1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_PGTABLE_H 6 #define __ASM_PGTABLE_H 7 8 #include <asm/bug.h> 9 #include <asm/proc-fns.h> 10 11 #include <asm/memory.h> 12 #include <asm/mte.h> 13 #include <asm/pgtable-hwdef.h> 14 #include <asm/pgtable-prot.h> 15 #include <asm/tlbflush.h> 16 17 /* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap 22 */ 23 #define VMALLOC_START (MODULES_END) 24 #if VA_BITS == VA_BITS_MIN 25 #define VMALLOC_END (VMEMMAP_START - SZ_8M) 26 #else 27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT) 28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M) 29 #endif 30 31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 32 33 #ifndef __ASSEMBLY__ 34 35 #include <asm/cmpxchg.h> 36 #include <asm/fixmap.h> 37 #include <asm/por.h> 38 #include <linux/mmdebug.h> 39 #include <linux/mm_types.h> 40 #include <linux/sched.h> 41 #include <linux/page_table_check.h> 42 43 static inline void emit_pte_barriers(void) 44 { 45 /* 46 * These barriers are emitted under certain conditions after a pte entry 47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store 48 * visible to the table walker. The isb ensures that any previous 49 * speculative "invalid translation" marker that is in the CPU's 50 * pipeline gets cleared, so that any access to that address after 51 * setting the pte to valid won't cause a spurious fault. If the thread 52 * gets preempted after storing to the pgtable but before emitting these 53 * barriers, __switch_to() emits a dsb which ensure the walker gets to 54 * see the store. There is no guarantee of an isb being issued though. 55 * This is safe because it will still get issued (albeit on a 56 * potentially different CPU) when the thread starts running again, 57 * before any access to the address. 58 */ 59 dsb(ishst); 60 isb(); 61 } 62 63 static inline void queue_pte_barriers(void) 64 { 65 unsigned long flags; 66 67 if (in_interrupt()) { 68 emit_pte_barriers(); 69 return; 70 } 71 72 flags = read_thread_flags(); 73 74 if (flags & BIT(TIF_LAZY_MMU)) { 75 /* Avoid the atomic op if already set. */ 76 if (!(flags & BIT(TIF_LAZY_MMU_PENDING))) 77 set_thread_flag(TIF_LAZY_MMU_PENDING); 78 } else { 79 emit_pte_barriers(); 80 } 81 } 82 83 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE 84 static inline void arch_enter_lazy_mmu_mode(void) 85 { 86 /* 87 * lazy_mmu_mode is not supposed to permit nesting. But in practice this 88 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation 89 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change 90 * permissions on the linear map with apply_to_page_range(), which 91 * re-enters lazy_mmu_mode. So we tolerate nesting in our 92 * implementation. The first call to arch_leave_lazy_mmu_mode() will 93 * flush and clear the flag such that the remainder of the work in the 94 * outer nest behaves as if outside of lazy mmu mode. This is safe and 95 * keeps tracking simple. 96 */ 97 98 if (in_interrupt()) 99 return; 100 101 set_thread_flag(TIF_LAZY_MMU); 102 } 103 104 static inline void arch_flush_lazy_mmu_mode(void) 105 { 106 if (in_interrupt()) 107 return; 108 109 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING)) 110 emit_pte_barriers(); 111 } 112 113 static inline void arch_leave_lazy_mmu_mode(void) 114 { 115 if (in_interrupt()) 116 return; 117 118 arch_flush_lazy_mmu_mode(); 119 clear_thread_flag(TIF_LAZY_MMU); 120 } 121 122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 124 125 /* Set stride and tlb_level in flush_*_tlb_range */ 126 #define flush_pmd_tlb_range(vma, addr, end) \ 127 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 128 #define flush_pud_tlb_range(vma, addr, end) \ 129 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 131 132 /* 133 * Outside of a few very special situations (e.g. hibernation), we always 134 * use broadcast TLB invalidation instructions, therefore a spurious page 135 * fault on one CPU which has been handled concurrently by another CPU 136 * does not need to perform additional invalidation. 137 */ 138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) 139 140 /* 141 * ZERO_PAGE is a global shared page that is always zero: used 142 * for zero-mapped memory areas etc.. 143 */ 144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 145 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 146 147 #define pte_ERROR(e) \ 148 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 149 150 #ifdef CONFIG_ARM64_PA_BITS_52 151 static inline phys_addr_t __pte_to_phys(pte_t pte) 152 { 153 pte_val(pte) &= ~PTE_MAYBE_SHARED; 154 return (pte_val(pte) & PTE_ADDR_LOW) | 155 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT); 156 } 157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 158 { 159 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK; 160 } 161 #else 162 static inline phys_addr_t __pte_to_phys(pte_t pte) 163 { 164 return pte_val(pte) & PTE_ADDR_LOW; 165 } 166 167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 168 { 169 return phys; 170 } 171 #endif 172 173 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 174 #define pfn_pte(pfn,prot) \ 175 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 176 177 #define pte_none(pte) (!pte_val(pte)) 178 #define __pte_clear(mm, addr, ptep) \ 179 __set_pte(ptep, __pte(0)) 180 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 181 182 /* 183 * The following only work if pte_present(). Undefined behaviour otherwise. 184 */ 185 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte)) 186 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 187 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 188 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 189 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY)) 190 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER)) 191 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 192 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 193 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 194 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 195 196 #define pte_cont_addr_end(addr, end) \ 197 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 198 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 199 }) 200 201 #define pmd_cont_addr_end(addr, end) \ 202 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 203 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 204 }) 205 206 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte)) 207 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 208 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 209 210 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 211 #define pte_present_invalid(pte) \ 212 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID) 213 /* 214 * Execute-only user mappings do not have the PTE_USER bit set. All valid 215 * kernel mappings have the PTE_UXN bit set. 216 */ 217 #define pte_valid_not_user(pte) \ 218 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 219 /* 220 * Returns true if the pte is valid and has the contiguous bit set. 221 */ 222 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte)) 223 /* 224 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 225 * so that we don't erroneously return false for pages that have been 226 * remapped as PROT_NONE but are yet to be flushed from the TLB. 227 * Note that we can't make any assumptions based on the state of the access 228 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the 229 * TLB. 230 */ 231 #define pte_accessible(mm, pte) \ 232 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 233 234 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute) 235 { 236 u64 por; 237 238 if (!system_supports_poe()) 239 return true; 240 241 por = read_sysreg_s(SYS_POR_EL0); 242 243 if (write) 244 return por_elx_allows_write(por, pkey); 245 246 if (execute) 247 return por_elx_allows_exec(por, pkey); 248 249 return por_elx_allows_read(por, pkey); 250 } 251 252 /* 253 * p??