xref: /linux/arch/arm64/Kconfig (revision 37b33c68b00089a574ebd0a856a5d554eb3001b7)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CRC32
25	select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON
26	select ARCH_HAS_CURRENT_STACK_POINTER
27	select ARCH_HAS_DEBUG_VIRTUAL
28	select ARCH_HAS_DEBUG_VM_PGTABLE
29	select ARCH_HAS_DMA_OPS if XEN
30	select ARCH_HAS_DMA_PREP_COHERENT
31	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
32	select ARCH_HAS_FAST_MULTIPLIER
33	select ARCH_HAS_FORTIFY_SOURCE
34	select ARCH_HAS_GCOV_PROFILE_ALL
35	select ARCH_HAS_GIGANTIC_PAGE
36	select ARCH_HAS_KCOV
37	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
38	select ARCH_HAS_KEEPINITRD
39	select ARCH_HAS_MEMBARRIER_SYNC_CORE
40	select ARCH_HAS_MEM_ENCRYPT
41	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
42	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
43	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
44	select ARCH_HAS_PTE_DEVMAP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_MEM_ENCRYPT
51	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
52	select ARCH_STACKWALK
53	select ARCH_HAS_STRICT_KERNEL_RWX
54	select ARCH_HAS_STRICT_MODULE_RWX
55	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
56	select ARCH_HAS_SYNC_DMA_FOR_CPU
57	select ARCH_HAS_SYSCALL_WRAPPER
58	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
59	select ARCH_HAS_ZONE_DMA_SET if EXPERT
60	select ARCH_HAVE_ELF_PROT
61	select ARCH_HAVE_NMI_SAFE_CMPXCHG
62	select ARCH_HAVE_TRACE_MMIO_ACCESS
63	select ARCH_INLINE_READ_LOCK if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
89	select ARCH_KEEP_MEMBLOCK
90	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
91	select ARCH_USE_CMPXCHG_LOCKREF
92	select ARCH_USE_GNU_PROPERTY
93	select ARCH_USE_MEMTEST
94	select ARCH_USE_QUEUED_RWLOCKS
95	select ARCH_USE_QUEUED_SPINLOCKS
96	select ARCH_USE_SYM_ANNOTATIONS
97	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
98	select ARCH_SUPPORTS_HUGETLBFS
99	select ARCH_SUPPORTS_MEMORY_FAILURE
100	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
101	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
102	select ARCH_SUPPORTS_LTO_CLANG_THIN
103	select ARCH_SUPPORTS_CFI_CLANG
104	select ARCH_SUPPORTS_ATOMIC_RMW
105	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
106	select ARCH_SUPPORTS_NUMA_BALANCING
107	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
108	select ARCH_SUPPORTS_PER_VMA_LOCK
109	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
110	select ARCH_SUPPORTS_RT
111	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
112	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
113	select ARCH_WANT_DEFAULT_BPF_JIT
114	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
115	select ARCH_WANT_FRAME_POINTERS
116	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
117	select ARCH_WANT_LD_ORPHAN_WARN
118	select ARCH_WANTS_EXECMEM_LATE
119	select ARCH_WANTS_NO_INSTR
120	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
121	select ARCH_HAS_UBSAN
122	select ARM_AMBA
123	select ARM_ARCH_TIMER
124	select ARM_GIC
125	select AUDIT_ARCH_COMPAT_GENERIC
126	select ARM_GIC_V2M if PCI
127	select ARM_GIC_V3
128	select ARM_GIC_V3_ITS if PCI
129	select ARM_PSCI_FW
130	select BUILDTIME_TABLE_SORT
131	select CLONE_BACKWARDS
132	select COMMON_CLK
133	select CPU_PM if (SUSPEND || CPU_IDLE)
134	select CPUMASK_OFFSTACK if NR_CPUS > 256
135	select CRC32
136	select DCACHE_WORD_ACCESS
137	select DYNAMIC_FTRACE if FUNCTION_TRACER
138	select DMA_BOUNCE_UNALIGNED_KMALLOC
139	select DMA_DIRECT_REMAP
140	select EDAC_SUPPORT
141	select FRAME_POINTER
142	select FUNCTION_ALIGNMENT_4B
143	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
144	select GENERIC_ALLOCATOR
145	select GENERIC_ARCH_TOPOLOGY
146	select GENERIC_CLOCKEVENTS_BROADCAST
147	select GENERIC_CPU_AUTOPROBE
148	select GENERIC_CPU_DEVICES
149	select GENERIC_CPU_VULNERABILITIES
150	select GENERIC_EARLY_IOREMAP
151	select GENERIC_IDLE_POLL_SETUP
152	select GENERIC_IOREMAP
153	select GENERIC_IRQ_IPI
154	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
155	select GENERIC_IRQ_PROBE
156	select GENERIC_IRQ_SHOW
157	select GENERIC_IRQ_SHOW_LEVEL
158	select GENERIC_LIB_DEVMEM_IS_ALLOWED
159	select GENERIC_PCI_IOMAP
160	select GENERIC_PTDUMP
161	select GENERIC_SCHED_CLOCK
162	select GENERIC_SMP_IDLE_THREAD
163	select GENERIC_TIME_VSYSCALL
164	select GENERIC_GETTIMEOFDAY
165	select GENERIC_VDSO_TIME_NS
166	select HARDIRQS_SW_RESEND
167	select HAS_IOPORT
168	select HAVE_MOVE_PMD
169	select HAVE_MOVE_PUD
170	select HAVE_PCI
171	select HAVE_ACPI_APEI if (ACPI && EFI)
172	select HAVE_ALIGNED_STRUCT_PAGE
173	select HAVE_ARCH_AUDITSYSCALL
174	select HAVE_ARCH_BITREVERSE
175	select HAVE_ARCH_COMPILER_H
176	select HAVE_ARCH_HUGE_VMALLOC
177	select HAVE_ARCH_HUGE_VMAP
178	select HAVE_ARCH_JUMP_LABEL
179	select HAVE_ARCH_JUMP_LABEL_RELATIVE
180	select HAVE_ARCH_KASAN
181	select HAVE_ARCH_KASAN_VMALLOC
182	select HAVE_ARCH_KASAN_SW_TAGS
183	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
184	# Some instrumentation may be unsound, hence EXPERT
185	select HAVE_ARCH_KCSAN if EXPERT
186	select HAVE_ARCH_KFENCE
187	select HAVE_ARCH_KGDB
188	select HAVE_ARCH_MMAP_RND_BITS
189	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
190	select HAVE_ARCH_PREL32_RELOCATIONS
191	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
192	select HAVE_ARCH_SECCOMP_FILTER
193	select HAVE_ARCH_STACKLEAK
194	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
195	select HAVE_ARCH_TRACEHOOK
196	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
197	select HAVE_ARCH_VMAP_STACK
198	select HAVE_ARM_SMCCC
199	select HAVE_ASM_MODVERSIONS
200	select HAVE_EBPF_JIT
201	select HAVE_C_RECORDMCOUNT
202	select HAVE_CMPXCHG_DOUBLE
203	select HAVE_CMPXCHG_LOCAL
204	select HAVE_CONTEXT_TRACKING_USER
205	select HAVE_DEBUG_KMEMLEAK
206	select HAVE_DMA_CONTIGUOUS
207	select HAVE_DYNAMIC_FTRACE
208	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
209		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
210		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
211	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
212		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
213	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
214		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
215		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
216	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
217		if DYNAMIC_FTRACE_WITH_ARGS
218	select HAVE_SAMPLE_FTRACE_DIRECT
219	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
220	select HAVE_EFFICIENT_UNALIGNED_ACCESS
221	select HAVE_GUP_FAST
222	select HAVE_FTRACE_GRAPH_FUNC
223	select HAVE_FTRACE_MCOUNT_RECORD
224	select HAVE_FUNCTION_TRACER
225	select HAVE_FUNCTION_ERROR_INJECTION
226	select HAVE_FUNCTION_GRAPH_FREGS
227	select HAVE_FUNCTION_GRAPH_TRACER
228	select HAVE_FUNCTION_GRAPH_RETVAL
229	select HAVE_GCC_PLUGINS
230	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
231		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
232	select HAVE_HW_BREAKPOINT if PERF_EVENTS
233	select HAVE_IOREMAP_PROT
234	select HAVE_IRQ_TIME_ACCOUNTING
235	select HAVE_MOD_ARCH_SPECIFIC
236	select HAVE_NMI
237	select HAVE_PERF_EVENTS
238	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
239	select HAVE_PERF_REGS
240	select HAVE_PERF_USER_STACK_DUMP
241	select HAVE_PREEMPT_DYNAMIC_KEY
242	select HAVE_REGS_AND_STACK_ACCESS_API
243	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
244	select HAVE_FUNCTION_ARG_ACCESS_API
245	select MMU_GATHER_RCU_TABLE_FREE
246	select HAVE_RSEQ
247	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
248	select HAVE_STACKPROTECTOR
249	select HAVE_SYSCALL_TRACEPOINTS
250	select HAVE_KPROBES
251	select HAVE_KRETPROBES
252	select HAVE_GENERIC_VDSO
253	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
254	select IRQ_DOMAIN
255	select IRQ_FORCED_THREADING
256	select KASAN_VMALLOC if KASAN
257	select LOCK_MM_AND_FIND_VMA
258	select MODULES_USE_ELF_RELA
259	select NEED_DMA_MAP_STATE
260	select NEED_SG_DMA_LENGTH
261	select OF
262	select OF_EARLY_FLATTREE
263	select PCI_DOMAINS_GENERIC if PCI
264	select PCI_ECAM if (ACPI && PCI)
265	select PCI_SYSCALL if PCI
266	select POWER_RESET
267	select POWER_SUPPLY
268	select SPARSE_IRQ
269	select SWIOTLB
270	select SYSCTL_EXCEPTION_TRACE
271	select THREAD_INFO_IN_TASK
272	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
273	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
274	select TRACE_IRQFLAGS_SUPPORT
275	select TRACE_IRQFLAGS_NMI_SUPPORT
276	select HAVE_SOFTIRQ_ON_OWN_STACK
277	select USER_STACKTRACE_SUPPORT
278	select VDSO_GETRANDOM
279	help
280	  ARM 64-bit (AArch64) Linux support.
281
282config RUSTC_SUPPORTS_ARM64
283	def_bool y
284	depends on CPU_LITTLE_ENDIAN
285	# Shadow call stack is only supported on certain rustc versions.
