xref: /linux/arch/arm64/Kconfig (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_OPS if XEN
28	select ARCH_HAS_DMA_PREP_COHERENT
29	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
30	select ARCH_HAS_FAST_MULTIPLIER
31	select ARCH_HAS_FORTIFY_SOURCE
32	select ARCH_HAS_GCOV_PROFILE_ALL
33	select ARCH_HAS_GIGANTIC_PAGE
34	select ARCH_HAS_KCOV
35	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
36	select ARCH_HAS_KEEPINITRD
37	select ARCH_HAS_MEMBARRIER_SYNC_CORE
38	select ARCH_HAS_MEM_ENCRYPT
39	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
40	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
41	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
42	select ARCH_HAS_PTE_DEVMAP
43	select ARCH_HAS_PTE_SPECIAL
44	select ARCH_HAS_HW_PTE_YOUNG
45	select ARCH_HAS_SETUP_DMA_OPS
46	select ARCH_HAS_SET_DIRECT_MAP
47	select ARCH_HAS_SET_MEMORY
48	select ARCH_HAS_MEM_ENCRYPT
49	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
50	select ARCH_STACKWALK
51	select ARCH_HAS_STRICT_KERNEL_RWX
52	select ARCH_HAS_STRICT_MODULE_RWX
53	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
54	select ARCH_HAS_SYNC_DMA_FOR_CPU
55	select ARCH_HAS_SYSCALL_WRAPPER
56	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
57	select ARCH_HAS_ZONE_DMA_SET if EXPERT
58	select ARCH_HAVE_ELF_PROT
59	select ARCH_HAVE_NMI_SAFE_CMPXCHG
60	select ARCH_HAVE_TRACE_MMIO_ACCESS
61	select ARCH_INLINE_READ_LOCK if !PREEMPTION
62	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
63	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
65	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
66	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
69	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
70	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
73	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
74	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
77	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
78	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
79	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
83	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
84	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
87	select ARCH_KEEP_MEMBLOCK
88	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
89	select ARCH_USE_CMPXCHG_LOCKREF
90	select ARCH_USE_GNU_PROPERTY
91	select ARCH_USE_MEMTEST
92	select ARCH_USE_QUEUED_RWLOCKS
93	select ARCH_USE_QUEUED_SPINLOCKS
94	select ARCH_USE_SYM_ANNOTATIONS
95	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
96	select ARCH_SUPPORTS_HUGETLBFS
97	select ARCH_SUPPORTS_MEMORY_FAILURE
98	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
99	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
100	select ARCH_SUPPORTS_LTO_CLANG_THIN
101	select ARCH_SUPPORTS_CFI_CLANG
102	select ARCH_SUPPORTS_ATOMIC_RMW
103	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
104	select ARCH_SUPPORTS_NUMA_BALANCING
105	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
106	select ARCH_SUPPORTS_PER_VMA_LOCK
107	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
108	select ARCH_SUPPORTS_RT
109	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
110	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
111	select ARCH_WANT_DEFAULT_BPF_JIT
112	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
113	select ARCH_WANT_FRAME_POINTERS
114	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
115	select ARCH_WANT_LD_ORPHAN_WARN
116	select ARCH_WANTS_EXECMEM_LATE
117	select ARCH_WANTS_NO_INSTR
118	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
119	select ARCH_HAS_UBSAN
120	select ARM_AMBA
121	select ARM_ARCH_TIMER
122	select ARM_GIC
123	select AUDIT_ARCH_COMPAT_GENERIC
124	select ARM_GIC_V2M if PCI
125	select ARM_GIC_V3
126	select ARM_GIC_V3_ITS if PCI
127	select ARM_PSCI_FW
128	select BUILDTIME_TABLE_SORT
129	select CLONE_BACKWARDS
130	select COMMON_CLK
131	select CPU_PM if (SUSPEND || CPU_IDLE)
132	select CPUMASK_OFFSTACK if NR_CPUS > 256
133	select CRC32
134	select DCACHE_WORD_ACCESS
135	select DYNAMIC_FTRACE if FUNCTION_TRACER
136	select DMA_BOUNCE_UNALIGNED_KMALLOC
137	select DMA_DIRECT_REMAP
138	select EDAC_SUPPORT
139	select FRAME_POINTER
140	select FUNCTION_ALIGNMENT_4B
141	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
142	select GENERIC_ALLOCATOR
143	select GENERIC_ARCH_TOPOLOGY
144	select GENERIC_CLOCKEVENTS_BROADCAST
145	select GENERIC_CPU_AUTOPROBE
146	select GENERIC_CPU_DEVICES
147	select GENERIC_CPU_VULNERABILITIES
148	select GENERIC_EARLY_IOREMAP
149	select GENERIC_IDLE_POLL_SETUP
150	select GENERIC_IOREMAP
151	select GENERIC_IRQ_IPI
152	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
153	select GENERIC_IRQ_PROBE
154	select GENERIC_IRQ_SHOW
155	select GENERIC_IRQ_SHOW_LEVEL
156	select GENERIC_LIB_DEVMEM_IS_ALLOWED
157	select GENERIC_PCI_IOMAP
158	select GENERIC_PTDUMP
159	select GENERIC_SCHED_CLOCK
160	select GENERIC_SMP_IDLE_THREAD
161	select GENERIC_TIME_VSYSCALL
162	select GENERIC_GETTIMEOFDAY
163	select GENERIC_VDSO_TIME_NS
164	select HARDIRQS_SW_RESEND
165	select HAS_IOPORT
166	select HAVE_MOVE_PMD
167	select HAVE_MOVE_PUD
168	select HAVE_PCI
169	select HAVE_ACPI_APEI if (ACPI && EFI)
170	select HAVE_ALIGNED_STRUCT_PAGE
171	select HAVE_ARCH_AUDITSYSCALL
172	select HAVE_ARCH_BITREVERSE
173	select HAVE_ARCH_COMPILER_H
174	select HAVE_ARCH_HUGE_VMALLOC
175	select HAVE_ARCH_HUGE_VMAP
176	select HAVE_ARCH_JUMP_LABEL
177	select HAVE_ARCH_JUMP_LABEL_RELATIVE
178	select HAVE_ARCH_KASAN
179	select HAVE_ARCH_KASAN_VMALLOC
180	select HAVE_ARCH_KASAN_SW_TAGS
181	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
182	# Some instrumentation may be unsound, hence EXPERT
183	select HAVE_ARCH_KCSAN if EXPERT
184	select HAVE_ARCH_KFENCE
185	select HAVE_ARCH_KGDB
186	select HAVE_ARCH_MMAP_RND_BITS
187	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
188	select HAVE_ARCH_PREL32_RELOCATIONS
189	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
190	select HAVE_ARCH_SECCOMP_FILTER
191	select HAVE_ARCH_STACKLEAK
192	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
193	select HAVE_ARCH_TRACEHOOK
194	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
195	select HAVE_ARCH_VMAP_STACK
196	select HAVE_ARM_SMCCC
197	select HAVE_ASM_MODVERSIONS
198	select HAVE_EBPF_JIT
199	select HAVE_C_RECORDMCOUNT
200	select HAVE_CMPXCHG_DOUBLE
201	select HAVE_CMPXCHG_LOCAL
202	select HAVE_CONTEXT_TRACKING_USER
203	select HAVE_DEBUG_KMEMLEAK
204	select HAVE_DMA_CONTIGUOUS
205	select HAVE_DYNAMIC_FTRACE
206	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
207		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
208		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
209	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
210		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
211	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
212		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
213		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
214	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
215		if DYNAMIC_FTRACE_WITH_ARGS
216	select HAVE_SAMPLE_FTRACE_DIRECT
217	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
218	select HAVE_EFFICIENT_UNALIGNED_ACCESS
219	select HAVE_GUP_FAST
220	select HAVE_FTRACE_GRAPH_FUNC
221	select HAVE_FTRACE_MCOUNT_RECORD
222	select HAVE_FUNCTION_TRACER
223	select HAVE_FUNCTION_ERROR_INJECTION
224	select HAVE_FUNCTION_GRAPH_FREGS
225	select HAVE_FUNCTION_GRAPH_TRACER
226	select HAVE_FUNCTION_GRAPH_RETVAL
227	select HAVE_GCC_PLUGINS
228	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
229		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
230	select HAVE_HW_BREAKPOINT if PERF_EVENTS
231	select HAVE_IOREMAP_PROT
232	select HAVE_IRQ_TIME_ACCOUNTING
233	select HAVE_MOD_ARCH_SPECIFIC
234	select HAVE_NMI
235	select HAVE_PERF_EVENTS
236	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
237	select HAVE_PERF_REGS
238	select HAVE_PERF_USER_STACK_DUMP
239	select HAVE_PREEMPT_DYNAMIC_KEY
240	select HAVE_REGS_AND_STACK_ACCESS_API
241	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
242	select HAVE_FUNCTION_ARG_ACCESS_API
243	select MMU_GATHER_RCU_TABLE_FREE
244	select HAVE_RSEQ
245	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
246	select HAVE_STACKPROTECTOR
247	select HAVE_SYSCALL_TRACEPOINTS
248	select HAVE_KPROBES
249	select HAVE_KRETPROBES
250	select HAVE_GENERIC_VDSO
251	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
252	select IRQ_DOMAIN
253	select IRQ_FORCED_THREADING
254	select KASAN_VMALLOC if KASAN
255	select LOCK_MM_AND_FIND_VMA
256	select MODULES_USE_ELF_RELA
257	select NEED_DMA_MAP_STATE
258	select NEED_SG_DMA_LENGTH
259	select OF
260	select OF_EARLY_FLATTREE
261	select PCI_DOMAINS_GENERIC if PCI
262	select PCI_ECAM if (ACPI && PCI)
263	select PCI_SYSCALL if PCI
264	select POWER_RESET
265	select POWER_SUPPLY
266	select SPARSE_IRQ
267	select SWIOTLB
268	select SYSCTL_EXCEPTION_TRACE
269	select THREAD_INFO_IN_TASK
270	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
271	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
272	select TRACE_IRQFLAGS_SUPPORT
273	select TRACE_IRQFLAGS_NMI_SUPPORT
274	select HAVE_SOFTIRQ_ON_OWN_STACK
275	select USER_STACKTRACE_SUPPORT
276	select VDSO_GETRANDOM
277	help
278	  ARM 64-bit (AArch64) Linux support.
279
280config RUSTC_SUPPORTS_ARM64
281	def_bool y
282	depends on CPU_LITTLE_ENDIAN
283	# Shadow call stack is only supported on certain rustc versions.
