xref: /linux/arch/arm64/Kconfig (revision f07f91a36090b54076e89b46f159ea3a4b77fb2b)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_OPS if XEN
28	select ARCH_HAS_DMA_PREP_COHERENT
29	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
30	select ARCH_HAS_FAST_MULTIPLIER
31	select ARCH_HAS_FORTIFY_SOURCE
32	select ARCH_HAS_GCOV_PROFILE_ALL
33	select ARCH_HAS_GIGANTIC_PAGE
34	select ARCH_HAS_KCOV
35	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
36	select ARCH_HAS_KEEPINITRD
37	select ARCH_HAS_MEMBARRIER_SYNC_CORE
38	select ARCH_HAS_MEM_ENCRYPT
39	select ARCH_SUPPORTS_MSEAL_SYSTEM_MAPPINGS
40	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
41	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
42	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
43	select ARCH_HAS_PREEMPT_LAZY
44	select ARCH_HAS_PTDUMP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_MEM_ENCRYPT
51	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
52	select ARCH_STACKWALK
53	select ARCH_HAS_STRICT_KERNEL_RWX
54	select ARCH_HAS_STRICT_MODULE_RWX
55	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
56	select ARCH_HAS_SYNC_DMA_FOR_CPU
57	select ARCH_HAS_SYSCALL_WRAPPER
58	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
59	select ARCH_HAS_ZONE_DMA_SET if EXPERT
60	select ARCH_HAVE_ELF_PROT
61	select ARCH_HAVE_NMI_SAFE_CMPXCHG
62	select ARCH_HAVE_TRACE_MMIO_ACCESS
63	select ARCH_INLINE_READ_LOCK if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
89	select ARCH_KEEP_MEMBLOCK
90	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
91	select ARCH_USE_CMPXCHG_LOCKREF
92	select ARCH_USE_GNU_PROPERTY
93	select ARCH_USE_MEMTEST
94	select ARCH_USE_QUEUED_RWLOCKS
95	select ARCH_USE_QUEUED_SPINLOCKS
96	select ARCH_USE_SYM_ANNOTATIONS
97	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
98	select ARCH_SUPPORTS_HUGETLBFS
99	select ARCH_SUPPORTS_MEMORY_FAILURE
100	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
101	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
102	select ARCH_SUPPORTS_LTO_CLANG_THIN
103	select ARCH_SUPPORTS_CFI
104	select ARCH_SUPPORTS_ATOMIC_RMW
105	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
106	select ARCH_SUPPORTS_NUMA_BALANCING
107	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
108	select ARCH_SUPPORTS_PER_VMA_LOCK
109	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
110	select ARCH_SUPPORTS_RT
111	select ARCH_SUPPORTS_SCHED_SMT
112	select ARCH_SUPPORTS_SCHED_CLUSTER
113	select ARCH_SUPPORTS_SCHED_MC
114	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
115	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
116	select ARCH_WANT_DEFAULT_BPF_JIT
117	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
118	select ARCH_WANT_FRAME_POINTERS
119	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
120	select ARCH_WANT_LD_ORPHAN_WARN
121	select ARCH_WANTS_EXECMEM_LATE
122	select ARCH_WANTS_NO_INSTR
123	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
124	select ARCH_HAS_UBSAN
125	select ARM_AMBA
126	select ARM_ARCH_TIMER
127	select ARM_GIC
128	select AUDIT_ARCH_COMPAT_GENERIC
129	select ARM_GIC_V2M if PCI
130	select ARM_GIC_V3
131	select ARM_GIC_V3_ITS if PCI
132	select ARM_GIC_V5
133	select ARM_PSCI_FW
134	select BUILDTIME_TABLE_SORT
135	select CLONE_BACKWARDS
136	select COMMON_CLK
137	select CPU_PM if (SUSPEND || CPU_IDLE)
138	select CPUMASK_OFFSTACK if NR_CPUS > 256
139	select DCACHE_WORD_ACCESS
140	select HAVE_EXTRA_IPI_TRACEPOINTS
141	select DYNAMIC_FTRACE if FUNCTION_TRACER
142	select DMA_BOUNCE_UNALIGNED_KMALLOC
143	select DMA_DIRECT_REMAP
144	select EDAC_SUPPORT
145	select FRAME_POINTER
146	select FUNCTION_ALIGNMENT_4B
147	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
148	select GENERIC_ALLOCATOR
149	select GENERIC_ARCH_TOPOLOGY
150	select GENERIC_CLOCKEVENTS_BROADCAST
151	select GENERIC_CPU_AUTOPROBE
152	select GENERIC_CPU_DEVICES
153	select GENERIC_CPU_VULNERABILITIES
154	select GENERIC_EARLY_IOREMAP
155	select GENERIC_IDLE_POLL_SETUP
156	select GENERIC_IOREMAP
157	select GENERIC_IRQ_ENTRY
158	select GENERIC_IRQ_IPI
159	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
160	select GENERIC_IRQ_PROBE
161	select GENERIC_IRQ_SHOW
162	select GENERIC_IRQ_SHOW_LEVEL
163	select GENERIC_LIB_DEVMEM_IS_ALLOWED
164	select GENERIC_PCI_IOMAP
165	select GENERIC_SCHED_CLOCK
166	select GENERIC_SMP_IDLE_THREAD
167	select GENERIC_TIME_VSYSCALL
168	select GENERIC_GETTIMEOFDAY
169	select HARDIRQS_SW_RESEND
170	select HAS_IOPORT
171	select HAVE_MOVE_PMD
172	select HAVE_MOVE_PUD
173	select HAVE_PCI
174	select HAVE_ACPI_APEI if (ACPI && EFI)
175	select HAVE_ALIGNED_STRUCT_PAGE
176	select HAVE_ARCH_AUDITSYSCALL
177	select HAVE_ARCH_BITREVERSE
178	select HAVE_ARCH_COMPILER_H
179	select HAVE_ARCH_HUGE_VMALLOC
180	select HAVE_ARCH_HUGE_VMAP
181	select HAVE_ARCH_JUMP_LABEL
182	select HAVE_ARCH_JUMP_LABEL_RELATIVE
183	select HAVE_ARCH_KASAN
184	select HAVE_ARCH_KASAN_VMALLOC
185	select HAVE_ARCH_KASAN_SW_TAGS
186	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
187	# Some instrumentation may be unsound, hence EXPERT
188	select HAVE_ARCH_KCSAN if EXPERT
189	select HAVE_ARCH_KFENCE
190	select HAVE_ARCH_KGDB
191	select HAVE_ARCH_KSTACK_ERASE
192	select HAVE_ARCH_MMAP_RND_BITS
193	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
194	select HAVE_ARCH_PREL32_RELOCATIONS
195	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
196	select HAVE_ARCH_SECCOMP_FILTER
197	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
198	select HAVE_ARCH_TRACEHOOK
199	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
200	select HAVE_ARCH_VMAP_STACK
201	select HAVE_ARM_SMCCC
202	select HAVE_ASM_MODVERSIONS
203	select HAVE_EBPF_JIT
204	select HAVE_C_RECORDMCOUNT
205	select HAVE_CMPXCHG_DOUBLE
206	select HAVE_CMPXCHG_LOCAL
207	select HAVE_CONTEXT_TRACKING_USER
208	select HAVE_DEBUG_KMEMLEAK
209	select HAVE_DMA_CONTIGUOUS
210	select HAVE_DYNAMIC_FTRACE
211	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
212		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
213		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
214	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
215		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
216	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
217		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI && \
218		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
219	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
220		if DYNAMIC_FTRACE_WITH_ARGS
221	select HAVE_SAMPLE_FTRACE_DIRECT
222	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
223	select HAVE_BUILDTIME_MCOUNT_SORT
224	select HAVE_EFFICIENT_UNALIGNED_ACCESS
225	select HAVE_GUP_FAST
226	select HAVE_FTRACE_GRAPH_FUNC
227	select HAVE_FUNCTION_TRACER
228	select HAVE_FUNCTION_ERROR_INJECTION
229	select HAVE_FUNCTION_GRAPH_FREGS
230	select HAVE_FUNCTION_GRAPH_TRACER
231	select HAVE_GCC_PLUGINS
232	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
233		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
234	select HAVE_HW_BREAKPOINT if PERF_EVENTS
235	select HAVE_IOREMAP_PROT
236	select HAVE_IRQ_TIME_ACCOUNTING
237	select HAVE_LIVEPATCH
238	select HAVE_MOD_ARCH_SPECIFIC
239	select HAVE_NMI
240	select HAVE_PERF_EVENTS
241	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
242	select HAVE_PERF_REGS
243	select HAVE_PERF_USER_STACK_DUMP