_access_permitted() is true for valid user mappings (PTE_USER 254 * bit set, subject to the write permission check). For execute-only 255 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 256 * not set) must return false. PROT_NONE mappings do not have the 257 * PTE_VALID bit set. 258 */ 259 #define pte_access_permitted_no_overlay(pte, write) \ 260 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 261 #define pte_access_permitted(pte, write) \ 262 (pte_access_permitted_no_overlay(pte, write) && \ 263 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false)) 264 #define pmd_access_permitted(pmd, write) \ 265 (pte_access_permitted(pmd_pte(pmd), (write))) 266 #define pud_access_permitted(pud, write) \ 267 (pte_access_permitted(pud_pte(pud), (write))) 268 269 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 270 { 271 pte_val(pte) &= ~pgprot_val(prot); 272 return pte; 273 } 274 275 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 276 { 277 pte_val(pte) |= pgprot_val(prot); 278 return pte; 279 } 280 281 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 282 { 283 pmd_val(pmd) &= ~pgprot_val(prot); 284 return pmd; 285 } 286 287 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 288 { 289 pmd_val(pmd) |= pgprot_val(prot); 290 return pmd; 291 } 292 293 static inline pte_t pte_mkwrite_novma(pte_t pte) 294 { 295 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 296 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 297 return pte; 298 } 299 300 static inline pte_t pte_mkclean(pte_t pte) 301 { 302 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 303 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 304 305 return pte; 306 } 307 308 static inline pte_t pte_mkdirty(pte_t pte) 309 { 310 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 311 312 if (pte_write(pte)) 313 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 314 315 return pte; 316 } 317 318 static inline pte_t pte_wrprotect(pte_t pte) 319 { 320 /* 321 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 322 * clear), set the PTE_DIRTY bit. 323 */ 324 if (pte_hw_dirty(pte)) 325 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 326 327 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 328 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 329 return pte; 330 } 331 332 static inline pte_t pte_mkold(pte_t pte) 333 { 334 return clear_pte_bit(pte, __pgprot(PTE_AF)); 335 } 336 337 static inline pte_t pte_mkyoung(pte_t pte) 338 { 339 return set_pte_bit(pte, __pgprot(PTE_AF)); 340 } 341 342 static inline pte_t pte_mkspecial(pte_t pte) 343 { 344 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 345 } 346 347 static inline pte_t pte_mkcont(pte_t pte) 348 { 349 return set_pte_bit(pte, __pgprot(PTE_CONT)); 350 } 351 352 static inline pte_t pte_mknoncont(pte_t pte) 353 { 354 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 355 } 356 357 static inline pte_t pte_mkvalid(pte_t pte) 358 { 359 return set_pte_bit(pte, __pgprot(PTE_VALID)); 360 } 361 362 static inline pte_t pte_mkinvalid(pte_t pte) 363 { 364 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID)); 365 pte = clear_pte_bit(pte, __pgprot(PTE_VALID)); 366 return pte; 367 } 368 369 static inline pmd_t pmd_mkcont(pmd_t pmd) 370 { 371 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 372 } 373 374 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 375 static inline int pte_uffd_wp(pte_t pte) 376 { 377 return !!(pte_val(pte) & PTE_UFFD_WP); 378 } 379 380 static inline pte_t pte_mkuffd_wp(pte_t pte) 381 { 382 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP))); 383 } 384 385 static inline pte_t pte_clear_uffd_wp(pte_t pte) 386 { 387 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP)); 388 } 389 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 390 391 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte) 392 { 393 WRITE_ONCE(*ptep, pte); 394 } 395 396 static inline void __set_pte_complete(pte_t pte) 397 { 398 /* 399 * Only if the new pte is valid and kernel, otherwise TLB maintenance 400 * has the necessary barriers. 401 */ 402 if (pte_valid_not_user(pte)) 403 queue_pte_barriers(); 404 } 405 406 static inline void __set_pte(pte_t *ptep, pte_t pte) 407 { 408 __set_pte_nosync(ptep, pte); 409 __set_pte_complete(pte); 410 } 411 412 static inline pte_t __ptep_get(pte_t *ptep) 413 { 414 return READ_ONCE(*ptep); 415 } 416 417 extern void __sync_icache_dcache(pte_t pteval); 418 bool pgattr_change_is_safe(pteval_t old, pteval_t new); 419 420 /* 421 * PTE bits configuration in the presence of hardware Dirty Bit Management 422 * (PTE_WRITE == PTE_DBM): 423 * 424 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 425 * 0 0 | 1 0 0 426 * 0 1 | 1 1 0 427 * 1 0 | 1 0 1 428 * 1 1 | 0 1 x 429 * 430 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 431 * the page fault mechanism. Checking the dirty status of a pte becomes: 432 * 433 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 434 */ 435 436 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep, 437 pte_t pte) 438 { 439 pte_t old_pte; 440 441 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 442 return; 443 444 old_pte = __ptep_get(ptep); 445 446 if (!pte_valid(old_pte) || !pte_valid(pte)) 447 return; 448 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 449 return; 450 451 /* 452 * Check for potential race with hardware updates of the pte 453 * (__ptep_set_access_flags safely changes valid ptes without going 454 * through an invalid entry). 455 */ 456 VM_WARN_ONCE(!pte_young(pte), 457 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 458 __func__, pte_val(old_pte), pte_val(pte)); 459 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 460 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 461 __func__, pte_val(old_pte), pte_val(pte)); 462 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)), 463 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx", 464 __func__, pte_val(old_pte), pte_val(pte)); 465 } 466 467 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages) 468 { 469 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 470 __sync_icache_dcache(pte); 471 472 /* 473 * If the PTE would provide user space access to the tags associated 474 * with it then ensure that the MTE tags are synchronised. Although 475 * pte_access_permitted_no_overlay() returns false for exec only 476 * mappings, they don't expose tags (instruction fetches don't check 477 * tags). 478 */ 479 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) && 480 !pte_special(pte) && pte_tagged(pte)) 481 mte_sync_tags(pte, nr_pages); 482 } 483 484 /* 485 * Select all bits except the pfn 486 */ 487 #define pte_pgprot pte_pgprot 488 static inline pgprot_t pte_pgprot(pte_t pte) 489 { 490 unsigned long pfn = pte_pfn(pte); 491 492 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 493 } 494 495 #define pte_advance_pfn pte_advance_pfn 496 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 497 { 498 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte)); 499 } 500 501 /* 502 * Hugetlb definitions. 