284	#
285	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
286	# required due to use of the -Zfixed-x18 flag.
287	#
288	# Otherwise, rustc version 1.82+ is required due to use of the
289	# -Zsanitizer=shadow-call-stack flag.
290	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
291
292config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
293	def_bool CC_IS_CLANG
294	# https://github.com/ClangBuiltLinux/linux/issues/1507
295	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
296
297config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
298	def_bool CC_IS_GCC
299	depends on $(cc-option,-fpatchable-function-entry=2)
300
301config 64BIT
302	def_bool y
303
304config MMU
305	def_bool y
306
307config ARM64_CONT_PTE_SHIFT
308	int
309	default 5 if PAGE_SIZE_64KB
310	default 7 if PAGE_SIZE_16KB
311	default 4
312
313config ARM64_CONT_PMD_SHIFT
314	int
315	default 5 if PAGE_SIZE_64KB
316	default 5 if PAGE_SIZE_16KB
317	default 4
318
319config ARCH_MMAP_RND_BITS_MIN
320	default 14 if PAGE_SIZE_64KB
321	default 16 if PAGE_SIZE_16KB
322	default 18
323
324# max bits determined by the following formula:
325#  VA_BITS - PAGE_SHIFT - 3
326config ARCH_MMAP_RND_BITS_MAX
327	default 19 if ARM64_VA_BITS=36
328	default 24 if ARM64_VA_BITS=39
329	default 27 if ARM64_VA_BITS=42
330	default 30 if ARM64_VA_BITS=47
331	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
332	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
333	default 33 if ARM64_VA_BITS=48
334	default 14 if ARM64_64K_PAGES
335	default 16 if ARM64_16K_PAGES
336	default 18
337
338config ARCH_MMAP_RND_COMPAT_BITS_MIN
339	default 7 if ARM64_64K_PAGES
340	default 9 if ARM64_16K_PAGES
341	default 11
342
343config ARCH_MMAP_RND_COMPAT_BITS_MAX
344	default 16
345
346config NO_IOPORT_MAP
347	def_bool y if !PCI
348
349config STACKTRACE_SUPPORT
350	def_bool y
351
352config ILLEGAL_POINTER_VALUE
353	hex
354	default 0xdead000000000000
355
356config LOCKDEP_SUPPORT
357	def_bool y
358
359config GENERIC_BUG
360	def_bool y
361	depends on BUG
362
363config GENERIC_BUG_RELATIVE_POINTERS
364	def_bool y
365	depends on GENERIC_BUG
366
367config GENERIC_HWEIGHT
368	def_bool y
369
370config GENERIC_CSUM
371	def_bool y
372
373config GENERIC_CALIBRATE_DELAY
374	def_bool y
375
376config SMP
377	def_bool y
378
379config KERNEL_MODE_NEON
380	def_bool y
381
382config FIX_EARLYCON_MEM
383	def_bool y
384
385config PGTABLE_LEVELS
386	int
387	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
388	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
389	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
390	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
391	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
392	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
393	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
394	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
395
396config ARCH_SUPPORTS_UPROBES
397	def_bool y
398
399config ARCH_PROC_KCORE_TEXT
400	def_bool y
401
402config BROKEN_GAS_INST
403	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
404
405config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
406	bool
407	# Clang's __builtin_return_address() strips the PAC since 12.0.0
408	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
409	default y if CC_IS_CLANG
410	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
411	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
412	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
413	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
414	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
415	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
416	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
417	default n
418
419config KASAN_SHADOW_OFFSET
420	hex
421	depends on KASAN_GENERIC || KASAN_SW_TAGS
422	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
423	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
424	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
425	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
426	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
427	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
428	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
429	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
430	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
431	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
432	default 0xffffffffffffffff
433
434config UNWIND_TABLES
435	bool
436
437source "arch/arm64/Kconfig.platforms"
438
439menu "Kernel Features"
440
441menu "ARM errata workarounds via the alternatives framework"
442
443config AMPERE_ERRATUM_AC03_CPU_38
444        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
445	default y
446	help
447	  This option adds an alternative code sequence to work around Ampere
448	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
449
450	  The affected design reports FEAT_HAFDBS as not implemented in
451	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
452	  as required by the architecture. The unadvertised HAFDBS
453	  implementation suffers from an additional erratum where hardware
454	  A/D updates can occur after a PTE has been marked invalid.
455
456	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
457	  which avoids enabling unadvertised hardware Access Flag management
458	  at stage-2.
459
460	  If unsure, say Y.
461
462config ARM64_WORKAROUND_CLEAN_CACHE
463	bool
464
465config ARM64_ERRATUM_826319
466	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
467	default y
468	select ARM64_WORKAROUND_CLEAN_CACHE
469	help
470	  This option adds an alternative code sequence to work around ARM
471	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
472	  AXI master interface and an L2 cache.
473
474	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
475	  and is unable to accept a certain write via this interface, it will
476	  not progress on read data presented on the read data channel and the
477	  system can deadlock.
478
479	  The workaround promotes data cache clean instructions to
480	  data cache clean-and-invalidate.
481	  Please note that this does not necessarily enable the workaround,
482	  as it depends on the alternative framework, which will only patch
483	  the kernel if an affected CPU is detected.
484
485	  If unsure, say Y.
486
487config ARM64_ERRATUM_827319
488	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
489	default y
490	select ARM64_WORKAROUND_CLEAN_CACHE
491	help
492	  This option adds an alternative code sequence to work around ARM
493	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
494	  master interface and an L2 cache.
495
496	  Under certain conditions this erratum can cause a clean line eviction
497	  to occur at the same time as another transaction to the same address
498	  on the AMBA 5 CHI interface, which can cause data corruption if the
499	  interconnect reorders the two transactions.
500
501	  The workaround promotes data cache clean instructions to
502	  data cache clean-and-invalidate.
503	  Please note that this does not necessarily enable the workaround,
504	  as it depends on the alternative framework, which will only patch
505	  the kernel if an affected CPU is detected.
506
507	  If unsure, say Y.
508
509config ARM64_ERRATUM_824069
510	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
511	default y
512	select ARM64_WORKAROUND_CLEAN_CACHE
513	help
514	  This option adds an alternative code sequence to work around ARM
515	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
516	  to a coherent interconnect.
517
518	  If a Cortex-A53 processor is executing a store or prefetch for
519	  write instruction at the same time as a processor in another
520	  cluster is executing a cache maintenance operation to the same
521	  address, then this erratum might cause a clean cache line to be
522	  incorrectly marked as dirty.
523
524	  The workaround promotes data cache clean instructions to
525	  data cache clean-and-invalidate.
526	  Please note that this option does not necessarily enable the
527	  workaround, as it depends on the alternative framework, which will
528	  only patch the kernel if an affected CPU is detected.
529
530	  If unsure, say Y.
531
532config ARM64_ERRATUM_819472
533	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
534	default y
535	select ARM64_WORKAROUND_CLEAN_CACHE
536	help
537	  This option adds an alternative code sequence to work around ARM
538	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
539	  present when it is connected to a coherent interconnect.
540
541	  If the processor is executing a load and store exclusive sequence at
542	  the same time as a processor in another cluster is executing a cache
543	  maintenance operation to the same address, then this erratum might
544	  cause data corruption.
545
546	  The workaround promotes data cache clean instructions to
547	  data cache clean-and-invalidate.
548	  Please note that this does not necessarily enable the workaround,
549	  as it depends on the alternative framework, which will only patch
550	  the kernel if an affected CPU is detected.
551
552	  If unsure, say Y.
553
554config ARM64_ERRATUM_832075
555	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
556	default y
557	help
558	  This option adds an alternative code sequence to work around ARM
559	  erratum 832075 on Cortex-A57 parts up to r1p2.
560
561	  Affected Cortex-A57 parts might deadlock when exclusive load/store
562	  instructions to Write-Back memory are mixed with Device loads.
563
564	  The workaround is to promote device loads to use Load-Acquire
565	  semantics.
566	  Please note that this does not necessarily enable the workaround,
567	  as it depends on the alternative framework, which will only patch
568	  the kernel if an affected CPU is detected.
569
570	  If unsure, say Y.
571
572config ARM64_ERRATUM_834220
573	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
574	depends on KVM
575	help
576	  This option adds an alternative code sequence to work around ARM
577	  erratum 834220 on Cortex-A57 parts up to r1p2.
578
579	  Affected Cortex-A57 parts might report a Stage 2 translation
580	  fault as the result of a Stage 1 fault for load crossing a
581	  page boundary when there is a permission or device memory
582	  alignment fault at Stage 1 and a translation fault at Stage 2.
583
584	  The workaround is to verify that the Stage 1 translation
585	  doesn't generate a fault before handling the Stage 2 fault.
586	  Please note that this does not necessarily enable the workaround,
587	  as it depends on the alternative framework, which will only patch
588	  the kernel if an affected CPU is detected.
589
590	  If unsure, say N.
591
592config ARM64_ERRATUM_1742098
593	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
594	depends on COMPAT
595	default y
596	help
597	  This option removes the AES hwcap for aarch32 user-space to
598	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
599
600	  Affected parts may corrupt the AES state if an interrupt is
601	  taken between a pair of AES instructions. These instructions
602	  are only present if the cryptography extensions are present.
603	  All software should have a fallback implementation for CPUs
604	  that don't implement the cryptography extensions.
605
606	  If unsure, say Y.
607
608config ARM64_ERRATUM_845719
609	bool "Cortex-A53: 845719: a load might read incorrect data"
610	depends on COMPAT
611	default y
612	help
613	  This option adds an alternative code sequence to work around ARM
614	  erratum 845719 on Cortex-A53 parts up to r0p4.
615
616	  When running a compat (AArch32) userspace on an affected Cortex-A53
617	  part, a load at EL0 from a virtual address that matches the bottom 32
618	  bits of the virtual address used by a recent load at (AArch64) EL1
619	  might return incorrect data.
620
621	  The workaround is to write the contextidr_el1 register on exception
622	  return to a 32-bit task.