244	select HAVE_PREEMPT_DYNAMIC_KEY
245	select HAVE_REGS_AND_STACK_ACCESS_API
246	select HAVE_RELIABLE_STACKTRACE
247	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
248	select HAVE_FUNCTION_ARG_ACCESS_API
249	select MMU_GATHER_RCU_TABLE_FREE
250	select HAVE_RSEQ
251	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
252	select HAVE_STACKPROTECTOR
253	select HAVE_SYSCALL_TRACEPOINTS
254	select HAVE_KPROBES
255	select HAVE_KRETPROBES
256	select HAVE_GENERIC_VDSO
257	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
258	select HOTPLUG_SMT if HOTPLUG_CPU
259	select IRQ_DOMAIN
260	select IRQ_FORCED_THREADING
261	select JUMP_LABEL
262	select KASAN_VMALLOC if KASAN
263	select LOCK_MM_AND_FIND_VMA
264	select MODULES_USE_ELF_RELA
265	select NEED_DMA_MAP_STATE
266	select NEED_SG_DMA_LENGTH
267	select OF
268	select OF_EARLY_FLATTREE
269	select PCI_DOMAINS_GENERIC if PCI
270	select PCI_ECAM if (ACPI && PCI)
271	select PCI_SYSCALL if PCI
272	select POWER_RESET
273	select POWER_SUPPLY
274	select SPARSE_IRQ
275	select SWIOTLB
276	select SYSCTL_EXCEPTION_TRACE
277	select THREAD_INFO_IN_TASK
278	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
279	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
280	select TRACE_IRQFLAGS_SUPPORT
281	select TRACE_IRQFLAGS_NMI_SUPPORT
282	select HAVE_SOFTIRQ_ON_OWN_STACK
283	select USER_STACKTRACE_SUPPORT
284	select VDSO_GETRANDOM
285	select VMAP_STACK
286	help
287	  ARM 64-bit (AArch64) Linux support.
288
289config RUSTC_SUPPORTS_ARM64
290	def_bool y
291	depends on CPU_LITTLE_ENDIAN
292	# Shadow call stack is only supported on certain rustc versions.
293	#
294	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
295	# required due to use of the -Zfixed-x18 flag.
296	#
297	# Otherwise, rustc version 1.82+ is required due to use of the
298	# -Zsanitizer=shadow-call-stack flag.
299	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
300
301config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
302	def_bool CC_IS_CLANG
303	# https://github.com/ClangBuiltLinux/linux/issues/1507
304	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
305
306config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
307	def_bool CC_IS_GCC
308	depends on $(cc-option,-fpatchable-function-entry=2)
309
310config 64BIT
311	def_bool y
312
313config MMU
314	def_bool y
315
316config ARM64_CONT_PTE_SHIFT
317	int
318	default 5 if PAGE_SIZE_64KB
319	default 7 if PAGE_SIZE_16KB
320	default 4
321
322config ARM64_CONT_PMD_SHIFT
323	int
324	default 5 if PAGE_SIZE_64KB
325	default 5 if PAGE_SIZE_16KB
326	default 4
327
328config ARCH_MMAP_RND_BITS_MIN
329	default 14 if PAGE_SIZE_64KB
330	default 16 if PAGE_SIZE_16KB
331	default 18
332
333# max bits determined by the following formula:
334#  VA_BITS - PTDESC_TABLE_SHIFT
335config ARCH_MMAP_RND_BITS_MAX
336	default 19 if ARM64_VA_BITS=36
337	default 24 if ARM64_VA_BITS=39
338	default 27 if ARM64_VA_BITS=42
339	default 30 if ARM64_VA_BITS=47
340	default 29 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_64K_PAGES
341	default 31 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_16K_PAGES
342	default 33 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52)
343	default 14 if ARM64_64K_PAGES
344	default 16 if ARM64_16K_PAGES
345	default 18
346
347config ARCH_MMAP_RND_COMPAT_BITS_MIN
348	default 7 if ARM64_64K_PAGES
349	default 9 if ARM64_16K_PAGES
350	default 11
351
352config ARCH_MMAP_RND_COMPAT_BITS_MAX
353	default 16
354
355config NO_IOPORT_MAP
356	def_bool y if !PCI
357
358config STACKTRACE_SUPPORT
359	def_bool y
360
361config ILLEGAL_POINTER_VALUE
362	hex
363	default 0xdead000000000000
364
365config LOCKDEP_SUPPORT
366	def_bool y
367
368config GENERIC_BUG
369	def_bool y
370	depends on BUG
371
372config GENERIC_BUG_RELATIVE_POINTERS
373	def_bool y
374	depends on GENERIC_BUG
375
376config GENERIC_HWEIGHT
377	def_bool y
378
379config GENERIC_CSUM
380	def_bool y
381
382config GENERIC_CALIBRATE_DELAY
383	def_bool y
384
385config SMP
386	def_bool y
387
388config KERNEL_MODE_NEON
389	def_bool y
390
391config FIX_EARLYCON_MEM
392	def_bool y
393
394config PGTABLE_LEVELS
395	int
396	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
397	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
398	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
399	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
400	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
401	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
402	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
403	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
404
405config ARCH_SUPPORTS_UPROBES
406	def_bool y
407
408config ARCH_PROC_KCORE_TEXT
409	def_bool y
410
411config BROKEN_GAS_INST
412	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
413
414config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
415	bool
416	# Clang's __builtin_return_address() strips the PAC since 12.0.0
417	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
418	default y if CC_IS_CLANG
419	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
420	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
421	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
422	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
423	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
424	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
425	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
426	default n
427
428config KASAN_SHADOW_OFFSET
429	hex
430	depends on KASAN_GENERIC || KASAN_SW_TAGS
431	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
432	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
433	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
434	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
435	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
436	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
437	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
438	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
439	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
440	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
441	default 0xffffffffffffffff
442
443config UNWIND_TABLES
444	bool
445
446source "arch/arm64/Kconfig.platforms"
447
448menu "Kernel Features"
449
450menu "ARM errata workarounds via the alternatives framework"
451
452config AMPERE_ERRATUM_AC03_CPU_38
453        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
454	default y
455	help
456	  This option adds an alternative code sequence to work around Ampere
457	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
458
459	  The affected design reports FEAT_HAFDBS as not implemented in
460	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
461	  as required by the architecture. The unadvertised HAFDBS
462	  implementation suffers from an additional erratum where hardware
463	  A/D updates can occur after a PTE has been marked invalid.
464
465	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
466	  which avoids enabling unadvertised hardware Access Flag management
467	  at stage-2.
468
469	  If unsure, say Y.
470
471config AMPERE_ERRATUM_AC04_CPU_23
472        bool "AmpereOne: AC04_CPU_23:  Failure to synchronize writes to HCR_EL2 may corrupt address translations."
473	default y
474	help
475	  This option adds an alternative code sequence to work around Ampere
476	  errata AC04_CPU_23 on AmpereOne.
