clear_fixmap(FIX_PUD);
948 }
949 
950 /* use ONLY for statically allocated translation tables */
951 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
952 {
953 	if (!pgtable_l4_enabled())
954 		return p4d_to_folded_pud(p4dp, addr);
955 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
956 }
957 
958 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
959 
960 #else
961 
962 static inline bool pgtable_l4_enabled(void) { return false; }
963 
964 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
965 
966 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
967 #define pud_set_fixmap(addr)		NULL
968 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
969 #define pud_clear_fixmap()
970 
971 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
972 
973 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
974 
975 #if CONFIG_PGTABLE_LEVELS > 4
976 
977 static __always_inline bool pgtable_l5_enabled(void)
978 {
979 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
980 		return vabits_actual == VA_BITS;
981 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
982 }
983 
984 static inline bool mm_p4d_folded(const struct mm_struct *mm)
985 {
986 	return !pgtable_l5_enabled();
987 }
988 #define mm_p4d_folded  mm_p4d_folded
989 
990 #define p4d_ERROR(e)	\
991 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
992 
993 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
994 #define pgd_bad(pgd)		(pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
995 #define pgd_present(pgd)	(!pgd_none(pgd))
996 
997 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
998 {
999 	if (in_swapper_pgdir(pgdp)) {
1000 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1001 		return;
1002 	}
1003 
1004 	WRITE_ONCE(*pgdp, pgd);
1005 	dsb(ishst);
1006 	isb();
1007 }
1008 
1009 static inline void pgd_clear(pgd_t *pgdp)
1010 {
1011 	if (pgtable_l5_enabled())
1012 		set_pgd(pgdp, __pgd(0));
1013 }
1014 
1015 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1016 {
1017 	return __pgd_to_phys(pgd);
1018 }
1019 
1020 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1021 
1022 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1023 {
1024 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1025 }
1026 
1027 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1028 {
1029 	BUG_ON(!pgtable_l5_enabled());
1030 
1031 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1032 }
1033 
1034 static inline
1035 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1036 {
1037 	if (!pgtable_l5_enabled())
1038 		return pgd_to_folded_p4d(pgdp, addr);
1039 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1040 }
1041 #define p4d_offset_lockless p4d_offset_lockless
1042 
1043 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1044 {
1045 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1046 }
1047 
1048 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1049 {
1050 	if (!pgtable_l5_enabled())
1051 		return NULL;
1052 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1053 }
1054 
1055 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1056 {
1057 	if (!pgtable_l5_enabled())
1058 		return pgd_to_folded_p4d(pgdp, addr);
1059 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1060 }
1061 
1062 static inline void p4d_clear_fixmap(void)
1063 {
1064 	if (pgtable_l5_enabled())
1065 		clear_fixmap(FIX_P4D);
1066 }
1067 
1068 /* use ONLY for statically allocated translation tables */
1069 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1070 {
1071 	if (!pgtable_l5_enabled())
1072 		return pgd_to_folded_p4d(pgdp, addr);
1073 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1074 }
1075 
1076 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1077 
1078 #else
1079 
1080 static inline bool pgtable_l5_enabled(void) { return false; }
1081 
1082 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1083 
1084 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1085 #define p4d_set_fixmap(addr)		NULL
1086 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1087 #define p4d_clear_fixmap()
1088 
1089 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1090 
1091 static inline
1092 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1093 {
1094 	/*
1095 	 * With runtime folding of the pud, pud_offset_lockless() passes
1096 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1097 	 * will offset the pointer assuming that it points into
1098 	 * a page-table page. However, the fast GUP path passes us a
1099 	 * pgd_t allocated on the stack and so we must use the original
1100 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1101 	 * using the generic p4d_offset_lockless() implementation.
1102 	 *
1103 	 * Note: reusing the original pointer means that we may
1104 	 * dereference the same (live) page-table entry multiple times.