623	  Please note that this does not necessarily enable the workaround,
624	  as it depends on the alternative framework, which will only patch
625	  the kernel if an affected CPU is detected.
626
627	  If unsure, say Y.
628
629config ARM64_ERRATUM_843419
630	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
631	default y
632	help
633	  This option links the kernel with '--fix-cortex-a53-843419' and
634	  enables PLT support to replace certain ADRP instructions, which can
635	  cause subsequent memory accesses to use an incorrect address on
636	  Cortex-A53 parts up to r0p4.
637
638	  If unsure, say Y.
639
640config ARM64_LD_HAS_FIX_ERRATUM_843419
641	def_bool $(ld-option,--fix-cortex-a53-843419)
642
643config ARM64_ERRATUM_1024718
644	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
645	default y
646	help
647	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
648
649	  Affected Cortex-A55 cores (all revisions) could cause incorrect
650	  update of the hardware dirty bit when the DBM/AP bits are updated
651	  without a break-before-make. The workaround is to disable the usage
652	  of hardware DBM locally on the affected cores. CPUs not affected by
653	  this erratum will continue to use the feature.
654
655	  If unsure, say Y.
656
657config ARM64_ERRATUM_1418040
658	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
659	default y
660	depends on COMPAT
661	help
662	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
663	  errata 1188873 and 1418040.
664
665	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
666	  cause register corruption when accessing the timer registers
667	  from AArch32 userspace.
668
669	  If unsure, say Y.
670
671config ARM64_WORKAROUND_SPECULATIVE_AT
672	bool
673
674config ARM64_ERRATUM_1165522
675	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
676	default y
677	select ARM64_WORKAROUND_SPECULATIVE_AT
678	help
679	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
680
681	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
682	  corrupted TLBs by speculating an AT instruction during a guest
683	  context switch.
684
685	  If unsure, say Y.
686
687config ARM64_ERRATUM_1319367
688	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
689	default y
690	select ARM64_WORKAROUND_SPECULATIVE_AT
691	help
692	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
693	  and A72 erratum 1319367
694
695	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
696	  speculating an AT instruction during a guest context switch.
697
698	  If unsure, say Y.
699
700config ARM64_ERRATUM_1530923
701	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
702	default y
703	select ARM64_WORKAROUND_SPECULATIVE_AT
704	help
705	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
706
707	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
708	  corrupted TLBs by speculating an AT instruction during a guest
709	  context switch.
710
711	  If unsure, say Y.
712
713config ARM64_WORKAROUND_REPEAT_TLBI
714	bool
715
716config ARM64_ERRATUM_2441007
717	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
718	select ARM64_WORKAROUND_REPEAT_TLBI
719	help
720	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
721
722	  Under very rare circumstances, affected Cortex-A55 CPUs
723	  may not handle a race between a break-before-make sequence on one
724	  CPU, and another CPU accessing the same page. This could allow a
725	  store to a page that has been unmapped.
726
727	  Work around this by adding the affected CPUs to the list that needs
728	  TLB sequences to be done twice.
729
730	  If unsure, say N.
731
732config ARM64_ERRATUM_1286807
733	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
734	select ARM64_WORKAROUND_REPEAT_TLBI
735	help
736	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
737
738	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
739	  address for a cacheable mapping of a location is being
740	  accessed by a core while another core is remapping the virtual
741	  address to a new physical page using the recommended
742	  break-before-make sequence, then under very rare circumstances
743	  TLBI+DSB completes before a read using the translation being
744	  invalidated has been observed by other observers. The
745	  workaround repeats the TLBI+DSB operation.
746
747	  If unsure, say N.
748
749config ARM64_ERRATUM_1463225
750	bool "Cortex-A76: Software Step might prevent interrupt recognition"
751	default y
752	help
753	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
754
755	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
756	  of a system call instruction (SVC) can prevent recognition of
757	  subsequent interrupts when software stepping is disabled in the
758	  exception handler of the system call and either kernel debugging
759	  is enabled or VHE is in use.
760
761	  Work around the erratum by triggering a dummy step exception
762	  when handling a system call from a task that is being stepped
763	  in a VHE configuration of the kernel.
764
765	  If unsure, say Y.
766
767config ARM64_ERRATUM_1542419
768	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
769	help
770	  This option adds a workaround for ARM Neoverse-N1 erratum
771	  1542419.
772
773	  Affected Neoverse-N1 cores could execute a stale instruction when
774	  modified by another CPU. The workaround depends on a firmware
775	  counterpart.
776
777	  Workaround the issue by hiding the DIC feature from EL0. This
778	  forces user-space to perform cache maintenance.
779
780	  If unsure, say N.
781
782config ARM64_ERRATUM_1508412
783	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
784	default y
785	help
786	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
787
788	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
789	  of a store-exclusive or read of PAR_EL1 and a load with device or
790	  non-cacheable memory attributes. The workaround depends on a firmware
791	  counterpart.
792
793	  KVM guests must also have the workaround implemented or they can
794	  deadlock the system.
795
796	  Work around the issue by inserting DMB SY barriers around PAR_EL1
797	  register reads and warning KVM users. The DMB barrier is sufficient
798	  to prevent a speculative PAR_EL1 read.
799
800	  If unsure, say Y.
801
802config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
803	bool
804
805config ARM64_ERRATUM_2051678
806	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
807	default y
808	help
809	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
810	  Affected Cortex-A510 might not respect the ordering rules for
811	  hardware update of the page table's dirty bit. The workaround
812	  is to not enable the feature on affected CPUs.
813
814	  If unsure, say Y.
815
816config ARM64_ERRATUM_2077057
817	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
818	default y
819	help
820	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
821	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
822	  expected, but a Pointer Authentication trap is taken instead. The
823	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
824	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
825
826	  This can only happen when EL2 is stepping EL1.
827
828	  When these conditions occur, the SPSR_EL2 value is unchanged from the
829	  previous guest entry, and can be restored from the in-memory copy.
830
831	  If unsure, say Y.
832
833config ARM64_ERRATUM_2658417
834	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
835	default y
836	help
837	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
838	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
839	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
840	  A510 CPUs are using shared neon hardware. As the sharing is not
841	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
842	  user-space should not be using these instructions.
843
844	  If unsure, say Y.
845
846config ARM64_ERRATUM_2119858
847	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
848	default y
849	depends on CORESIGHT_TRBE
850	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
851	help
852	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
853
854	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
855	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
856	  the event of a WRAP event.
857
858	  Work around the issue by always making sure we move the TRBPTR_EL1 by
859	  256 bytes before enabling the buffer and filling the first 256 bytes of
860	  the buffer with ETM ignore packets upon disabling.
861
862	  If unsure, say Y.
863
864config ARM64_ERRATUM_2139208
865	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
866	default y
867	depends on CORESIGHT_TRBE
868	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
869	help
870	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
871
872	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
873	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
874	  the event of a WRAP event.
875
876	  Work around the issue by always making sure we move the TRBPTR_EL1 by
877	  256 bytes before enabling the buffer and filling the first 256 bytes of
878	  the buffer with ETM ignore packets upon disabling.
879
880	  If unsure, say Y.
881
882config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
883	bool
884
885config ARM64_ERRATUM_2054223
886	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
887	default y
888	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
889	help
890	  Enable workaround for ARM Cortex-A710 erratum 2054223
891
892	  Affected cores may fail to flush the trace data on a TSB instruction, when
893	  the PE is in trace prohibited state. This will cause losing a few bytes
894	  of the trace cached.
895
896	  Workaround is to issue two TSB consecutively on affected cores.
897
898	  If unsure, say Y.
899
900config ARM64_ERRATUM_2067961
901	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
902	default y
903	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
904	help
905	  Enable workaround for ARM Neoverse-N2 erratum 2067961
906
907	  Affected cores may fail to flush the trace data on a TSB instruction, when
908	  the PE is in trace prohibited state. This will cause losing a few bytes
909	  of the trace cached.
910
911	  Workaround is to issue two TSB consecutively on affected cores.
912
913	  If unsure, say Y.
914
915config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
916	bool
917
918config ARM64_ERRATUM_2253138
919	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
920	depends on CORESIGHT_TRBE
921	default y
922	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
923	help
924	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
925
926	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
927	  for TRBE. Under some conditions, the TRBE might generate a write to the next
928	  virtually addressed page following the last page of the TRBE address space
929	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
930
931	  Work around this in the driver by always making sure that there is a
932	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
933
934	  If unsure, say Y.
935
936config ARM64_ERRATUM_2224489
937	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
938	depends on CORESIGHT_TRBE
939	default y
940	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
941	help
942	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
943
944	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
945	  for TRBE. Under some conditions, the TRBE might generate a write to the next
946	  virtually addressed page following the last page of the TRBE address space
947	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
948
949	  Work around this in the driver by always making sure that there is a
950	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
951
952	  If unsure, say Y.
953
954config ARM64_ERRATUM_2441009
955	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
956	select ARM64_WORKAROUND_REPEAT_TLBI
957	help
958	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
959
960	  Under very rare circumstances, affected Cortex-A510 CPUs
961	  may not handle a race between a break-before-make sequence on one
962	  CPU, and another CPU accessing the same page. This could allow a
963	  store to a page that has been unmapped.
964
965	  Work around this by adding the affected CPUs to the list that needs
966	  TLB sequences to be done twice.
967
968	  If unsure, say N.
969
970config ARM64_ERRATUM_2064142
971	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
972	depends on CORESIGHT_TRBE
973	default y
974	help
975	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
976
977	  Affected Cortex-A510 core might fail to write into system registers after the
978	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
979	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
980	  and TRBTRG_EL1 will be ignored and will not be effected.
981
982	  Work around this in the driver by executing TSB CSYNC and DSB after collection
983	  is stopped and before performing a system register write to one of the affected
984	  registers.
985
986	  If unsure, say Y.
987
988config ARM64_ERRATUM_2038923
989	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
990	depends on CORESIGHT_TRBE
991	default y
992	help
993	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
994
995	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
996	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
997	  might be corrupted. This happens after TRBE buffer has been enabled by setting
998	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
999	  execution changes from a context, in which trace is prohibited to one where it
1000	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1001	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1002	  the trace buffer state might be corrupted.