477
478	  Updates to HCR_EL2 can rarely corrupt simultaneous translations for
479	  data addresses initiated by load/store instructions. Only
480	  instruction initiated translations are vulnerable, not translations
481	  from prefetches for example. A DSB before the store to HCR_EL2 is
482	  sufficient to prevent older instructions from hitting the window
483	  for corruption, and an ISB after is sufficient to prevent younger
484	  instructions from hitting the window for corruption.
485
486	  If unsure, say Y.
487
488config ARM64_WORKAROUND_CLEAN_CACHE
489	bool
490
491config ARM64_ERRATUM_826319
492	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
493	default y
494	select ARM64_WORKAROUND_CLEAN_CACHE
495	help
496	  This option adds an alternative code sequence to work around ARM
497	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
498	  AXI master interface and an L2 cache.
499
500	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
501	  and is unable to accept a certain write via this interface, it will
502	  not progress on read data presented on the read data channel and the
503	  system can deadlock.
504
505	  The workaround promotes data cache clean instructions to
506	  data cache clean-and-invalidate.
507	  Please note that this does not necessarily enable the workaround,
508	  as it depends on the alternative framework, which will only patch
509	  the kernel if an affected CPU is detected.
510
511	  If unsure, say Y.
512
513config ARM64_ERRATUM_827319
514	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
515	default y
516	select ARM64_WORKAROUND_CLEAN_CACHE
517	help
518	  This option adds an alternative code sequence to work around ARM
519	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
520	  master interface and an L2 cache.
521
522	  Under certain conditions this erratum can cause a clean line eviction
523	  to occur at the same time as another transaction to the same address
524	  on the AMBA 5 CHI interface, which can cause data corruption if the
525	  interconnect reorders the two transactions.
526
527	  The workaround promotes data cache clean instructions to
528	  data cache clean-and-invalidate.
529	  Please note that this does not necessarily enable the workaround,
530	  as it depends on the alternative framework, which will only patch
531	  the kernel if an affected CPU is detected.
532
533	  If unsure, say Y.
534
535config ARM64_ERRATUM_824069
536	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
537	default y
538	select ARM64_WORKAROUND_CLEAN_CACHE
539	help
540	  This option adds an alternative code sequence to work around ARM
541	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
542	  to a coherent interconnect.
543
544	  If a Cortex-A53 processor is executing a store or prefetch for
545	  write instruction at the same time as a processor in another
546	  cluster is executing a cache maintenance operation to the same
547	  address, then this erratum might cause a clean cache line to be
548	  incorrectly marked as dirty.
549
550	  The workaround promotes data cache clean instructions to
551	  data cache clean-and-invalidate.
552	  Please note that this option does not necessarily enable the
553	  workaround, as it depends on the alternative framework, which will
554	  only patch the kernel if an affected CPU is detected.
555
556	  If unsure, say Y.
557
558config ARM64_ERRATUM_819472
559	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
560	default y
561	select ARM64_WORKAROUND_CLEAN_CACHE
562	help
563	  This option adds an alternative code sequence to work around ARM
564	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
565	  present when it is connected to a coherent interconnect.
566
567	  If the processor is executing a load and store exclusive sequence at
568	  the same time as a processor in another cluster is executing a cache
569	  maintenance operation to the same address, then this erratum might
570	  cause data corruption.
571
572	  The workaround promotes data cache clean instructions to
573	  data cache clean-and-invalidate.
574	  Please note that this does not necessarily enable the workaround,
575	  as it depends on the alternative framework, which will only patch
576	  the kernel if an affected CPU is detected.
577
578	  If unsure, say Y.
579
580config ARM64_ERRATUM_832075
581	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
582	default y
583	help
584	  This option adds an alternative code sequence to work around ARM
585	  erratum 832075 on Cortex-A57 parts up to r1p2.
586
587	  Affected Cortex-A57 parts might deadlock when exclusive load/store
588	  instructions to Write-Back memory are mixed with Device loads.
589
590	  The workaround is to promote device loads to use Load-Acquire
591	  semantics.
592	  Please note that this does not necessarily enable the workaround,
593	  as it depends on the alternative framework, which will only patch
594	  the kernel if an affected CPU is detected.
595
596	  If unsure, say Y.
597
598config ARM64_ERRATUM_834220
599	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
600	depends on KVM
601	help
602	  This option adds an alternative code sequence to work around ARM
603	  erratum 834220 on Cortex-A57 parts up to r1p2.
604
605	  Affected Cortex-A57 parts might report a Stage 2 translation
606	  fault as the result of a Stage 1 fault for load crossing a
607	  page boundary when there is a permission or device memory
608	  alignment fault at Stage 1 and a translation fault at Stage 2.
609
610	  The workaround is to verify that the Stage 1 translation
611	  doesn't generate a fault before handling the Stage 2 fault.
612	  Please note that this does not necessarily enable the workaround,
613	  as it depends on the alternative framework, which will only patch
614	  the kernel if an affected CPU is detected.
615
616	  If unsure, say N.
617
618config ARM64_ERRATUM_1742098
619	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
620	depends on COMPAT
621	default y
622	help
623	  This option removes the AES hwcap for aarch32 user-space to
624	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
625
626	  Affected parts may corrupt the AES state if an interrupt is
627	  taken between a pair of AES instructions. These instructions
628	  are only present if the cryptography extensions are present.
629	  All software should have a fallback implementation for CPUs
630	  that don't implement the cryptography extensions.
631
632	  If unsure, say Y.
633
634config ARM64_ERRATUM_845719
635	bool "Cortex-A53: 845719: a load might read incorrect data"
636	depends on COMPAT
637	default y
638	help
639	  This option adds an alternative code sequence to work around ARM
640	  erratum 845719 on Cortex-A53 parts up to r0p4.
641
642	  When running a compat (AArch32) userspace on an affected Cortex-A53
643	  part, a load at EL0 from a virtual address that matches the bottom 32
644	  bits of the virtual address used by a recent load at (AArch64) EL1
645	  might return incorrect data.
646
647	  The workaround is to write the contextidr_el1 register on exception
648	  return to a 32-bit task.
649	  Please note that this does not necessarily enable the workaround,
650	  as it depends on the alternative framework, which will only patch
651	  the kernel if an affected CPU is detected.
652
653	  If unsure, say Y.
654
655config ARM64_ERRATUM_843419
656	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
657	default y
658	help
659	  This option links the kernel with '--fix-cortex-a53-843419' and
660	  enables PLT support to replace certain ADRP instructions, which can
661	  cause subsequent memory accesses to use an incorrect address on
662	  Cortex-A53 parts up to r0p4.
663
664	  If unsure, say Y.
665
666config ARM64_ERRATUM_1024718
667	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
668	default y
669	help
670	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
671
672	  Affected Cortex-A55 cores (all revisions) could cause incorrect
673	  update of the hardware dirty bit when the DBM/AP bits are updated
674	  without a break-before-make. The workaround is to disable the usage
675	  of hardware DBM locally on the affected cores. CPUs not affected by
676	  this erratum will continue to use the feature.
677
678	  If unsure, say Y.
679
680config ARM64_ERRATUM_1418040
681	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
682	default y
683	depends on COMPAT
684	help
685	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
686	  errata 1188873 and 1418040.
687
688	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
689	  cause register corruption when accessing the timer registers
690	  from AArch32 userspace.
691
692	  If unsure, say Y.
693
694config ARM64_WORKAROUND_SPECULATIVE_AT
695	bool
696
697config ARM64_ERRATUM_1165522
698	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
699	default y
700	select ARM64_WORKAROUND_SPECULATIVE_AT
701	help
702	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
703
704	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
705	  corrupted TLBs by speculating an AT instruction during a guest
706	  context switch.
707
708	  If unsure, say Y.
709
710config ARM64_ERRATUM_1319367
711	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
712	default y
713	select ARM64_WORKAROUND_SPECULATIVE_AT
714	help
715	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
716	  and A72 erratum 1319367
717
718	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
719	  speculating an AT instruction during a guest context switch.