503 */ 504 #define HUGE_MAX_HSTATE 4 505 #define HPAGE_SHIFT PMD_SHIFT 506 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 507 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 508 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 509 510 static inline pte_t pgd_pte(pgd_t pgd) 511 { 512 return __pte(pgd_val(pgd)); 513 } 514 515 static inline pte_t p4d_pte(p4d_t p4d) 516 { 517 return __pte(p4d_val(p4d)); 518 } 519 520 static inline pte_t pud_pte(pud_t pud) 521 { 522 return __pte(pud_val(pud)); 523 } 524 525 static inline pud_t pte_pud(pte_t pte) 526 { 527 return __pud(pte_val(pte)); 528 } 529 530 static inline pmd_t pud_pmd(pud_t pud) 531 { 532 return __pmd(pud_val(pud)); 533 } 534 535 static inline pte_t pmd_pte(pmd_t pmd) 536 { 537 return __pte(pmd_val(pmd)); 538 } 539 540 static inline pmd_t pte_pmd(pte_t pte) 541 { 542 return __pmd(pte_val(pte)); 543 } 544 545 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 546 { 547 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT); 548 } 549 550 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 551 { 552 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT); 553 } 554 555 static inline pte_t pte_swp_mkexclusive(pte_t pte) 556 { 557 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 558 } 559 560 static inline bool pte_swp_exclusive(pte_t pte) 561 { 562 return pte_val(pte) & PTE_SWP_EXCLUSIVE; 563 } 564 565 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 566 { 567 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 568 } 569 570 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 571 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 572 { 573 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 574 } 575 576 static inline int pte_swp_uffd_wp(pte_t pte) 577 { 578 return !!(pte_val(pte) & PTE_SWP_UFFD_WP); 579 } 580 581 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 582 { 583 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 584 } 585 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 586 587 #ifdef CONFIG_NUMA_BALANCING 588 /* 589 * See the comment in include/linux/pgtable.h 590 */ 591 static inline int pte_protnone(pte_t pte) 592 { 593 /* 594 * pte_present_invalid() tells us that the pte is invalid from HW 595 * perspective but present from SW perspective, so the fields are to be 596 * interpretted as per the HW layout. The second 2 checks are the unique 597 * encoding that we use for PROT_NONE. It is insufficient to only use 598 * the first check because we share the same encoding scheme with pmds 599 * which support pmd_mkinvalid(), so can be present-invalid without 600 * being PROT_NONE. 601 */ 602 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte); 603 } 604 605 static inline int pmd_protnone(pmd_t pmd) 606 { 607 return pte_protnone(pmd_pte(pmd)); 608 } 609 #endif 610 611 #define pmd_present(pmd) pte_present(pmd_pte(pmd)) 612 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 613 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 614 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 615 #define pmd_user(pmd) pte_user(pmd_pte(pmd)) 616 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd)) 617 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 618 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 619 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 620 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) 621 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 622 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 623 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 624 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd))) 625 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 626 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd)) 627 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd))) 628 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd))) 629 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd)) 630 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd))) 631 #define pmd_swp_clear_uffd_wp(pmd) \ 632 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd))) 633 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 634 635 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 636 637 static inline pmd_t pmd_mkhuge(pmd_t pmd) 638 { 639 /* 640 * It's possible that the pmd is present-invalid on entry 641 * and in that case it needs to remain present-invalid on 642 * exit. So ensure the VALID bit does not get modified. 643 */ 644 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID; 645 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID; 646 647 return __pmd((pmd_val(pmd) & ~mask) | val); 648 } 649 650 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 651 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL))) 652 static inline pmd_t pmd_mkspecial(pmd_t pmd) 653 { 654 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL)); 655 } 656 #endif 657 658 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 659 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 660 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 661 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 662 663 #define pud_young(pud) pte_young(pud_pte(pud)) 664 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 665 #define pud_write(pud) pte_write(pud_pte(pud)) 666 667 static inline pud_t pud_mkhuge(pud_t pud) 668 { 669 /* 670 * It's possible that the pud is present-invalid on entry 671 * and in that case it needs to remain present-invalid on 672 * exit. So ensure the VALID bit does not get modified. 673 */ 674 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID; 675 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID; 676 677 return __pud((pud_val(pud) & ~mask) | val); 678 } 679 680 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 681 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 682 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 683 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 684 685 #define pmd_pgprot pmd_pgprot 686 static inline pgprot_t pmd_pgprot(pmd_t pmd) 687 { 688 unsigned long pfn = pmd_pfn(pmd); 689 690 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd)); 691 } 692 693 #define pud_pgprot pud_pgprot 694 static inline pgprot_t pud_pgprot(pud_t pud) 695 { 696 unsigned long pfn = pud_pfn(pud); 697 698 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud)); 699 } 700 701 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep, 702 pte_t pte, unsigned int nr, 703 unsigned long pgsize) 704 { 705 unsigned long stride = pgsize >> PAGE_SHIFT; 706 707 switch (pgsize) { 708 case PAGE_SIZE: 709 page_table_check_ptes_set(mm, ptep, pte, nr); 710 break; 711 case PMD_SIZE: 712 page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr); 713 break; 714 #ifndef __PAGETABLE_PMD_FOLDED 715 case PUD_SIZE: 716 page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr); 717 break; 718 #endif 719 default: 720 VM_WARN_ON(1); 721 } 722 723 __sync_cache_and_tags(pte, nr * stride); 724 725 for (;;) { 726 __check_safe_pte_update(mm, ptep, pte); 727 __set_pte_nosync(ptep, pte); 728 if (--nr == 0) 729 break; 730 ptep++; 731 pte = pte_advance_pfn(pte, stride); 732 } 733 734 __set_pte_complete(pte); 735 } 736 737 static inline void __set_ptes(struct mm_struct *mm, 738 unsigned long __always_unused addr, 739 pte_t *ptep, pte_t pte, unsigned int nr) 740 { 741 __set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE); 742 } 743 744 static inline void __set_pmds(struct mm_struct *mm, 745 unsigned long __always_unused addr, 746 pmd_t *pmdp, pmd_t pmd, unsigned int nr) 747 { 748 __set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE); 749 } 750 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1) 751 752 static inline void __set_puds(struct mm_struct *mm, 753 unsigned long __always_unused addr, 754 pud_t *pudp, pud_t pud, unsigned int nr) 755 { 756 __set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE); 757 } 758 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1) 759 760 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 761 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 762 763 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 764 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 765 766 #define __pgprot_modify(prot,mask,bits) \ 767 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 768 769 #define pgprot_nx(prot) \ 770 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 771 772 #define pgprot_decrypted(prot) \ 773 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED) 774 #define pgprot_encrypted(prot) \ 775 __pgprot_modify(prot, PROT_NS_SHARED, 0) 776 777 /* 778 * Mark the prot value as uncacheable and unbufferable. 