1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5 #ifndef __ASM_PGTABLE_H 6 #define __ASM_PGTABLE_H 7 8 #include <asm/bug.h> 9 #include <asm/proc-fns.h> 10 11 #include <asm/memory.h> 12 #include <asm/mte.h> 13 #include <asm/pgtable-hwdef.h> 14 #include <asm/pgtable-prot.h> 15 #include <asm/tlbflush.h> 16 17 /* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap 22 */ 23 #define VMALLOC_START (MODULES_END) 24 #if VA_BITS == VA_BITS_MIN 25 #define VMALLOC_END (VMEMMAP_START - SZ_8M) 26 #else 27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT) 28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M) 29 #endif 30 31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 32 33 #ifndef __ASSEMBLY__ 34 35 #include <asm/cmpxchg.h> 36 #include <asm/fixmap.h> 37 #include <asm/por.h> 38 #include <linux/mmdebug.h> 39 #include <linux/mm_types.h> 40 #include <linux/sched.h> 41 #include <linux/page_table_check.h> 42 43 static inline void emit_pte_barriers(void) 44 { 45 /* 46 * These barriers are emitted under certain conditions after a pte entry 47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store 48 * visible to the table walker. The isb ensures that any previous 49 * speculative "invalid translation" marker that is in the CPU's 50 * pipeline gets cleared, so that any access to that address after 51 * setting the pte to valid won't cause a spurious fault. If the thread 52 * gets preempted after storing to the pgtable but before emitting these 53 * barriers, __switch_to() emits a dsb which ensure the walker gets to 54 * see the store. There is no guarantee of an isb being issued though. 55 * This is safe because it will still get issued (albeit on a 56 * potentially different CPU) when the thread starts running again, 57 * before any access to the address. 58 */ 59 dsb(ishst); 60 isb(); 61 } 62 63 static inline void queue_pte_barriers(void) 64 { 65 unsigned long flags; 66 67 if (in_interrupt()) { 68 emit_pte_barriers(); 69 return; 70 } 71 72 flags = read_thread_flags(); 73 74 if (flags & BIT(TIF_LAZY_MMU)) { 75 /* Avoid the atomic op if already set. */ 76 if (!(flags & BIT(TIF_LAZY_MMU_PENDING))) 77 set_thread_flag(TIF_LAZY_MMU_PENDING); 78 } else { 79 emit_pte_barriers(); 80 } 81 } 82 83 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE 84 static inline void arch_enter_lazy_mmu_mode(void) 85 { 86 /* 87 * lazy_mmu_mode is not supposed to permit nesting. But in practice this 88 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation 89 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change 90 * permissions on the linear map with apply_to_page_range(), which 91 * re-enters lazy_mmu_mode. So we tolerate nesting in our 92 * implementation. The first call to arch_leave_lazy_mmu_mode() will 93 * flush and clear the flag such that the remainder of the work in the 94 * outer nest behaves as if outside of lazy mmu mode. This is safe and 95 * keeps tracking simple. 96 */ 97 98 if (in_interrupt()) 99 return; 100 101 set_thread_flag(TIF_LAZY_MMU); 102 } 103 104 static inline void arch_flush_lazy_mmu_mode(void) 105 { 106 if (in_interrupt()) 107 return; 108 109 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING)) 110 emit_pte_barriers(); 111 } 112 113 static inline void arch_leave_lazy_mmu_mode(void) 114 { 115 if (in_interrupt()) 116 return; 117 118 arch_flush_lazy_mmu_mode(); 119 clear_thread_flag(TIF_LAZY_MMU); 120 } 121 122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 124 125 /* Set stride and tlb_level in flush_*_tlb_range */ 126 #define flush_pmd_tlb_range(vma, addr, end) \ 127 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 128 #define flush_pud_tlb_range(vma, addr, end) \ 129 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 131 132 /* 133 * Outside of a few very special situations (e.g. hibernation), we always 134 * use broadcast TLB invalidation instructions, therefore a spurious page 135 * fault on one CPU which has been handled concurrently by another CPU 136 * does not need to perform additional invalidation. 137 */ 138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0) 139 140 /* 141 * ZERO_PAGE is a global shared page that is always zero: used 142 * for zero-mapped memory areas etc.. 143 */ 144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 145 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 146 147 #define pte_ERROR(e) \ 148 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 149 150 #ifdef CONFIG_ARM64_PA_BITS_52 151 static inline phys_addr_t __pte_to_phys(pte_t pte) 152 { 153 pte_val(pte) &= ~PTE_MAYBE_SHARED; 154 return (pte_val(pte) & PTE_ADDR_LOW) | 155 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT); 156 } 157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 158 { 159 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK; 160 } 161 #else 162 static inline phys_addr_t __pte_to_phys(pte_t pte) 163 { 164 return pte_val(pte) & PTE_ADDR_LOW; 165 } 166 167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 168 { 169 return phys; 170 } 171 #endif 172 173 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 174 #define pfn_pte(pfn,prot) \ 175 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 176 177 #define pte_none(pte) (!pte_val(pte)) 178 #define __pte_clear(mm, addr, ptep) \ 179 __set_pte(ptep, __pte(0)) 180 #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 181 182 /* 183 * The following only work if pte_present(). Undefined behaviour otherwise. 184 */ 185 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte)) 186 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 187 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 188 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 189 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY)) 190 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER)) 191 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 192 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 193 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 194 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 195 196 #define pte_cont_addr_end(addr, end) \ 197 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 198 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 199 }) 200 201 #define pmd_cont_addr_end(addr, end) \ 202 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 203 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 204 }) 205 206 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte)) 207 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 208 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 209 210 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 211 #define pte_present_invalid(pte) \ 212 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID) 213 /* 214 * Execute-only user mappings do not have the PTE_USER bit set. All valid 215 * kernel mappings have the PTE_UXN bit set. 216 */ 217 #define pte_valid_not_user(pte) \ 218 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 219 /* 220 * Returns true if the pte is valid and has the contiguous bit set. 221 */ 222 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte)) 223 /* 224 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 225 * so that we don't erroneously return false for pages that have been 226 * remapped as PROT_NONE but are yet to be flushed from the TLB. 227 * Note that we can't make any assumptions based on the state of the access 228 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the 229 * TLB. 230 */ 231 #define pte_accessible(mm, pte) \ 232 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 233 234 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute) 235 { 236 u64 por; 237 238 if (!system_supports_poe()) 239 return true; 240 241 por = read_sysreg_s(SYS_POR_EL0); 242 243 if (write) 244 return por_elx_allows_write(por, pkey); 245 246 if (execute) 247 return por_elx_allows_exec(por, pkey); 248 249 return por_elx_allows_read(por, pkey); 250 } 251 252 /* 253 * p??