286	#
287	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
288	# required due to use of the -Zfixed-x18 flag.
289	#
290	# Otherwise, rustc version 1.82+ is required due to use of the
291	# -Zsanitizer=shadow-call-stack flag.
292	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
293
294config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
295	def_bool CC_IS_CLANG
296	# https://github.com/ClangBuiltLinux/linux/issues/1507
297	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
298
299config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
300	def_bool CC_IS_GCC
301	depends on $(cc-option,-fpatchable-function-entry=2)
302
303config 64BIT
304	def_bool y
305
306config MMU
307	def_bool y
308
309config ARM64_CONT_PTE_SHIFT
310	int
311	default 5 if PAGE_SIZE_64KB
312	default 7 if PAGE_SIZE_16KB
313	default 4
314
315config ARM64_CONT_PMD_SHIFT
316	int
317	default 5 if PAGE_SIZE_64KB
318	default 5 if PAGE_SIZE_16KB
319	default 4
320
321config ARCH_MMAP_RND_BITS_MIN
322	default 14 if PAGE_SIZE_64KB
323	default 16 if PAGE_SIZE_16KB
324	default 18
325
326# max bits determined by the following formula:
327#  VA_BITS - PAGE_SHIFT - 3
328config ARCH_MMAP_RND_BITS_MAX
329	default 19 if ARM64_VA_BITS=36
330	default 24 if ARM64_VA_BITS=39
331	default 27 if ARM64_VA_BITS=42
332	default 30 if ARM64_VA_BITS=47
333	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
334	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
335	default 33 if ARM64_VA_BITS=48
336	default 14 if ARM64_64K_PAGES
337	default 16 if ARM64_16K_PAGES
338	default 18
339
340config ARCH_MMAP_RND_COMPAT_BITS_MIN
341	default 7 if ARM64_64K_PAGES
342	default 9 if ARM64_16K_PAGES
343	default 11
344
345config ARCH_MMAP_RND_COMPAT_BITS_MAX
346	default 16
347
348config NO_IOPORT_MAP
349	def_bool y if !PCI
350
351config STACKTRACE_SUPPORT
352	def_bool y
353
354config ILLEGAL_POINTER_VALUE
355	hex
356	default 0xdead000000000000
357
358config LOCKDEP_SUPPORT
359	def_bool y
360
361config GENERIC_BUG
362	def_bool y
363	depends on BUG
364
365config GENERIC_BUG_RELATIVE_POINTERS
366	def_bool y
367	depends on GENERIC_BUG
368
369config GENERIC_HWEIGHT
370	def_bool y
371
372config GENERIC_CSUM
373	def_bool y
374
375config GENERIC_CALIBRATE_DELAY
376	def_bool y
377
378config SMP
379	def_bool y
380
381config KERNEL_MODE_NEON
382	def_bool y
383
384config FIX_EARLYCON_MEM
385	def_bool y
386
387config PGTABLE_LEVELS
388	int
389	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
390	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
391	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
392	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
393	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
394	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
395	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
396	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
397
398config ARCH_SUPPORTS_UPROBES
399	def_bool y
400
401config ARCH_PROC_KCORE_TEXT
402	def_bool y
403
404config BROKEN_GAS_INST
405	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
406
407config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
408	bool
409	# Clang's __builtin_return_address() strips the PAC since 12.0.0
410	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
411	default y if CC_IS_CLANG
412	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
413	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
414	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
415	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
416	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
417	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
418	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
419	default n
420
421config KASAN_SHADOW_OFFSET
422	hex
423	depends on KASAN_GENERIC || KASAN_SW_TAGS
424	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
425	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
426	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
427	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
428	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
429	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
430	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
431	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
432	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
433	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
434	default 0xffffffffffffffff
435
436config UNWIND_TABLES
437	bool
438
439source "arch/arm64/Kconfig.platforms"
440
441menu "Kernel Features"
442
443menu "ARM errata workarounds via the alternatives framework"
444
445config AMPERE_ERRATUM_AC03_CPU_38
446        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
447	default y
448	help
449	  This option adds an alternative code sequence to work around Ampere
450	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
451
452	  The affected design reports FEAT_HAFDBS as not implemented in
453	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
454	  as required by the architecture. The unadvertised HAFDBS
455	  implementation suffers from an additional erratum where hardware
456	  A/D updates can occur after a PTE has been marked invalid.
457
458	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
459	  which avoids enabling unadvertised hardware Access Flag management
460	  at stage-2.
461
462	  If unsure, say Y.
463
464config ARM64_WORKAROUND_CLEAN_CACHE
465	bool
466
467config ARM64_ERRATUM_826319
468	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
469	default y
470	select ARM64_WORKAROUND_CLEAN_CACHE
471	help
472	  This option adds an alternative code sequence to work around ARM
473	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
474	  AXI master interface and an L2 cache.
475
476	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
477	  and is unable to accept a certain write via this interface, it will
478	  not progress on read data presented on the read data channel and the
479	  system can deadlock.
480
481	  The workaround promotes data cache clean instructions to
482	  data cache clean-and-invalidate.
483	  Please note that this does not necessarily enable the workaround,
484	  as it depends on the alternative framework, which will only patch
485	  the kernel if an affected CPU is detected.
486
487	  If unsure, say Y.
488
489config ARM64_ERRATUM_827319
490	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
491	default y
492	select ARM64_WORKAROUND_CLEAN_CACHE
493	help
494	  This option adds an alternative code sequence to work around ARM
495	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
496	  master interface and an L2 cache.
497
498	  Under certain conditions this erratum can cause a clean line eviction
499	  to occur at the same time as another transaction to the same address
500	  on the AMBA 5 CHI interface, which can cause data corruption if the
501	  interconnect reorders the two transactions.
502
503	  The workaround promotes data cache clean instructions to
504	  data cache clean-and-invalidate.
505	  Please note that this does not necessarily enable the workaround,
506	  as it depends on the alternative framework, which will only patch
507	  the kernel if an affected CPU is detected.
508
509	  If unsure, say Y.
510
511config ARM64_ERRATUM_824069
512	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
513	default y
514	select ARM64_WORKAROUND_CLEAN_CACHE
515	help
516	  This option adds an alternative code sequence to work around ARM
517	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
518	  to a coherent interconnect.
519
520	  If a Cortex-A53 processor is executing a store or prefetch for
521	  write instruction at the same time as a processor in another
522	  cluster is executing a cache maintenance operation to the same
523	  address, then this erratum might cause a clean cache line to be
524	  incorrectly marked as dirty.
525
526	  The workaround promotes data cache clean instructions to
527	  data cache clean-and-invalidate.
528	  Please note that this option does not necessarily enable the
529	  workaround, as it depends on the alternative framework, which will
530	  only patch the kernel if an affected CPU is detected.
531
532	  If unsure, say Y.
533
534config ARM64_ERRATUM_819472
535	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
536	default y
537	select ARM64_WORKAROUND_CLEAN_CACHE
538	help
539	  This option adds an alternative code sequence to work around ARM
540	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
541	  present when it is connected to a coherent interconnect.
542
543	  If the processor is executing a load and store exclusive sequence at
544	  the same time as a processor in another cluster is executing a cache
545	  maintenance operation to the same address, then this erratum might
546	  cause data corruption.
547
548	  The workaround promotes data cache clean instructions to
549	  data cache clean-and-invalidate.
550	  Please note that this does not necessarily enable the workaround,
551	  as it depends on the alternative framework, which will only patch
552	  the kernel if an affected CPU is detected.
553
554	  If unsure, say Y.
555
556config ARM64_ERRATUM_832075
557	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
558	default y
559	help
560	  This option adds an alternative code sequence to work around ARM
561	  erratum 832075 on Cortex-A57 parts up to r1p2.
562
563	  Affected Cortex-A57 parts might deadlock when exclusive load/store
564	  instructions to Write-Back memory are mixed with Device loads.
565
566	  The workaround is to promote device loads to use Load-Acquire
567	  semantics.
568	  Please note that this does not necessarily enable the workaround,
569	  as it depends on the alternative framework, which will only patch
570	  the kernel if an affected CPU is detected.
571
572	  If unsure, say Y.
573
574config ARM64_ERRATUM_834220
575	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
576	depends on KVM
577	help
578	  This option adds an alternative code sequence to work around ARM
579	  erratum 834220 on Cortex-A57 parts up to r1p2.
580
581	  Affected Cortex-A57 parts might report a Stage 2 translation
582	  fault as the result of a Stage 1 fault for load crossing a
583	  page boundary when there is a permission or device memory
584	  alignment fault at Stage 1 and a translation fault at Stage 2.
585
586	  The workaround is to verify that the Stage 1 translation
587	  doesn't generate a fault before handling the Stage 2 fault.
588	  Please note that this does not necessarily enable the workaround,
589	  as it depends on the alternative framework, which will only patch
590	  the kernel if an affected CPU is detected.
591
592	  If unsure, say N.
593
594config ARM64_ERRATUM_1742098
595	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
596	depends on COMPAT
597	default y
598	help
599	  This option removes the AES hwcap for aarch32 user-space to
600	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
601
602	  Affected parts may corrupt the AES state if an interrupt is
603	  taken between a pair of AES instructions. These instructions
604	  are only present if the cryptography extensions are present.
605	  All software should have a fallback implementation for CPUs
606	  that don't implement the cryptography extensions.
607
608	  If unsure, say Y.
609
610config ARM64_ERRATUM_845719
611	bool "Cortex-A53: 845719: a load might read incorrect data"
612	depends on COMPAT
613	default y
614	help
615	  This option adds an alternative code sequence to work around ARM
616	  erratum 845719 on Cortex-A53 parts up to r0p4.
617
618	  When running a compat (AArch32) userspace on an affected Cortex-A53
619	  part, a load at EL0 from a virtual address that matches the bottom 32
620	  bits of the virtual address used by a recent load at (AArch64) EL1
621	  might return incorrect data.
622
623	  The workaround is to write the contextidr_el1 register on exception
624	  return to a 32-bit task.