779 */ 780 #define pgprot_noncached(prot) \ 781 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 782 #define pgprot_writecombine(prot) \ 783 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 784 #define pgprot_device(prot) \ 785 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 786 #define pgprot_tagged(prot) \ 787 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 788 #define pgprot_mhp pgprot_tagged 789 /* 790 * DMA allocations for non-coherent devices use what the Arm architecture calls 791 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 792 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 793 * is intended for MMIO and thus forbids speculation, preserves access size, 794 * requires strict alignment and can also force write responses to come from the 795 * endpoint. 796 */ 797 #define pgprot_dmacoherent(prot) \ 798 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 799 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 800 801 #define __HAVE_PHYS_MEM_ACCESS_PROT 802 struct file; 803 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 804 unsigned long size, pgprot_t vma_prot); 805 806 #define pmd_none(pmd) (!pmd_val(pmd)) 807 808 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 809 PMD_TYPE_TABLE) 810 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 811 PMD_TYPE_SECT) 812 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd)) 813 #define pmd_bad(pmd) (!pmd_table(pmd)) 814 815 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 816 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 817 818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 819 static inline int pmd_trans_huge(pmd_t pmd) 820 { 821 /* 822 * If pmd is present-invalid, pmd_table() won't detect it 823 * as a table, so force the valid bit for the comparison. 824 */ 825 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID)); 826 } 827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 828 829 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 830 static inline bool pud_sect(pud_t pud) { return false; } 831 static inline bool pud_table(pud_t pud) { return true; } 832 #else 833 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 834 PUD_TYPE_SECT) 835 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 836 PUD_TYPE_TABLE) 837 #endif 838 839 extern pgd_t swapper_pg_dir[]; 840 extern pgd_t idmap_pg_dir[]; 841 extern pgd_t tramp_pg_dir[]; 842 extern pgd_t reserved_pg_dir[]; 843 844 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 845 846 static inline bool in_swapper_pgdir(void *addr) 847 { 848 return ((unsigned long)addr & PAGE_MASK) == 849 ((unsigned long)swapper_pg_dir & PAGE_MASK); 850 } 851 852 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 853 { 854 #ifdef __PAGETABLE_PMD_FOLDED 855 if (in_swapper_pgdir(pmdp)) { 856 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 857 return; 858 } 859 #endif /* __PAGETABLE_PMD_FOLDED */ 860 861 WRITE_ONCE(*pmdp, pmd); 862 863 if (pmd_valid(pmd)) 864 queue_pte_barriers(); 865 } 866 867 static inline void pmd_clear(pmd_t *pmdp) 868 { 869 set_pmd(pmdp, __pmd(0)); 870 } 871 872 static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 873 { 874 return __pmd_to_phys(pmd); 875 } 876 877 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 878 { 879 return (unsigned long)__va(pmd_page_paddr(pmd)); 880 } 881 882 /* Find an entry in the third-level page table. */ 883 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 884 885 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 886 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 887 #define pte_clear_fixmap() clear_fixmap(FIX_PTE) 888 889 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 890 891 /* use ONLY for statically allocated translation tables */ 892 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 893 894 #if CONFIG_PGTABLE_LEVELS > 2 895 896 #define pmd_ERROR(e) \ 897 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 898 899 #define pud_none(pud) (!pud_val(pud)) 900 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \ 901 PUD_TYPE_TABLE) 902 #define pud_present(pud) pte_present(pud_pte(pud)) 903 #ifndef __PAGETABLE_PMD_FOLDED 904 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud)) 905 #else 906 #define pud_leaf(pud) false 907 #endif 908 #define pud_valid(pud) pte_valid(pud_pte(pud)) 909 #define pud_user(pud) pte_user(pud_pte(pud)) 910 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud)) 911 912 static inline bool pgtable_l4_enabled(void); 913 914 static inline void set_pud(pud_t *pudp, pud_t pud) 915 { 916 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) { 917 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 918 return; 919 } 920 921 WRITE_ONCE(*pudp, pud); 922 923 if (pud_valid(pud)) 924 queue_pte_barriers(); 925 } 926 927 static inline void pud_clear(pud_t *pudp) 928 { 929 set_pud(pudp, __pud(0)); 930 } 931 932 static inline phys_addr_t pud_page_paddr(pud_t pud) 933 { 934 return __pud_to_phys(pud); 935 } 936 937 static inline pmd_t *pud_pgtable(pud_t pud) 938 { 939 return (pmd_t *)__va(pud_page_paddr(pud)); 940 } 941 942 /* Find an entry in the second-level page table. */ 943 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 944 945 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 946 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 947 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 948 949 #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 950 951 /* use ONLY for statically allocated translation tables */ 952 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 953 954 #else 955 956 #define pud_valid(pud) false 957 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 958 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */ 959 960 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 961 #define pmd_set_fixmap(addr) NULL 962 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 963 #define pmd_clear_fixmap() 964 965 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 966 967 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 968 969 #if CONFIG_PGTABLE_LEVELS > 3 970 971 static __always_inline bool pgtable_l4_enabled(void) 972 { 973 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2)) 974 return true; 975 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 976 return vabits_actual == VA_BITS; 977 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 978 } 979 980 static inline bool mm_pud_folded(const struct mm_struct *mm) 981 { 982 return !pgtable_l4_enabled(); 983 } 984 #define mm_pud_folded mm_pud_folded 985 986 #define pud_ERROR(e) \ 987 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 988 989 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d)) 990 #define p4d_bad(p4d) (pgtable_l4_enabled() && \ 991 ((p4d_val(p4d) & P4D_TYPE_MASK) != \ 992 P4D_TYPE_TABLE)) 993 #define p4d_present(p4d) (!p4d_none(p4d)) 994 995 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 996 { 997 if (in_swapper_pgdir(p4dp)) { 998 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 999 return; 1000 } 1001 1002 WRITE_ONCE(*p4dp, p4d); 