1105 	 * This is safe because it is still only loaded once in the
1106 	 * context of each level and the CPU guarantees same-address
1107 	 * read-after-read ordering.
1108 	 */
1109 	return p4d_offset(pgdp, addr);
1110 }
1111 #define p4d_offset_lockless p4d_offset_lockless_folded
1112 
1113 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1114 
1115 #define pgd_ERROR(e)	\
1116 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1117 
1118 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1119 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1120 
1121 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1122 {
1123 	/*
1124 	 * Normal and Normal-Tagged are two different memory types and indices
1125 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1126 	 */
1127 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1128 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1129 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1130 
1131 	/* preserve the hardware dirty information */
1132 	if (pte_hw_dirty(pte))
1133 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1134 
1135 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1136 	/*
1137 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1138 	 * dirtiness again.
1139 	 */
1140 	if (pte_sw_dirty(pte))
1141 		pte = pte_mkdirty(pte);
1142 	return pte;
1143 }
1144 
1145 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1146 {
1147 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1148 }
1149 
1150 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1151 				 unsigned long address, pte_t *ptep,
1152 				 pte_t entry, int dirty);
1153 
1154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1155 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1156 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1157 					unsigned long address, pmd_t *pmdp,
1158 					pmd_t entry, int dirty)
1159 {
1160 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1161 							pmd_pte(entry), dirty);
1162 }
1163 
1164 static inline int pud_devmap(pud_t pud)
1165 {
1166 	return 0;
1167 }
1168 
1169 static inline int pgd_devmap(pgd_t pgd)
1170 {
1171 	return 0;
1172 }
1173 #endif
1174 
1175 #ifdef CONFIG_PAGE_TABLE_CHECK
1176 static inline bool pte_user_accessible_page(pte_t pte)
1177 {
1178 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1179 }
1180 
1181 static inline bool pmd_user_accessible_page(pmd_t pmd)
1182 {
1183 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1184 }
1185 
1186 static inline bool pud_user_accessible_page(pud_t pud)
1187 {
1188 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1189 }
1190 #endif
1191 
1192 /*
1193  * Atomic pte/pmd modifications.
1194  */
1195 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1196 					      unsigned long address,
1197 					      pte_t *ptep)
1198 {
1199 	pte_t old_pte, pte;
1200 
1201 	pte = __ptep_get(ptep);
1202 	do {
1203 		old_pte = pte;
1204 		pte = pte_mkold(pte);
1205 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1206 					       pte_val(old_pte), pte_val(pte));
1207 	} while (pte_val(pte) != pte_val(old_pte));
1208 
1209 	return pte_young(pte);
1210 }
1211 
1212 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1213 					 unsigned long address, pte_t *ptep)
1214 {
1215 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1216 
1217 	if (young) {
1218 		/*
1219 		 * We can elide the trailing DSB here since the worst that can
1220 		 * happen is that a CPU continues to use the young entry in its
1221 		 * TLB and we mistakenly reclaim the associated page. The
1222 		 * window for such an event is bounded by the next
1223 		 * context-switch, which provides a DSB to complete the TLB
1224 		 * invalidation.