625	  Please note that this does not necessarily enable the workaround,
626	  as it depends on the alternative framework, which will only patch
627	  the kernel if an affected CPU is detected.
628
629	  If unsure, say Y.
630
631config ARM64_ERRATUM_843419
632	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
633	default y
634	help
635	  This option links the kernel with '--fix-cortex-a53-843419' and
636	  enables PLT support to replace certain ADRP instructions, which can
637	  cause subsequent memory accesses to use an incorrect address on
638	  Cortex-A53 parts up to r0p4.
639
640	  If unsure, say Y.
641
642config ARM64_LD_HAS_FIX_ERRATUM_843419
643	def_bool $(ld-option,--fix-cortex-a53-843419)
644
645config ARM64_ERRATUM_1024718
646	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
647	default y
648	help
649	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
650
651	  Affected Cortex-A55 cores (all revisions) could cause incorrect
652	  update of the hardware dirty bit when the DBM/AP bits are updated
653	  without a break-before-make. The workaround is to disable the usage
654	  of hardware DBM locally on the affected cores. CPUs not affected by
655	  this erratum will continue to use the feature.
656
657	  If unsure, say Y.
658
659config ARM64_ERRATUM_1418040
660	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
661	default y
662	depends on COMPAT
663	help
664	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
665	  errata 1188873 and 1418040.
666
667	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
668	  cause register corruption when accessing the timer registers
669	  from AArch32 userspace.
670
671	  If unsure, say Y.
672
673config ARM64_WORKAROUND_SPECULATIVE_AT
674	bool
675
676config ARM64_ERRATUM_1165522
677	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
678	default y
679	select ARM64_WORKAROUND_SPECULATIVE_AT
680	help
681	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
682
683	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
684	  corrupted TLBs by speculating an AT instruction during a guest
685	  context switch.
686
687	  If unsure, say Y.
688
689config ARM64_ERRATUM_1319367
690	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
691	default y
692	select ARM64_WORKAROUND_SPECULATIVE_AT
693	help
694	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
695	  and A72 erratum 1319367
696
697	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
698	  speculating an AT instruction during a guest context switch.
699
700	  If unsure, say Y.
701
702config ARM64_ERRATUM_1530923
703	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
704	default y
705	select ARM64_WORKAROUND_SPECULATIVE_AT
706	help
707	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
708
709	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
710	  corrupted TLBs by speculating an AT instruction during a guest
711	  context switch.
712
713	  If unsure, say Y.
714
715config ARM64_WORKAROUND_REPEAT_TLBI
716	bool
717
718config ARM64_ERRATUM_2441007
719	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
720	select ARM64_WORKAROUND_REPEAT_TLBI
721	help
722	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
723
724	  Under very rare circumstances, affected Cortex-A55 CPUs
725	  may not handle a race between a break-before-make sequence on one
726	  CPU, and another CPU accessing the same page. This could allow a
727	  store to a page that has been unmapped.
728
729	  Work around this by adding the affected CPUs to the list that needs
730	  TLB sequences to be done twice.
731
732	  If unsure, say N.
733
734config ARM64_ERRATUM_1286807
735	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
736	select ARM64_WORKAROUND_REPEAT_TLBI
737	help
738	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
739
740	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
741	  address for a cacheable mapping of a location is being
742	  accessed by a core while another core is remapping the virtual
743	  address to a new physical page using the recommended
744	  break-before-make sequence, then under very rare circumstances
745	  TLBI+DSB completes before a read using the translation being
746	  invalidated has been observed by other observers. The
747	  workaround repeats the TLBI+DSB operation.
748
749	  If unsure, say N.
750
751config ARM64_ERRATUM_1463225
752	bool "Cortex-A76: Software Step might prevent interrupt recognition"
753	default y
754	help
755	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
756
757	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
758	  of a system call instruction (SVC) can prevent recognition of
759	  subsequent interrupts when software stepping is disabled in the
760	  exception handler of the system call and either kernel debugging
761	  is enabled or VHE is in use.
762
763	  Work around the erratum by triggering a dummy step exception
764	  when handling a system call from a task that is being stepped
765	  in a VHE configuration of the kernel.
766
767	  If unsure, say Y.
768
769config ARM64_ERRATUM_1542419
770	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
771	help
772	  This option adds a workaround for ARM Neoverse-N1 erratum
773	  1542419.
774
775	  Affected Neoverse-N1 cores could execute a stale instruction when
776	  modified by another CPU. The workaround depends on a firmware
777	  counterpart.
778
779	  Workaround the issue by hiding the DIC feature from EL0. This
780	  forces user-space to perform cache maintenance.
781
782	  If unsure, say N.
783
784config ARM64_ERRATUM_1508412
785	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
786	default y
787	help
788	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
789
790	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
791	  of a store-exclusive or read of PAR_EL1 and a load with device or
792	  non-cacheable memory attributes. The workaround depends on a firmware
793	  counterpart.
794
795	  KVM guests must also have the workaround implemented or they can
796	  deadlock the system.
797
798	  Work around the issue by inserting DMB SY barriers around PAR_EL1
799	  register reads and warning KVM users. The DMB barrier is sufficient
800	  to prevent a speculative PAR_EL1 read.
801
802	  If unsure, say Y.
803
804config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
805	bool
806
807config ARM64_ERRATUM_2051678
808	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
809	default y
810	help
811	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
812	  Affected Cortex-A510 might not respect the ordering rules for
813	  hardware update of the page table's dirty bit. The workaround
814	  is to not enable the feature on affected CPUs.
815
816	  If unsure, say Y.
817
818config ARM64_ERRATUM_2077057
819	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
820	default y
821	help
822	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
823	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
824	  expected, but a Pointer Authentication trap is taken instead. The
825	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
826	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
827
828	  This can only happen when EL2 is stepping EL1.
829
830	  When these conditions occur, the SPSR_EL2 value is unchanged from the
831	  previous guest entry, and can be restored from the in-memory copy.
832
833	  If unsure, say Y.
834
835config ARM64_ERRATUM_2658417
836	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
837	default y
838	help
839	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
840	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
841	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
842	  A510 CPUs are using shared neon hardware. As the sharing is not
843	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
844	  user-space should not be using these instructions.
845
846	  If unsure, say Y.
847
848config ARM64_ERRATUM_2119858
849	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
850	default y
851	depends on CORESIGHT_TRBE
852	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
853	help
854	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
855
856	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
857	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
858	  the event of a WRAP event.
859
860	  Work around the issue by always making sure we move the TRBPTR_EL1 by
861	  256 bytes before enabling the buffer and filling the first 256 bytes of
862	  the buffer with ETM ignore packets upon disabling.
863
864	  If unsure, say Y.
865
866config ARM64_ERRATUM_2139208
867	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
868	default y
869	depends on CORESIGHT_TRBE
870	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
871	help
872	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
873
874	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
875	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
876	  the event of a WRAP event.
877
878	  Work around the issue by always making sure we move the TRBPTR_EL1 by
879	  256 bytes before enabling the buffer and filling the first 256 bytes of
880	  the buffer with ETM ignore packets upon disabling.
881
882	  If unsure, say Y.
883
884config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
885	bool
886
887config ARM64_ERRATUM_2054223
888	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
889	default y
890	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
891	help
892	  Enable workaround for ARM Cortex-A710 erratum 2054223
893
894	  Affected cores may fail to flush the trace data on a TSB instruction, when
895	  the PE is in trace prohibited state. This will cause losing a few bytes
896	  of the trace cached.
897
898	  Workaround is to issue two TSB consecutively on affected cores.
899
900	  If unsure, say Y.
901
902config ARM64_ERRATUM_2067961
903	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
904	default y
905	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
906	help
907	  Enable workaround for ARM Neoverse-N2 erratum 2067961
908
909	  Affected cores may fail to flush the trace data on a TSB instruction, when
910	  the PE is in trace prohibited state. This will cause losing a few bytes
911	  of the trace cached.
912
913	  Workaround is to issue two TSB consecutively on affected cores.
914
915	  If unsure, say Y.
916
917config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
918	bool
919
920config ARM64_ERRATUM_2253138
921	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
922	depends on CORESIGHT_TRBE
923	default y
924	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
925	help
926	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
927
928	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
929	  for TRBE. Under some conditions, the TRBE might generate a write to the next
930	  virtually addressed page following the last page of the TRBE address space
931	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
932
933	  Work around this in the driver by always making sure that there is a
934	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
935
936	  If unsure, say Y.
937
938config ARM64_ERRATUM_2224489
939	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
940	depends on CORESIGHT_TRBE
941	default y
942	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
943	help
944	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
945
946	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
947	  for TRBE. Under some conditions, the TRBE might generate a write to the next
948	  virtually addressed page following the last page of the TRBE address space
949	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
950
951	  Work around this in the driver by always making sure that there is a
952	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
953
954	  If unsure, say Y.
955
956config ARM64_ERRATUM_2441009
957	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
958	select ARM64_WORKAROUND_REPEAT_TLBI
959	help
960	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
961
962	  Under very rare circumstances, affected Cortex-A510 CPUs
963	  may not handle a race between a break-before-make sequence on one
964	  CPU, and another CPU accessing the same page. This could allow a
965	  store to a page that has been unmapped.
966
967	  Work around this by adding the affected CPUs to the list that needs
968	  TLB sequences to be done twice.
969
970	  If unsure, say N.
971
972config ARM64_ERRATUM_2064142
973	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
974	depends on CORESIGHT_TRBE
975	default y
976	help
977	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
978
979	  Affected Cortex-A510 core might fail to write into system registers after the
980	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
981	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
982	  and TRBTRG_EL1 will be ignored and will not be effected.
983
984	  Work around this in the driver by executing TSB CSYNC and DSB after collection
985	  is stopped and before performing a system register write to one of the affected
986	  registers.
987
988	  If unsure, say Y.
989
990config ARM64_ERRATUM_2038923
991	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
992	depends on CORESIGHT_TRBE
993	default y
994	help
995	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
996
997	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
998	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
999	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1000	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1001	  execution changes from a context, in which trace is prohibited to one where it
1002	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1003	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1004	  the trace buffer state might be corrupted.
1005
1006	  Work around this in the driver by preventing an inconsistent view of whether the
1007	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1008	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1009	  two ISB instructions if no ERET is to take place.