_access_permitted() is true for valid user mappings (PTE_USER 254 * bit set, subject to the write permission check). For execute-only 255 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 256 * not set) must return false. PROT_NONE mappings do not have the 257 * PTE_VALID bit set. 258 */ 259 #define pte_access_permitted_no_overlay(pte, write) \ 260 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 261 #define pte_access_permitted(pte, write) \ 262 (pte_access_permitted_no_overlay(pte, write) && \ 263 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false)) 264 #define pmd_access_permitted(pmd, write) \ 265 (pte_access_permitted(pmd_pte(pmd), (write))) 266 #define pud_access_permitted(pud, write) \ 267 (pte_access_permitted(pud_pte(pud), (write))) 268 269 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 270 { 271 pte_val(pte) &= ~pgprot_val(prot); 272 return pte; 273 } 274 275 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 276 { 277 pte_val(pte) |= pgprot_val(prot); 278 return pte; 279 } 280 281 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 282 { 283 pmd_val(pmd) &= ~pgprot_val(prot); 284 return pmd; 285 } 286 287 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 288 { 289 pmd_val(pmd) |= pgprot_val(prot); 290 return pmd; 291 } 292 293 static inline pte_t pte_mkwrite_novma(pte_t pte) 294 { 295 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 296 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 297 return pte; 298 } 299 300 static inline pte_t pte_mkclean(pte_t pte) 301 { 302 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 303 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 304 305 return pte; 306 } 307 308 static inline pte_t pte_mkdirty(pte_t pte) 309 { 310 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 311 312 if (pte_write(pte)) 313 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 314 315 return pte; 316 } 317 318 static inline pte_t pte_wrprotect(pte_t pte) 319 { 320 /* 321 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 322 * clear), set the PTE_DIRTY bit. 323 */ 324 if (pte_hw_dirty(pte)) 325 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 326 327 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 328 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 329 return pte; 330 } 331 332 static inline pte_t pte_mkold(pte_t pte) 333 { 334 return clear_pte_bit(pte, __pgprot(PTE_AF)); 335 } 336 337 static inline pte_t pte_mkyoung(pte_t pte) 338 { 339 return set_pte_bit(pte, __pgprot(PTE_AF)); 340 } 341 342 static inline pte_t pte_mkspecial(pte_t pte) 343 { 344 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 345 } 346 347 static inline pte_t pte_mkcont(pte_t pte) 348 { 349 return set_pte_bit(pte, __pgprot(PTE_CONT)); 350 } 351 352 static inline pte_t pte_mknoncont(pte_t pte) 353 { 354 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 355 } 356 357 static inline pte_t pte_mkvalid(pte_t pte) 358 { 359 return set_pte_bit(pte, __pgprot(PTE_VALID)); 360 } 361 362 static inline pte_t pte_mkinvalid(pte_t pte) 363 { 364 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID)); 365 pte = clear_pte_bit(pte, __pgprot(PTE_VALID)); 366 return pte; 367 } 368 369 static inline pmd_t pmd_mkcont(pmd_t pmd) 370 { 371 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 372 } 373 374 static inline pmd_t pmd_mknoncont(pmd_t pmd) 375 { 376 return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT); 377 } 378 379 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 380 static inline int pte_uffd_wp(pte_t pte) 381 { 382 return !!(pte_val(pte) & PTE_UFFD_WP); 383 } 384 385 static inline pte_t pte_mkuffd_wp(pte_t pte) 386 { 387 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP))); 388 } 389 390 static inline pte_t pte_clear_uffd_wp(pte_t pte) 391 { 392 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP)); 393 } 394 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 395 396 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte) 397 { 398 WRITE_ONCE(*ptep, pte); 399 } 400 401 static inline void __set_pte_complete(pte_t pte) 402 { 403 /* 404 * Only if the new pte is valid and kernel, otherwise TLB maintenance 405 * has the necessary barriers. 406 */ 407 if (pte_valid_not_user(pte)) 408 queue_pte_barriers(); 409 } 410 411 static inline void __set_pte(pte_t *ptep, pte_t pte) 412 { 413 __set_pte_nosync(ptep, pte); 414 __set_pte_complete(pte); 415 } 416 417 static inline pte_t __ptep_get(pte_t *ptep) 418 { 419 return READ_ONCE(*ptep); 420 } 421 422 extern void __sync_icache_dcache(pte_t pteval); 423 bool pgattr_change_is_safe(pteval_t old, pteval_t new); 424 425 /* 426 * PTE bits configuration in the presence of hardware Dirty Bit Management 427 * (PTE_WRITE == PTE_DBM): 428 * 429 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 430 * 0 0 | 1 0 0 431 * 0 1 | 1 1 0 432 * 1 0 | 1 0 1 433 * 1 1 | 0 1 x 434 * 435 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 436 * the page fault mechanism. Checking the dirty status of a pte becomes: 437 * 438 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 439 */ 440 441 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep, 442 pte_t pte) 443 { 444 pte_t old_pte; 445 446 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 447 return; 448 449 old_pte = __ptep_get(ptep); 450 451 if (!pte_valid(old_pte) || !pte_valid(pte)) 452 return; 453 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 454 return; 455 456 /* 457 * Check for potential race with hardware updates of the pte 458 * (__ptep_set_access_flags safely changes valid ptes without going 459 * through an invalid entry). 460 */ 461 VM_WARN_ONCE(!pte_young(pte), 462 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 463 __func__, pte_val(old_pte), pte_val(pte)); 464 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 465 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 466 __func__, pte_val(old_pte), pte_val(pte)); 467 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)), 468 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx", 469 __func__, pte_val(old_pte), pte_val(pte)); 470 } 471 472 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages) 473 { 474 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 475 __sync_icache_dcache(pte); 476 477 /* 478 * If the PTE would provide user space access to the tags associated 479 * with it then ensure that the MTE tags are synchronised. Although 480 * pte_access_permitted_no_overlay() returns false for exec only 481 * mappings, they don't expose tags (instruction fetches don't check 482 * tags). 483 */ 484 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) && 485 !pte_special(pte) && pte_tagged(pte)) 486 mte_sync_tags(pte, nr_pages); 487 } 488 489 /* 490 * Select all bits except the pfn 491 */ 492 #define pte_pgprot pte_pgprot 493 static inline pgprot_t pte_pgprot(pte_t pte) 494 { 495 unsigned long pfn = pte_pfn(pte); 496 497 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 498 } 499 500 #define pte_advance_pfn pte_advance_pfn 501 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 502 { 503 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte)); 504 } 505 506 /* 507 * Hugetlb definitions. 