1225 		 */
1226 		flush_tlb_page_nosync(vma, address);
1227 	}
1228 
1229 	return young;
1230 }
1231 
1232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1233 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1234 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1235 					    unsigned long address,
1236 					    pmd_t *pmdp)
1237 {
1238 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1239 }
1240 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1241 
1242 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1243 				       unsigned long address, pte_t *ptep)
1244 {
1245 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1246 
1247 	page_table_check_pte_clear(mm, pte);
1248 
1249 	return pte;
1250 }
1251 
1252 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1253 				pte_t *ptep, unsigned int nr, int full)
1254 {
1255 	for (;;) {
1256 		__ptep_get_and_clear(mm, addr, ptep);
1257 		if (--nr == 0)
1258 			break;
1259 		ptep++;
1260 		addr += PAGE_SIZE;
1261 	}
1262 }
1263 
1264 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1265 				unsigned long addr, pte_t *ptep,
1266 				unsigned int nr, int full)
1267 {
1268 	pte_t pte, tmp_pte;
1269 
1270 	pte = __ptep_get_and_clear(mm, addr, ptep);
1271 	while (--nr) {
1272 		ptep++;
1273 		addr += PAGE_SIZE;
1274 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1275 		if (pte_dirty(tmp_pte))
1276 			pte = pte_mkdirty(pte);
1277 		if (pte_young(tmp_pte))
1278 			pte = pte_mkyoung(pte);
1279 	}
1280 	return pte;
1281 }
1282 
1283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1284 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1285 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1286 					    unsigned long address, pmd_t *pmdp)
1287 {
1288 	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1289 
1290 	page_table_check_pmd_clear(mm, pmd);
1291 
1292 	return pmd;
1293 }
1294 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1295 
1296 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1297 					unsigned long address, pte_t *ptep,
1298 					pte_t pte)
1299 {
1300 	pte_t old_pte;
1301 
1302 	do {
1303 		old_pte = pte;
1304 		pte = pte_wrprotect(pte);
1305 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1306 					       pte_val(old_pte), pte_val(pte));
1307 	} while (pte_val(pte) != pte_val(old_pte));
1308 }
1309 
1310 /*
1311  * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1312  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1313  */
1314 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1315 					unsigned long address, pte_t *ptep)
1316 {
1317 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1318 }
1319 
1320 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1321 				pte_t *ptep, unsigned int nr)
1322 {
1323 	unsigned int i;
1324 
1325 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1326 		__ptep_set_wrprotect(mm, address, ptep);
1327 }
1328 
1329 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1330 					   unsigned long addr, pte_t *ptep,
1331 					   pte_t pte, cydp_t flags)
1332 {
1333 	pte_t old_pte;
1334 
1335 	do {
1336 		old_pte = pte;
1337 
1338 		if (flags & CYDP_CLEAR_YOUNG)
1339 			pte = pte_mkold(pte);
1340 		if (flags & CYDP_CLEAR_DIRTY)
1341 			pte = pte_mkclean(pte);
1342 
1343 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1344 					       pte_val(old_pte), pte_val(pte));
1345 	} while (pte_val(pte) != pte_val(old_pte));
1346 }
1347 
1348 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1349 					    unsigned long addr, pte_t *ptep,
1350 					    unsigned int nr, cydp_t flags)
1351 {
1352 	pte_t pte;
1353 
1354 	for (;;) {
1355 		pte = __ptep_get(ptep);
1356 
1357 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1358 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1359 		else
1360 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1361 
1362 		if (--nr == 0)
1363 			break;
1364 		ptep++;
1365 		addr += PAGE_SIZE;
1366 	}
1367 }
1368 
1369 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1370 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1371 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1372 				      unsigned long address, pmd_t *pmdp)
1373 {
1374 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1375 }
1376 
1377 #define pmdp_establish pmdp_establish
1378 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1379 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1380 {
1381 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1382 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1383 }
1384 #endif
1385 
1386 /*
1387  * Encode and decode a swap entry:
1388  *	bits 0-1:	present (must be zero)
1389  *	bits 2:		remember PG_anon_exclusive
1390  *	bit  3:		remember uffd-wp state
1391  *	bits 6-10:	swap type
1392  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1393  *	bits 12-61:	swap offset
1394  */
1395 #define __SWP_TYPE_SHIFT	6
1396 #define __SWP_TYPE_BITS		5
1397 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1398 #define __SWP_OFFSET_SHIFT	12
1399 #define __SWP_OFFSET_BITS	50
1400 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1401 
1402 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1403 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1404 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1405 
1406 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1407 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1408 
1409 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1410 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1411 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1412 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1413 
1414 /*
1415  * Ensure that there are not more swap files than can be encoded in the kernel
1416  * PTEs.