1010
1011	  If unsure, say Y.
1012
1013config ARM64_ERRATUM_1902691
1014	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1015	depends on CORESIGHT_TRBE
1016	default y
1017	help
1018	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1019
1020	  Affected Cortex-A510 core might cause trace data corruption, when being written
1021	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1022	  trace data.
1023
1024	  Work around this problem in the driver by just preventing TRBE initialization on
1025	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1026	  on such implementations. This will cover the kernel for any firmware that doesn't
1027	  do this already.
1028
1029	  If unsure, say Y.
1030
1031config ARM64_ERRATUM_2457168
1032	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1033	depends on ARM64_AMU_EXTN
1034	default y
1035	help
1036	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1037
1038	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1039	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1040	  incorrectly giving a significantly higher output value.
1041
1042	  Work around this problem by returning 0 when reading the affected counter in
1043	  key locations that results in disabling all users of this counter. This effect
1044	  is the same to firmware disabling affected counters.
1045
1046	  If unsure, say Y.
1047
1048config ARM64_ERRATUM_2645198
1049	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1050	default y
1051	help
1052	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1053
1054	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1055	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1056	  next instruction abort caused by permission fault.
1057
1058	  Only user-space does executable to non-executable permission transition via
1059	  mprotect() system call. Workaround the problem by doing a break-before-make
1060	  TLB invalidation, for all changes to executable user space mappings.
1061
1062	  If unsure, say Y.
1063
1064config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1065	bool
1066
1067config ARM64_ERRATUM_2966298
1068	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1069	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1070	default y
1071	help
1072	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1073
1074	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1075	  load might leak data from a privileged level via a cache side channel.
1076
1077	  Work around this problem by executing a TLBI before returning to EL0.
1078
1079	  If unsure, say Y.
1080
1081config ARM64_ERRATUM_3117295
1082	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1083	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1084	default y
1085	help
1086	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1087
1088	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1089	  load might leak data from a privileged level via a cache side channel.
1090
1091	  Work around this problem by executing a TLBI before returning to EL0.
1092
1093	  If unsure, say Y.
1094
1095config ARM64_ERRATUM_3194386
1096	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1097	default y
1098	help
1099	  This option adds the workaround for the following errata:
1100
1101	  * ARM Cortex-A76 erratum 3324349
1102	  * ARM Cortex-A77 erratum 3324348
1103	  * ARM Cortex-A78 erratum 3324344
1104	  * ARM Cortex-A78C erratum 3324346
1105	  * ARM Cortex-A78C erratum 3324347
1106	  * ARM Cortex-A710 erratam 3324338
1107	  * ARM Cortex-A715 errartum 3456084
1108	  * ARM Cortex-A720 erratum 3456091
1109	  * ARM Cortex-A725 erratum 3456106
1110	  * ARM Cortex-X1 erratum 3324344
1111	  * ARM Cortex-X1C erratum 3324346
1112	  * ARM Cortex-X2 erratum 3324338
1113	  * ARM Cortex-X3 erratum 3324335
1114	  * ARM Cortex-X4 erratum 3194386
1115	  * ARM Cortex-X925 erratum 3324334
1116	  * ARM Neoverse-N1 erratum 3324349
1117	  * ARM Neoverse N2 erratum 3324339
1118	  * ARM Neoverse-N3 erratum 3456111
1119	  * ARM Neoverse-V1 erratum 3324341
1120	  * ARM Neoverse V2 erratum 3324336
1121	  * ARM Neoverse-V3 erratum 3312417
1122
1123	  On affected cores "MSR SSBS, #0" instructions may not affect
1124	  subsequent speculative instructions, which may permit unexepected
1125	  speculative store bypassing.
1126
1127	  Work around this problem by placing a Speculation Barrier (SB) or
1128	  Instruction Synchronization Barrier (ISB) after kernel changes to
1129	  SSBS. The presence of the SSBS special-purpose register is hidden
1130	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1131	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1132
1133	  If unsure, say Y.
1134
1135config CAVIUM_ERRATUM_22375
1136	bool "Cavium erratum 22375, 24313"
1137	default y
1138	help
1139	  Enable workaround for errata 22375 and 24313.
1140
1141	  This implements two gicv3-its errata workarounds for ThunderX. Both
1142	  with a small impact affecting only ITS table allocation.
1143
1144	    erratum 22375: only alloc 8MB table size
1145	    erratum 24313: ignore memory access type
1146
1147	  The fixes are in ITS initialization and basically ignore memory access
1148	  type and table size provided by the TYPER and BASER registers.
1149
1150	  If unsure, say Y.
1151
1152config CAVIUM_ERRATUM_23144
1153	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1154	depends on NUMA
1155	default y
1156	help
1157	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1158
1159	  If unsure, say Y.
1160
1161config CAVIUM_ERRATUM_23154
1162	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1163	default y
1164	help
1165	  The ThunderX GICv3 implementation requires a modified version for
1166	  reading the IAR status to ensure data synchronization
1167	  (access to icc_iar1_el1 is not sync'ed before and after).
1168
1169	  It also suffers from erratum 38545 (also present on Marvell's
1170	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1171	  spuriously presented to the CPU interface.
1172
1173	  If unsure, say Y.
1174
1175config CAVIUM_ERRATUM_27456
1176	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1177	default y
1178	help
1179	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1180	  instructions may cause the icache to become corrupted if it
1181	  contains data for a non-current ASID.  The fix is to
1182	  invalidate the icache when changing the mm context.
1183
1184	  If unsure, say Y.
1185
1186config CAVIUM_ERRATUM_30115
1187	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1188	default y
1189	help
1190	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1191	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1192	  interrupts in host. Trapping both GICv3 group-0 and group-1
1193	  accesses sidesteps the issue.
1194
1195	  If unsure, say Y.
1196
1197config CAVIUM_TX2_ERRATUM_219
1198	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1199	default y
1200	help
1201	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1202	  TTBR update and the corresponding context synchronizing operation can
1203	  cause a spurious Data Abort to be delivered to any hardware thread in
1204	  the CPU core.
1205
1206	  Work around the issue by avoiding the problematic code sequence and
1207	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1208	  trap handler performs the corresponding register access, skips the
1209	  instruction and ensures context synchronization by virtue of the
1210	  exception return.
1211
1212	  If unsure, say Y.
1213
1214config FUJITSU_ERRATUM_010001
1215	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1216	default y
1217	help
1218	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1219	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1220	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1221	  This fault occurs under a specific hardware condition when a
1222	  load/store instruction performs an address translation using:
1223	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1224	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1225	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1226	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1227
1228	  The workaround is to ensure these bits are clear in TCR_ELx.
1229	  The workaround only affects the Fujitsu-A64FX.
1230
1231	  If unsure, say Y.
1232
1233config HISILICON_ERRATUM_161600802
1234	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1235	default y
1236	help
1237	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1238	  when issued ITS commands such as VMOVP and VMAPP, and requires
1239	  a 128kB offset to be applied to the target address in this commands.
1240
1241	  If unsure, say Y.
1242
1243config HISILICON_ERRATUM_162100801
1244	bool "Hip09 162100801 erratum support"
1245	default y
1246	help
1247	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1248	  during unmapping operation, which will cause some vSGIs lost.
1249	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1250	  after VMOVP.
1251
1252	  If unsure, say Y.
1253
1254config QCOM_FALKOR_ERRATUM_1003
1255	bool "Falkor E1003: Incorrect translation due to ASID change"
1256	default y
1257	help
1258	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1259	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1260	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1261	  then only for entries in the walk cache, since the leaf translation
1262	  is unchanged. Work around the erratum by invalidating the walk cache
1263	  entries for the trampoline before entering the kernel proper.
1264
1265config QCOM_FALKOR_ERRATUM_1009
1266	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1267	default y
1268	select ARM64_WORKAROUND_REPEAT_TLBI
1269	help
1270	  On Falkor v1, the CPU may prematurely complete a DSB following a
1271	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1272	  one more time to fix the issue.
1273
1274	  If unsure, say Y.
1275
1276config QCOM_QDF2400_ERRATUM_0065
1277	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1278	default y
1279	help
1280	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1281	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1282	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1283
1284	  If unsure, say Y.
1285
1286config QCOM_FALKOR_ERRATUM_E1041
1287	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1288	default y
1289	help
1290	  Falkor CPU may speculatively fetch instructions from an improper
1291	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1292	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1293
1294	  If unsure, say Y.
1295
1296config NVIDIA_CARMEL_CNP_ERRATUM
1297	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1298	default y
1299	help
1300	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1301	  invalidate shared TLB entries installed by a different core, as it would
1302	  on standard ARM cores.
1303
1304	  If unsure, say Y.
1305
1306config ROCKCHIP_ERRATUM_3588001
1307	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1308	default y
1309	help
1310	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1311	  This means, that its sharability feature may not be used, even though it
1312	  is supported by the IP itself.
1313
1314	  If unsure, say Y.
1315
1316config SOCIONEXT_SYNQUACER_PREITS
1317	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1318	default y
1319	help
1320	  Socionext Synquacer SoCs implement a separate h/w block to generate
1321	  MSI doorbell writes with non-zero values for the device ID.
1322
1323	  If unsure, say Y.
1324
1325endmenu # "ARM errata workarounds via the alternatives framework"
1326
1327choice
1328	prompt "Page size"
1329	default ARM64_4K_PAGES
1330	help
1331	  Page size (translation granule) configuration.
1332
1333config ARM64_4K_PAGES
1334	bool "4KB"
1335	select HAVE_PAGE_SIZE_4KB
1336	help
1337	  This feature enables 4KB pages support.
1338
1339config ARM64_16K_PAGES
1340	bool "16KB"
1341	select HAVE_PAGE_SIZE_16KB
1342	help
1343	  The system will use 16KB pages support. AArch32 emulation
1344	  requires applications compiled with 16K (or a multiple of 16K)
1345	  aligned segments.
1346
1347config ARM64_64K_PAGES
1348	bool "64KB"
1349	select HAVE_PAGE_SIZE_64KB
1350	help
1351	  This feature enables 64KB pages support (4KB by default)
1352	  allowing only two levels of page tables and faster TLB
1353	  look-up. AArch32 emulation requires applications compiled
1354	  with 64K aligned segments.