508 */ 509 #define HUGE_MAX_HSTATE 4 510 #define HPAGE_SHIFT PMD_SHIFT 511 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 512 #define HPAGE_MASK (~(HPAGE_SIZE - 1)) 513 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 514 515 static inline pte_t pgd_pte(pgd_t pgd) 516 { 517 return __pte(pgd_val(pgd)); 518 } 519 520 static inline pte_t p4d_pte(p4d_t p4d) 521 { 522 return __pte(p4d_val(p4d)); 523 } 524 525 static inline pte_t pud_pte(pud_t pud) 526 { 527 return __pte(pud_val(pud)); 528 } 529 530 static inline pud_t pte_pud(pte_t pte) 531 { 532 return __pud(pte_val(pte)); 533 } 534 535 static inline pmd_t pud_pmd(pud_t pud) 536 { 537 return __pmd(pud_val(pud)); 538 } 539 540 static inline pte_t pmd_pte(pmd_t pmd) 541 { 542 return __pte(pmd_val(pmd)); 543 } 544 545 static inline pmd_t pte_pmd(pte_t pte) 546 { 547 return __pmd(pte_val(pte)); 548 } 549 550 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 551 { 552 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT); 553 } 554 555 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 556 { 557 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT); 558 } 559 560 static inline pte_t pte_swp_mkexclusive(pte_t pte) 561 { 562 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 563 } 564 565 static inline bool pte_swp_exclusive(pte_t pte) 566 { 567 return pte_val(pte) & PTE_SWP_EXCLUSIVE; 568 } 569 570 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 571 { 572 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 573 } 574 575 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 576 static inline pte_t pte_swp_mkuffd_wp(pte_t pte) 577 { 578 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 579 } 580 581 static inline int pte_swp_uffd_wp(pte_t pte) 582 { 583 return !!(pte_val(pte) & PTE_SWP_UFFD_WP); 584 } 585 586 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte) 587 { 588 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP)); 589 } 590 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 591 592 #ifdef CONFIG_NUMA_BALANCING 593 /* 594 * See the comment in include/linux/pgtable.h 595 */ 596 static inline int pte_protnone(pte_t pte) 597 { 598 /* 599 * pte_present_invalid() tells us that the pte is invalid from HW 600 * perspective but present from SW perspective, so the fields are to be 601 * interpretted as per the HW layout. The second 2 checks are the unique 602 * encoding that we use for PROT_NONE. It is insufficient to only use 603 * the first check because we share the same encoding scheme with pmds 604 * which support pmd_mkinvalid(), so can be present-invalid without 605 * being PROT_NONE. 606 */ 607 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte); 608 } 609 610 static inline int pmd_protnone(pmd_t pmd) 611 { 612 return pte_protnone(pmd_pte(pmd)); 613 } 614 #endif 615 616 #define pmd_present(pmd) pte_present(pmd_pte(pmd)) 617 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 618 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 619 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 620 #define pmd_user(pmd) pte_user(pmd_pte(pmd)) 621 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd)) 622 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 623 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 624 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 625 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) 626 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 627 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 628 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 629 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd))) 630 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP 631 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd)) 632 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd))) 633 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd))) 634 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd)) 635 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd))) 636 #define pmd_swp_clear_uffd_wp(pmd) \ 637 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd))) 638 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */ 639 640 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 641 642 static inline pmd_t pmd_mkhuge(pmd_t pmd) 643 { 644 /* 645 * It's possible that the pmd is present-invalid on entry 646 * and in that case it needs to remain present-invalid on 647 * exit. So ensure the VALID bit does not get modified. 648 */ 649 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID; 650 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID; 651 652 return __pmd((pmd_val(pmd) & ~mask) | val); 653 } 654 655 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 656 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL))) 657 static inline pmd_t pmd_mkspecial(pmd_t pmd) 658 { 659 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL)); 660 } 661 #endif 662 663 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 664 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 665 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 666 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 667 668 #define pud_young(pud) pte_young(pud_pte(pud)) 669 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 670 #define pud_write(pud) pte_write(pud_pte(pud)) 671 672 static inline pud_t pud_mkhuge(pud_t pud) 673 { 674 /* 675 * It's possible that the pud is present-invalid on entry 676 * and in that case it needs to remain present-invalid on 677 * exit. So ensure the VALID bit does not get modified. 678 */ 679 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID; 680 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID; 681 682 return __pud((pud_val(pud) & ~mask) | val); 683 } 684 685 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 686 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 687 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 688 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 689 690 #define pmd_pgprot pmd_pgprot 691 static inline pgprot_t pmd_pgprot(pmd_t pmd) 692 { 693 unsigned long pfn = pmd_pfn(pmd); 694 695 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd)); 696 } 697 698 #define pud_pgprot pud_pgprot 699 static inline pgprot_t pud_pgprot(pud_t pud) 700 { 701 unsigned long pfn = pud_pfn(pud); 702 703 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud)); 704 } 705 706 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep, 707 pte_t pte, unsigned int nr, 708 unsigned long pgsize) 709 { 710 unsigned long stride = pgsize >> PAGE_SHIFT; 711 712 switch (pgsize) { 713 case PAGE_SIZE: 714 page_table_check_ptes_set(mm, ptep, pte, nr); 715 break; 716 case PMD_SIZE: 717 page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr); 718 break; 719 #ifndef __PAGETABLE_PMD_FOLDED 720 case PUD_SIZE: 721 page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr); 722 break; 723 #endif 724 default: 725 VM_WARN_ON(1); 726 } 727 728 __sync_cache_and_tags(pte, nr * stride); 729 730 for (;;) { 731 __check_safe_pte_update(mm, ptep, pte); 732 __set_pte_nosync(ptep, pte); 733 if (--nr == 0) 734 break; 735 ptep++; 736 pte = pte_advance_pfn(pte, stride); 737 } 738 739 __set_pte_complete(pte); 740 } 741 742 static inline void __set_ptes(struct mm_struct *mm, 743 unsigned long __always_unused addr, 744 pte_t *ptep, pte_t pte, unsigned int nr) 745 { 746 __set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE); 747 } 748 749 static inline void __set_pmds(struct mm_struct *mm, 750 unsigned long __always_unused addr, 751 pmd_t *pmdp, pmd_t pmd, unsigned int nr) 752 { 753 __set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE); 754 } 755 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1) 756 757 static inline void __set_puds(struct mm_struct *mm, 758 unsigned long __always_unused addr, 759 pud_t *pudp, pud_t pud, unsigned int nr) 760 { 761 __set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE); 762 } 763 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1) 764 765 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 766 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 767 768 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 769 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 770 771 #define __pgprot_modify(prot,mask,bits) \ 772 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 773 774 #define pgprot_nx(prot) \ 775 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 776 777 #define pgprot_decrypted(prot) \ 778 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED) 779 #define pgprot_encrypted(prot) \ 780 __pgprot_modify(prot, PROT_NS_SHARED, 0) 781 782 /* 783 * Mark the prot value as uncacheable and unbufferable. 