1417  */
1418 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1419 
1420 #ifdef CONFIG_ARM64_MTE
1421 
1422 #define __HAVE_ARCH_PREPARE_TO_SWAP
1423 extern int arch_prepare_to_swap(struct folio *folio);
1424 
1425 #define __HAVE_ARCH_SWAP_INVALIDATE
1426 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1427 {
1428 	if (system_supports_mte())
1429 		mte_invalidate_tags(type, offset);
1430 }
1431 
1432 static inline void arch_swap_invalidate_area(int type)
1433 {
1434 	if (system_supports_mte())
1435 		mte_invalidate_tags_area(type);
1436 }
1437 
1438 #define __HAVE_ARCH_SWAP_RESTORE
1439 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1440 
1441 #endif /* CONFIG_ARM64_MTE */
1442 
1443 /*
1444  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1445  */
1446 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1447 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1448 		unsigned int nr)
1449 {
1450 	/*
1451 	 * We don't do anything here, so there's a very small chance of
1452 	 * us retaking a user fault which we just fixed up. The alternative
1453 	 * is doing a dsb(ishst), but that penalises the fastpath.
1454 	 */
1455 }
1456 
1457 #define update_mmu_cache(vma, addr, ptep) \
1458 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1459 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1460 
1461 #ifdef CONFIG_ARM64_PA_BITS_52
1462 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1463 #else
1464 #define phys_to_ttbr(addr)	(addr)
1465 #endif
1466 
1467 /*
1468  * On arm64 without hardware Access Flag, copying from user will fail because
1469  * the pte is old and cannot be marked young. So we always end up with zeroed
1470  * page after fork() + CoW for pfn mappings. We don't always have a
1471  * hardware-managed access flag on arm64.
1472  */
1473 #define arch_has_hw_pte_young		cpu_has_hw_af
1474 
1475 /*
1476  * Experimentally, it's cheap to set the access flag in hardware and we
1477  * benefit from prefaulting mappings as 'old' to start with.
1478  */
1479 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1480 
1481 static inline bool pud_sect_supported(void)
1482 {
1483 	return PAGE_SIZE == SZ_4K;
1484 }
1485 
1486 
1487 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1488 #define ptep_modify_prot_start ptep_modify_prot_start
1489 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1490 				    unsigned long addr, pte_t *ptep);
1491 
1492 #define ptep_modify_prot_commit ptep_modify_prot_commit
1493 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1494 				    unsigned long addr, pte_t *ptep,
1495 				    pte_t old_pte, pte_t new_pte);
1496 
1497 #ifdef CONFIG_ARM64_CONTPTE
1498 
1499 /*
1500  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1501  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1502  * a private implementation detail of the public ptep API (see below).
1503  */
1504 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1505 				pte_t *ptep, pte_t pte);
1506 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1507 				pte_t *ptep, pte_t pte);
1508 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1509 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1510 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1511 				pte_t *ptep, pte_t pte, unsigned int nr);
1512 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1513 				pte_t *ptep, unsigned int nr, int full);
1514 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1515 				unsigned long addr, pte_t *ptep,
1516 				unsigned int nr, int full);
1517 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1518 				unsigned long addr, pte_t *ptep);
1519 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1520 				unsigned long addr, pte_t *ptep);
1521 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1522 				pte_t *ptep, unsigned int nr);
1523 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1524 				unsigned long addr, pte_t *ptep,
1525 				pte_t entry, int dirty);
1526 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1527 				unsigned long addr, pte_t *ptep,
1528 				unsigned int nr, cydp_t flags);
1529 
1530 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1531 				unsigned long addr, pte_t *ptep, pte_t pte)
1532 {
1533 	/*
1534 	 * Only bother trying if both the virtual and physical addresses are
1535 	 * aligned and correspond to the last entry in a contig range. The core
1536 	 * code mostly modifies ranges from low to high, so this is the likely
1537 	 * the last modification in the contig range, so a good time to fold.