1355
1356endchoice
1357
1358choice
1359	prompt "Virtual address space size"
1360	default ARM64_VA_BITS_52
1361	help
1362	  Allows choosing one of multiple possible virtual address
1363	  space sizes. The level of translation table is determined by
1364	  a combination of page size and virtual address space size.
1365
1366config ARM64_VA_BITS_36
1367	bool "36-bit" if EXPERT
1368	depends on PAGE_SIZE_16KB
1369
1370config ARM64_VA_BITS_39
1371	bool "39-bit"
1372	depends on PAGE_SIZE_4KB
1373
1374config ARM64_VA_BITS_42
1375	bool "42-bit"
1376	depends on PAGE_SIZE_64KB
1377
1378config ARM64_VA_BITS_47
1379	bool "47-bit"
1380	depends on PAGE_SIZE_16KB
1381
1382config ARM64_VA_BITS_48
1383	bool "48-bit"
1384
1385config ARM64_VA_BITS_52
1386	bool "52-bit"
1387	help
1388	  Enable 52-bit virtual addressing for userspace when explicitly
1389	  requested via a hint to mmap(). The kernel will also use 52-bit
1390	  virtual addresses for its own mappings (provided HW support for
1391	  this feature is available, otherwise it reverts to 48-bit).
1392
1393	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1394	  ARMv8.3 Pointer Authentication will result in the PAC being
1395	  reduced from 7 bits to 3 bits, which may have a significant
1396	  impact on its susceptibility to brute-force attacks.
1397
1398	  If unsure, select 48-bit virtual addressing instead.
1399
1400endchoice
1401
1402config ARM64_FORCE_52BIT
1403	bool "Force 52-bit virtual addresses for userspace"
1404	depends on ARM64_VA_BITS_52 && EXPERT
1405	help
1406	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1407	  to maintain compatibility with older software by providing 48-bit VAs
1408	  unless a hint is supplied to mmap.
1409
1410	  This configuration option disables the 48-bit compatibility logic, and
1411	  forces all userspace addresses to be 52-bit on HW that supports it. One
1412	  should only enable this configuration option for stress testing userspace
1413	  memory management code. If unsure say N here.
1414
1415config ARM64_VA_BITS
1416	int
1417	default 36 if ARM64_VA_BITS_36
1418	default 39 if ARM64_VA_BITS_39
1419	default 42 if ARM64_VA_BITS_42
1420	default 47 if ARM64_VA_BITS_47
1421	default 48 if ARM64_VA_BITS_48
1422	default 52 if ARM64_VA_BITS_52
1423
1424choice
1425	prompt "Physical address space size"
1426	default ARM64_PA_BITS_48
1427	help
1428	  Choose the maximum physical address range that the kernel will
1429	  support.
1430
1431config ARM64_PA_BITS_48
1432	bool "48-bit"
1433	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1434
1435config ARM64_PA_BITS_52
1436	bool "52-bit"
1437	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1438	help
1439	  Enable support for a 52-bit physical address space, introduced as
1440	  part of the ARMv8.2-LPA extension.
1441
1442	  With this enabled, the kernel will also continue to work on CPUs that
1443	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1444	  minor performance overhead).
1445
1446endchoice
1447
1448config ARM64_PA_BITS
1449	int
1450	default 48 if ARM64_PA_BITS_48
1451	default 52 if ARM64_PA_BITS_52
1452
1453config ARM64_LPA2
1454	def_bool y
1455	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1456
1457choice
1458	prompt "Endianness"
1459	default CPU_LITTLE_ENDIAN
1460	help
1461	  Select the endianness of data accesses performed by the CPU. Userspace
1462	  applications will need to be compiled and linked for the endianness
1463	  that is selected here.
1464
1465config CPU_BIG_ENDIAN
1466	bool "Build big-endian kernel"
1467	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1468	depends on AS_IS_GNU || AS_VERSION >= 150000
1469	help
1470	  Say Y if you plan on running a kernel with a big-endian userspace.
1471
1472config CPU_LITTLE_ENDIAN
1473	bool "Build little-endian kernel"
1474	help
1475	  Say Y if you plan on running a kernel with a little-endian userspace.
1476	  This is usually the case for distributions targeting arm64.
1477
1478endchoice
1479
1480config SCHED_MC
1481	bool "Multi-core scheduler support"
1482	help
1483	  Multi-core scheduler support improves the CPU scheduler's decision
1484	  making when dealing with multi-core CPU chips at a cost of slightly
1485	  increased overhead in some places. If unsure say N here.
1486
1487config SCHED_CLUSTER
1488	bool "Cluster scheduler support"
1489	help
1490	  Cluster scheduler support improves the CPU scheduler's decision
1491	  making when dealing with machines that have clusters of CPUs.
1492	  Cluster usually means a couple of CPUs which are placed closely
1493	  by sharing mid-level caches, last-level cache tags or internal
1494	  busses.
1495
1496config SCHED_SMT
1497	bool "SMT scheduler support"
1498	help
1499	  Improves the CPU scheduler's decision making when dealing with
1500	  MultiThreading at a cost of slightly increased overhead in some
1501	  places. If unsure say N here.
1502
1503config NR_CPUS
1504	int "Maximum number of CPUs (2-4096)"
1505	range 2 4096
1506	default "512"
1507
1508config HOTPLUG_CPU
1509	bool "Support for hot-pluggable CPUs"
1510	select GENERIC_IRQ_MIGRATION
1511	help
1512	  Say Y here to experiment with turning CPUs off and on.  CPUs
1513	  can be controlled through /sys/devices/system/cpu.
1514
1515# Common NUMA Features
1516config NUMA
1517	bool "NUMA Memory Allocation and Scheduler Support"
1518	select GENERIC_ARCH_NUMA
1519	select OF_NUMA
1520	select HAVE_SETUP_PER_CPU_AREA
1521	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1522	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1523	select USE_PERCPU_NUMA_NODE_ID
1524	help
1525	  Enable NUMA (Non-Uniform Memory Access) support.
1526
1527	  The kernel will try to allocate memory used by a CPU on the
1528	  local memory of the CPU and add some more
1529	  NUMA awareness to the kernel.
1530
1531config NODES_SHIFT
1532	int "Maximum NUMA Nodes (as a power of 2)"
1533	range 1 10
1534	default "4"
1535	depends on NUMA
1536	help
1537	  Specify the maximum number of NUMA Nodes available on the target
1538	  system.  Increases memory reserved to accommodate various tables.
1539
1540source "kernel/Kconfig.hz"
1541
1542config ARCH_SPARSEMEM_ENABLE
1543	def_bool y
1544	select SPARSEMEM_VMEMMAP_ENABLE
1545	select SPARSEMEM_VMEMMAP
1546
1547config HW_PERF_EVENTS
1548	def_bool y
1549	depends on ARM_PMU
1550
1551# Supported by clang >= 7.0 or GCC >= 12.0.0
1552config CC_HAVE_SHADOW_CALL_STACK
1553	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1554
1555config PARAVIRT
1556	bool "Enable paravirtualization code"
1557	help
1558	  This changes the kernel so it can modify itself when it is run
1559	  under a hypervisor, potentially improving performance significantly
1560	  over full virtualization.
1561
1562config PARAVIRT_TIME_ACCOUNTING
1563	bool "Paravirtual steal time accounting"
1564	select PARAVIRT
1565	help
1566	  Select this option to enable fine granularity task steal time
1567	  accounting. Time spent executing other tasks in parallel with
1568	  the current vCPU is discounted from the vCPU power. To account for
1569	  that, there can be a small performance impact.
1570
1571	  If in doubt, say N here.
1572
1573config ARCH_SUPPORTS_KEXEC
1574	def_bool PM_SLEEP_SMP
1575
1576config ARCH_SUPPORTS_KEXEC_FILE
1577	def_bool y
1578
1579config ARCH_SELECTS_KEXEC_FILE
1580	def_bool y
1581	depends on KEXEC_FILE
1582	select HAVE_IMA_KEXEC if IMA
1583
1584config ARCH_SUPPORTS_KEXEC_SIG
1585	def_bool y
1586
1587config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1588	def_bool y
1589
1590config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1591	def_bool y
1592
1593config ARCH_SUPPORTS_CRASH_DUMP
1594	def_bool y
1595
1596config ARCH_DEFAULT_CRASH_DUMP
1597	def_bool y
1598
1599config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1600	def_bool CRASH_RESERVE
1601
1602config TRANS_TABLE
1603	def_bool y
1604	depends on HIBERNATION || KEXEC_CORE
1605
1606config XEN_DOM0
1607	def_bool y
1608	depends on XEN
1609
1610config XEN
1611	bool "Xen guest support on ARM64"
1612	depends on ARM64 && OF
1613	select SWIOTLB_XEN
1614	select PARAVIRT
1615	help
1616	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1617
1618# include/linux/mmzone.h requires the following to be true:
1619#
1620#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1621#
1622# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1623#
1624#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1625# ----+-------------------+--------------+----------------------+-------------------------+
1626# 4K  |       27          |      12      |       15             |         10              |
1627# 16K |       27          |      14      |       13             |         11              |
1628# 64K |       29          |      16      |       13             |         13              |
1629config ARCH_FORCE_MAX_ORDER
1630	int
1631	default "13" if ARM64_64K_PAGES
1632	default "11" if ARM64_16K_PAGES
1633	default "10"
1634	help
1635	  The kernel page allocator limits the size of maximal physically
1636	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1637	  defines the maximal power of two of number of pages that can be
1638	  allocated as a single contiguous block. This option allows
1639	  overriding the default setting when ability to allocate very
1640	  large blocks of physically contiguous memory is required.
1641
1642	  The maximal size of allocation cannot exceed the size of the
1643	  section, so the value of MAX_PAGE_ORDER should satisfy
1644
1645	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1646
1647	  Don't change if unsure.
1648
1649config UNMAP_KERNEL_AT_EL0
1650	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1651	default y
1652	help
1653	  Speculation attacks against some high-performance processors can
1654	  be used to bypass MMU permission checks and leak kernel data to
1655	  userspace. This can be defended against by unmapping the kernel
1656	  when running in userspace, mapping it back in on exception entry
1657	  via a trampoline page in the vector table.