720
721	  If unsure, say Y.
722
723config ARM64_ERRATUM_1530923
724	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
725	default y
726	select ARM64_WORKAROUND_SPECULATIVE_AT
727	help
728	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
729
730	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
731	  corrupted TLBs by speculating an AT instruction during a guest
732	  context switch.
733
734	  If unsure, say Y.
735
736config ARM64_WORKAROUND_REPEAT_TLBI
737	bool
738
739config ARM64_ERRATUM_2441007
740	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
741	select ARM64_WORKAROUND_REPEAT_TLBI
742	help
743	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
744
745	  Under very rare circumstances, affected Cortex-A55 CPUs
746	  may not handle a race between a break-before-make sequence on one
747	  CPU, and another CPU accessing the same page. This could allow a
748	  store to a page that has been unmapped.
749
750	  Work around this by adding the affected CPUs to the list that needs
751	  TLB sequences to be done twice.
752
753	  If unsure, say N.
754
755config ARM64_ERRATUM_1286807
756	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
757	select ARM64_WORKAROUND_REPEAT_TLBI
758	help
759	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
760
761	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
762	  address for a cacheable mapping of a location is being
763	  accessed by a core while another core is remapping the virtual
764	  address to a new physical page using the recommended
765	  break-before-make sequence, then under very rare circumstances
766	  TLBI+DSB completes before a read using the translation being
767	  invalidated has been observed by other observers. The
768	  workaround repeats the TLBI+DSB operation.
769
770	  If unsure, say N.
771
772config ARM64_ERRATUM_1463225
773	bool "Cortex-A76: Software Step might prevent interrupt recognition"
774	default y
775	help
776	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
777
778	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
779	  of a system call instruction (SVC) can prevent recognition of
780	  subsequent interrupts when software stepping is disabled in the
781	  exception handler of the system call and either kernel debugging
782	  is enabled or VHE is in use.
783
784	  Work around the erratum by triggering a dummy step exception
785	  when handling a system call from a task that is being stepped
786	  in a VHE configuration of the kernel.
787
788	  If unsure, say Y.
789
790config ARM64_ERRATUM_1542419
791	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
792	help
793	  This option adds a workaround for ARM Neoverse-N1 erratum
794	  1542419.
795
796	  Affected Neoverse-N1 cores could execute a stale instruction when
797	  modified by another CPU. The workaround depends on a firmware
798	  counterpart.
799
800	  Workaround the issue by hiding the DIC feature from EL0. This
801	  forces user-space to perform cache maintenance.
802
803	  If unsure, say N.
804
805config ARM64_ERRATUM_1508412
806	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
807	default y
808	help
809	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
810
811	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
812	  of a store-exclusive or read of PAR_EL1 and a load with device or
813	  non-cacheable memory attributes. The workaround depends on a firmware
814	  counterpart.
815
816	  KVM guests must also have the workaround implemented or they can
817	  deadlock the system.
818
819	  Work around the issue by inserting DMB SY barriers around PAR_EL1
820	  register reads and warning KVM users. The DMB barrier is sufficient
821	  to prevent a speculative PAR_EL1 read.
822
823	  If unsure, say Y.
824
825config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
826	bool
827
828config ARM64_ERRATUM_2051678
829	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
830	default y
831	help
832	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
833	  Affected Cortex-A510 might not respect the ordering rules for
834	  hardware update of the page table's dirty bit. The workaround
835	  is to not enable the feature on affected CPUs.
836
837	  If unsure, say Y.
838
839config ARM64_ERRATUM_2077057
840	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
841	default y
842	help
843	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
844	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
845	  expected, but a Pointer Authentication trap is taken instead. The
846	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
847	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
848
849	  This can only happen when EL2 is stepping EL1.
850
851	  When these conditions occur, the SPSR_EL2 value is unchanged from the
852	  previous guest entry, and can be restored from the in-memory copy.
853
854	  If unsure, say Y.
855
856config ARM64_ERRATUM_2658417
857	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
858	default y
859	help
860	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
861	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
862	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
863	  A510 CPUs are using shared neon hardware. As the sharing is not
864	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
865	  user-space should not be using these instructions.
866
867	  If unsure, say Y.
868
869config ARM64_ERRATUM_2119858
870	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
871	default y
872	depends on CORESIGHT_TRBE
873	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
874	help
875	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
876
877	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
878	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
879	  the event of a WRAP event.
880
881	  Work around the issue by always making sure we move the TRBPTR_EL1 by
882	  256 bytes before enabling the buffer and filling the first 256 bytes of
883	  the buffer with ETM ignore packets upon disabling.
884
885	  If unsure, say Y.
886
887config ARM64_ERRATUM_2139208
888	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
889	default y
890	depends on CORESIGHT_TRBE
891	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
892	help
893	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
894
895	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
896	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
897	  the event of a WRAP event.
898
899	  Work around the issue by always making sure we move the TRBPTR_EL1 by
900	  256 bytes before enabling the buffer and filling the first 256 bytes of
901	  the buffer with ETM ignore packets upon disabling.
902
903	  If unsure, say Y.
904
905config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
906	bool
907
908config ARM64_ERRATUM_2054223
909	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
910	default y
911	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
912	help
913	  Enable workaround for ARM Cortex-A710 erratum 2054223
914
915	  Affected cores may fail to flush the trace data on a TSB instruction, when
916	  the PE is in trace prohibited state. This will cause losing a few bytes
917	  of the trace cached.
918
919	  Workaround is to issue two TSB consecutively on affected cores.
920
921	  If unsure, say Y.
922
923config ARM64_ERRATUM_2067961
924	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
925	default y
926	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
927	help
928	  Enable workaround for ARM Neoverse-N2 erratum 2067961
929
930	  Affected cores may fail to flush the trace data on a TSB instruction, when
931	  the PE is in trace prohibited state. This will cause losing a few bytes
932	  of the trace cached.
933
934	  Workaround is to issue two TSB consecutively on affected cores.
935
936	  If unsure, say Y.
937
938config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
939	bool
940
941config ARM64_ERRATUM_2253138
942	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
943	depends on CORESIGHT_TRBE
944	default y
945	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
946	help
947	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
948
949	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
950	  for TRBE. Under some conditions, the TRBE might generate a write to the next
951	  virtually addressed page following the last page of the TRBE address space
952	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
953
954	  Work around this in the driver by always making sure that there is a
955	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
956
957	  If unsure, say Y.
958
959config ARM64_ERRATUM_2224489
960	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
961	depends on CORESIGHT_TRBE
962	default y
963	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
964	help
965	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
966
967	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
968	  for TRBE. Under some conditions, the TRBE might generate a write to the next
969	  virtually addressed page following the last page of the TRBE address space
970	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
971
972	  Work around this in the driver by always making sure that there is a
973	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
974
975	  If unsure, say Y.
976
977config ARM64_ERRATUM_2441009
978	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
979	select ARM64_WORKAROUND_REPEAT_TLBI
980	help
981	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
982
983	  Under very rare circumstances, affected Cortex-A510 CPUs
984	  may not handle a race between a break-before-make sequence on one
985	  CPU, and another CPU accessing the same page. This could allow a
986	  store to a page that has been unmapped.
987
988	  Work around this by adding the affected CPUs to the list that needs
989	  TLB sequences to be done twice.
990
991	  If unsure, say N.
992
993config ARM64_ERRATUM_2064142
994	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
995	depends on CORESIGHT_TRBE
996	default y
997	help
998	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
999
1000	  Affected Cortex-A510 core might fail to write into system registers after the
1001	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
1002	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
1003	  and TRBTRG_EL1 will be ignored and will not be effected.
1004
1005	  Work around this in the driver by executing TSB CSYNC and DSB after collection
1006	  is stopped and before performing a system register write to one of the affected
1007	  registers.