784 */ 785 #define pgprot_noncached(prot) \ 786 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 787 #define pgprot_writecombine(prot) \ 788 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 789 #define pgprot_device(prot) \ 790 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 791 #define pgprot_tagged(prot) \ 792 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 793 #define pgprot_mhp pgprot_tagged 794 /* 795 * DMA allocations for non-coherent devices use what the Arm architecture calls 796 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 797 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 798 * is intended for MMIO and thus forbids speculation, preserves access size, 799 * requires strict alignment and can also force write responses to come from the 800 * endpoint. 801 */ 802 #define pgprot_dmacoherent(prot) \ 803 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 804 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 805 806 #define __HAVE_PHYS_MEM_ACCESS_PROT 807 struct file; 808 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 809 unsigned long size, pgprot_t vma_prot); 810 811 #define pmd_none(pmd) (!pmd_val(pmd)) 812 813 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 814 PMD_TYPE_TABLE) 815 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 816 PMD_TYPE_SECT) 817 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd)) 818 #define pmd_bad(pmd) (!pmd_table(pmd)) 819 820 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 821 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 822 823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 824 static inline int pmd_trans_huge(pmd_t pmd) 825 { 826 /* 827 * If pmd is present-invalid, pmd_table() won't detect it 828 * as a table, so force the valid bit for the comparison. 829 */ 830 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID)); 831 } 832 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 833 834 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 835 static inline bool pud_sect(pud_t pud) { return false; } 836 static inline bool pud_table(pud_t pud) { return true; } 837 #else 838 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 839 PUD_TYPE_SECT) 840 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 841 PUD_TYPE_TABLE) 842 #endif 843 844 extern pgd_t swapper_pg_dir[]; 845 extern pgd_t idmap_pg_dir[]; 846 extern pgd_t tramp_pg_dir[]; 847 extern pgd_t reserved_pg_dir[]; 848 849 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 850 851 static inline bool in_swapper_pgdir(void *addr) 852 { 853 return ((unsigned long)addr & PAGE_MASK) == 854 ((unsigned long)swapper_pg_dir & PAGE_MASK); 855 } 856 857 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 858 { 859 #ifdef __PAGETABLE_PMD_FOLDED 860 if (in_swapper_pgdir(pmdp)) { 861 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 862 return; 863 } 864 #endif /* __PAGETABLE_PMD_FOLDED */ 865 866 WRITE_ONCE(*pmdp, pmd); 867 868 if (pmd_valid(pmd)) 869 queue_pte_barriers(); 870 } 871 872 static inline void pmd_clear(pmd_t *pmdp) 873 { 874 set_pmd(pmdp, __pmd(0)); 875 } 876 877 static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 878 { 879 return __pmd_to_phys(pmd); 880 } 881 882 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 883 { 884 return (unsigned long)__va(pmd_page_paddr(pmd)); 885 } 886 887 /* Find an entry in the third-level page table. */ 888 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 889 890 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 891 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 892 #define pte_clear_fixmap() clear_fixmap(FIX_PTE) 893 894 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 895 896 /* use ONLY for statically allocated translation tables */ 897 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 898 899 #if CONFIG_PGTABLE_LEVELS > 2 900 901 #define pmd_ERROR(e) \ 902 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 903 904 #define pud_none(pud) (!pud_val(pud)) 905 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \ 906 PUD_TYPE_TABLE) 907 #define pud_present(pud) pte_present(pud_pte(pud)) 908 #ifndef __PAGETABLE_PMD_FOLDED 909 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud)) 910 #else 911 #define pud_leaf(pud) false 912 #endif 913 #define pud_valid(pud) pte_valid(pud_pte(pud)) 914 #define pud_user(pud) pte_user(pud_pte(pud)) 915 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud)) 916 917 static inline bool pgtable_l4_enabled(void); 918 919 static inline void set_pud(pud_t *pudp, pud_t pud) 920 { 921 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) { 922 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 923 return; 924 } 925 926 WRITE_ONCE(*pudp, pud); 927 928 if (pud_valid(pud)) 929 queue_pte_barriers(); 930 } 931 932 static inline void pud_clear(pud_t *pudp) 933 { 934 set_pud(pudp, __pud(0)); 935 } 936 937 static inline phys_addr_t pud_page_paddr(pud_t pud) 938 { 939 return __pud_to_phys(pud); 940 } 941 942 static inline pmd_t *pud_pgtable(pud_t pud) 943 { 944 return (pmd_t *)__va(pud_page_paddr(pud)); 945 } 946 947 /* Find an entry in the second-level page table. */ 948 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 949 950 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 951 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 952 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 953 954 #define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 955 956 /* use ONLY for statically allocated translation tables */ 957 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 958 959 #else 960 961 #define pud_valid(pud) false 962 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 963 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */ 964 965 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 966 #define pmd_set_fixmap(addr) NULL 967 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 968 #define pmd_clear_fixmap() 969 970 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 971 972 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 973 974 #if CONFIG_PGTABLE_LEVELS > 3 975 976 static __always_inline bool pgtable_l4_enabled(void) 977 { 978 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2)) 979 return true; 980 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 981 return vabits_actual == VA_BITS; 982 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 983 } 984 985 static inline bool mm_pud_folded(const struct mm_struct *mm) 986 { 987 return !pgtable_l4_enabled(); 988 } 989 #define mm_pud_folded mm_pud_folded 990 991 #define pud_ERROR(e) \ 992 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 993 994 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d)) 995 #define p4d_bad(p4d) (pgtable_l4_enabled() && \ 996 ((p4d_val(p4d) & P4D_TYPE_MASK) != \ 997 P4D_TYPE_TABLE)) 998 #define p4d_present(p4d) (!p4d_none(p4d)) 999 1000 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 1001 { 1002 if (in_swapper_pgdir(p4dp)) { 1003 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 