1658
1659	  If unsure, say Y.
1660
1661config MITIGATE_SPECTRE_BRANCH_HISTORY
1662	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1663	default y
1664	help
1665	  Speculation attacks against some high-performance processors can
1666	  make use of branch history to influence future speculation.
1667	  When taking an exception from user-space, a sequence of branches
1668	  or a firmware call overwrites the branch history.
1669
1670config RODATA_FULL_DEFAULT_ENABLED
1671	bool "Apply r/o permissions of VM areas also to their linear aliases"
1672	default y
1673	help
1674	  Apply read-only attributes of VM areas to the linear alias of
1675	  the backing pages as well. This prevents code or read-only data
1676	  from being modified (inadvertently or intentionally) via another
1677	  mapping of the same memory page. This additional enhancement can
1678	  be turned off at runtime by passing rodata=[off|on] (and turned on
1679	  with rodata=full if this option is set to 'n')
1680
1681	  This requires the linear region to be mapped down to pages,
1682	  which may adversely affect performance in some cases.
1683
1684config ARM64_SW_TTBR0_PAN
1685	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1686	depends on !KCSAN
1687	select ARM64_PAN
1688	help
1689	  Enabling this option prevents the kernel from accessing
1690	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1691	  zeroed area and reserved ASID. The user access routines
1692	  restore the valid TTBR0_EL1 temporarily.
1693
1694config ARM64_TAGGED_ADDR_ABI
1695	bool "Enable the tagged user addresses syscall ABI"
1696	default y
1697	help
1698	  When this option is enabled, user applications can opt in to a
1699	  relaxed ABI via prctl() allowing tagged addresses to be passed
1700	  to system calls as pointer arguments. For details, see
1701	  Documentation/arch/arm64/tagged-address-abi.rst.
1702
1703menuconfig COMPAT
1704	bool "Kernel support for 32-bit EL0"
1705	depends on ARM64_4K_PAGES || EXPERT
1706	select HAVE_UID16
1707	select OLD_SIGSUSPEND3
1708	select COMPAT_OLD_SIGACTION
1709	help
1710	  This option enables support for a 32-bit EL0 running under a 64-bit
1711	  kernel at EL1. AArch32-specific components such as system calls,
1712	  the user helper functions, VFP support and the ptrace interface are
1713	  handled appropriately by the kernel.
1714
1715	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1716	  that you will only be able to execute AArch32 binaries that were compiled
1717	  with page size aligned segments.
1718
1719	  If you want to execute 32-bit userspace applications, say Y.
1720
1721if COMPAT
1722
1723config KUSER_HELPERS
1724	bool "Enable kuser helpers page for 32-bit applications"
1725	default y
1726	help
1727	  Warning: disabling this option may break 32-bit user programs.
1728
1729	  Provide kuser helpers to compat tasks. The kernel provides
1730	  helper code to userspace in read only form at a fixed location
1731	  to allow userspace to be independent of the CPU type fitted to
1732	  the system. This permits binaries to be run on ARMv4 through
1733	  to ARMv8 without modification.
1734
1735	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1736
1737	  However, the fixed address nature of these helpers can be used
1738	  by ROP (return orientated programming) authors when creating
1739	  exploits.
1740
1741	  If all of the binaries and libraries which run on your platform
1742	  are built specifically for your platform, and make no use of
1743	  these helpers, then you can turn this option off to hinder
1744	  such exploits. However, in that case, if a binary or library
1745	  relying on those helpers is run, it will not function correctly.
1746
1747	  Say N here only if you are absolutely certain that you do not
1748	  need these helpers; otherwise, the safe option is to say Y.
1749
1750config COMPAT_VDSO
1751	bool "Enable vDSO for 32-bit applications"
1752	depends on !CPU_BIG_ENDIAN
1753	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1754	select GENERIC_COMPAT_VDSO
1755	default y
1756	help
1757	  Place in the process address space of 32-bit applications an
1758	  ELF shared object providing fast implementations of gettimeofday
1759	  and clock_gettime.
1760
1761	  You must have a 32-bit build of glibc 2.22 or later for programs
1762	  to seamlessly take advantage of this.
1763
1764config THUMB2_COMPAT_VDSO
1765	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1766	depends on COMPAT_VDSO
1767	default y
1768	help
1769	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1770	  otherwise with '-marm'.
1771
1772config COMPAT_ALIGNMENT_FIXUPS
1773	bool "Fix up misaligned multi-word loads and stores in user space"
1774
1775menuconfig ARMV8_DEPRECATED
1776	bool "Emulate deprecated/obsolete ARMv8 instructions"
1777	depends on SYSCTL
1778	help
1779	  Legacy software support may require certain instructions
1780	  that have been deprecated or obsoleted in the architecture.
1781
1782	  Enable this config to enable selective emulation of these
1783	  features.
1784
1785	  If unsure, say Y
1786
1787if ARMV8_DEPRECATED
1788
1789config SWP_EMULATION
1790	bool "Emulate SWP/SWPB instructions"
1791	help
1792	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1793	  they are always undefined. Say Y here to enable software
1794	  emulation of these instructions for userspace using LDXR/STXR.
1795	  This feature can be controlled at runtime with the abi.swp
1796	  sysctl which is disabled by default.
1797
1798	  In some older versions of glibc [<=2.8] SWP is used during futex
1799	  trylock() operations with the assumption that the code will not
1800	  be preempted. This invalid assumption may be more likely to fail
1801	  with SWP emulation enabled, leading to deadlock of the user
1802	  application.
1803
1804	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1805	  on an external transaction monitoring block called a global
1806	  monitor to maintain update atomicity. If your system does not
1807	  implement a global monitor, this option can cause programs that
1808	  perform SWP operations to uncached memory to deadlock.
1809
1810	  If unsure, say Y
1811
1812config CP15_BARRIER_EMULATION
1813	bool "Emulate CP15 Barrier instructions"
1814	help
1815	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1816	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1817	  strongly recommended to use the ISB, DSB, and DMB
1818	  instructions instead.
1819
1820	  Say Y here to enable software emulation of these
1821	  instructions for AArch32 userspace code. When this option is
1822	  enabled, CP15 barrier usage is traced which can help
1823	  identify software that needs updating. This feature can be
1824	  controlled at runtime with the abi.cp15_barrier sysctl.
1825
1826	  If unsure, say Y
1827
1828config SETEND_EMULATION
1829	bool "Emulate SETEND instruction"
1830	help
1831	  The SETEND instruction alters the data-endianness of the
1832	  AArch32 EL0, and is deprecated in ARMv8.
1833
1834	  Say Y here to enable software emulation of the instruction
1835	  for AArch32 userspace code. This feature can be controlled
1836	  at runtime with the abi.setend sysctl.
1837
1838	  Note: All the cpus on the system must have mixed endian support at EL0
1839	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1840	  endian - is hotplugged in after this feature has been enabled, there could
1841	  be unexpected results in the applications.
1842
1843	  If unsure, say Y
1844endif # ARMV8_DEPRECATED
1845
1846endif # COMPAT
1847
1848menu "ARMv8.1 architectural features"
1849
1850config ARM64_HW_AFDBM
1851	bool "Support for hardware updates of the Access and Dirty page flags"
1852	default y
1853	help
1854	  The ARMv8.1 architecture extensions introduce support for
1855	  hardware updates of the access and dirty information in page
1856	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1857	  capable processors, accesses to pages with PTE_AF cleared will
1858	  set this bit instead of raising an access flag fault.
1859	  Similarly, writes to read-only pages with the DBM bit set will
1860	  clear the read-only bit (AP[2]) instead of raising a
1861	  permission fault.
1862
1863	  Kernels built with this configuration option enabled continue
1864	  to work on pre-ARMv8.1 hardware and the performance impact is
1865	  minimal. If unsure, say Y.
1866
1867config ARM64_PAN
1868	bool "Enable support for Privileged Access Never (PAN)"
1869	default y
1870	help
1871	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1872	  prevents the kernel or hypervisor from accessing user-space (EL0)
1873	  memory directly.
1874
1875	  Choosing this option will cause any unprotected (not using
1876	  copy_to_user et al) memory access to fail with a permission fault.
1877
1878	  The feature is detected at runtime, and will remain as a 'nop'
1879	  instruction if the cpu does not implement the feature.
1880
1881config AS_HAS_LSE_ATOMICS
1882	def_bool $(as-instr,.arch_extension lse)
1883
1884config ARM64_LSE_ATOMICS
1885	bool
1886	default ARM64_USE_LSE_ATOMICS
1887	depends on AS_HAS_LSE_ATOMICS
1888
1889config ARM64_USE_LSE_ATOMICS
1890	bool "Atomic instructions"
1891	default y
1892	help
1893	  As part of the Large System Extensions, ARMv8.1 introduces new
1894	  atomic instructions that are designed specifically to scale in
1895	  very large systems.
1896
1897	  Say Y here to make use of these instructions for the in-kernel
1898	  atomic routines. This incurs a small overhead on CPUs that do
1899	  not support these instructions and requires the kernel to be
1900	  built with binutils >= 2.25 in order for the new instructions
1901	  to be used.
1902
1903endmenu # "ARMv8.1 architectural features"
1904
1905menu "ARMv8.2 architectural features"
1906
1907config AS_HAS_ARMV8_2
1908	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1909
1910config AS_HAS_SHA3
1911	def_bool $(as-instr,.arch armv8.2-a+sha3)
1912
1913config ARM64_PMEM
1914	bool "Enable support for persistent memory"
1915	select ARCH_HAS_PMEM_API
1916	select ARCH_HAS_UACCESS_FLUSHCACHE
1917	help
1918	  Say Y to enable support for the persistent memory API based on the
1919	  ARMv8.2 DCPoP feature.
1920
1921	  The feature is detected at runtime, and the kernel will use DC CVAC
1922	  operations if DC CVAP is not supported (following the behaviour of
1923	  DC CVAP itself if the system does not define a point of persistence).
1924
1925config ARM64_RAS_EXTN
1926	bool "Enable support for RAS CPU Extensions"
1927	default y
1928	help
1929	  CPUs that support the Reliability, Availability and Serviceability
1930	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1931	  errors, classify them and report them to software.
1932
1933	  On CPUs with these extensions system software can use additional
1934	  barriers to determine if faults are pending and read the
1935	  classification from a new set of registers.