1008
1009	  If unsure, say Y.
1010
1011config ARM64_ERRATUM_2038923
1012	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
1013	depends on CORESIGHT_TRBE
1014	default y
1015	help
1016	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
1017
1018	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
1019	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1020	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1021	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1022	  execution changes from a context, in which trace is prohibited to one where it
1023	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1024	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1025	  the trace buffer state might be corrupted.
1026
1027	  Work around this in the driver by preventing an inconsistent view of whether the
1028	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1029	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1030	  two ISB instructions if no ERET is to take place.
1031
1032	  If unsure, say Y.
1033
1034config ARM64_ERRATUM_1902691
1035	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1036	depends on CORESIGHT_TRBE
1037	default y
1038	help
1039	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1040
1041	  Affected Cortex-A510 core might cause trace data corruption, when being written
1042	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1043	  trace data.
1044
1045	  Work around this problem in the driver by just preventing TRBE initialization on
1046	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1047	  on such implementations. This will cover the kernel for any firmware that doesn't
1048	  do this already.
1049
1050	  If unsure, say Y.
1051
1052config ARM64_ERRATUM_2457168
1053	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1054	depends on ARM64_AMU_EXTN
1055	default y
1056	help
1057	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1058
1059	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1060	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1061	  incorrectly giving a significantly higher output value.
1062
1063	  Work around this problem by returning 0 when reading the affected counter in
1064	  key locations that results in disabling all users of this counter. This effect
1065	  is the same to firmware disabling affected counters.
1066
1067	  If unsure, say Y.
1068
1069config ARM64_ERRATUM_2645198
1070	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1071	default y
1072	help
1073	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1074
1075	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1076	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1077	  next instruction abort caused by permission fault.
1078
1079	  Only user-space does executable to non-executable permission transition via
1080	  mprotect() system call. Workaround the problem by doing a break-before-make
1081	  TLB invalidation, for all changes to executable user space mappings.
1082
1083	  If unsure, say Y.
1084
1085config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1086	bool
1087
1088config ARM64_ERRATUM_2966298
1089	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1090	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1091	default y
1092	help
1093	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1094
1095	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1096	  load might leak data from a privileged level via a cache side channel.
1097
1098	  Work around this problem by executing a TLBI before returning to EL0.
1099
1100	  If unsure, say Y.
1101
1102config ARM64_ERRATUM_3117295
1103	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1104	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1105	default y
1106	help
1107	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1108
1109	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1110	  load might leak data from a privileged level via a cache side channel.
1111
1112	  Work around this problem by executing a TLBI before returning to EL0.
1113
1114	  If unsure, say Y.
1115
1116config ARM64_ERRATUM_3194386
1117	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1118	default y
1119	help
1120	  This option adds the workaround for the following errata:
1121
1122	  * ARM Cortex-A76 erratum 3324349
1123	  * ARM Cortex-A77 erratum 3324348
1124	  * ARM Cortex-A78 erratum 3324344
1125	  * ARM Cortex-A78C erratum 3324346
1126	  * ARM Cortex-A78C erratum 3324347
1127	  * ARM Cortex-A710 erratam 3324338
1128	  * ARM Cortex-A715 errartum 3456084
1129	  * ARM Cortex-A720 erratum 3456091
1130	  * ARM Cortex-A725 erratum 3456106
1131	  * ARM Cortex-X1 erratum 3324344
1132	  * ARM Cortex-X1C erratum 3324346
1133	  * ARM Cortex-X2 erratum 3324338
1134	  * ARM Cortex-X3 erratum 3324335
1135	  * ARM Cortex-X4 erratum 3194386
1136	  * ARM Cortex-X925 erratum 3324334
1137	  * ARM Neoverse-N1 erratum 3324349
1138	  * ARM Neoverse N2 erratum 3324339
1139	  * ARM Neoverse-N3 erratum 3456111
1140	  * ARM Neoverse-V1 erratum 3324341
1141	  * ARM Neoverse V2 erratum 3324336
1142	  * ARM Neoverse-V3 erratum 3312417
1143	  * ARM Neoverse-V3AE erratum 3312417
1144
1145	  On affected cores "MSR SSBS, #0" instructions may not affect
1146	  subsequent speculative instructions, which may permit unexepected
1147	  speculative store bypassing.
1148
1149	  Work around this problem by placing a Speculation Barrier (SB) or
1150	  Instruction Synchronization Barrier (ISB) after kernel changes to
1151	  SSBS. The presence of the SSBS special-purpose register is hidden
1152	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1153	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1154
1155	  If unsure, say Y.
1156
1157config CAVIUM_ERRATUM_22375
1158	bool "Cavium erratum 22375, 24313"
1159	default y
1160	help
1161	  Enable workaround for errata 22375 and 24313.
1162
1163	  This implements two gicv3-its errata workarounds for ThunderX. Both
1164	  with a small impact affecting only ITS table allocation.
1165
1166	    erratum 22375: only alloc 8MB table size
1167	    erratum 24313: ignore memory access type
1168
1169	  The fixes are in ITS initialization and basically ignore memory access
1170	  type and table size provided by the TYPER and BASER registers.
1171
1172	  If unsure, say Y.
1173
1174config CAVIUM_ERRATUM_23144
1175	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1176	depends on NUMA
1177	default y
1178	help
1179	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1180
1181	  If unsure, say Y.
1182
1183config CAVIUM_ERRATUM_23154
1184	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1185	default y
1186	help
1187	  The ThunderX GICv3 implementation requires a modified version for
1188	  reading the IAR status to ensure data synchronization
1189	  (access to icc_iar1_el1 is not sync'ed before and after).
1190
1191	  It also suffers from erratum 38545 (also present on Marvell's
1192	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1193	  spuriously presented to the CPU interface.
1194
1195	  If unsure, say Y.
1196
1197config CAVIUM_ERRATUM_27456
1198	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1199	default y
1200	help
1201	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1202	  instructions may cause the icache to become corrupted if it
1203	  contains data for a non-current ASID.  The fix is to
1204	  invalidate the icache when changing the mm context.
1205
1206	  If unsure, say Y.
1207
1208config CAVIUM_ERRATUM_30115
1209	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1210	default y
1211	help
1212	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1213	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1214	  interrupts in host. Trapping both GICv3 group-0 and group-1
1215	  accesses sidesteps the issue.
1216
1217	  If unsure, say Y.
1218
1219config CAVIUM_TX2_ERRATUM_219
1220	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1221	default y
1222	help
1223	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1224	  TTBR update and the corresponding context synchronizing operation can
1225	  cause a spurious Data Abort to be delivered to any hardware thread in
1226	  the CPU core.
1227
1228	  Work around the issue by avoiding the problematic code sequence and
1229	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1230	  trap handler performs the corresponding register access, skips the
1231	  instruction and ensures context synchronization by virtue of the
1232	  exception return.
1233
1234	  If unsure, say Y.
1235
1236config FUJITSU_ERRATUM_010001
1237	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1238	default y
1239	help
1240	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1241	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1242	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1243	  This fault occurs under a specific hardware condition when a
1244	  load/store instruction performs an address translation using:
1245	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1246	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1247	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1248	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1249
1250	  The workaround is to ensure these bits are clear in TCR_ELx.
1251	  The workaround only affects the Fujitsu-A64FX.
1252
1253	  If unsure, say Y.
1254
1255config HISILICON_ERRATUM_161600802
1256	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1257	default y
1258	help
1259	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1260	  when issued ITS commands such as VMOVP and VMAPP, and requires
1261	  a 128kB offset to be applied to the target address in this commands.
1262
1263	  If unsure, say Y.
1264
1265config HISILICON_ERRATUM_162100801
1266	bool "Hip09 162100801 erratum support"
1267	default y
1268	help
1269	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1270	  during unmapping operation, which will cause some vSGIs lost.
1271	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1272	  after VMOVP.