1004 return; 1005 } 1006 1007 WRITE_ONCE(*p4dp, p4d); 1008 queue_pte_barriers(); 1009 } 1010 1011 static inline void p4d_clear(p4d_t *p4dp) 1012 { 1013 if (pgtable_l4_enabled()) 1014 set_p4d(p4dp, __p4d(0)); 1015 } 1016 1017 static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 1018 { 1019 return __p4d_to_phys(p4d); 1020 } 1021 1022 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) 1023 1024 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr) 1025 { 1026 /* Ensure that 'p4dp' indexes a page table according to 'addr' */ 1027 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D); 1028 1029 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr); 1030 } 1031 1032 static inline pud_t *p4d_pgtable(p4d_t p4d) 1033 { 1034 return (pud_t *)__va(p4d_page_paddr(p4d)); 1035 } 1036 1037 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr) 1038 { 1039 BUG_ON(!pgtable_l4_enabled()); 1040 1041 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t); 1042 } 1043 1044 static inline 1045 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr) 1046 { 1047 if (!pgtable_l4_enabled()) 1048 return p4d_to_folded_pud(p4dp, addr); 1049 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr); 1050 } 1051 #define pud_offset_lockless pud_offset_lockless 1052 1053 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr) 1054 { 1055 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr); 1056 } 1057 #define pud_offset pud_offset 1058 1059 static inline pud_t *pud_set_fixmap(unsigned long addr) 1060 { 1061 if (!pgtable_l4_enabled()) 1062 return NULL; 1063 return (pud_t *)set_fixmap_offset(FIX_PUD, addr); 1064 } 1065 1066 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr) 1067 { 1068 if (!pgtable_l4_enabled()) 1069 return p4d_to_folded_pud(p4dp, addr); 1070 return pud_set_fixmap(pud_offset_phys(p4dp, addr)); 1071 } 1072 1073 static inline void pud_clear_fixmap(void) 1074 { 1075 if (pgtable_l4_enabled()) 1076 clear_fixmap(FIX_PUD); 1077 } 1078 1079 /* use ONLY for statically allocated translation tables */ 1080 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr) 1081 { 1082 if (!pgtable_l4_enabled()) 1083 return p4d_to_folded_pud(p4dp, addr); 1084 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr)); 1085 } 1086 1087 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 1088 1089 #else 1090 1091 static inline bool pgtable_l4_enabled(void) { return false; } 1092 1093 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 1094 1095 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 1096 #define pud_set_fixmap(addr) NULL 1097 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 1098 #define pud_clear_fixmap() 1099 1100 #define pud_offset_kimg(dir,addr) ((pud_t *)dir) 1101 1102 #endif /* CONFIG_PGTABLE_LEVELS > 3 */ 1103 1104 #if CONFIG_PGTABLE_LEVELS > 4 1105 1106 static __always_inline bool pgtable_l5_enabled(void) 1107 { 1108 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT)) 1109 return vabits_actual == VA_BITS; 1110 return alternative_has_cap_unlikely(ARM64_HAS_VA52); 1111 } 1112 1113 static inline bool mm_p4d_folded(const struct mm_struct *mm) 1114 { 1115 return !pgtable_l5_enabled(); 1116 } 1117 #define mm_p4d_folded mm_p4d_folded 1118 1119 #define p4d_ERROR(e) \ 1120 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e)) 1121 1122 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd)) 1123 #define pgd_bad(pgd) (pgtable_l5_enabled() && \ 1124 ((pgd_val(pgd) & PGD_TYPE_MASK) != \ 1125 PGD_TYPE_TABLE)) 1126 #define pgd_present(pgd) (!pgd_none(pgd)) 1127 1128 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 1129 { 1130 if (in_swapper_pgdir(pgdp)) { 1131 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd))); 1132 return; 1133 } 1134 1135 WRITE_ONCE(*pgdp, pgd); 1136 queue_pte_barriers(); 1137 } 1138 1139 static inline void pgd_clear(pgd_t *pgdp) 1140 { 1141 if (pgtable_l5_enabled()) 1142 set_pgd(pgdp, __pgd(0)); 1143 } 1144 1145 static inline phys_addr_t pgd_page_paddr(pgd_t pgd) 1146 { 1147 return __pgd_to_phys(pgd); 1148 } 1149 1150 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1151 1152 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr) 1153 { 1154 /* Ensure that 'pgdp' indexes a page table according to 'addr' */ 1155 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD); 1156 1157 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr); 1158 } 1159 1160 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr) 1161 { 1162 BUG_ON(!pgtable_l5_enabled()); 1163 1164 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t); 1165 } 1166 1167 static inline 1168 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1169 { 1170 if (!pgtable_l5_enabled()) 1171 return pgd_to_folded_p4d(pgdp, addr); 1172 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr); 1173 } 1174 #define p4d_offset_lockless p4d_offset_lockless 1175 1176 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr) 1177 { 1178 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr); 1179 } 1180 1181 static inline p4d_t *p4d_set_fixmap(unsigned long addr) 1182 { 1183 if (!pgtable_l5_enabled()) 1184 return NULL; 1185 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr); 1186 } 1187 1188 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr) 1189 { 1190 if (!pgtable_l5_enabled()) 1191 return pgd_to_folded_p4d(pgdp, addr); 1192 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr)); 1193 } 1194 1195 static inline void p4d_clear_fixmap(void) 1196 { 1197 if (pgtable_l5_enabled()) 1198 clear_fixmap(FIX_P4D); 1199 } 1200 1201 /* use ONLY for statically allocated translation tables */ 1202 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr) 1203 { 1204 if (!pgtable_l5_enabled()) 1205 return pgd_to_folded_p4d(pgdp, addr); 1206 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr)); 1207 } 1208 1209 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd))) 1210 1211 #else 1212 1213 static inline bool pgtable_l5_enabled(void) { return false; } 1214 1215 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1)) 1216 1217 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */ 1218 #define p4d_set_fixmap(addr) NULL 1219 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp) 1220 #define p4d_clear_fixmap() 1221 1222 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir) 1223 1224 static inline 1225 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr) 1226 { 1227 /* 1228 * With runtime folding of the pud, pud_offset_lockless() passes 1229 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which 1230 * will offset the pointer assuming that it points into 1231 * a page-table page. However, the fast GUP path passes us a 1232 * pgd_t allocated on the stack and so we must use the original 1233 * pointer in 'pgdp' to construct the p4d pointer instead of 1234 * using the generic p4d_offset_lockless() implementation. 1235 * 1236 * Note: reusing the original pointer means that we may 1237 * dereference the same (live) page-table entry multiple times. 1238 * This is safe because it is still only loaded once in the 1239 * context of each level and the CPU guarantees same-address 1240 * read-after-read ordering. 1241 */ 1242 return p4d_offset(pgdp, addr); 1243 } 1244 #define p4d_offset_lockless p4d_offset_lockless_folded 1245 1246 #endif /* CONFIG_PGTABLE_LEVELS > 4 */ 1247 1248 #define pgd_ERROR(e) \ 1249 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 1250 1251 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 1252 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 1253 1254 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 1255 { 1256 /* 1257 * Normal and Normal-Tagged are two different memory types and indices 1258 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 1259 */ 1260 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 1261 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE | 1262 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK; 1263 1264 /* preserve the hardware dirty information */ 1265 if (pte_hw_dirty(pte)) 1266 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 1267 1268 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 1269 /* 1270 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware 1271 * dirtiness again. 