1003 queue_pte_barriers(); 1004 } 1005 1006 static inline void p4d_clear(p4d_t *p4dp) 1007 { 1008 if (pgtable_l4_enabled()) 1009 set_p4d(p4dp, __p4d(0)); 1010 } 1011 1012 static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 1013 { 1014 return __p4d_to_phys(p4d); 1015 } 1016 1017 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 1018 1019 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr) 1020 { 1021 /* Ensure that 'p4dp' indexes a page table according to 'addr' */ 1022 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D); 1023 1024 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr); 1025 } 1026 1027 static inline pud_t *p4d_pgtable(p4d_t p4d) 1028 { 1029 return (pud_t *)__va(p4d_page_paddr(p4d)); 1030 } 1031 1032 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr) 1033 { 1034 BUG_ON(!pgtable_l4_enabled()); 1035 1036 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t); 1037 } 1038 1039 static inline 1040 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr) 1041 { 1042 if (!pgtable_l4_enabled()) 1043 return p4d_to_folded_pud(p4dp, addr); 1044 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr); 1045 } 1046 #define pud_offset_lockless pud_offset_lockless 1047 1048 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr) 1049 { 1050 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr); 1051 } 1052 #define pud_offset pud_offset 1053 1054 static inline pud_t *pud_set_fixmap(unsigned long addr) 1055 { 1056 if (!pgtable_l4_enabled()) 1057 return NULL; 1058 return (pud_t *)set_fixmap_offset(FIX_PUD, addr); 1059 } 1060 1061 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr) 1062 { 1063 if (!pgtable_l4_enabled()) 1064 return p4d_to_folded_pud(p4dp, addr); 1065 return pud_set_fixmap(pud_offset_phys(p4dp, addr)); 1066 } 1067 1068 static inline void pud_clear_fixmap(void) 1069 { 1070 if (pgtable_l4_enabled()) 1071 clear_fixmap(FIX_PUD); 1072 } 1073 1074 /* use ONLY for statically allocated translation tables */ 1075 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr) 1076 { 1077 if (!pgtable_l4_enabled()) 1078 return p4d_to_folded_pud(p4dp, addr); 1079 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr)); 1080 } 1081 1082 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 1083 1084 #else 1085 1086 static inline bool pgtable_l4_enabled(void) { return false; } 1087 1088 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 1089 1090 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 1091 #define pud_set_fixmap(addr) NULL 1092 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 1093 #define pud_clear_fixmap() 1094 1095 #define pud_offset_kimg(dir,addr) ((pud_t *)dir) 1096 1097 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 1098 1099 #if CONFIG_PGTABLE_LEVELS > 4 1100 1101 static __always_inline bool pgtable_l5_enabled(void) 1102 { 1103 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 1104 return vabits_actual == VA_BITS; 1105 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 1106 } 1107 1108 static inline bool mm_p4d_folded(const struct mm_struct *mm) 1109 { 1110 return !pgtable_l5_enabled(); 1111 } 1112 #define mm_p4d_folded mm_p4d_folded 1113 1114 #define p4d_ERROR(e) \ 1115 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e)) 1116 1117 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd)) 1118 #define pgd_bad(pgd) (pgtable_l5_enabled() && \ 1119 ((pgd_val(pgd) & PGD_TYPE_MASK) != \ 1120 PGD_TYPE_TABLE)) 1121 #define pgd_present(pgd) (!pgd_none(pgd)) 1122 1123 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 1124 { 1125 if (in_swapper_pgdir(pgdp)) { 1126 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd))); 1127 return; 1128 } 1129 1130 WRITE_ONCE(*pgdp, pgd); 1131 queue_pte_barriers(); 1132 } 1133 1134 static inline void pgd_clear(pgd_t *pgdp) 1135 { 1136 if (pgtable_l5_enabled()) 1137 set_pgd(pgdp, __pgd(0)); 1138 } 1139 1140 static inline phys_addr_t pgd_page_paddr(pgd_t pgd) 1141 { 1142 return __pgd_to_phys(pgd); 1143 } 1144 1145 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1146 1147 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr) 1148 { 1149 /* Ensure that 'pgdp' indexes a page table according to 'addr' */ 1150 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD); 1151 1152 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr); 1153 } 1154 1155 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr) 1156 { 1157 BUG_ON(!pgtable_l5_enabled()); 1158 1159 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t); 1160 } 1161 1162 static inline 1163 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1164 { 1165 if (!pgtable_l5_enabled()) 1166 return pgd_to_folded_p4d(pgdp, addr); 1167 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr); 1168 } 1169 #define p4d_offset_lockless p4d_offset_lockless 1170 1171 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr) 1172 { 1173 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr); 1174 } 1175 1176 static inline p4d_t *p4d_set_fixmap(unsigned long addr) 1177 { 1178 if (!pgtable_l5_enabled()) 1179 return NULL; 1180 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr); 1181 } 1182 1183 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr) 1184 { 1185 if (!pgtable_l5_enabled()) 1186 return pgd_to_folded_p4d(pgdp, addr); 1187 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr)); 1188 } 1189 1190 static inline void p4d_clear_fixmap(void) 1191 { 1192 if (pgtable_l5_enabled()) 1193 clear_fixmap(FIX_P4D); 1194 } 1195 1196 /* use ONLY for statically allocated translation tables */ 1197 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr) 1198 { 1199 if (!pgtable_l5_enabled()) 1200 return pgd_to_folded_p4d(pgdp, addr); 1201 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr)); 1202 } 1203 1204 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd))) 1205 1206 #else 1207 1208 static inline bool pgtable_l5_enabled(void) { return false; } 1209 1210 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1211 1212 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */ 1213 #define p4d_set_fixmap(addr) NULL 1214 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp) 1215 #define p4d_clear_fixmap() 1216 1217 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir) 1218 1219 static inline 1220 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1221 { 1222 /* 1223 * With runtime folding of the pud, pud_offset_lockless() passes 1224 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which 1225 * will offset the pointer assuming that it points into 1226 * a page-table page. However, the fast GUP path passes us a 1227 * pgd_t allocated on the stack and so we must use the original 1228 * pointer in 'pgdp' to construct the p4d pointer instead of 1229 * using the generic p4d_offset_lockless() implementation. 1230 * 1231 * Note: reusing the original pointer means that we may 1232 * dereference the same (live) page-table entry multiple times. 1233 * This is safe because it is still only loaded once in the 1234 * context of each level and the CPU guarantees same-address 1235 * read-after-read ordering. 1236 */ 1237 return p4d_offset(pgdp, addr); 1238 } 1239 #define p4d_offset_lockless p4d_offset_lockless_folded 1240 1241 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1242 1243 #define pgd_ERROR(e) \ 1244 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 1245 1246 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 1247 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 1248 1249 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 1250 { 1251 /* 1252 * Normal and Normal-Tagged are two different memory types and indices 1253 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 1254 */ 1255 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 1256 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE | 1257 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK; 1258 1259 /* preserve the hardware dirty information */ 1260 if (pte_hw_dirty(pte)) 1261 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 1262 1263 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 1264 /* 1265 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware 1266 * dirtiness again. 