1936
1937	  Selecting this feature will allow the kernel to use these barriers
1938	  and access the new registers if the system supports the extension.
1939	  Platform RAS features may additionally depend on firmware support.
1940
1941config ARM64_CNP
1942	bool "Enable support for Common Not Private (CNP) translations"
1943	default y
1944	help
1945	  Common Not Private (CNP) allows translation table entries to
1946	  be shared between different PEs in the same inner shareable
1947	  domain, so the hardware can use this fact to optimise the
1948	  caching of such entries in the TLB.
1949
1950	  Selecting this option allows the CNP feature to be detected
1951	  at runtime, and does not affect PEs that do not implement
1952	  this feature.
1953
1954endmenu # "ARMv8.2 architectural features"
1955
1956menu "ARMv8.3 architectural features"
1957
1958config ARM64_PTR_AUTH
1959	bool "Enable support for pointer authentication"
1960	default y
1961	help
1962	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1963	  instructions for signing and authenticating pointers against secret
1964	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1965	  and other attacks.
1966
1967	  This option enables these instructions at EL0 (i.e. for userspace).
1968	  Choosing this option will cause the kernel to initialise secret keys
1969	  for each process at exec() time, with these keys being
1970	  context-switched along with the process.
1971
1972	  The feature is detected at runtime. If the feature is not present in
1973	  hardware it will not be advertised to userspace/KVM guest nor will it
1974	  be enabled.
1975
1976	  If the feature is present on the boot CPU but not on a late CPU, then
1977	  the late CPU will be parked. Also, if the boot CPU does not have
1978	  address auth and the late CPU has then the late CPU will still boot
1979	  but with the feature disabled. On such a system, this option should
1980	  not be selected.
1981
1982config ARM64_PTR_AUTH_KERNEL
1983	bool "Use pointer authentication for kernel"
1984	default y
1985	depends on ARM64_PTR_AUTH
1986	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1987	# Modern compilers insert a .note.gnu.property section note for PAC
1988	# which is only understood by binutils starting with version 2.33.1.
1989	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1990	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1991	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1992	help
1993	  If the compiler supports the -mbranch-protection or
1994	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1995	  will cause the kernel itself to be compiled with return address
1996	  protection. In this case, and if the target hardware is known to
1997	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1998	  disabled with minimal loss of protection.
1999
2000	  This feature works with FUNCTION_GRAPH_TRACER option only if
2001	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2002
2003config CC_HAS_BRANCH_PROT_PAC_RET
2004	# GCC 9 or later, clang 8 or later
2005	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2006
2007config CC_HAS_SIGN_RETURN_ADDRESS
2008	# GCC 7, 8
2009	def_bool $(cc-option,-msign-return-address=all)
2010
2011config AS_HAS_ARMV8_3
2012	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2013
2014config AS_HAS_CFI_NEGATE_RA_STATE
2015	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2016
2017config AS_HAS_LDAPR
2018	def_bool $(as-instr,.arch_extension rcpc)
2019
2020endmenu # "ARMv8.3 architectural features"
2021
2022menu "ARMv8.4 architectural features"
2023
2024config ARM64_AMU_EXTN
2025	bool "Enable support for the Activity Monitors Unit CPU extension"
2026	default y
2027	help
2028	  The activity monitors extension is an optional extension introduced
2029	  by the ARMv8.4 CPU architecture. This enables support for version 1
2030	  of the activity monitors architecture, AMUv1.
2031
2032	  To enable the use of this extension on CPUs that implement it, say Y.
2033
2034	  Note that for architectural reasons, firmware _must_ implement AMU
2035	  support when running on CPUs that present the activity monitors
2036	  extension. The required support is present in:
2037	    * Version 1.5 and later of the ARM Trusted Firmware
2038
2039	  For kernels that have this configuration enabled but boot with broken
2040	  firmware, you may need to say N here until the firmware is fixed.
2041	  Otherwise you may experience firmware panics or lockups when
2042	  accessing the counter registers. Even if you are not observing these
2043	  symptoms, the values returned by the register reads might not
2044	  correctly reflect reality. Most commonly, the value read will be 0,
2045	  indicating that the counter is not enabled.
2046
2047config AS_HAS_ARMV8_4
2048	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2049
2050config ARM64_TLB_RANGE
2051	bool "Enable support for tlbi range feature"
2052	default y
2053	depends on AS_HAS_ARMV8_4
2054	help
2055	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2056	  range of input addresses.
2057
2058	  The feature introduces new assembly instructions, and they were
2059	  support when binutils >= 2.30.
2060
2061endmenu # "ARMv8.4 architectural features"
2062
2063menu "ARMv8.5 architectural features"
2064
2065config AS_HAS_ARMV8_5
2066	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2067
2068config ARM64_BTI
2069	bool "Branch Target Identification support"
2070	default y
2071	help
2072	  Branch Target Identification (part of the ARMv8.5 Extensions)
2073	  provides a mechanism to limit the set of locations to which computed
2074	  branch instructions such as BR or BLR can jump.
2075
2076	  To make use of BTI on CPUs that support it, say Y.
2077
2078	  BTI is intended to provide complementary protection to other control
2079	  flow integrity protection mechanisms, such as the Pointer
2080	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2081	  For this reason, it does not make sense to enable this option without
2082	  also enabling support for pointer authentication.  Thus, when
2083	  enabling this option you should also select ARM64_PTR_AUTH=y.
2084
2085	  Userspace binaries must also be specifically compiled to make use of
2086	  this mechanism.  If you say N here or the hardware does not support
2087	  BTI, such binaries can still run, but you get no additional
2088	  enforcement of branch destinations.
2089
2090config ARM64_BTI_KERNEL
2091	bool "Use Branch Target Identification for kernel"
2092	default y
2093	depends on ARM64_BTI
2094	depends on ARM64_PTR_AUTH_KERNEL
2095	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2096	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2097	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2098	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2099	depends on !CC_IS_GCC
2100	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2101	help
2102	  Build the kernel with Branch Target Identification annotations
2103	  and enable enforcement of this for kernel code. When this option
2104	  is enabled and the system supports BTI all kernel code including
2105	  modular code must have BTI enabled.
2106
2107config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2108	# GCC 9 or later, clang 8 or later
2109	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2110
2111config ARM64_E0PD
2112	bool "Enable support for E0PD"
2113	default y
2114	help
2115	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2116	  that EL0 accesses made via TTBR1 always fault in constant time,
2117	  providing similar benefits to KASLR as those provided by KPTI, but
2118	  with lower overhead and without disrupting legitimate access to
2119	  kernel memory such as SPE.
2120
2121	  This option enables E0PD for TTBR1 where available.
2122
2123config ARM64_AS_HAS_MTE
2124	# Initial support for MTE went in binutils 2.32.0, checked with
2125	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2126	# as a late addition to the final architecture spec (LDGM/STGM)
2127	# is only supported in the newer 2.32.x and 2.33 binutils
2128	# versions, hence the extra "stgm" instruction check below.
2129	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2130
2131config ARM64_MTE
2132	bool "Memory Tagging Extension support"
2133	default y
2134	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2135	depends on AS_HAS_ARMV8_5
2136	depends on AS_HAS_LSE_ATOMICS
2137	# Required for tag checking in the uaccess routines
2138	select ARM64_PAN
2139	select ARCH_HAS_SUBPAGE_FAULTS
2140	select ARCH_USES_HIGH_VMA_FLAGS
2141	select ARCH_USES_PG_ARCH_2
2142	select ARCH_USES_PG_ARCH_3
2143	help
2144	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2145	  architectural support for run-time, always-on detection of
2146	  various classes of memory error to aid with software debugging
2147	  to eliminate vulnerabilities arising from memory-unsafe
2148	  languages.
2149
2150	  This option enables the support for the Memory Tagging
2151	  Extension at EL0 (i.e. for userspace).
2152
2153	  Selecting this option allows the feature to be detected at
2154	  runtime. Any secondary CPU not implementing this feature will
2155	  not be allowed a late bring-up.
2156
2157	  Userspace binaries that want to use this feature must
2158	  explicitly opt in. The mechanism for the userspace is
2159	  described in:
2160
2161	  Documentation/arch/arm64/memory-tagging-extension.rst.
2162
2163endmenu # "ARMv8.5 architectural features"
2164
2165menu "ARMv8.7 architectural features"
2166
2167config ARM64_EPAN
2168	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2169	default y
2170	depends on ARM64_PAN
2171	help
2172	  Enhanced Privileged Access Never (EPAN) allows Privileged
2173	  Access Never to be used with Execute-only mappings.
2174
2175	  The feature is detected at runtime, and will remain disabled
2176	  if the cpu does not implement the feature.
2177endmenu # "ARMv8.7 architectural features"
2178
2179config AS_HAS_MOPS
2180	def_bool $(as-instr,.arch_extension mops)
2181
2182menu "ARMv8.9 architectural features"
2183
2184config ARM64_POE
2185	prompt "Permission Overlay Extension"
2186	def_bool y
2187	select ARCH_USES_HIGH_VMA_FLAGS
2188	select ARCH_HAS_PKEYS
2189	help
2190	  The Permission Overlay Extension is used to implement Memory
2191	  Protection Keys. Memory Protection Keys provides a mechanism for
2192	  enforcing page-based protections, but without requiring modification
2193	  of the page tables when an application changes protection domains.
2194
2195	  For details, see Documentation/core-api/protection-keys.rst
2196
2197	  If unsure, say y.
2198
2199config ARCH_PKEY_BITS
2200	int
2201	default 3
2202
2203config ARM64_HAFT
2204	bool "Support for Hardware managed Access Flag for Table Descriptors"
2205	depends on ARM64_HW_AFDBM
2206	default y
2207	help
2208	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2209	  Flag for Table descriptors. When enabled an architectural executed
2210	  memory access will update the Access Flag in each Table descriptor
2211	  which is accessed during the translation table walk and for which
2212	  the Access Flag is 0. The Access Flag of the Table descriptor use
2213	  the same bit of PTE_AF.
2214
2215	  The feature will only be enabled if all the CPUs in the system
2216	  support this feature. If unsure, say Y.