1538 	 * We can't fold special mappings, because there is no associated folio.
1539 	 */
1540 
1541 	const unsigned long contmask = CONT_PTES - 1;
1542 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1543 
1544 	if (unlikely(valign)) {
1545 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1546 
1547 		if (unlikely(palign &&
1548 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1549 			__contpte_try_fold(mm, addr, ptep, pte);
1550 	}
1551 }
1552 
1553 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1554 				unsigned long addr, pte_t *ptep, pte_t pte)
1555 {
1556 	if (unlikely(pte_valid_cont(pte)))
1557 		__contpte_try_unfold(mm, addr, ptep, pte);
1558 }
1559 
1560 #define pte_batch_hint pte_batch_hint
1561 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1562 {
1563 	if (!pte_valid_cont(pte))
1564 		return 1;
1565 
1566 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1567 }
1568 
1569 /*
1570  * The below functions constitute the public API that arm64 presents to the
1571  * core-mm to manipulate PTE entries within their page tables (or at least this
1572  * is the subset of the API that arm64 needs to implement). These public
1573  * versions will automatically and transparently apply the contiguous bit where
1574  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1575  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1576  * private versions, which are prefixed with double underscore. All of these
1577  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1578  * held. Although the contiguous bit is considered private to the
1579  * implementation, it is deliberately allowed to leak through the getters (e.g.
1580  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1581  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1582  * its possible a pte will be passed to a setter with the contiguous bit set, so
1583  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1584  * setting it in the pgtable.
1585  */
1586 
1587 #define ptep_get ptep_get
1588 static inline pte_t ptep_get(pte_t *ptep)
1589 {
1590 	pte_t pte = __ptep_get(ptep);
1591 
1592 	if (likely(!pte_valid_cont(pte)))
1593 		return pte;
1594 
1595 	return contpte_ptep_get(ptep, pte);
1596 }
1597 
1598 #define ptep_get_lockless ptep_get_lockless
1599 static inline pte_t ptep_get_lockless(pte_t *ptep)
1600 {
1601 	pte_t pte = __ptep_get(ptep);
1602 
1603 	if (likely(!pte_valid_cont(pte)))
1604 		return pte;
1605 
1606 	return contpte_ptep_get_lockless(ptep);
1607 }
1608 
1609 static inline void set_pte(pte_t *ptep, pte_t pte)
1610 {
1611 	/*
1612 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1613 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1614 	 * this should never even be called. Regardless do our best to service
1615 	 * any call and emit a warning if there is any attempt to set a pte on
1616 	 * top of an existing contig range.
1617 	 */
1618 	pte_t orig_pte = __ptep_get(ptep);
1619 
1620 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1621 	__set_pte(ptep, pte_mknoncont(pte));
1622 }
1623 
1624 #define set_ptes set_ptes
1625 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1626 				pte_t *ptep, pte_t pte, unsigned int nr)
1627 {
1628 	pte = pte_mknoncont(pte);
1629 
1630 	if (likely(nr == 1)) {
1631 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1632 		__set_ptes(mm, addr, ptep, pte, 1);
1633 		contpte_try_fold(mm, addr, ptep, pte);
1634 	} else {
1635 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1636 	}
1637 }
1638 
1639 static inline void pte_clear(struct mm_struct *mm,
1640 				unsigned long addr, pte_t *ptep)
1641 {
1642 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1643 	__pte_clear(mm, addr, ptep);
1644 }
1645 
1646 #define clear_full_ptes clear_full_ptes
1647 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1648 				pte_t *ptep, unsigned int nr, int full)
1649 {
1650 	if (likely(nr == 1)) {
1651 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1652 		__clear_full_ptes(mm, addr, ptep, nr, full);
1653 	} else {
1654 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1655 	}
1656 }
1657 
1658 #define get_and_clear_full_ptes get_and_clear_full_ptes
1659 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1660 				unsigned long addr, pte_t *ptep,
1661 				unsigned int nr, int full)
1662 {
1663 	pte_t pte;
1664 
1665 	if (likely(nr == 1)) {