1272 */ 1273 if (pte_sw_dirty(pte)) 1274 pte = pte_mkdirty(pte); 1275 return pte; 1276 } 1277 1278 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1279 { 1280 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 1281 } 1282 1283 extern int __ptep_set_access_flags(struct vm_area_struct *vma, 1284 unsigned long address, pte_t *ptep, 1285 pte_t entry, int dirty); 1286 1287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1288 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1289 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1290 unsigned long address, pmd_t *pmdp, 1291 pmd_t entry, int dirty) 1292 { 1293 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp, 1294 pmd_pte(entry), dirty); 1295 } 1296 #endif 1297 1298 #ifdef CONFIG_PAGE_TABLE_CHECK 1299 static inline bool pte_user_accessible_page(pte_t pte) 1300 { 1301 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte)); 1302 } 1303 1304 static inline bool pmd_user_accessible_page(pmd_t pmd) 1305 { 1306 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd)); 1307 } 1308 1309 static inline bool pud_user_accessible_page(pud_t pud) 1310 { 1311 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud)); 1312 } 1313 #endif 1314 1315 /* 1316 * Atomic pte/pmd modifications. 1317 */ 1318 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma, 1319 unsigned long address, 1320 pte_t *ptep) 1321 { 1322 pte_t old_pte, pte; 1323 1324 pte = __ptep_get(ptep); 1325 do { 1326 old_pte = pte; 1327 pte = pte_mkold(pte); 1328 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1329 pte_val(old_pte), pte_val(pte)); 1330 } while (pte_val(pte) != pte_val(old_pte)); 1331 1332 return pte_young(pte); 1333 } 1334 1335 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma, 1336 unsigned long address, pte_t *ptep) 1337 { 1338 int young = __ptep_test_and_clear_young(vma, address, ptep); 1339 1340 if (young) { 1341 /* 1342 * We can elide the trailing DSB here since the worst that can 1343 * happen is that a CPU continues to use the young entry in its 1344 * TLB and we mistakenly reclaim the associated page. The 1345 * window for such an event is bounded by the next 1346 * context-switch, which provides a DSB to complete the TLB 1347 * invalidation. 1348 */ 1349 flush_tlb_page_nosync(vma, address); 1350 } 1351 1352 return young; 1353 } 1354 1355 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 1356 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1357 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1358 unsigned long address, 1359 pmd_t *pmdp) 1360 { 1361 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */ 1362 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft()); 1363 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 1364 } 1365 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 1366 1367 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm, 1368 pte_t *ptep, 1369 unsigned long pgsize) 1370 { 1371 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0)); 1372 1373 switch (pgsize) { 1374 case PAGE_SIZE: 1375 page_table_check_pte_clear(mm, pte); 1376 break; 1377 case PMD_SIZE: 1378 page_table_check_pmd_clear(mm, pte_pmd(pte)); 1379 break; 1380 #ifndef __PAGETABLE_PMD_FOLDED 1381 case PUD_SIZE: 1382 page_table_check_pud_clear(mm, pte_pud(pte)); 1383 break; 1384 #endif 1385 default: 1386 VM_WARN_ON(1); 1387 } 1388 1389 return pte; 1390 } 1391 1392 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm, 1393 unsigned long address, pte_t *ptep) 1394 { 1395 return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE); 1396 } 1397 1398 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1399 pte_t *ptep, unsigned int nr, int full) 1400 { 1401 for (;;) { 1402 __ptep_get_and_clear(mm, addr, ptep); 1403 if (--nr == 0) 1404 break; 1405 ptep++; 1406 addr += PAGE_SIZE; 1407 } 1408 } 1409 1410 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm, 1411 unsigned long addr, pte_t *ptep, 1412 unsigned int nr, int full) 1413 { 1414 pte_t pte, tmp_pte; 1415 1416 pte = __ptep_get_and_clear(mm, addr, ptep); 1417 while (--nr) { 1418 ptep++; 1419 addr += PAGE_SIZE; 1420 tmp_pte = __ptep_get_and_clear(mm, addr, ptep); 1421 if (pte_dirty(tmp_pte)) 1422 pte = pte_mkdirty(pte); 1423 if (pte_young(tmp_pte)) 1424 pte = pte_mkyoung(pte); 1425 } 1426 return pte; 1427 } 1428 1429 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1430 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1431 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1432 unsigned long address, pmd_t *pmdp) 1433 { 1434 return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE)); 1435 } 1436 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1437 1438 static inline void ___ptep_set_wrprotect(struct mm_struct *mm, 1439 unsigned long address, pte_t *ptep, 1440 pte_t pte) 1441 { 1442 pte_t old_pte; 1443 1444 do { 1445 old_pte = pte; 1446 pte = pte_wrprotect(pte); 1447 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1448 pte_val(old_pte), pte_val(pte)); 1449 } while (pte_val(pte) != pte_val(old_pte)); 1450 } 1451 1452 /* 1453 * __ptep_set_wrprotect - mark read-only while transferring potential hardware 1454 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 1455 */ 1456 static inline void __ptep_set_wrprotect(struct mm_struct *mm, 1457 unsigned long address, pte_t *ptep) 1458 { 1459 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep)); 1460 } 1461 1462 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address, 1463 pte_t *ptep, unsigned int nr) 1464 { 1465 unsigned int i; 1466 1467 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++) 1468 __ptep_set_wrprotect(mm, address, ptep); 1469 } 1470 1471 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma, 1472 unsigned long addr, pte_t *ptep, 1473 pte_t pte, cydp_t flags) 1474 { 1475 pte_t old_pte; 1476 1477 do { 1478 old_pte = pte; 1479 1480 if (flags & CYDP_CLEAR_YOUNG) 1481 pte = pte_mkold(pte); 1482 if (flags & CYDP_CLEAR_DIRTY) 1483 pte = pte_mkclean(pte); 1484 1485 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 1486 pte_val(old_pte), pte_val(pte)); 1487 } while (pte_val(pte) != pte_val(old_pte)); 1488 } 1489 1490 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma, 1491 unsigned long addr, pte_t *ptep, 1492 unsigned int nr, cydp_t flags) 1493 { 1494 pte_t pte; 1495 1496 for (;;) { 1497 pte = __ptep_get(ptep); 1498 1499 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY)) 1500 __set_pte(ptep, pte_mkclean(pte_mkold(pte))); 1501 else 1502 __clear_young_dirty_pte(vma, addr, ptep, pte, flags); 1503 1504 if (--nr == 0) 1505 break; 1506 ptep++; 1507 addr += PAGE_SIZE; 1508 } 1509 } 1510 1511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1512 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1513 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1514 unsigned long address, pmd_t *pmdp) 1515 { 1516 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 1517 } 1518 1519 #define pmdp_establish pmdp_establish 1520 static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 1521 unsigned long address, pmd_t *pmdp, pmd_t pmd) 1522 { 1523 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); 1524 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 