2217
2218endmenu # "ARMv8.9 architectural features"
2219
2220menu "v9.4 architectural features"
2221
2222config ARM64_GCS
2223	bool "Enable support for Guarded Control Stack (GCS)"
2224	default y
2225	select ARCH_HAS_USER_SHADOW_STACK
2226	select ARCH_USES_HIGH_VMA_FLAGS
2227	depends on !UPROBES
2228	help
2229	  Guarded Control Stack (GCS) provides support for a separate
2230	  stack with restricted access which contains only return
2231	  addresses.  This can be used to harden against some attacks
2232	  by comparing return address used by the program with what is
2233	  stored in the GCS, and may also be used to efficiently obtain
2234	  the call stack for applications such as profiling.
2235
2236	  The feature is detected at runtime, and will remain disabled
2237	  if the system does not implement the feature.
2238
2239endmenu # "v9.4 architectural features"
2240
2241config ARM64_SVE
2242	bool "ARM Scalable Vector Extension support"
2243	default y
2244	help
2245	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2246	  execution state which complements and extends the SIMD functionality
2247	  of the base architecture to support much larger vectors and to enable
2248	  additional vectorisation opportunities.
2249
2250	  To enable use of this extension on CPUs that implement it, say Y.
2251
2252	  On CPUs that support the SVE2 extensions, this option will enable
2253	  those too.
2254
2255	  Note that for architectural reasons, firmware _must_ implement SVE
2256	  support when running on SVE capable hardware.  The required support
2257	  is present in:
2258
2259	    * version 1.5 and later of the ARM Trusted Firmware
2260	    * the AArch64 boot wrapper since commit 5e1261e08abf
2261	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2262
2263	  For other firmware implementations, consult the firmware documentation
2264	  or vendor.
2265
2266	  If you need the kernel to boot on SVE-capable hardware with broken
2267	  firmware, you may need to say N here until you get your firmware
2268	  fixed.  Otherwise, you may experience firmware panics or lockups when
2269	  booting the kernel.  If unsure and you are not observing these
2270	  symptoms, you should assume that it is safe to say Y.
2271
2272config ARM64_SME
2273	bool "ARM Scalable Matrix Extension support"
2274	default y
2275	depends on ARM64_SVE
2276	depends on BROKEN
2277	help
2278	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2279	  execution state which utilises a substantial subset of the SVE
2280	  instruction set, together with the addition of new architectural
2281	  register state capable of holding two dimensional matrix tiles to
2282	  enable various matrix operations.
2283
2284config ARM64_PSEUDO_NMI
2285	bool "Support for NMI-like interrupts"
2286	select ARM_GIC_V3
2287	help
2288	  Adds support for mimicking Non-Maskable Interrupts through the use of
2289	  GIC interrupt priority. This support requires version 3 or later of
2290	  ARM GIC.
2291
2292	  This high priority configuration for interrupts needs to be
2293	  explicitly enabled by setting the kernel parameter
2294	  "irqchip.gicv3_pseudo_nmi" to 1.
2295
2296	  If unsure, say N
2297
2298if ARM64_PSEUDO_NMI
2299config ARM64_DEBUG_PRIORITY_MASKING
2300	bool "Debug interrupt priority masking"
2301	help
2302	  This adds runtime checks to functions enabling/disabling
2303	  interrupts when using priority masking. The additional checks verify
2304	  the validity of ICC_PMR_EL1 when calling concerned functions.
2305
2306	  If unsure, say N
2307endif # ARM64_PSEUDO_NMI
2308
2309config RELOCATABLE
2310	bool "Build a relocatable kernel image" if EXPERT
2311	select ARCH_HAS_RELR
2312	default y
2313	help
2314	  This builds the kernel as a Position Independent Executable (PIE),
2315	  which retains all relocation metadata required to relocate the
2316	  kernel binary at runtime to a different virtual address than the
2317	  address it was linked at.
2318	  Since AArch64 uses the RELA relocation format, this requires a
2319	  relocation pass at runtime even if the kernel is loaded at the
2320	  same address it was linked at.
2321
2322config RANDOMIZE_BASE
2323	bool "Randomize the address of the kernel image"
2324	select RELOCATABLE
2325	help
2326	  Randomizes the virtual address at which the kernel image is
2327	  loaded, as a security feature that deters exploit attempts
2328	  relying on knowledge of the location of kernel internals.
2329
2330	  It is the bootloader's job to provide entropy, by passing a
2331	  random u64 value in /chosen/kaslr-seed at kernel entry.
2332
2333	  When booting via the UEFI stub, it will invoke the firmware's
2334	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2335	  to the kernel proper. In addition, it will randomise the physical
2336	  location of the kernel Image as well.
2337
2338	  If unsure, say N.
2339
2340config RANDOMIZE_MODULE_REGION_FULL
2341	bool "Randomize the module region over a 2 GB range"
2342	depends on RANDOMIZE_BASE
2343	default y
2344	help
2345	  Randomizes the location of the module region inside a 2 GB window
2346	  covering the core kernel. This way, it is less likely for modules
2347	  to leak information about the location of core kernel data structures
2348	  but it does imply that function calls between modules and the core
2349	  kernel will need to be resolved via veneers in the module PLT.
2350
2351	  When this option is not set, the module region will be randomized over
2352	  a limited range that contains the [_stext, _etext] interval of the
2353	  core kernel, so branch relocations are almost always in range unless
2354	  the region is exhausted. In this particular case of region
2355	  exhaustion, modules might be able to fall back to a larger 2GB area.
2356
2357config CC_HAVE_STACKPROTECTOR_SYSREG
2358	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2359
2360config STACKPROTECTOR_PER_TASK
2361	def_bool y
2362	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2363
2364config UNWIND_PATCH_PAC_INTO_SCS
2365	bool "Enable shadow call stack dynamically using code patching"
2366	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2367	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2368	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2369	depends on SHADOW_CALL_STACK
2370	select UNWIND_TABLES
2371	select DYNAMIC_SCS
2372
2373config ARM64_CONTPTE
2374	bool "Contiguous PTE mappings for user memory" if EXPERT
2375	depends on TRANSPARENT_HUGEPAGE
2376	default y
2377	help
2378	  When enabled, user mappings are configured using the PTE contiguous
2379	  bit, for any mappings that meet the size and alignment requirements.
2380	  This reduces TLB pressure and improves performance.
2381
2382endmenu # "Kernel Features"
2383
2384menu "Boot options"
2385
2386config ARM64_ACPI_PARKING_PROTOCOL
2387	bool "Enable support for the ARM64 ACPI parking protocol"
2388	depends on ACPI
2389	help
2390	  Enable support for the ARM64 ACPI parking protocol. If disabled
2391	  the kernel will not allow booting through the ARM64 ACPI parking
2392	  protocol even if the corresponding data is present in the ACPI
2393	  MADT table.
2394
2395config CMDLINE
2396	string "Default kernel command string"
2397	default ""
2398	help
2399	  Provide a set of default command-line options at build time by
2400	  entering them here. As a minimum, you should specify the the
2401	  root device (e.g. root=/dev/nfs).
2402
2403choice
2404	prompt "Kernel command line type"
2405	depends on CMDLINE != ""
2406	default CMDLINE_FROM_BOOTLOADER
2407	help
2408	  Choose how the kernel will handle the provided default kernel
2409	  command line string.
2410
2411config CMDLINE_FROM_BOOTLOADER
2412	bool "Use bootloader kernel arguments if available"
2413	help
2414	  Uses the command-line options passed by the boot loader. If
2415	  the boot loader doesn't provide any, the default kernel command
2416	  string provided in CMDLINE will be used.
2417
2418config CMDLINE_FORCE
2419	bool "Always use the default kernel command string"
2420	help
2421	  Always use the default kernel command string, even if the boot
2422	  loader passes other arguments to the kernel.
2423	  This is useful if you cannot or don't want to change the
2424	  command-line options your boot loader passes to the kernel.
2425
2426endchoice
2427
2428config EFI_STUB
2429	bool
2430
2431config EFI
2432	bool "UEFI runtime support"
2433	depends on OF && !CPU_BIG_ENDIAN
2434	depends on KERNEL_MODE_NEON
2435	select ARCH_SUPPORTS_ACPI
2436	select LIBFDT
2437	select UCS2_STRING
2438	select EFI_PARAMS_FROM_FDT
2439	select EFI_RUNTIME_WRAPPERS
2440	select EFI_STUB
2441	select EFI_GENERIC_STUB
2442	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2443	default y
2444	help
2445	  This option provides support for runtime services provided
2446	  by UEFI firmware (such as non-volatile variables, realtime
2447	  clock, and platform reset). A UEFI stub is also provided to
2448	  allow the kernel to be booted as an EFI application. This
2449	  is only useful on systems that have UEFI firmware.
2450
2451config COMPRESSED_INSTALL
2452	bool "Install compressed image by default"
2453	help
2454	  This makes the regular "make install" install the compressed
2455	  image we built, not the legacy uncompressed one.
2456
2457	  You can check that a compressed image works for you by doing
2458	  "make zinstall" first, and verifying that everything is fine
2459	  in your environment before making "make install" do this for
2460	  you.
2461
2462config DMI
2463	bool "Enable support for SMBIOS (DMI) tables"
2464	depends on EFI
2465	default y
2466	help
2467	  This enables SMBIOS/DMI feature for systems.
2468
2469	  This option is only useful on systems that have UEFI firmware.
2470	  However, even with this option, the resultant kernel should
2471	  continue to boot on existing non-UEFI platforms.
2472
2473endmenu # "Boot options"
2474
2475menu "Power management options"
2476
2477source "kernel/power/Kconfig"
2478
2479config ARCH_HIBERNATION_POSSIBLE
2480	def_bool y
2481	depends on CPU_PM
2482
2483config ARCH_HIBERNATION_HEADER
2484	def_bool y
2485	depends on HIBERNATION
2486
2487config ARCH_SUSPEND_POSSIBLE
2488	def_bool y
2489
2490endmenu # "Power management options"
2491
2492menu "CPU Power Management"
2493
2494source "drivers/cpuidle/Kconfig"
2495
2496source "drivers/cpufreq/Kconfig"
2497
2498endmenu # "CPU Power Management"
2499
2500source "drivers/acpi/Kconfig"
2501
2502source "arch/arm64/kvm/Kconfig"
2503
2504