1003
1004	  Work around this in the driver by preventing an inconsistent view of whether the
1005	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1006	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1007	  two ISB instructions if no ERET is to take place.
1008
1009	  If unsure, say Y.
1010
1011config ARM64_ERRATUM_1902691
1012	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1013	depends on CORESIGHT_TRBE
1014	default y
1015	help
1016	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1017
1018	  Affected Cortex-A510 core might cause trace data corruption, when being written
1019	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1020	  trace data.
1021
1022	  Work around this problem in the driver by just preventing TRBE initialization on
1023	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1024	  on such implementations. This will cover the kernel for any firmware that doesn't
1025	  do this already.
1026
1027	  If unsure, say Y.
1028
1029config ARM64_ERRATUM_2457168
1030	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1031	depends on ARM64_AMU_EXTN
1032	default y
1033	help
1034	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1035
1036	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1037	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1038	  incorrectly giving a significantly higher output value.
1039
1040	  Work around this problem by returning 0 when reading the affected counter in
1041	  key locations that results in disabling all users of this counter. This effect
1042	  is the same to firmware disabling affected counters.
1043
1044	  If unsure, say Y.
1045
1046config ARM64_ERRATUM_2645198
1047	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1048	default y
1049	help
1050	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1051
1052	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1053	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1054	  next instruction abort caused by permission fault.
1055
1056	  Only user-space does executable to non-executable permission transition via
1057	  mprotect() system call. Workaround the problem by doing a break-before-make
1058	  TLB invalidation, for all changes to executable user space mappings.
1059
1060	  If unsure, say Y.
1061
1062config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1063	bool
1064
1065config ARM64_ERRATUM_2966298
1066	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1067	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1068	default y
1069	help
1070	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1071
1072	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1073	  load might leak data from a privileged level via a cache side channel.
1074
1075	  Work around this problem by executing a TLBI before returning to EL0.
1076
1077	  If unsure, say Y.
1078
1079config ARM64_ERRATUM_3117295
1080	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1081	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1082	default y
1083	help
1084	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1085
1086	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1087	  load might leak data from a privileged level via a cache side channel.
1088
1089	  Work around this problem by executing a TLBI before returning to EL0.
1090
1091	  If unsure, say Y.
1092
1093config ARM64_ERRATUM_3194386
1094	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1095	default y
1096	help
1097	  This option adds the workaround for the following errata:
1098
1099	  * ARM Cortex-A76 erratum 3324349
1100	  * ARM Cortex-A77 erratum 3324348
1101	  * ARM Cortex-A78 erratum 3324344
1102	  * ARM Cortex-A78C erratum 3324346
1103	  * ARM Cortex-A78C erratum 3324347
1104	  * ARM Cortex-A710 erratam 3324338
1105	  * ARM Cortex-A715 errartum 3456084
1106	  * ARM Cortex-A720 erratum 3456091
1107	  * ARM Cortex-A725 erratum 3456106
1108	  * ARM Cortex-X1 erratum 3324344
1109	  * ARM Cortex-X1C erratum 3324346
1110	  * ARM Cortex-X2 erratum 3324338
1111	  * ARM Cortex-X3 erratum 3324335
1112	  * ARM Cortex-X4 erratum 3194386
1113	  * ARM Cortex-X925 erratum 3324334
1114	  * ARM Neoverse-N1 erratum 3324349
1115	  * ARM Neoverse N2 erratum 3324339
1116	  * ARM Neoverse-N3 erratum 3456111
1117	  * ARM Neoverse-V1 erratum 3324341
1118	  * ARM Neoverse V2 erratum 3324336
1119	  * ARM Neoverse-V3 erratum 3312417
1120
1121	  On affected cores "MSR SSBS, #0" instructions may not affect
1122	  subsequent speculative instructions, which may permit unexepected
1123	  speculative store bypassing.
1124
1125	  Work around this problem by placing a Speculation Barrier (SB) or
1126	  Instruction Synchronization Barrier (ISB) after kernel changes to
1127	  SSBS. The presence of the SSBS special-purpose register is hidden
1128	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1129	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1130
1131	  If unsure, say Y.
1132
1133config CAVIUM_ERRATUM_22375
1134	bool "Cavium erratum 22375, 24313"
1135	default y
1136	help
1137	  Enable workaround for errata 22375 and 24313.
1138
1139	  This implements two gicv3-its errata workarounds for ThunderX. Both
1140	  with a small impact affecting only ITS table allocation.
1141
1142	    erratum 22375: only alloc 8MB table size
1143	    erratum 24313: ignore memory access type
1144
1145	  The fixes are in ITS initialization and basically ignore memory access
1146	  type and table size provided by the TYPER and BASER registers.
1147
1148	  If unsure, say Y.
1149
1150config CAVIUM_ERRATUM_23144
1151	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1152	depends on NUMA
1153	default y
1154	help
1155	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1156
1157	  If unsure, say Y.
1158
1159config CAVIUM_ERRATUM_23154
1160	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1161	default y
1162	help
1163	  The ThunderX GICv3 implementation requires a modified version for
1164	  reading the IAR status to ensure data synchronization
1165	  (access to icc_iar1_el1 is not sync'ed before and after).
1166
1167	  It also suffers from erratum 38545 (also present on Marvell's
1168	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1169	  spuriously presented to the CPU interface.
1170
1171	  If unsure, say Y.
1172
1173config CAVIUM_ERRATUM_27456
1174	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1175	default y
1176	help
1177	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1178	  instructions may cause the icache to become corrupted if it
1179	  contains data for a non-current ASID.  The fix is to
1180	  invalidate the icache when changing the mm context.
1181
1182	  If unsure, say Y.
1183
1184config CAVIUM_ERRATUM_30115
1185	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1186	default y
1187	help
1188	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1189	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1190	  interrupts in host. Trapping both GICv3 group-0 and group-1
1191	  accesses sidesteps the issue.
1192
1193	  If unsure, say Y.
1194
1195config CAVIUM_TX2_ERRATUM_219
1196	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1197	default y
1198	help
1199	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1200	  TTBR update and the corresponding context synchronizing operation can
1201	  cause a spurious Data Abort to be delivered to any hardware thread in
1202	  the CPU core.
1203
1204	  Work around the issue by avoiding the problematic code sequence and
1205	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1206	  trap handler performs the corresponding register access, skips the
1207	  instruction and ensures context synchronization by virtue of the
1208	  exception return.
1209
1210	  If unsure, say Y.
1211
1212config FUJITSU_ERRATUM_010001
1213	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1214	default y
1215	help
1216	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1217	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1218	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1219	  This fault occurs under a specific hardware condition when a
1220	  load/store instruction performs an address translation using:
1221	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1222	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1223	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1224	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1225
1226	  The workaround is to ensure these bits are clear in TCR_ELx.
1227	  The workaround only affects the Fujitsu-A64FX.
1228
1229	  If unsure, say Y.
1230
1231config HISILICON_ERRATUM_161600802
1232	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1233	default y
1234	help
1235	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1236	  when issued ITS commands such as VMOVP and VMAPP, and requires
1237	  a 128kB offset to be applied to the target address in this commands.
1238
1239	  If unsure, say Y.
1240
1241config HISILICON_ERRATUM_162100801
1242	bool "Hip09 162100801 erratum support"
1243	default y
1244	help
1245	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1246	  during unmapping operation, which will cause some vSGIs lost.
1247	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1248	  after VMOVP.
1249
1250	  If unsure, say Y.
1251
1252config QCOM_FALKOR_ERRATUM_1003
1253	bool "Falkor E1003: Incorrect translation due to ASID change"
1254	default y
1255	help
1256	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1257	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1258	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1259	  then only for entries in the walk cache, since the leaf translation
1260	  is unchanged. Work around the erratum by invalidating the walk cache
1261	  entries for the trampoline before entering the kernel proper.
1262
1263config QCOM_FALKOR_ERRATUM_1009
1264	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1265	default y
1266	select ARM64_WORKAROUND_REPEAT_TLBI
1267	help
1268	  On Falkor v1, the CPU may prematurely complete a DSB following a
1269	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1270	  one more time to fix the issue.
1271
1272	  If unsure, say Y.
1273
1274config QCOM_QDF2400_ERRATUM_0065
1275	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1276	default y
1277	help
1278	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1279	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1280	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1281
1282	  If unsure, say Y.
1283
1284config QCOM_FALKOR_ERRATUM_E1041
1285	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1286	default y
1287	help
1288	  Falkor CPU may speculatively fetch instructions from an improper
1289	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1290	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1291
1292	  If unsure, say Y.
1293
1294config NVIDIA_CARMEL_CNP_ERRATUM
1295	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1296	default y
1297	help
1298	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1299	  invalidate shared TLB entries installed by a different core, as it would
1300	  on standard ARM cores.
1301
1302	  If unsure, say Y.
1303
1304config ROCKCHIP_ERRATUM_3588001
1305	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1306	default y
1307	help
1308	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1309	  This means, that its sharability feature may not be used, even though it
1310	  is supported by the IP itself.
1311
1312	  If unsure, say Y.
1313
1314config SOCIONEXT_SYNQUACER_PREITS
1315	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1316	default y
1317	help
1318	  Socionext Synquacer SoCs implement a separate h/w block to generate
1319	  MSI doorbell writes with non-zero values for the device ID.
1320
1321	  If unsure, say Y.
1322
1323endmenu # "ARM errata workarounds via the alternatives framework"
1324
1325choice
1326	prompt "Page size"
1327	default ARM64_4K_PAGES
1328	help
1329	  Page size (translation granule) configuration.
1330
1331config ARM64_4K_PAGES
1332	bool "4KB"
1333	select HAVE_PAGE_SIZE_4KB
1334	help
1335	  This feature enables 4KB pages support.
1336
1337config ARM64_16K_PAGES
1338	bool "16KB"
1339	select HAVE_PAGE_SIZE_16KB
1340	help
1341	  The system will use 16KB pages support. AArch32 emulation
1342	  requires applications compiled with 16K (or a multiple of 16K)
1343	  aligned segments.
1344
1345config ARM64_64K_PAGES
1346	bool "64KB"
1347	select HAVE_PAGE_SIZE_64KB
1348	help
1349	  This feature enables 64KB pages support (4KB by default)
1350	  allowing only two levels of page tables and faster TLB
1351	  look-up. AArch32 emulation requires applications compiled
1352	  with 64K aligned segments.