1273
1274	  If unsure, say Y.
1275
1276config QCOM_FALKOR_ERRATUM_1003
1277	bool "Falkor E1003: Incorrect translation due to ASID change"
1278	default y
1279	help
1280	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1281	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1282	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1283	  then only for entries in the walk cache, since the leaf translation
1284	  is unchanged. Work around the erratum by invalidating the walk cache
1285	  entries for the trampoline before entering the kernel proper.
1286
1287config QCOM_FALKOR_ERRATUM_1009
1288	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1289	default y
1290	select ARM64_WORKAROUND_REPEAT_TLBI
1291	help
1292	  On Falkor v1, the CPU may prematurely complete a DSB following a
1293	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1294	  one more time to fix the issue.
1295
1296	  If unsure, say Y.
1297
1298config QCOM_QDF2400_ERRATUM_0065
1299	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1300	default y
1301	help
1302	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1303	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1304	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1305
1306	  If unsure, say Y.
1307
1308config QCOM_FALKOR_ERRATUM_E1041
1309	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1310	default y
1311	help
1312	  Falkor CPU may speculatively fetch instructions from an improper
1313	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1314	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1315
1316	  If unsure, say Y.
1317
1318config NVIDIA_CARMEL_CNP_ERRATUM
1319	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1320	default y
1321	help
1322	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1323	  invalidate shared TLB entries installed by a different core, as it would
1324	  on standard ARM cores.
1325
1326	  If unsure, say Y.
1327
1328config ROCKCHIP_ERRATUM_3568002
1329	bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB"
1330	default y
1331	help
1332	  The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI
1333	  addressing limited to the first 32bit of physical address space.
1334
1335	  If unsure, say Y.
1336
1337config ROCKCHIP_ERRATUM_3588001
1338	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1339	default y
1340	help
1341	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1342	  This means, that its sharability feature may not be used, even though it
1343	  is supported by the IP itself.
1344
1345	  If unsure, say Y.
1346
1347config SOCIONEXT_SYNQUACER_PREITS
1348	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1349	default y
1350	help
1351	  Socionext Synquacer SoCs implement a separate h/w block to generate
1352	  MSI doorbell writes with non-zero values for the device ID.
1353
1354	  If unsure, say Y.
1355
1356endmenu # "ARM errata workarounds via the alternatives framework"
1357
1358choice
1359	prompt "Page size"
1360	default ARM64_4K_PAGES
1361	help
1362	  Page size (translation granule) configuration.
1363
1364config ARM64_4K_PAGES
1365	bool "4KB"
1366	select HAVE_PAGE_SIZE_4KB
1367	help
1368	  This feature enables 4KB pages support.
1369
1370config ARM64_16K_PAGES
1371	bool "16KB"
1372	select HAVE_PAGE_SIZE_16KB
1373	help
1374	  The system will use 16KB pages support. AArch32 emulation
1375	  requires applications compiled with 16K (or a multiple of 16K)
1376	  aligned segments.
1377
1378config ARM64_64K_PAGES
1379	bool "64KB"
1380	select HAVE_PAGE_SIZE_64KB
1381	help
1382	  This feature enables 64KB pages support (4KB by default)
1383	  allowing only two levels of page tables and faster TLB
1384	  look-up. AArch32 emulation requires applications compiled
1385	  with 64K aligned segments.
1386
1387endchoice
1388
1389choice
1390	prompt "Virtual address space size"
1391	default ARM64_VA_BITS_52
1392	help
1393	  Allows choosing one of multiple possible virtual address
1394	  space sizes. The level of translation table is determined by
1395	  a combination of page size and virtual address space size.
1396
1397config ARM64_VA_BITS_36
1398	bool "36-bit" if EXPERT
1399	depends on PAGE_SIZE_16KB
1400
1401config ARM64_VA_BITS_39
1402	bool "39-bit"
1403	depends on PAGE_SIZE_4KB
1404
1405config ARM64_VA_BITS_42
1406	bool "42-bit"
1407	depends on PAGE_SIZE_64KB
1408
1409config ARM64_VA_BITS_47
1410	bool "47-bit"
1411	depends on PAGE_SIZE_16KB
1412
1413config ARM64_VA_BITS_48
1414	bool "48-bit"
1415
1416config ARM64_VA_BITS_52
1417	bool "52-bit"
1418	help
1419	  Enable 52-bit virtual addressing for userspace when explicitly
1420	  requested via a hint to mmap(). The kernel will also use 52-bit
1421	  virtual addresses for its own mappings (provided HW support for
1422	  this feature is available, otherwise it reverts to 48-bit).
1423
1424	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1425	  ARMv8.3 Pointer Authentication will result in the PAC being
1426	  reduced from 7 bits to 3 bits, which may have a significant
1427	  impact on its susceptibility to brute-force attacks.
1428
1429	  If unsure, select 48-bit virtual addressing instead.
1430
1431endchoice
1432
1433config ARM64_FORCE_52BIT
1434	bool "Force 52-bit virtual addresses for userspace"
1435	depends on ARM64_VA_BITS_52 && EXPERT
1436	help
1437	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1438	  to maintain compatibility with older software by providing 48-bit VAs
1439	  unless a hint is supplied to mmap.
1440
1441	  This configuration option disables the 48-bit compatibility logic, and
1442	  forces all userspace addresses to be 52-bit on HW that supports it. One
1443	  should only enable this configuration option for stress testing userspace
1444	  memory management code. If unsure say N here.
1445
1446config ARM64_VA_BITS
1447	int
1448	default 36 if ARM64_VA_BITS_36
1449	default 39 if ARM64_VA_BITS_39
1450	default 42 if ARM64_VA_BITS_42
1451	default 47 if ARM64_VA_BITS_47
1452	default 48 if ARM64_VA_BITS_48
1453	default 52 if ARM64_VA_BITS_52
1454
1455choice
1456	prompt "Physical address space size"
1457	default ARM64_PA_BITS_48
1458	help
1459	  Choose the maximum physical address range that the kernel will
1460	  support.
1461
1462config ARM64_PA_BITS_48
1463	bool "48-bit"
1464	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1465
1466config ARM64_PA_BITS_52
1467	bool "52-bit"
1468	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1469	help
1470	  Enable support for a 52-bit physical address space, introduced as
1471	  part of the ARMv8.2-LPA extension.
1472
1473	  With this enabled, the kernel will also continue to work on CPUs that
1474	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1475	  minor performance overhead).
1476
1477endchoice
1478
1479config ARM64_PA_BITS
1480	int
1481	default 48 if ARM64_PA_BITS_48
1482	default 52 if ARM64_PA_BITS_52
1483
1484config ARM64_LPA2
1485	def_bool y
1486	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1487
1488choice
1489	prompt "Endianness"
1490	default CPU_LITTLE_ENDIAN
1491	help
1492	  Select the endianness of data accesses performed by the CPU. Userspace
1493	  applications will need to be compiled and linked for the endianness
1494	  that is selected here.
1495
1496config CPU_BIG_ENDIAN
1497	bool "Build big-endian kernel"
1498	depends on BROKEN
1499	help
1500	  Say Y if you plan on running a kernel with a big-endian userspace.
1501
1502config CPU_LITTLE_ENDIAN
1503	bool "Build little-endian kernel"
1504	help
1505	  Say Y if you plan on running a kernel with a little-endian userspace.
1506	  This is usually the case for distributions targeting arm64.
1507
1508endchoice
1509
1510config NR_CPUS
1511	int "Maximum number of CPUs (2-4096)"
1512	range 2 4096
1513	default "512"
1514
1515config HOTPLUG_CPU
1516	bool "Support for hot-pluggable CPUs"
1517	select GENERIC_IRQ_MIGRATION
1518	help
1519	  Say Y here to experiment with turning CPUs off and on.  CPUs
1520	  can be controlled through /sys/devices/system/cpu.