1267 */ 1268 if (pte_sw_dirty(pte)) 1269 pte = pte_mkdirty(pte); 1270 return pte; 1271 } 1272 1273 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1274 { 1275 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 1276 } 1277 1278 extern int __ptep_set_access_flags(struct vm_area_struct *vma, 1279 unsigned long address, pte_t *ptep, 1280 pte_t entry, int dirty); 1281 1282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1283 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1284 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1285 unsigned long address, pmd_t *pmdp, 1286 pmd_t entry, int dirty) 1287 { 1288 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp, 1289 pmd_pte(entry), dirty); 1290 } 1291 #endif 1292 1293 #ifdef CONFIG_PAGE_TABLE_CHECK 1294 static inline bool pte_user_accessible_page(pte_t pte) 1295 { 1296 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte)); 1297 } 1298 1299 static inline bool pmd_user_accessible_page(pmd_t pmd) 1300 { 1301 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd)); 1302 } 1303 1304 static inline bool pud_user_accessible_page(pud_t pud) 1305 { 1306 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud)); 1307 } 1308 #endif 1309 1310 /* 1311 * Atomic pte/pmd modifications. 1312 */ 1313 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma, 1314 unsigned long address, 1315 pte_t *ptep) 1316 { 1317 pte_t old_pte, pte; 1318 1319 pte = __ptep_get(ptep); 1320 do { 1321 old_pte = pte; 1322 pte = pte_mkold(pte); 1323 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1324 pte_val(old_pte), pte_val(pte)); 1325 } while (pte_val(pte) != pte_val(old_pte)); 1326 1327 return pte_young(pte); 1328 } 1329 1330 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma, 1331 unsigned long address, pte_t *ptep) 1332 { 1333 int young = __ptep_test_and_clear_young(vma, address, ptep); 1334 1335 if (young) { 1336 /* 1337 * We can elide the trailing DSB here since the worst that can 1338 * happen is that a CPU continues to use the young entry in its 1339 * TLB and we mistakenly reclaim the associated page. The 1340 * window for such an event is bounded by the next 1341 * context-switch, which provides a DSB to complete the TLB 1342 * invalidation. 1343 */ 1344 flush_tlb_page_nosync(vma, address); 1345 } 1346 1347 return young; 1348 } 1349 1350 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 1351 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1352 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1353 unsigned long address, 1354 pmd_t *pmdp) 1355 { 1356 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */ 1357 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft()); 1358 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 1359 } 1360 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 1361 1362 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm, 1363 pte_t *ptep, 1364 unsigned long pgsize) 1365 { 1366 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0)); 1367 1368 switch (pgsize) { 1369 case PAGE_SIZE: 1370 page_table_check_pte_clear(mm, pte); 1371 break; 1372 case PMD_SIZE: 1373 page_table_check_pmd_clear(mm, pte_pmd(pte)); 1374 break; 1375 #ifndef __PAGETABLE_PMD_FOLDED 1376 case PUD_SIZE: 1377 page_table_check_pud_clear(mm, pte_pud(pte)); 1378 break; 1379 #endif 1380 default: 1381 VM_WARN_ON(1); 1382 } 1383 1384 return pte; 1385 } 1386 1387 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm, 1388 unsigned long address, pte_t *ptep) 1389 { 1390 return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE); 1391 } 1392 1393 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1394 pte_t *ptep, unsigned int nr, int full) 1395 { 1396 for (;;) { 1397 __ptep_get_and_clear(mm, addr, ptep); 1398 if (--nr == 0) 1399 break; 1400 ptep++; 1401 addr += PAGE_SIZE; 1402 } 1403 } 1404 1405 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm, 1406 unsigned long addr, pte_t *ptep, 1407 unsigned int nr, int full) 1408 { 1409 pte_t pte, tmp_pte; 1410 1411 pte = __ptep_get_and_clear(mm, addr, ptep); 1412 while (--nr) { 1413 ptep++; 1414 addr += PAGE_SIZE; 1415 tmp_pte = __ptep_get_and_clear(mm, addr, ptep); 1416 if (pte_dirty(tmp_pte)) 1417 pte = pte_mkdirty(pte); 1418 if (pte_young(tmp_pte)) 1419 pte = pte_mkyoung(pte); 1420 } 1421 return pte; 1422 } 1423 1424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1425 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1426 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1427 unsigned long address, pmd_t *pmdp) 1428 { 1429 return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE)); 1430 } 1431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1432 1433 static inline void ___ptep_set_wrprotect(struct mm_struct *mm, 1434 unsigned long address, pte_t *ptep, 1435 pte_t pte) 1436 { 1437 pte_t old_pte; 1438 1439 do { 1440 old_pte = pte; 1441 pte = pte_wrprotect(pte); 1442 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1443 pte_val(old_pte), pte_val(pte)); 1444 } while (pte_val(pte) != pte_val(old_pte)); 1445 } 1446 1447 /* 1448 * __ptep_set_wrprotect - mark read-only while transferring potential hardware 1449 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 1450 */ 1451 static inline void __ptep_set_wrprotect(struct mm_struct *mm, 1452 unsigned long address, pte_t *ptep) 1453 { 1454 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep)); 1455 } 1456 1457 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address, 1458 pte_t *ptep, unsigned int nr) 1459 { 1460 unsigned int i; 1461 1462 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++) 1463 __ptep_set_wrprotect(mm, address, ptep); 1464 } 1465 1466 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma, 1467 unsigned long addr, pte_t *ptep, 1468 pte_t pte, cydp_t flags) 1469 { 1470 pte_t old_pte; 1471 1472 do { 1473 old_pte = pte; 1474 1475 if (flags & CYDP_CLEAR_YOUNG) 1476 pte = pte_mkold(pte); 1477 if (flags & CYDP_CLEAR_DIRTY) 1478 pte = pte_mkclean(pte); 1479 1480 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1481 pte_val(old_pte), pte_val(pte)); 1482 } while (pte_val(pte) != pte_val(old_pte)); 1483 } 1484 1485 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma, 1486 unsigned long addr, pte_t *ptep, 1487 unsigned int nr, cydp_t flags) 1488 { 1489 pte_t pte; 1490 1491 for (;;) { 1492 pte = __ptep_get(ptep); 1493 1494 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY)) 1495 __set_pte(ptep, pte_mkclean(pte_mkold(pte))); 1496 else 1497 __clear_young_dirty_pte(vma, addr, ptep, pte, flags); 1498 1499 if (--nr == 0) 1500 break; 1501 ptep++; 1502 addr += PAGE_SIZE; 1503 } 1504 } 1505 1506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1507 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1508 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1509 unsigned long address, pmd_t *pmdp) 1510 { 1511 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 1512 } 1513 1514 #define pmdp_establish pmdp_establish 1515 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1516 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1517 { 1518 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 1519 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 1520 } 1521 #endif 1522 1523 /* 1524 * Encode and decode a swap entry: 1525 * bits 0-1: present (must be zero) 1526 * bits 2: remember PG_anon_exclusive 1527 * bit 3: remember uffd-wp state 1528 * bits 6-10: swap type 1529 * bit 11: PTE_PRESENT_INVALID (must be zero) 1530 * bits 12-61: swap offset 1531 */ 1532 #define __SWP_TYPE_SHIFT 6 1533 #define __SWP_TYPE_BITS 5 1534 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 1535 #define __SWP_OFFSET_SHIFT 12 1536 #define __SWP_OFFSET_BITS 50 1537 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 1538 1539 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 1540 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 1541 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 1542 1543 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1544 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 1545 1546 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1547 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 1548 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 1549 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 1550 1551 /* 1552 * Ensure that there are not more swap files than can be encoded in the kernel 1553 * PTEs. 1554 */ 1555 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 1556 1557 #ifdef CONFIG_ARM64_MTE 1558 1559 #define __HAVE_ARCH_PREPARE_TO_SWAP 1560 extern int arch_prepare_to_swap(struct folio *folio); 1561 1562 #define __HAVE_ARCH_SWAP_INVALIDATE 1563 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1564 { 1565 if (system_supports_mte()) 1566 mte_invalidate_tags(type, offset); 1567 } 1568 1569 static inline void arch_swap_invalidate_area(int type) 1570 { 1571 if (system_supports_mte()) 1572 mte_invalidate_tags_area(type); 1573 } 1574 1575 #define __HAVE_ARCH_SWAP_RESTORE 1576 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio); 1577 1578 #endif /* CONFIG_ARM64_MTE */ 1579 1580 /* 1581 * On AArch64, the cache coherency is handled via the __set_ptes() function. 1582 */ 1583 static inline void update_mmu_cache_range(struct vm_fault *vmf, 1584 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, 1585 unsigned int nr) 1586 { 1587 /* 1588 * We don't do anything here, so there's a very small chance of 1589 * us retaking a user fault which we just fixed up. The alternative 1590 * is doing a dsb(ishst), but that penalises the fastpath. 1591 */ 1592 } 1593 1594 #define update_mmu_cache(vma, addr, ptep) \ 1595 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 1596 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 1597 1598 #ifdef CONFIG_ARM64_PA_BITS_52 1599 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 1600 #else 1601 #define phys_to_ttbr(addr) (addr) 1602 #endif 1603 1604 /* 1605 * On arm64 without hardware Access Flag, copying from user will fail because 1606 * the pte is old and cannot be marked young. So we always end up with zeroed 1607 * page after fork() + CoW for pfn mappings. We don't always have a 1608 * hardware-managed access flag on arm64. 1609 */ 1610 #define arch_has_hw_pte_young cpu_has_hw_af 1611 1612 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG 1613 #define arch_has_hw_nonleaf_pmd_young system_supports_haft 1614 #endif 1615 1616 /* 1617 * Experimentally, it's cheap to set the access flag in hardware and we 1618 * benefit from prefaulting mappings as 'old' to start with. 1619 */ 1620 #define arch_wants_old_prefaulted_pte cpu_has_hw_af 1621 1622 /* 1623 * Request exec memory is read into pagecache in at least 64K folios. This size 1624 * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB 1625 * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base 1626 * pages are in use. 1627 */ 1628 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT) 1629 1630 static inline bool pud_sect_supported(void) 1631 { 1632 return PAGE_SIZE == SZ_4K; 1633 } 1634 1635 1636 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1637 #define ptep_modify_prot_start ptep_modify_prot_start 1638 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1639 unsigned long addr, pte_t *ptep); 1640 1641 #define ptep_modify_prot_commit ptep_modify_prot_commit 1642 extern void ptep_modify_prot_commit(struct vm_area_struct *vma, 1643 unsigned long addr, pte_t *ptep, 1644 pte_t old_pte, pte_t new_pte); 1645 1646 #define modify_prot_start_ptes modify_prot_start_ptes 1647 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma, 1648 unsigned long addr, pte_t *ptep, 1649 unsigned int nr); 1650 1651 #define modify_prot_commit_ptes modify_prot_commit_ptes 1652 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr, 1653 pte_t *ptep, pte_t old_pte, pte_t pte, 1654 unsigned int nr); 1655 1656 #ifdef CONFIG_ARM64_CONTPTE 1657 1658 /* 1659 * The contpte APIs are used to transparently manage the contiguous bit in ptes 1660 * where it is possible and makes sense to do so. The PTE_CONT bit is considered 1661 * a private implementation detail of the public ptep API (see below). 1662 */ 1663 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr, 1664 pte_t *ptep, pte_t pte); 1665 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr, 1666 pte_t *ptep, pte_t pte); 1667 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte); 1668 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep); 1669 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr, 1670 pte_t *ptep, pte_t pte, unsigned int nr); 1671 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1672 pte_t *ptep, unsigned int nr, int full); 1673 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm, 1674 unsigned long addr, pte_t *ptep, 1675 unsigned int nr, int full); 1676 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma, 1677 unsigned long addr, pte_t *ptep); 1678 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma, 1679 unsigned long addr, pte_t *ptep); 1680 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 1681 pte_t *ptep, unsigned int nr); 1682 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma, 1683 unsigned long addr, pte_t *ptep, 1684 pte_t entry, int dirty); 1685 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma, 1686 unsigned long addr, pte_t *ptep, 1687 unsigned int nr, cydp_t flags); 1688 1689 static __always_inline void contpte_try_fold(struct mm_struct *mm, 1690 unsigned long addr, pte_t *ptep, pte_t pte) 1691 { 1692 /* 1693 * Only bother trying if both the virtual and physical addresses are 1694 * aligned and correspond to the last entry in a contig range. The core 1695 * code mostly modifies ranges from low to high, so this is the likely 1696 * the last modification in the contig range, so a good time to fold. 1697 * We can't fold special mappings, because there is no associated folio. 