1353
1354endchoice
1355
1356choice
1357	prompt "Virtual address space size"
1358	default ARM64_VA_BITS_52
1359	help
1360	  Allows choosing one of multiple possible virtual address
1361	  space sizes. The level of translation table is determined by
1362	  a combination of page size and virtual address space size.
1363
1364config ARM64_VA_BITS_36
1365	bool "36-bit" if EXPERT
1366	depends on PAGE_SIZE_16KB
1367
1368config ARM64_VA_BITS_39
1369	bool "39-bit"
1370	depends on PAGE_SIZE_4KB
1371
1372config ARM64_VA_BITS_42
1373	bool "42-bit"
1374	depends on PAGE_SIZE_64KB
1375
1376config ARM64_VA_BITS_47
1377	bool "47-bit"
1378	depends on PAGE_SIZE_16KB
1379
1380config ARM64_VA_BITS_48
1381	bool "48-bit"
1382
1383config ARM64_VA_BITS_52
1384	bool "52-bit"
1385	help
1386	  Enable 52-bit virtual addressing for userspace when explicitly
1387	  requested via a hint to mmap(). The kernel will also use 52-bit
1388	  virtual addresses for its own mappings (provided HW support for
1389	  this feature is available, otherwise it reverts to 48-bit).
1390
1391	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1392	  ARMv8.3 Pointer Authentication will result in the PAC being
1393	  reduced from 7 bits to 3 bits, which may have a significant
1394	  impact on its susceptibility to brute-force attacks.
1395
1396	  If unsure, select 48-bit virtual addressing instead.
1397
1398endchoice
1399
1400config ARM64_FORCE_52BIT
1401	bool "Force 52-bit virtual addresses for userspace"
1402	depends on ARM64_VA_BITS_52 && EXPERT
1403	help
1404	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1405	  to maintain compatibility with older software by providing 48-bit VAs
1406	  unless a hint is supplied to mmap.
1407
1408	  This configuration option disables the 48-bit compatibility logic, and
1409	  forces all userspace addresses to be 52-bit on HW that supports it. One
1410	  should only enable this configuration option for stress testing userspace
1411	  memory management code. If unsure say N here.
1412
1413config ARM64_VA_BITS
1414	int
1415	default 36 if ARM64_VA_BITS_36
1416	default 39 if ARM64_VA_BITS_39
1417	default 42 if ARM64_VA_BITS_42
1418	default 47 if ARM64_VA_BITS_47
1419	default 48 if ARM64_VA_BITS_48
1420	default 52 if ARM64_VA_BITS_52
1421
1422choice
1423	prompt "Physical address space size"
1424	default ARM64_PA_BITS_48
1425	help
1426	  Choose the maximum physical address range that the kernel will
1427	  support.
1428
1429config ARM64_PA_BITS_48
1430	bool "48-bit"
1431	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1432
1433config ARM64_PA_BITS_52
1434	bool "52-bit"
1435	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1436	help
1437	  Enable support for a 52-bit physical address space, introduced as
1438	  part of the ARMv8.2-LPA extension.
1439
1440	  With this enabled, the kernel will also continue to work on CPUs that
1441	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1442	  minor performance overhead).
1443
1444endchoice
1445
1446config ARM64_PA_BITS
1447	int
1448	default 48 if ARM64_PA_BITS_48
1449	default 52 if ARM64_PA_BITS_52
1450
1451config ARM64_LPA2
1452	def_bool y
1453	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1454
1455choice
1456	prompt "Endianness"
1457	default CPU_LITTLE_ENDIAN
1458	help
1459	  Select the endianness of data accesses performed by the CPU. Userspace
1460	  applications will need to be compiled and linked for the endianness
1461	  that is selected here.
1462
1463config CPU_BIG_ENDIAN
1464	bool "Build big-endian kernel"
1465	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1466	depends on AS_IS_GNU || AS_VERSION >= 150000
1467	help
1468	  Say Y if you plan on running a kernel with a big-endian userspace.
1469
1470config CPU_LITTLE_ENDIAN
1471	bool "Build little-endian kernel"
1472	help
1473	  Say Y if you plan on running a kernel with a little-endian userspace.
1474	  This is usually the case for distributions targeting arm64.
1475
1476endchoice
1477
1478config SCHED_MC
1479	bool "Multi-core scheduler support"
1480	help
1481	  Multi-core scheduler support improves the CPU scheduler's decision
1482	  making when dealing with multi-core CPU chips at a cost of slightly
1483	  increased overhead in some places. If unsure say N here.
1484
1485config SCHED_CLUSTER
1486	bool "Cluster scheduler support"
1487	help
1488	  Cluster scheduler support improves the CPU scheduler's decision
1489	  making when dealing with machines that have clusters of CPUs.
1490	  Cluster usually means a couple of CPUs which are placed closely
1491	  by sharing mid-level caches, last-level cache tags or internal
1492	  busses.
1493
1494config SCHED_SMT
1495	bool "SMT scheduler support"
1496	help
1497	  Improves the CPU scheduler's decision making when dealing with
1498	  MultiThreading at a cost of slightly increased overhead in some
1499	  places. If unsure say N here.
1500
1501config NR_CPUS
1502	int "Maximum number of CPUs (2-4096)"
1503	range 2 4096
1504	default "512"
1505
1506config HOTPLUG_CPU
1507	bool "Support for hot-pluggable CPUs"
1508	select GENERIC_IRQ_MIGRATION
1509	help
1510	  Say Y here to experiment with turning CPUs off and on.  CPUs
1511	  can be controlled through /sys/devices/system/cpu.
1512
1513# Common NUMA Features
1514config NUMA
1515	bool "NUMA Memory Allocation and Scheduler Support"
1516	select GENERIC_ARCH_NUMA
1517	select OF_NUMA
1518	select HAVE_SETUP_PER_CPU_AREA
1519	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1520	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1521	select USE_PERCPU_NUMA_NODE_ID
1522	help
1523	  Enable NUMA (Non-Uniform Memory Access) support.
1524
1525	  The kernel will try to allocate memory used by a CPU on the
1526	  local memory of the CPU and add some more
1527	  NUMA awareness to the kernel.
1528
1529config NODES_SHIFT
1530	int "Maximum NUMA Nodes (as a power of 2)"
1531	range 1 10
1532	default "4"
1533	depends on NUMA
1534	help
1535	  Specify the maximum number of NUMA Nodes available on the target
1536	  system.  Increases memory reserved to accommodate various tables.
1537
1538source "kernel/Kconfig.hz"
1539
1540config ARCH_SPARSEMEM_ENABLE
1541	def_bool y
1542	select SPARSEMEM_VMEMMAP_ENABLE
1543	select SPARSEMEM_VMEMMAP
1544
1545config HW_PERF_EVENTS
1546	def_bool y
1547	depends on ARM_PMU
1548
1549# Supported by clang >= 7.0 or GCC >= 12.0.0
1550config CC_HAVE_SHADOW_CALL_STACK
1551	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1552
1553config PARAVIRT
1554	bool "Enable paravirtualization code"
1555	help
1556	  This changes the kernel so it can modify itself when it is run
1557	  under a hypervisor, potentially improving performance significantly
1558	  over full virtualization.
1559
1560config PARAVIRT_TIME_ACCOUNTING
1561	bool "Paravirtual steal time accounting"
1562	select PARAVIRT
1563	help
1564	  Select this option to enable fine granularity task steal time
1565	  accounting. Time spent executing other tasks in parallel with
1566	  the current vCPU is discounted from the vCPU power. To account for
1567	  that, there can be a small performance impact.
1568
1569	  If in doubt, say N here.
1570
1571config ARCH_SUPPORTS_KEXEC
1572	def_bool PM_SLEEP_SMP
1573
1574config ARCH_SUPPORTS_KEXEC_FILE
1575	def_bool y
1576
1577config ARCH_SELECTS_KEXEC_FILE
1578	def_bool y
1579	depends on KEXEC_FILE
1580	select HAVE_IMA_KEXEC if IMA
1581
1582config ARCH_SUPPORTS_KEXEC_SIG
1583	def_bool y
1584
1585config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1586	def_bool y
1587
1588config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1589	def_bool y
1590
1591config ARCH_SUPPORTS_CRASH_DUMP
1592	def_bool y
1593
1594config ARCH_DEFAULT_CRASH_DUMP
1595	def_bool y
1596
1597config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1598	def_bool CRASH_RESERVE
1599
1600config TRANS_TABLE
1601	def_bool y
1602	depends on HIBERNATION || KEXEC_CORE
1603
1604config XEN_DOM0
1605	def_bool y
1606	depends on XEN
1607
1608config XEN
1609	bool "Xen guest support on ARM64"
1610	depends on ARM64 && OF
1611	select SWIOTLB_XEN
1612	select PARAVIRT
1613	help
1614	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1615
1616# include/linux/mmzone.h requires the following to be true:
1617#
1618#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1619#
1620# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1621#
1622#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1623# ----+-------------------+--------------+----------------------+-------------------------+
1624# 4K  |       27          |      12      |       15             |         10              |
1625# 16K |       27          |      14      |       13             |         11              |
1626# 64K |       29          |      16      |       13             |         13              |
1627config ARCH_FORCE_MAX_ORDER
1628	int
1629	default "13" if ARM64_64K_PAGES
1630	default "11" if ARM64_16K_PAGES
1631	default "10"
1632	help
1633	  The kernel page allocator limits the size of maximal physically
1634	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1635	  defines the maximal power of two of number of pages that can be
1636	  allocated as a single contiguous block. This option allows
1637	  overriding the default setting when ability to allocate very
1638	  large blocks of physically contiguous memory is required.
1639
1640	  The maximal size of allocation cannot exceed the size of the
1641	  section, so the value of MAX_PAGE_ORDER should satisfy
1642
1643	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1644
1645	  Don't change if unsure.
1646
1647config UNMAP_KERNEL_AT_EL0
1648	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1649	default y
1650	help
1651	  Speculation attacks against some high-performance processors can
1652	  be used to bypass MMU permission checks and leak kernel data to
1653	  userspace. This can be defended against by unmapping the kernel
1654	  when running in userspace, mapping it back in on exception entry
1655	  via a trampoline page in the vector table.