1525 } 1526 #endif 1527 1528 /* 1529 * Encode and decode a swap entry: 1530 * bits 0-1: present (must be zero) 1531 * bits 2: remember PG_anon_exclusive 1532 * bit 3: remember uffd-wp state 1533 * bits 6-10: swap type 1534 * bit 11: PTE_PRESENT_INVALID (must be zero) 1535 * bits 12-61: swap offset 1536 */ 1537 #define __SWP_TYPE_SHIFT 6 1538 #define __SWP_TYPE_BITS 5 1539 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 1540 #define __SWP_OFFSET_SHIFT 12 1541 #define __SWP_OFFSET_BITS 50 1542 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 1543 1544 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 1545 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 1546 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 1547 1548 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1549 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 1550 1551 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1552 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 1553 #define __swp_entry_to_pmd(swp) __pmd((swp).val) 1554 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 1555 1556 /* 1557 * Ensure that there are not more swap files than can be encoded in the kernel 1558 * PTEs. 1559 */ 1560 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 1561 1562 #ifdef CONFIG_ARM64_MTE 1563 1564 #define __HAVE_ARCH_PREPARE_TO_SWAP 1565 extern int arch_prepare_to_swap(struct folio *folio); 1566 1567 #define __HAVE_ARCH_SWAP_INVALIDATE 1568 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1569 { 1570 if (system_supports_mte()) 1571 mte_invalidate_tags(type, offset); 1572 } 1573 1574 static inline void arch_swap_invalidate_area(int type) 1575 { 1576 if (system_supports_mte()) 1577 mte_invalidate_tags_area(type); 1578 } 1579 1580 #define __HAVE_ARCH_SWAP_RESTORE 1581 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio); 1582 1583 #endif /* CONFIG_ARM64_MTE */ 1584 1585 /* 1586 * On AArch64, the cache coherency is handled via the __set_ptes() function. 1587 */ 1588 static inline void update_mmu_cache_range(struct vm_fault *vmf, 1589 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, 1590 unsigned int nr) 1591 { 1592 /* 1593 * We don't do anything here, so there's a very small chance of 1594 * us retaking a user fault which we just fixed up. The alternative 1595 * is doing a dsb(ishst), but that penalises the fastpath. 1596 */ 1597 } 1598 1599 #define update_mmu_cache(vma, addr, ptep) \ 1600 update_mmu_cache_range(NULL, vma, addr, ptep, 1) 1601 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 1602 1603 #ifdef CONFIG_ARM64_PA_BITS_52 1604 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 1605 #else 1606 #define phys_to_ttbr(addr) (addr) 1607 #endif 1608 1609 /* 1610 * On arm64 without hardware Access Flag, copying from user will fail because 1611 * the pte is old and cannot be marked young. So we always end up with zeroed 1612 * page after fork() + CoW for pfn mappings. We don't always have a 1613 * hardware-managed access flag on arm64. 1614 */ 1615 #define arch_has_hw_pte_young cpu_has_hw_af 1616 1617 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG 1618 #define arch_has_hw_nonleaf_pmd_young system_supports_haft 1619 #endif 1620 1621 /* 1622 * Experimentally, it's cheap to set the access flag in hardware and we 1623 * benefit from prefaulting mappings as 'old' to start with. 1624 */ 1625 #define arch_wants_old_prefaulted_pte cpu_has_hw_af 1626 1627 /* 1628 * Request exec memory is read into pagecache in at least 64K folios. This size 1629 * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB 1630 * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base 1631 * pages are in use. 1632 */ 1633 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT) 1634 1635 static inline bool pud_sect_supported(void) 1636 { 1637 return PAGE_SIZE == SZ_4K; 1638 } 1639 1640 1641 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1642 #define ptep_modify_prot_start ptep_modify_prot_start 1643 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1644 unsigned long addr, pte_t *ptep); 1645 1646 #define ptep_modify_prot_commit ptep_modify_prot_commit 1647 extern void ptep_modify_prot_commit(struct vm_area_struct *vma, 1648 unsigned long addr, pte_t *ptep, 1649 pte_t old_pte, pte_t new_pte); 1650 1651 #define modify_prot_start_ptes modify_prot_start_ptes 1652 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma, 1653 unsigned long addr, pte_t *ptep, 1654 unsigned int nr); 1655 1656 #define modify_prot_commit_ptes modify_prot_commit_ptes 1657 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr, 1658 pte_t *ptep, pte_t old_pte, pte_t pte, 1659 unsigned int nr); 1660 1661 #ifdef CONFIG_ARM64_CONTPTE 1662 1663 /* 1664 * The contpte APIs are used to transparently manage the contiguous bit in ptes 1665 * where it is possible and makes sense to do so. The PTE_CONT bit is considered 1666 * a private implementation detail of the public ptep API (see below). 1667 */ 1668 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr, 1669 pte_t *ptep, pte_t pte); 1670 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr, 1671 pte_t *ptep, pte_t pte); 1672 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte); 1673 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep); 1674 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr, 1675 pte_t *ptep, pte_t pte, unsigned int nr); 1676 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1677 pte_t *ptep, unsigned int nr, int full); 1678 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm, 1679 unsigned long addr, pte_t *ptep, 1680 unsigned int nr, int full); 1681 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma, 1682 unsigned long addr, pte_t *ptep); 1683 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma, 1684 unsigned long addr, pte_t *ptep); 1685 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 1686 pte_t *ptep, unsigned int nr); 1687 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma, 1688 unsigned long addr, pte_t *ptep, 1689 pte_t entry, int dirty); 1690 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma, 1691 unsigned long addr, pte_t *ptep, 1692 unsigned int nr, cydp_t flags); 1693 1694 static __always_inline void contpte_try_fold(struct mm_struct *mm, 1695 unsigned long addr, pte_t *ptep, pte_t pte) 1696 { 1697 /* 1698 * Only bother trying if both the virtual and physical addresses are 1699 * aligned and correspond to the last entry in a contig range. The core 1700 * code mostly modifies ranges from low to high, so this is the likely 1701 * the last modification in the contig range, so a good time to fold. 1702 * We can't fold special mappings, because there is no associated folio. 1703 */ 1704 1705 const unsigned long contmask = CONT_PTES - 1; 1706 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask; 1707 1708 if (unlikely(valign)) { 1709 bool palign = (pte_pfn(pte) & contmask) == contmask; 1710 1711 if (unlikely(palign && 1712 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte))) 1713 __contpte_try_fold(mm, addr, ptep, pte); 1714 } 1715 } 1716 1717 static __always_inline void contpte_try_unfold(struct mm_struct *mm, 1718 unsigned long addr, pte_t *ptep, pte_t pte) 1719 { 1720 if (unlikely(pte_valid_cont(pte))) 1721 __contpte_try_unfold(mm, addr, ptep, pte); 1722 } 1723 1724 #define pte_batch_hint pte_batch_hint 1725 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 1726 { 1727 if (!pte_valid_cont(pte)) 1728 return 1; 1729 1730 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1)); 1731 } 1732 1733 /* 1734 * The below functions constitute the public API that arm64 presents to the 1735 * core-mm to manipulate PTE entries within their page tables (or at least this 1736 * is the subset of the API that arm64 needs to implement). These public 1737 * versions will automatically and transparently apply the contiguous bit where 1738 * it makes sense to do so. Therefore any users that are contig-aware (e.g. 1739 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the 1740 * private versions, which are prefixed with double underscore. All of these 1741 * APIs except for ptep_get_lockless() are expected to be called with the PTL 1742 * held. Although the contiguous bit is considered private to the 1743 * implementation, it is deliberately allowed to leak through the getters (e.g. 1744 * ptep_get()), back to core code. This is required so that pte_leaf_size() can 1745 * provide an accurate size for perf_get_pgtable_size(). But this leakage means 1746 * its possible a pte will be passed to a setter with the contiguous bit set, so 1747 * we explicitly clear the contiguous bit in those cases to prevent accidentally 1748 * setting it in the pgtable. 