1521
1522# Common NUMA Features
1523config NUMA
1524	bool "NUMA Memory Allocation and Scheduler Support"
1525	select GENERIC_ARCH_NUMA
1526	select OF_NUMA
1527	select HAVE_SETUP_PER_CPU_AREA
1528	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1529	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1530	select USE_PERCPU_NUMA_NODE_ID
1531	help
1532	  Enable NUMA (Non-Uniform Memory Access) support.
1533
1534	  The kernel will try to allocate memory used by a CPU on the
1535	  local memory of the CPU and add some more
1536	  NUMA awareness to the kernel.
1537
1538config NODES_SHIFT
1539	int "Maximum NUMA Nodes (as a power of 2)"
1540	range 1 10
1541	default "4"
1542	depends on NUMA
1543	help
1544	  Specify the maximum number of NUMA Nodes available on the target
1545	  system.  Increases memory reserved to accommodate various tables.
1546
1547source "kernel/Kconfig.hz"
1548
1549config ARCH_SPARSEMEM_ENABLE
1550	def_bool y
1551	select SPARSEMEM_VMEMMAP_ENABLE
1552	select SPARSEMEM_VMEMMAP
1553
1554config HW_PERF_EVENTS
1555	def_bool y
1556	depends on ARM_PMU
1557
1558# Supported by clang >= 7.0 or GCC >= 12.0.0
1559config CC_HAVE_SHADOW_CALL_STACK
1560	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1561
1562config PARAVIRT
1563	bool "Enable paravirtualization code"
1564	help
1565	  This changes the kernel so it can modify itself when it is run
1566	  under a hypervisor, potentially improving performance significantly
1567	  over full virtualization.
1568
1569config PARAVIRT_TIME_ACCOUNTING
1570	bool "Paravirtual steal time accounting"
1571	select PARAVIRT
1572	help
1573	  Select this option to enable fine granularity task steal time
1574	  accounting. Time spent executing other tasks in parallel with
1575	  the current vCPU is discounted from the vCPU power. To account for
1576	  that, there can be a small performance impact.
1577
1578	  If in doubt, say N here.
1579
1580config ARCH_SUPPORTS_KEXEC
1581	def_bool PM_SLEEP_SMP
1582
1583config ARCH_SUPPORTS_KEXEC_FILE
1584	def_bool y
1585
1586config ARCH_SELECTS_KEXEC_FILE
1587	def_bool y
1588	depends on KEXEC_FILE
1589	select HAVE_IMA_KEXEC if IMA
1590
1591config ARCH_SUPPORTS_KEXEC_SIG
1592	def_bool y
1593
1594config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1595	def_bool y
1596
1597config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1598	def_bool y
1599
1600config ARCH_SUPPORTS_KEXEC_HANDOVER
1601	def_bool y
1602
1603config ARCH_SUPPORTS_CRASH_DUMP
1604	def_bool y
1605
1606config ARCH_DEFAULT_CRASH_DUMP
1607	def_bool y
1608
1609config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1610	def_bool CRASH_RESERVE
1611
1612config TRANS_TABLE
1613	def_bool y
1614	depends on HIBERNATION || KEXEC_CORE
1615
1616config XEN_DOM0
1617	def_bool y
1618	depends on XEN
1619
1620config XEN
1621	bool "Xen guest support on ARM64"
1622	depends on ARM64 && OF
1623	select SWIOTLB_XEN
1624	select PARAVIRT
1625	help
1626	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1627
1628# include/linux/mmzone.h requires the following to be true:
1629#
1630#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1631#
1632# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1633#
1634#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1635# ----+-------------------+--------------+----------------------+-------------------------+
1636# 4K  |       27          |      12      |       15             |         10              |
1637# 16K |       27          |      14      |       13             |         11              |
1638# 64K |       29          |      16      |       13             |         13              |
1639config ARCH_FORCE_MAX_ORDER
1640	int
1641	default "13" if ARM64_64K_PAGES
1642	default "11" if ARM64_16K_PAGES
1643	default "10"
1644	help
1645	  The kernel page allocator limits the size of maximal physically
1646	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1647	  defines the maximal power of two of number of pages that can be
1648	  allocated as a single contiguous block. This option allows
1649	  overriding the default setting when ability to allocate very
1650	  large blocks of physically contiguous memory is required.
1651
1652	  The maximal size of allocation cannot exceed the size of the
1653	  section, so the value of MAX_PAGE_ORDER should satisfy
1654
1655	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1656
1657	  Don't change if unsure.
1658
1659config UNMAP_KERNEL_AT_EL0
1660	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1661	default y
1662	help
1663	  Speculation attacks against some high-performance processors can
1664	  be used to bypass MMU permission checks and leak kernel data to
1665	  userspace. This can be defended against by unmapping the kernel
1666	  when running in userspace, mapping it back in on exception entry
1667	  via a trampoline page in the vector table.
1668
1669	  If unsure, say Y.
1670
1671config MITIGATE_SPECTRE_BRANCH_HISTORY
1672	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1673	default y
1674	help
1675	  Speculation attacks against some high-performance processors can
1676	  make use of branch history to influence future speculation.
1677	  When taking an exception from user-space, a sequence of branches
1678	  or a firmware call overwrites the branch history.
1679
1680config ARM64_SW_TTBR0_PAN
1681	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1682	depends on !KCSAN
1683	select ARM64_PAN
1684	help
1685	  Enabling this option prevents the kernel from accessing
1686	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1687	  zeroed area and reserved ASID. The user access routines
1688	  restore the valid TTBR0_EL1 temporarily.
1689
1690config ARM64_TAGGED_ADDR_ABI
1691	bool "Enable the tagged user addresses syscall ABI"
1692	default y
1693	help
1694	  When this option is enabled, user applications can opt in to a
1695	  relaxed ABI via prctl() allowing tagged addresses to be passed
1696	  to system calls as pointer arguments. For details, see
1697	  Documentation/arch/arm64/tagged-address-abi.rst.
1698
1699menuconfig COMPAT
1700	bool "Kernel support for 32-bit EL0"
1701	depends on ARM64_4K_PAGES || EXPERT
1702	select HAVE_UID16
1703	select OLD_SIGSUSPEND3
1704	select COMPAT_OLD_SIGACTION
1705	help
1706	  This option enables support for a 32-bit EL0 running under a 64-bit
1707	  kernel at EL1. AArch32-specific components such as system calls,
1708	  the user helper functions, VFP support and the ptrace interface are
1709	  handled appropriately by the kernel.
1710
1711	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1712	  that you will only be able to execute AArch32 binaries that were compiled
1713	  with page size aligned segments.
1714
1715	  If you want to execute 32-bit userspace applications, say Y.
1716
1717if COMPAT
1718
1719config KUSER_HELPERS
1720	bool "Enable kuser helpers page for 32-bit applications"
1721	default y
1722	help
1723	  Warning: disabling this option may break 32-bit user programs.
1724
1725	  Provide kuser helpers to compat tasks. The kernel provides
1726	  helper code to userspace in read only form at a fixed location
1727	  to allow userspace to be independent of the CPU type fitted to
1728	  the system. This permits binaries to be run on ARMv4 through
1729	  to ARMv8 without modification.
1730
1731	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1732
1733	  However, the fixed address nature of these helpers can be used
1734	  by ROP (return orientated programming) authors when creating
1735	  exploits.
1736
1737	  If all of the binaries and libraries which run on your platform
1738	  are built specifically for your platform, and make no use of
1739	  these helpers, then you can turn this option off to hinder
1740	  such exploits. However, in that case, if a binary or library
1741	  relying on those helpers is run, it will not function correctly.
1742
1743	  Say N here only if you are absolutely certain that you do not
1744	  need these helpers; otherwise, the safe option is to say Y.
1745
1746config COMPAT_VDSO
1747	bool "Enable vDSO for 32-bit applications"
1748	depends on !CPU_BIG_ENDIAN
1749	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1750	default y
1751	help
1752	  Place in the process address space of 32-bit applications an
1753	  ELF shared object providing fast implementations of gettimeofday
1754	  and clock_gettime.