1656
1657	  If unsure, say Y.
1658
1659config MITIGATE_SPECTRE_BRANCH_HISTORY
1660	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1661	default y
1662	help
1663	  Speculation attacks against some high-performance processors can
1664	  make use of branch history to influence future speculation.
1665	  When taking an exception from user-space, a sequence of branches
1666	  or a firmware call overwrites the branch history.
1667
1668config RODATA_FULL_DEFAULT_ENABLED
1669	bool "Apply r/o permissions of VM areas also to their linear aliases"
1670	default y
1671	help
1672	  Apply read-only attributes of VM areas to the linear alias of
1673	  the backing pages as well. This prevents code or read-only data
1674	  from being modified (inadvertently or intentionally) via another
1675	  mapping of the same memory page. This additional enhancement can
1676	  be turned off at runtime by passing rodata=[off|on] (and turned on
1677	  with rodata=full if this option is set to 'n')
1678
1679	  This requires the linear region to be mapped down to pages,
1680	  which may adversely affect performance in some cases.
1681
1682config ARM64_SW_TTBR0_PAN
1683	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1684	depends on !KCSAN
1685	select ARM64_PAN
1686	help
1687	  Enabling this option prevents the kernel from accessing
1688	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1689	  zeroed area and reserved ASID. The user access routines
1690	  restore the valid TTBR0_EL1 temporarily.
1691
1692config ARM64_TAGGED_ADDR_ABI
1693	bool "Enable the tagged user addresses syscall ABI"
1694	default y
1695	help
1696	  When this option is enabled, user applications can opt in to a
1697	  relaxed ABI via prctl() allowing tagged addresses to be passed
1698	  to system calls as pointer arguments. For details, see
1699	  Documentation/arch/arm64/tagged-address-abi.rst.
1700
1701menuconfig COMPAT
1702	bool "Kernel support for 32-bit EL0"
1703	depends on ARM64_4K_PAGES || EXPERT
1704	select HAVE_UID16
1705	select OLD_SIGSUSPEND3
1706	select COMPAT_OLD_SIGACTION
1707	help
1708	  This option enables support for a 32-bit EL0 running under a 64-bit
1709	  kernel at EL1. AArch32-specific components such as system calls,
1710	  the user helper functions, VFP support and the ptrace interface are
1711	  handled appropriately by the kernel.
1712
1713	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1714	  that you will only be able to execute AArch32 binaries that were compiled
1715	  with page size aligned segments.
1716
1717	  If you want to execute 32-bit userspace applications, say Y.
1718
1719if COMPAT
1720
1721config KUSER_HELPERS
1722	bool "Enable kuser helpers page for 32-bit applications"
1723	default y
1724	help
1725	  Warning: disabling this option may break 32-bit user programs.
1726
1727	  Provide kuser helpers to compat tasks. The kernel provides
1728	  helper code to userspace in read only form at a fixed location
1729	  to allow userspace to be independent of the CPU type fitted to
1730	  the system. This permits binaries to be run on ARMv4 through
1731	  to ARMv8 without modification.
1732
1733	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1734
1735	  However, the fixed address nature of these helpers can be used
1736	  by ROP (return orientated programming) authors when creating
1737	  exploits.
1738
1739	  If all of the binaries and libraries which run on your platform
1740	  are built specifically for your platform, and make no use of
1741	  these helpers, then you can turn this option off to hinder
1742	  such exploits. However, in that case, if a binary or library
1743	  relying on those helpers is run, it will not function correctly.
1744
1745	  Say N here only if you are absolutely certain that you do not
1746	  need these helpers; otherwise, the safe option is to say Y.
1747
1748config COMPAT_VDSO
1749	bool "Enable vDSO for 32-bit applications"
1750	depends on !CPU_BIG_ENDIAN
1751	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1752	select GENERIC_COMPAT_VDSO
1753	default y
1754	help
1755	  Place in the process address space of 32-bit applications an
1756	  ELF shared object providing fast implementations of gettimeofday
1757	  and clock_gettime.
1758
1759	  You must have a 32-bit build of glibc 2.22 or later for programs
1760	  to seamlessly take advantage of this.
1761
1762config THUMB2_COMPAT_VDSO
1763	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1764	depends on COMPAT_VDSO
1765	default y
1766	help
1767	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1768	  otherwise with '-marm'.
1769
1770config COMPAT_ALIGNMENT_FIXUPS
1771	bool "Fix up misaligned multi-word loads and stores in user space"
1772
1773menuconfig ARMV8_DEPRECATED
1774	bool "Emulate deprecated/obsolete ARMv8 instructions"
1775	depends on SYSCTL
1776	help
1777	  Legacy software support may require certain instructions
1778	  that have been deprecated or obsoleted in the architecture.
1779
1780	  Enable this config to enable selective emulation of these
1781	  features.
1782
1783	  If unsure, say Y
1784
1785if ARMV8_DEPRECATED
1786
1787config SWP_EMULATION
1788	bool "Emulate SWP/SWPB instructions"
1789	help
1790	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1791	  they are always undefined. Say Y here to enable software
1792	  emulation of these instructions for userspace using LDXR/STXR.
1793	  This feature can be controlled at runtime with the abi.swp
1794	  sysctl which is disabled by default.
1795
1796	  In some older versions of glibc [<=2.8] SWP is used during futex
1797	  trylock() operations with the assumption that the code will not
1798	  be preempted. This invalid assumption may be more likely to fail
1799	  with SWP emulation enabled, leading to deadlock of the user
1800	  application.
1801
1802	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1803	  on an external transaction monitoring block called a global
1804	  monitor to maintain update atomicity. If your system does not
1805	  implement a global monitor, this option can cause programs that
1806	  perform SWP operations to uncached memory to deadlock.
1807
1808	  If unsure, say Y
1809
1810config CP15_BARRIER_EMULATION
1811	bool "Emulate CP15 Barrier instructions"
1812	help
1813	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1814	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1815	  strongly recommended to use the ISB, DSB, and DMB
1816	  instructions instead.
1817
1818	  Say Y here to enable software emulation of these
1819	  instructions for AArch32 userspace code. When this option is
1820	  enabled, CP15 barrier usage is traced which can help
1821	  identify software that needs updating. This feature can be
1822	  controlled at runtime with the abi.cp15_barrier sysctl.
1823
1824	  If unsure, say Y
1825
1826config SETEND_EMULATION
1827	bool "Emulate SETEND instruction"
1828	help
1829	  The SETEND instruction alters the data-endianness of the
1830	  AArch32 EL0, and is deprecated in ARMv8.
1831
1832	  Say Y here to enable software emulation of the instruction
1833	  for AArch32 userspace code. This feature can be controlled
1834	  at runtime with the abi.setend sysctl.
1835
1836	  Note: All the cpus on the system must have mixed endian support at EL0
1837	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1838	  endian - is hotplugged in after this feature has been enabled, there could
1839	  be unexpected results in the applications.
1840
1841	  If unsure, say Y
1842endif # ARMV8_DEPRECATED
1843
1844endif # COMPAT
1845
1846menu "ARMv8.1 architectural features"
1847
1848config ARM64_HW_AFDBM
1849	bool "Support for hardware updates of the Access and Dirty page flags"
1850	default y
1851	help
1852	  The ARMv8.1 architecture extensions introduce support for
1853	  hardware updates of the access and dirty information in page
1854	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1855	  capable processors, accesses to pages with PTE_AF cleared will
1856	  set this bit instead of raising an access flag fault.
1857	  Similarly, writes to read-only pages with the DBM bit set will
1858	  clear the read-only bit (AP[2]) instead of raising a
1859	  permission fault.
1860
1861	  Kernels built with this configuration option enabled continue
1862	  to work on pre-ARMv8.1 hardware and the performance impact is
1863	  minimal. If unsure, say Y.
1864
1865config ARM64_PAN
1866	bool "Enable support for Privileged Access Never (PAN)"
1867	default y
1868	help
1869	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1870	  prevents the kernel or hypervisor from accessing user-space (EL0)
1871	  memory directly.
1872
1873	  Choosing this option will cause any unprotected (not using
1874	  copy_to_user et al) memory access to fail with a permission fault.
1875
1876	  The feature is detected at runtime, and will remain as a 'nop'
1877	  instruction if the cpu does not implement the feature.
1878
1879config AS_HAS_LSE_ATOMICS
1880	def_bool $(as-instr,.arch_extension lse)
1881
1882config ARM64_LSE_ATOMICS
1883	bool
1884	default ARM64_USE_LSE_ATOMICS
1885	depends on AS_HAS_LSE_ATOMICS
1886
1887config ARM64_USE_LSE_ATOMICS
1888	bool "Atomic instructions"
1889	default y
1890	help
1891	  As part of the Large System Extensions, ARMv8.1 introduces new
1892	  atomic instructions that are designed specifically to scale in
1893	  very large systems.
1894
1895	  Say Y here to make use of these instructions for the in-kernel
1896	  atomic routines. This incurs a small overhead on CPUs that do
1897	  not support these instructions and requires the kernel to be
1898	  built with binutils >= 2.25 in order for the new instructions
1899	  to be used.
1900
1901endmenu # "ARMv8.1 architectural features"
1902
1903menu "ARMv8.2 architectural features"
1904
1905config AS_HAS_ARMV8_2
1906	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1907
1908config AS_HAS_SHA3
1909	def_bool $(as-instr,.arch armv8.2-a+sha3)
1910
1911config ARM64_PMEM
1912	bool "Enable support for persistent memory"
1913	select ARCH_HAS_PMEM_API
1914	select ARCH_HAS_UACCESS_FLUSHCACHE
1915	help
1916	  Say Y to enable support for the persistent memory API based on the
1917	  ARMv8.2 DCPoP feature.
1918
1919	  The feature is detected at runtime, and the kernel will use DC CVAC
1920	  operations if DC CVAP is not supported (following the behaviour of
1921	  DC CVAP itself if the system does not define a point of persistence).
1922
1923config ARM64_RAS_EXTN
1924	bool "Enable support for RAS CPU Extensions"
1925	default y
1926	help
1927	  CPUs that support the Reliability, Availability and Serviceability
1928	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1929	  errors, classify them and report them to software.