1698 */ 1699 1700 const unsigned long contmask = CONT_PTES - 1; 1701 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask; 1702 1703 if (unlikely(valign)) { 1704 bool palign = (pte_pfn(pte) & contmask) == contmask; 1705 1706 if (unlikely(palign && 1707 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte))) 1708 __contpte_try_fold(mm, addr, ptep, pte); 1709 } 1710 } 1711 1712 static __always_inline void contpte_try_unfold(struct mm_struct *mm, 1713 unsigned long addr, pte_t *ptep, pte_t pte) 1714 { 1715 if (unlikely(pte_valid_cont(pte))) 1716 __contpte_try_unfold(mm, addr, ptep, pte); 1717 } 1718 1719 #define pte_batch_hint pte_batch_hint 1720 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 1721 { 1722 if (!pte_valid_cont(pte)) 1723 return 1; 1724 1725 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1)); 1726 } 1727 1728 /* 1729 * The below functions constitute the public API that arm64 presents to the 1730 * core-mm to manipulate PTE entries within their page tables (or at least this 1731 * is the subset of the API that arm64 needs to implement). These public 1732 * versions will automatically and transparently apply the contiguous bit where 1733 * it makes sense to do so. Therefore any users that are contig-aware (e.g. 1734 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the 1735 * private versions, which are prefixed with double underscore. All of these 1736 * APIs except for ptep_get_lockless() are expected to be called with the PTL 1737 * held. Although the contiguous bit is considered private to the 1738 * implementation, it is deliberately allowed to leak through the getters (e.g. 1739 * ptep_get()), back to core code. This is required so that pte_leaf_size() can 1740 * provide an accurate size for perf_get_pgtable_size(). But this leakage means 1741 * its possible a pte will be passed to a setter with the contiguous bit set, so 1742 * we explicitly clear the contiguous bit in those cases to prevent accidentally 1743 * setting it in the pgtable. 1744 */ 1745 1746 #define ptep_get ptep_get 1747 static inline pte_t ptep_get(pte_t *ptep) 1748 { 1749 pte_t pte = __ptep_get(ptep); 1750 1751 if (likely(!pte_valid_cont(pte))) 1752 return pte; 1753 1754 return contpte_ptep_get(ptep, pte); 1755 } 1756 1757 #define ptep_get_lockless ptep_get_lockless 1758 static inline pte_t ptep_get_lockless(pte_t *ptep) 1759 { 1760 pte_t pte = __ptep_get(ptep); 1761 1762 if (likely(!pte_valid_cont(pte))) 1763 return pte; 1764 1765 return contpte_ptep_get_lockless(ptep); 1766 } 1767 1768 static inline void set_pte(pte_t *ptep, pte_t pte) 1769 { 1770 /* 1771 * We don't have the mm or vaddr so cannot unfold contig entries (since 1772 * it requires tlb maintenance). set_pte() is not used in core code, so 1773 * this should never even be called. Regardless do our best to service 1774 * any call and emit a warning if there is any attempt to set a pte on 1775 * top of an existing contig range. 1776 */ 1777 pte_t orig_pte = __ptep_get(ptep); 1778 1779 WARN_ON_ONCE(pte_valid_cont(orig_pte)); 1780 __set_pte(ptep, pte_mknoncont(pte)); 1781 } 1782 1783 #define set_ptes set_ptes 1784 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1785 pte_t *ptep, pte_t pte, unsigned int nr) 1786 { 1787 pte = pte_mknoncont(pte); 1788 1789 if (likely(nr == 1)) { 1790 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1791 __set_ptes(mm, addr, ptep, pte, 1); 1792 contpte_try_fold(mm, addr, ptep, pte); 1793 } else { 1794 contpte_set_ptes(mm, addr, ptep, pte, nr); 1795 } 1796 } 1797 1798 static inline void pte_clear(struct mm_struct *mm, 1799 unsigned long addr, pte_t *ptep) 1800 { 1801 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1802 __pte_clear(mm, addr, ptep); 1803 } 1804 1805 #define clear_full_ptes clear_full_ptes 1806 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1807 pte_t *ptep, unsigned int nr, int full) 1808 { 1809 if (likely(nr == 1)) { 1810 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1811 __clear_full_ptes(mm, addr, ptep, nr, full); 1812 } else { 1813 contpte_clear_full_ptes(mm, addr, ptep, nr, full); 1814 } 1815 } 1816 1817 #define get_and_clear_full_ptes get_and_clear_full_ptes 1818 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 1819 unsigned long addr, pte_t *ptep, 1820 unsigned int nr, int full) 1821 { 1822 pte_t pte; 1823 1824 if (likely(nr == 1)) { 1825 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1826 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1827 } else { 1828 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1829 } 1830 1831 return pte; 1832 } 1833 1834 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1835 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1836 unsigned long addr, pte_t *ptep) 1837 { 1838 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1839 return __ptep_get_and_clear(mm, addr, ptep); 1840 } 1841 1842 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1843 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1844 unsigned long addr, pte_t *ptep) 1845 { 1846 pte_t orig_pte = __ptep_get(ptep); 1847 1848 if (likely(!pte_valid_cont(orig_pte))) 1849 return __ptep_test_and_clear_young(vma, addr, ptep); 1850 1851 return contpte_ptep_test_and_clear_young(vma, addr, ptep); 1852 } 1853 1854 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1855 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1856 unsigned long addr, pte_t *ptep) 1857 { 1858 pte_t orig_pte = __ptep_get(ptep); 1859 1860 if (likely(!pte_valid_cont(orig_pte))) 1861 return __ptep_clear_flush_young(vma, addr, ptep); 1862 1863 return contpte_ptep_clear_flush_young(vma, addr, ptep); 1864 } 1865 1866 #define wrprotect_ptes wrprotect_ptes 1867 static __always_inline void wrprotect_ptes(struct mm_struct *mm, 1868 unsigned long addr, pte_t *ptep, unsigned int nr) 1869 { 1870 if (likely(nr == 1)) { 1871 /* 1872 * Optimization: wrprotect_ptes() can only be called for present 1873 * ptes so we only need to check contig bit as condition for 1874 * unfold, and we can remove the contig bit from the pte we read 1875 * to avoid re-reading. This speeds up fork() which is sensitive 1876 * for order-0 folios. Equivalent to contpte_try_unfold(). 1877 */ 1878 pte_t orig_pte = __ptep_get(ptep); 1879 1880 if (unlikely(pte_cont(orig_pte))) { 1881 __contpte_try_unfold(mm, addr, ptep, orig_pte); 1882 orig_pte = pte_mknoncont(orig_pte); 1883 } 1884 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte); 1885 } else { 1886 contpte_wrprotect_ptes(mm, addr, ptep, nr); 1887 } 1888 } 1889 1890 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1891 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1892 unsigned long addr, pte_t *ptep) 1893 { 1894 wrprotect_ptes(mm, addr, ptep, 1); 1895 } 1896 1897 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1898 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1899 unsigned long addr, pte_t *ptep, 1900 pte_t entry, int dirty) 1901 { 1902 pte_t orig_pte = __ptep_get(ptep); 1903 1904 entry = pte_mknoncont(entry); 1905 1906 if (likely(!pte_valid_cont(orig_pte))) 1907 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1908 1909 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1910 } 1911 1912 #define clear_young_dirty_ptes clear_young_dirty_ptes 1913 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 1914 unsigned long addr, pte_t *ptep, 1915 unsigned int nr, cydp_t flags) 1916 { 1917 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep)))) 1918 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1919 else 1920 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1921 } 1922 1923 #else /* CONFIG_ARM64_CONTPTE */ 1924 1925 #define ptep_get __ptep_get 1926 #define set_pte __set_pte 1927 #define set_ptes __set_ptes 1928 #define pte_clear __pte_clear 1929 #define clear_full_ptes __clear_full_ptes 1930 #define get_and_clear_full_ptes __get_and_clear_full_ptes 1931 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1932 #define ptep_get_and_clear __ptep_get_and_clear 1933 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1934 #define ptep_test_and_clear_young __ptep_test_and_clear_young 1935 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1936 #define ptep_clear_flush_young __ptep_clear_flush_young 1937 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1938 #define ptep_set_wrprotect __ptep_set_wrprotect 1939 #define wrprotect_ptes __wrprotect_ptes 1940 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1941 #define ptep_set_access_flags __ptep_set_access_flags 1942 #define clear_young_dirty_ptes __clear_young_dirty_ptes 1943 1944 #endif /* CONFIG_ARM64_CONTPTE */ 1945 1946 #endif /* !__ASSEMBLY__ */ 1947 1948 #endif /* __ASM_PGTABLE_H */ 1949