1666 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1667 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1668 	} else {
1669 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1670 	}
1671 
1672 	return pte;
1673 }
1674 
1675 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1676 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1677 				unsigned long addr, pte_t *ptep)
1678 {
1679 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1680 	return __ptep_get_and_clear(mm, addr, ptep);
1681 }
1682 
1683 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1684 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1685 				unsigned long addr, pte_t *ptep)
1686 {
1687 	pte_t orig_pte = __ptep_get(ptep);
1688 
1689 	if (likely(!pte_valid_cont(orig_pte)))
1690 		return __ptep_test_and_clear_young(vma, addr, ptep);
1691 
1692 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1693 }
1694 
1695 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1696 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1697 				unsigned long addr, pte_t *ptep)
1698 {
1699 	pte_t orig_pte = __ptep_get(ptep);
1700 
1701 	if (likely(!pte_valid_cont(orig_pte)))
1702 		return __ptep_clear_flush_young(vma, addr, ptep);
1703 
1704 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1705 }
1706 
1707 #define wrprotect_ptes wrprotect_ptes
1708 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1709 				unsigned long addr, pte_t *ptep, unsigned int nr)
1710 {
1711 	if (likely(nr == 1)) {
1712 		/*
1713 		 * Optimization: wrprotect_ptes() can only be called for present
1714 		 * ptes so we only need to check contig bit as condition for
1715 		 * unfold, and we can remove the contig bit from the pte we read
1716 		 * to avoid re-reading. This speeds up fork() which is sensitive
1717 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1718 		 */
1719 		pte_t orig_pte = __ptep_get(ptep);
1720 
1721 		if (unlikely(pte_cont(orig_pte))) {
1722 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1723 			orig_pte = pte_mknoncont(orig_pte);
1724 		}
1725 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1726 	} else {
1727 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1728 	}
1729 }
1730 
1731 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1732 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1733 				unsigned long addr, pte_t *ptep)
1734 {
1735 	wrprotect_ptes(mm, addr, ptep, 1);
1736 }
1737 
1738 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1739 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1740 				unsigned long addr, pte_t *ptep,
1741 				pte_t entry, int dirty)
1742 {
1743 	pte_t orig_pte = __ptep_get(ptep);
1744 
1745 	entry = pte_mknoncont(entry);
1746 
1747 	if (likely(!pte_valid_cont(orig_pte)))
1748 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1749 
1750 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1751 }
1752 
1753 #define clear_young_dirty_ptes clear_young_dirty_ptes
1754 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1755 					  unsigned long addr, pte_t *ptep,
1756 					  unsigned int nr, cydp_t flags)
1757 {
1758 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1759 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1760 	else
1761 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1762 }
1763 
1764 #else /* CONFIG_ARM64_CONTPTE */
1765 
1766 #define ptep_get				__ptep_get
1767 #define set_pte					__set_pte
1768 #define set_ptes				__set_ptes
1769 #define pte_clear				__pte_clear
1770 #define clear_full_ptes				__clear_full_ptes
1771 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1772 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1773 #define ptep_get_and_clear			__ptep_get_and_clear
1774 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1775 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1776 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1777 #define ptep_clear_flush_young			__ptep_clear_flush_young
1778 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1779 #define ptep_set_wrprotect			__ptep_set_wrprotect
1780 #define wrprotect_ptes				__wrprotect_ptes
1781 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1782 #define ptep_set_access_flags			__ptep_set_access_flags
1783 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1784 
1785 #endif /* CONFIG_ARM64_CONTPTE */
1786 
1787 #endif /* !__ASSEMBLY__ */
1788 
1789 #endif /* __ASM_PGTABLE_H */
1790