1930
1931	  On CPUs with these extensions system software can use additional
1932	  barriers to determine if faults are pending and read the
1933	  classification from a new set of registers.
1934
1935	  Selecting this feature will allow the kernel to use these barriers
1936	  and access the new registers if the system supports the extension.
1937	  Platform RAS features may additionally depend on firmware support.
1938
1939config ARM64_CNP
1940	bool "Enable support for Common Not Private (CNP) translations"
1941	default y
1942	help
1943	  Common Not Private (CNP) allows translation table entries to
1944	  be shared between different PEs in the same inner shareable
1945	  domain, so the hardware can use this fact to optimise the
1946	  caching of such entries in the TLB.
1947
1948	  Selecting this option allows the CNP feature to be detected
1949	  at runtime, and does not affect PEs that do not implement
1950	  this feature.
1951
1952endmenu # "ARMv8.2 architectural features"
1953
1954menu "ARMv8.3 architectural features"
1955
1956config ARM64_PTR_AUTH
1957	bool "Enable support for pointer authentication"
1958	default y
1959	help
1960	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1961	  instructions for signing and authenticating pointers against secret
1962	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1963	  and other attacks.
1964
1965	  This option enables these instructions at EL0 (i.e. for userspace).
1966	  Choosing this option will cause the kernel to initialise secret keys
1967	  for each process at exec() time, with these keys being
1968	  context-switched along with the process.
1969
1970	  The feature is detected at runtime. If the feature is not present in
1971	  hardware it will not be advertised to userspace/KVM guest nor will it
1972	  be enabled.
1973
1974	  If the feature is present on the boot CPU but not on a late CPU, then
1975	  the late CPU will be parked. Also, if the boot CPU does not have
1976	  address auth and the late CPU has then the late CPU will still boot
1977	  but with the feature disabled. On such a system, this option should
1978	  not be selected.
1979
1980config ARM64_PTR_AUTH_KERNEL
1981	bool "Use pointer authentication for kernel"
1982	default y
1983	depends on ARM64_PTR_AUTH
1984	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1985	# Modern compilers insert a .note.gnu.property section note for PAC
1986	# which is only understood by binutils starting with version 2.33.1.
1987	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1988	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1989	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1990	help
1991	  If the compiler supports the -mbranch-protection or
1992	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1993	  will cause the kernel itself to be compiled with return address
1994	  protection. In this case, and if the target hardware is known to
1995	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1996	  disabled with minimal loss of protection.
1997
1998	  This feature works with FUNCTION_GRAPH_TRACER option only if
1999	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2000
2001config CC_HAS_BRANCH_PROT_PAC_RET
2002	# GCC 9 or later, clang 8 or later
2003	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2004
2005config CC_HAS_SIGN_RETURN_ADDRESS
2006	# GCC 7, 8
2007	def_bool $(cc-option,-msign-return-address=all)
2008
2009config AS_HAS_ARMV8_3
2010	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2011
2012config AS_HAS_CFI_NEGATE_RA_STATE
2013	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2014
2015config AS_HAS_LDAPR
2016	def_bool $(as-instr,.arch_extension rcpc)
2017
2018endmenu # "ARMv8.3 architectural features"
2019
2020menu "ARMv8.4 architectural features"
2021
2022config ARM64_AMU_EXTN
2023	bool "Enable support for the Activity Monitors Unit CPU extension"
2024	default y
2025	help
2026	  The activity monitors extension is an optional extension introduced
2027	  by the ARMv8.4 CPU architecture. This enables support for version 1
2028	  of the activity monitors architecture, AMUv1.
2029
2030	  To enable the use of this extension on CPUs that implement it, say Y.
2031
2032	  Note that for architectural reasons, firmware _must_ implement AMU
2033	  support when running on CPUs that present the activity monitors
2034	  extension. The required support is present in:
2035	    * Version 1.5 and later of the ARM Trusted Firmware
2036
2037	  For kernels that have this configuration enabled but boot with broken
2038	  firmware, you may need to say N here until the firmware is fixed.
2039	  Otherwise you may experience firmware panics or lockups when
2040	  accessing the counter registers. Even if you are not observing these
2041	  symptoms, the values returned by the register reads might not
2042	  correctly reflect reality. Most commonly, the value read will be 0,
2043	  indicating that the counter is not enabled.
2044
2045config AS_HAS_ARMV8_4
2046	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2047
2048config ARM64_TLB_RANGE
2049	bool "Enable support for tlbi range feature"
2050	default y
2051	depends on AS_HAS_ARMV8_4
2052	help
2053	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2054	  range of input addresses.
2055
2056	  The feature introduces new assembly instructions, and they were
2057	  support when binutils >= 2.30.
2058
2059endmenu # "ARMv8.4 architectural features"
2060
2061menu "ARMv8.5 architectural features"
2062
2063config AS_HAS_ARMV8_5
2064	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2065
2066config ARM64_BTI
2067	bool "Branch Target Identification support"
2068	default y
2069	help
2070	  Branch Target Identification (part of the ARMv8.5 Extensions)
2071	  provides a mechanism to limit the set of locations to which computed
2072	  branch instructions such as BR or BLR can jump.
2073
2074	  To make use of BTI on CPUs that support it, say Y.
2075
2076	  BTI is intended to provide complementary protection to other control
2077	  flow integrity protection mechanisms, such as the Pointer
2078	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2079	  For this reason, it does not make sense to enable this option without
2080	  also enabling support for pointer authentication.  Thus, when
2081	  enabling this option you should also select ARM64_PTR_AUTH=y.
2082
2083	  Userspace binaries must also be specifically compiled to make use of
2084	  this mechanism.  If you say N here or the hardware does not support
2085	  BTI, such binaries can still run, but you get no additional
2086	  enforcement of branch destinations.
2087
2088config ARM64_BTI_KERNEL
2089	bool "Use Branch Target Identification for kernel"
2090	default y
2091	depends on ARM64_BTI
2092	depends on ARM64_PTR_AUTH_KERNEL
2093	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2094	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2095	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2096	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2097	depends on !CC_IS_GCC
2098	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2099	help
2100	  Build the kernel with Branch Target Identification annotations
2101	  and enable enforcement of this for kernel code. When this option
2102	  is enabled and the system supports BTI all kernel code including
2103	  modular code must have BTI enabled.
2104
2105config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2106	# GCC 9 or later, clang 8 or later
2107	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2108
2109config ARM64_E0PD
2110	bool "Enable support for E0PD"
2111	default y
2112	help
2113	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2114	  that EL0 accesses made via TTBR1 always fault in constant time,
2115	  providing similar benefits to KASLR as those provided by KPTI, but
2116	  with lower overhead and without disrupting legitimate access to
2117	  kernel memory such as SPE.
2118
2119	  This option enables E0PD for TTBR1 where available.
2120
2121config ARM64_AS_HAS_MTE
2122	# Initial support for MTE went in binutils 2.32.0, checked with
2123	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2124	# as a late addition to the final architecture spec (LDGM/STGM)
2125	# is only supported in the newer 2.32.x and 2.33 binutils
2126	# versions, hence the extra "stgm" instruction check below.
2127	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2128
2129config ARM64_MTE
2130	bool "Memory Tagging Extension support"
2131	default y
2132	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2133	depends on AS_HAS_ARMV8_5
2134	depends on AS_HAS_LSE_ATOMICS
2135	# Required for tag checking in the uaccess routines
2136	select ARM64_PAN
2137	select ARCH_HAS_SUBPAGE_FAULTS
2138	select ARCH_USES_HIGH_VMA_FLAGS
2139	select ARCH_USES_PG_ARCH_2
2140	select ARCH_USES_PG_ARCH_3
2141	help
2142	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2143	  architectural support for run-time, always-on detection of
2144	  various classes of memory error to aid with software debugging
2145	  to eliminate vulnerabilities arising from memory-unsafe
2146	  languages.
2147
2148	  This option enables the support for the Memory Tagging
2149	  Extension at EL0 (i.e. for userspace).
2150
2151	  Selecting this option allows the feature to be detected at
2152	  runtime. Any secondary CPU not implementing this feature will
2153	  not be allowed a late bring-up.
2154
2155	  Userspace binaries that want to use this feature must
2156	  explicitly opt in. The mechanism for the userspace is
2157	  described in:
2158
2159	  Documentation/arch/arm64/memory-tagging-extension.rst.
2160
2161endmenu # "ARMv8.5 architectural features"
2162
2163menu "ARMv8.7 architectural features"
2164
2165config ARM64_EPAN
2166	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2167	default y
2168	depends on ARM64_PAN
2169	help
2170	  Enhanced Privileged Access Never (EPAN) allows Privileged
2171	  Access Never to be used with Execute-only mappings.
2172
2173	  The feature is detected at runtime, and will remain disabled
2174	  if the cpu does not implement the feature.
2175endmenu # "ARMv8.7 architectural features"
2176
2177config AS_HAS_MOPS
2178	def_bool $(as-instr,.arch_extension mops)
2179
2180menu "ARMv8.9 architectural features"
2181
2182config ARM64_POE
2183	prompt "Permission Overlay Extension"
2184	def_bool y
2185	select ARCH_USES_HIGH_VMA_FLAGS
2186	select ARCH_HAS_PKEYS
2187	help
2188	  The Permission Overlay Extension is used to implement Memory
2189	  Protection Keys. Memory Protection Keys provides a mechanism for
2190	  enforcing page-based protections, but without requiring modification
2191	  of the page tables when an application changes protection domains.
2192
2193	  For details, see Documentation/core-api/protection-keys.rst
2194
2195	  If unsure, say y.
2196
2197config ARCH_PKEY_BITS
2198	int
2199	default 3
2200
2201config ARM64_HAFT
2202	bool "Support for Hardware managed Access Flag for Table Descriptors"
2203	depends on ARM64_HW_AFDBM
2204	default y
2205	help
2206	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2207	  Flag for Table descriptors. When enabled an architectural executed
2208	  memory access will update the Access Flag in each Table descriptor
2209	  which is accessed during the translation table walk and for which
2210	  the Access Flag is 0. The Access Flag of the Table descriptor use
2211	  the same bit of PTE_AF.
2212
2213	  The feature will only be enabled if all the CPUs in the system
2214	  support this feature. If unsure, say Y.