1749 */ 1750 1751 #define ptep_get ptep_get 1752 static inline pte_t ptep_get(pte_t *ptep) 1753 { 1754 pte_t pte = __ptep_get(ptep); 1755 1756 if (likely(!pte_valid_cont(pte))) 1757 return pte; 1758 1759 return contpte_ptep_get(ptep, pte); 1760 } 1761 1762 #define ptep_get_lockless ptep_get_lockless 1763 static inline pte_t ptep_get_lockless(pte_t *ptep) 1764 { 1765 pte_t pte = __ptep_get(ptep); 1766 1767 if (likely(!pte_valid_cont(pte))) 1768 return pte; 1769 1770 return contpte_ptep_get_lockless(ptep); 1771 } 1772 1773 static inline void set_pte(pte_t *ptep, pte_t pte) 1774 { 1775 /* 1776 * We don't have the mm or vaddr so cannot unfold contig entries (since 1777 * it requires tlb maintenance). set_pte() is not used in core code, so 1778 * this should never even be called. Regardless do our best to service 1779 * any call and emit a warning if there is any attempt to set a pte on 1780 * top of an existing contig range. 1781 */ 1782 pte_t orig_pte = __ptep_get(ptep); 1783 1784 WARN_ON_ONCE(pte_valid_cont(orig_pte)); 1785 __set_pte(ptep, pte_mknoncont(pte)); 1786 } 1787 1788 #define set_ptes set_ptes 1789 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr, 1790 pte_t *ptep, pte_t pte, unsigned int nr) 1791 { 1792 pte = pte_mknoncont(pte); 1793 1794 if (likely(nr == 1)) { 1795 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1796 __set_ptes(mm, addr, ptep, pte, 1); 1797 contpte_try_fold(mm, addr, ptep, pte); 1798 } else { 1799 contpte_set_ptes(mm, addr, ptep, pte, nr); 1800 } 1801 } 1802 1803 static inline void pte_clear(struct mm_struct *mm, 1804 unsigned long addr, pte_t *ptep) 1805 { 1806 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1807 __pte_clear(mm, addr, ptep); 1808 } 1809 1810 #define clear_full_ptes clear_full_ptes 1811 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 1812 pte_t *ptep, unsigned int nr, int full) 1813 { 1814 if (likely(nr == 1)) { 1815 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1816 __clear_full_ptes(mm, addr, ptep, nr, full); 1817 } else { 1818 contpte_clear_full_ptes(mm, addr, ptep, nr, full); 1819 } 1820 } 1821 1822 #define get_and_clear_full_ptes get_and_clear_full_ptes 1823 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 1824 unsigned long addr, pte_t *ptep, 1825 unsigned int nr, int full) 1826 { 1827 pte_t pte; 1828 1829 if (likely(nr == 1)) { 1830 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1831 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1832 } else { 1833 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full); 1834 } 1835 1836 return pte; 1837 } 1838 1839 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1840 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1841 unsigned long addr, pte_t *ptep) 1842 { 1843 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep)); 1844 return __ptep_get_and_clear(mm, addr, ptep); 1845 } 1846 1847 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1848 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1849 unsigned long addr, pte_t *ptep) 1850 { 1851 pte_t orig_pte = __ptep_get(ptep); 1852 1853 if (likely(!pte_valid_cont(orig_pte))) 1854 return __ptep_test_and_clear_young(vma, addr, ptep); 1855 1856 return contpte_ptep_test_and_clear_young(vma, addr, ptep); 1857 } 1858 1859 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1860 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1861 unsigned long addr, pte_t *ptep) 1862 { 1863 pte_t orig_pte = __ptep_get(ptep); 1864 1865 if (likely(!pte_valid_cont(orig_pte))) 1866 return __ptep_clear_flush_young(vma, addr, ptep); 1867 1868 return contpte_ptep_clear_flush_young(vma, addr, ptep); 1869 } 1870 1871 #define wrprotect_ptes wrprotect_ptes 1872 static __always_inline void wrprotect_ptes(struct mm_struct *mm, 1873 unsigned long addr, pte_t *ptep, unsigned int nr) 1874 { 1875 if (likely(nr == 1)) { 1876 /* 1877 * Optimization: wrprotect_ptes() can only be called for present 1878 * ptes so we only need to check contig bit as condition for 1879 * unfold, and we can remove the contig bit from the pte we read 1880 * to avoid re-reading. This speeds up fork() which is sensitive 1881 * for order-0 folios. Equivalent to contpte_try_unfold(). 1882 */ 1883 pte_t orig_pte = __ptep_get(ptep); 1884 1885 if (unlikely(pte_cont(orig_pte))) { 1886 __contpte_try_unfold(mm, addr, ptep, orig_pte); 1887 orig_pte = pte_mknoncont(orig_pte); 1888 } 1889 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte); 1890 } else { 1891 contpte_wrprotect_ptes(mm, addr, ptep, nr); 1892 } 1893 } 1894 1895 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1896 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1897 unsigned long addr, pte_t *ptep) 1898 { 1899 wrprotect_ptes(mm, addr, ptep, 1); 1900 } 1901 1902 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1903 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1904 unsigned long addr, pte_t *ptep, 1905 pte_t entry, int dirty) 1906 { 1907 pte_t orig_pte = __ptep_get(ptep); 1908 1909 entry = pte_mknoncont(entry); 1910 1911 if (likely(!pte_valid_cont(orig_pte))) 1912 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1913 1914 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty); 1915 } 1916 1917 #define clear_young_dirty_ptes clear_young_dirty_ptes 1918 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma, 1919 unsigned long addr, pte_t *ptep, 1920 unsigned int nr, cydp_t flags) 1921 { 1922 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep)))) 1923 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1924 else 1925 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags); 1926 } 1927 1928 #else /* CONFIG_ARM64_CONTPTE */ 1929 1930 #define ptep_get __ptep_get 1931 #define set_pte __set_pte 1932 #define set_ptes __set_ptes 1933 #define pte_clear __pte_clear 1934 #define clear_full_ptes __clear_full_ptes 1935 #define get_and_clear_full_ptes __get_and_clear_full_ptes 1936 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1937 #define ptep_get_and_clear __ptep_get_and_clear 1938 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1939 #define ptep_test_and_clear_young __ptep_test_and_clear_young 1940 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1941 #define ptep_clear_flush_young __ptep_clear_flush_young 1942 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1943 #define ptep_set_wrprotect __ptep_set_wrprotect 1944 #define wrprotect_ptes __wrprotect_ptes 1945 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1946 #define ptep_set_access_flags __ptep_set_access_flags 1947 #define clear_young_dirty_ptes __clear_young_dirty_ptes 1948 1949 #endif /* CONFIG_ARM64_CONTPTE */ 1950 1951 #endif /* !__ASSEMBLY__ */ 1952 1953 #endif /* __ASM_PGTABLE_H */ 1954