2215
2216endmenu # "ARMv8.9 architectural features"
2217
2218menu "v9.4 architectural features"
2219
2220config ARM64_GCS
2221	bool "Enable support for Guarded Control Stack (GCS)"
2222	default y
2223	select ARCH_HAS_USER_SHADOW_STACK
2224	select ARCH_USES_HIGH_VMA_FLAGS
2225	depends on !UPROBES
2226	help
2227	  Guarded Control Stack (GCS) provides support for a separate
2228	  stack with restricted access which contains only return
2229	  addresses.  This can be used to harden against some attacks
2230	  by comparing return address used by the program with what is
2231	  stored in the GCS, and may also be used to efficiently obtain
2232	  the call stack for applications such as profiling.
2233
2234	  The feature is detected at runtime, and will remain disabled
2235	  if the system does not implement the feature.
2236
2237endmenu # "v9.4 architectural features"
2238
2239config ARM64_SVE
2240	bool "ARM Scalable Vector Extension support"
2241	default y
2242	help
2243	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2244	  execution state which complements and extends the SIMD functionality
2245	  of the base architecture to support much larger vectors and to enable
2246	  additional vectorisation opportunities.
2247
2248	  To enable use of this extension on CPUs that implement it, say Y.
2249
2250	  On CPUs that support the SVE2 extensions, this option will enable
2251	  those too.
2252
2253	  Note that for architectural reasons, firmware _must_ implement SVE
2254	  support when running on SVE capable hardware.  The required support
2255	  is present in:
2256
2257	    * version 1.5 and later of the ARM Trusted Firmware
2258	    * the AArch64 boot wrapper since commit 5e1261e08abf
2259	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2260
2261	  For other firmware implementations, consult the firmware documentation
2262	  or vendor.
2263
2264	  If you need the kernel to boot on SVE-capable hardware with broken
2265	  firmware, you may need to say N here until you get your firmware
2266	  fixed.  Otherwise, you may experience firmware panics or lockups when
2267	  booting the kernel.  If unsure and you are not observing these
2268	  symptoms, you should assume that it is safe to say Y.
2269
2270config ARM64_SME
2271	bool "ARM Scalable Matrix Extension support"
2272	default y
2273	depends on ARM64_SVE
2274	depends on BROKEN
2275	help
2276	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2277	  execution state which utilises a substantial subset of the SVE
2278	  instruction set, together with the addition of new architectural
2279	  register state capable of holding two dimensional matrix tiles to
2280	  enable various matrix operations.
2281
2282config ARM64_PSEUDO_NMI
2283	bool "Support for NMI-like interrupts"
2284	select ARM_GIC_V3
2285	help
2286	  Adds support for mimicking Non-Maskable Interrupts through the use of
2287	  GIC interrupt priority. This support requires version 3 or later of
2288	  ARM GIC.
2289
2290	  This high priority configuration for interrupts needs to be
2291	  explicitly enabled by setting the kernel parameter
2292	  "irqchip.gicv3_pseudo_nmi" to 1.
2293
2294	  If unsure, say N
2295
2296if ARM64_PSEUDO_NMI
2297config ARM64_DEBUG_PRIORITY_MASKING
2298	bool "Debug interrupt priority masking"
2299	help
2300	  This adds runtime checks to functions enabling/disabling
2301	  interrupts when using priority masking. The additional checks verify
2302	  the validity of ICC_PMR_EL1 when calling concerned functions.
2303
2304	  If unsure, say N
2305endif # ARM64_PSEUDO_NMI
2306
2307config RELOCATABLE
2308	bool "Build a relocatable kernel image" if EXPERT
2309	select ARCH_HAS_RELR
2310	default y
2311	help
2312	  This builds the kernel as a Position Independent Executable (PIE),
2313	  which retains all relocation metadata required to relocate the
2314	  kernel binary at runtime to a different virtual address than the
2315	  address it was linked at.
2316	  Since AArch64 uses the RELA relocation format, this requires a
2317	  relocation pass at runtime even if the kernel is loaded at the
2318	  same address it was linked at.
2319
2320config RANDOMIZE_BASE
2321	bool "Randomize the address of the kernel image"
2322	select RELOCATABLE
2323	help
2324	  Randomizes the virtual address at which the kernel image is
2325	  loaded, as a security feature that deters exploit attempts
2326	  relying on knowledge of the location of kernel internals.
2327
2328	  It is the bootloader's job to provide entropy, by passing a
2329	  random u64 value in /chosen/kaslr-seed at kernel entry.
2330
2331	  When booting via the UEFI stub, it will invoke the firmware's
2332	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2333	  to the kernel proper. In addition, it will randomise the physical
2334	  location of the kernel Image as well.
2335
2336	  If unsure, say N.
2337
2338config RANDOMIZE_MODULE_REGION_FULL
2339	bool "Randomize the module region over a 2 GB range"
2340	depends on RANDOMIZE_BASE
2341	default y
2342	help
2343	  Randomizes the location of the module region inside a 2 GB window
2344	  covering the core kernel. This way, it is less likely for modules
2345	  to leak information about the location of core kernel data structures
2346	  but it does imply that function calls between modules and the core
2347	  kernel will need to be resolved via veneers in the module PLT.
2348
2349	  When this option is not set, the module region will be randomized over
2350	  a limited range that contains the [_stext, _etext] interval of the
2351	  core kernel, so branch relocations are almost always in range unless
2352	  the region is exhausted. In this particular case of region
2353	  exhaustion, modules might be able to fall back to a larger 2GB area.
2354
2355config CC_HAVE_STACKPROTECTOR_SYSREG
2356	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2357
2358config STACKPROTECTOR_PER_TASK
2359	def_bool y
2360	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2361
2362config UNWIND_PATCH_PAC_INTO_SCS
2363	bool "Enable shadow call stack dynamically using code patching"
2364	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2365	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2366	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2367	depends on SHADOW_CALL_STACK
2368	select UNWIND_TABLES
2369	select DYNAMIC_SCS
2370
2371config ARM64_CONTPTE
2372	bool "Contiguous PTE mappings for user memory" if EXPERT
2373	depends on TRANSPARENT_HUGEPAGE
2374	default y
2375	help
2376	  When enabled, user mappings are configured using the PTE contiguous
2377	  bit, for any mappings that meet the size and alignment requirements.
2378	  This reduces TLB pressure and improves performance.
2379
2380endmenu # "Kernel Features"
2381
2382menu "Boot options"
2383
2384config ARM64_ACPI_PARKING_PROTOCOL
2385	bool "Enable support for the ARM64 ACPI parking protocol"
2386	depends on ACPI
2387	help
2388	  Enable support for the ARM64 ACPI parking protocol. If disabled
2389	  the kernel will not allow booting through the ARM64 ACPI parking
2390	  protocol even if the corresponding data is present in the ACPI
2391	  MADT table.
2392
2393config CMDLINE
2394	string "Default kernel command string"
2395	default ""
2396	help
2397	  Provide a set of default command-line options at build time by
2398	  entering them here. As a minimum, you should specify the the
2399	  root device (e.g. root=/dev/nfs).
2400
2401choice
2402	prompt "Kernel command line type"
2403	depends on CMDLINE != ""
2404	default CMDLINE_FROM_BOOTLOADER
2405	help
2406	  Choose how the kernel will handle the provided default kernel
2407	  command line string.
2408
2409config CMDLINE_FROM_BOOTLOADER
2410	bool "Use bootloader kernel arguments if available"
2411	help
2412	  Uses the command-line options passed by the boot loader. If
2413	  the boot loader doesn't provide any, the default kernel command
2414	  string provided in CMDLINE will be used.
2415
2416config CMDLINE_FORCE
2417	bool "Always use the default kernel command string"
2418	help
2419	  Always use the default kernel command string, even if the boot
2420	  loader passes other arguments to the kernel.
2421	  This is useful if you cannot or don't want to change the
2422	  command-line options your boot loader passes to the kernel.
2423
2424endchoice
2425
2426config EFI_STUB
2427	bool
2428
2429config EFI
2430	bool "UEFI runtime support"
2431	depends on OF && !CPU_BIG_ENDIAN
2432	depends on KERNEL_MODE_NEON
2433	select ARCH_SUPPORTS_ACPI
2434	select LIBFDT
2435	select UCS2_STRING
2436	select EFI_PARAMS_FROM_FDT
2437	select EFI_RUNTIME_WRAPPERS
2438	select EFI_STUB
2439	select EFI_GENERIC_STUB
2440	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2441	default y
2442	help
2443	  This option provides support for runtime services provided
2444	  by UEFI firmware (such as non-volatile variables, realtime
2445	  clock, and platform reset). A UEFI stub is also provided to
2446	  allow the kernel to be booted as an EFI application. This
2447	  is only useful on systems that have UEFI firmware.
2448
2449config COMPRESSED_INSTALL
2450	bool "Install compressed image by default"
2451	help
2452	  This makes the regular "make install" install the compressed
2453	  image we built, not the legacy uncompressed one.
2454
2455	  You can check that a compressed image works for you by doing
2456	  "make zinstall" first, and verifying that everything is fine
2457	  in your environment before making "make install" do this for
2458	  you.
2459
2460config DMI
2461	bool "Enable support for SMBIOS (DMI) tables"
2462	depends on EFI
2463	default y
2464	help
2465	  This enables SMBIOS/DMI feature for systems.
2466
2467	  This option is only useful on systems that have UEFI firmware.
2468	  However, even with this option, the resultant kernel should
2469	  continue to boot on existing non-UEFI platforms.
2470
2471endmenu # "Boot options"
2472
2473menu "Power management options"
2474
2475source "kernel/power/Kconfig"
2476
2477config ARCH_HIBERNATION_POSSIBLE
2478	def_bool y
2479	depends on CPU_PM
2480
2481config ARCH_HIBERNATION_HEADER
2482	def_bool y
2483	depends on HIBERNATION
2484
2485config ARCH_SUSPEND_POSSIBLE
2486	def_bool y
2487
2488endmenu # "Power management options"
2489
2490menu "CPU Power Management"
2491
2492source "drivers/cpuidle/Kconfig"
2493
2494source "drivers/cpufreq/Kconfig"
2495
2496endmenu # "CPU Power Management"
2497
2498source "drivers/acpi/Kconfig"
2499
2500source "arch/arm64/kvm/Kconfig"
2501
2502