1755
1756	  You must have a 32-bit build of glibc 2.22 or later for programs
1757	  to seamlessly take advantage of this.
1758
1759config THUMB2_COMPAT_VDSO
1760	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1761	depends on COMPAT_VDSO
1762	default y
1763	help
1764	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1765	  otherwise with '-marm'.
1766
1767config COMPAT_ALIGNMENT_FIXUPS
1768	bool "Fix up misaligned multi-word loads and stores in user space"
1769
1770menuconfig ARMV8_DEPRECATED
1771	bool "Emulate deprecated/obsolete ARMv8 instructions"
1772	depends on SYSCTL
1773	help
1774	  Legacy software support may require certain instructions
1775	  that have been deprecated or obsoleted in the architecture.
1776
1777	  Enable this config to enable selective emulation of these
1778	  features.
1779
1780	  If unsure, say Y
1781
1782if ARMV8_DEPRECATED
1783
1784config SWP_EMULATION
1785	bool "Emulate SWP/SWPB instructions"
1786	help
1787	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1788	  they are always undefined. Say Y here to enable software
1789	  emulation of these instructions for userspace using LDXR/STXR.
1790	  This feature can be controlled at runtime with the abi.swp
1791	  sysctl which is disabled by default.
1792
1793	  In some older versions of glibc [<=2.8] SWP is used during futex
1794	  trylock() operations with the assumption that the code will not
1795	  be preempted. This invalid assumption may be more likely to fail
1796	  with SWP emulation enabled, leading to deadlock of the user
1797	  application.
1798
1799	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1800	  on an external transaction monitoring block called a global
1801	  monitor to maintain update atomicity. If your system does not
1802	  implement a global monitor, this option can cause programs that
1803	  perform SWP operations to uncached memory to deadlock.
1804
1805	  If unsure, say Y
1806
1807config CP15_BARRIER_EMULATION
1808	bool "Emulate CP15 Barrier instructions"
1809	help
1810	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1811	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1812	  strongly recommended to use the ISB, DSB, and DMB
1813	  instructions instead.
1814
1815	  Say Y here to enable software emulation of these
1816	  instructions for AArch32 userspace code. When this option is
1817	  enabled, CP15 barrier usage is traced which can help
1818	  identify software that needs updating. This feature can be
1819	  controlled at runtime with the abi.cp15_barrier sysctl.
1820
1821	  If unsure, say Y
1822
1823config SETEND_EMULATION
1824	bool "Emulate SETEND instruction"
1825	help
1826	  The SETEND instruction alters the data-endianness of the
1827	  AArch32 EL0, and is deprecated in ARMv8.
1828
1829	  Say Y here to enable software emulation of the instruction
1830	  for AArch32 userspace code. This feature can be controlled
1831	  at runtime with the abi.setend sysctl.
1832
1833	  Note: All the cpus on the system must have mixed endian support at EL0
1834	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1835	  endian - is hotplugged in after this feature has been enabled, there could
1836	  be unexpected results in the applications.
1837
1838	  If unsure, say Y
1839endif # ARMV8_DEPRECATED
1840
1841endif # COMPAT
1842
1843menu "ARMv8.1 architectural features"
1844
1845config ARM64_HW_AFDBM
1846	bool "Support for hardware updates of the Access and Dirty page flags"
1847	default y
1848	help
1849	  The ARMv8.1 architecture extensions introduce support for
1850	  hardware updates of the access and dirty information in page
1851	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1852	  capable processors, accesses to pages with PTE_AF cleared will
1853	  set this bit instead of raising an access flag fault.
1854	  Similarly, writes to read-only pages with the DBM bit set will
1855	  clear the read-only bit (AP[2]) instead of raising a
1856	  permission fault.
1857
1858	  Kernels built with this configuration option enabled continue
1859	  to work on pre-ARMv8.1 hardware and the performance impact is
1860	  minimal. If unsure, say Y.
1861
1862config ARM64_PAN
1863	bool "Enable support for Privileged Access Never (PAN)"
1864	default y
1865	help
1866	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1867	  prevents the kernel or hypervisor from accessing user-space (EL0)
1868	  memory directly.
1869
1870	  Choosing this option will cause any unprotected (not using
1871	  copy_to_user et al) memory access to fail with a permission fault.
1872
1873	  The feature is detected at runtime, and will remain as a 'nop'
1874	  instruction if the cpu does not implement the feature.
1875
1876config ARM64_LSE_ATOMICS
1877	bool
1878	default ARM64_USE_LSE_ATOMICS
1879
1880config ARM64_USE_LSE_ATOMICS
1881	bool "Atomic instructions"
1882	default y
1883	help
1884	  As part of the Large System Extensions, ARMv8.1 introduces new
1885	  atomic instructions that are designed specifically to scale in
1886	  very large systems.
1887
1888	  Say Y here to make use of these instructions for the in-kernel
1889	  atomic routines. This incurs a small overhead on CPUs that do
1890	  not support these instructions.
1891
1892endmenu # "ARMv8.1 architectural features"
1893
1894menu "ARMv8.2 architectural features"
1895
1896config ARM64_PMEM
1897	bool "Enable support for persistent memory"
1898	select ARCH_HAS_PMEM_API
1899	select ARCH_HAS_UACCESS_FLUSHCACHE
1900	help
1901	  Say Y to enable support for the persistent memory API based on the
1902	  ARMv8.2 DCPoP feature.
1903
1904	  The feature is detected at runtime, and the kernel will use DC CVAC
1905	  operations if DC CVAP is not supported (following the behaviour of
1906	  DC CVAP itself if the system does not define a point of persistence).
1907
1908config ARM64_RAS_EXTN
1909	bool "Enable support for RAS CPU Extensions"
1910	default y
1911	help
1912	  CPUs that support the Reliability, Availability and Serviceability
1913	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1914	  errors, classify them and report them to software.
1915
1916	  On CPUs with these extensions system software can use additional
1917	  barriers to determine if faults are pending and read the
1918	  classification from a new set of registers.
1919
1920	  Selecting this feature will allow the kernel to use these barriers
1921	  and access the new registers if the system supports the extension.
1922	  Platform RAS features may additionally depend on firmware support.
1923
1924config ARM64_CNP
1925	bool "Enable support for Common Not Private (CNP) translations"
1926	default y
1927	help
1928	  Common Not Private (CNP) allows translation table entries to
1929	  be shared between different PEs in the same inner shareable
1930	  domain, so the hardware can use this fact to optimise the
1931	  caching of such entries in the TLB.
1932
1933	  Selecting this option allows the CNP feature to be detected
1934	  at runtime, and does not affect PEs that do not implement
1935	  this feature.
1936
1937endmenu # "ARMv8.2 architectural features"
1938
1939menu "ARMv8.3 architectural features"
1940
1941config ARM64_PTR_AUTH
1942	bool "Enable support for pointer authentication"
1943	default y
1944	help
1945	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1946	  instructions for signing and authenticating pointers against secret
1947	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1948	  and other attacks.
1949
1950	  This option enables these instructions at EL0 (i.e. for userspace).
1951	  Choosing this option will cause the kernel to initialise secret keys
1952	  for each process at exec() time, with these keys being
1953	  context-switched along with the process.
1954
1955	  The feature is detected at runtime. If the feature is not present in
1956	  hardware it will not be advertised to userspace/KVM guest nor will it
1957	  be enabled.
1958
1959	  If the feature is present on the boot CPU but not on a late CPU, then
1960	  the late CPU will be parked. Also, if the boot CPU does not have
1961	  address auth and the late CPU has then the late CPU will still boot
1962	  but with the feature disabled. On such a system, this option should
1963	  not be selected.
1964
1965config ARM64_PTR_AUTH_KERNEL
1966	bool "Use pointer authentication for kernel"
1967	default y
1968	depends on ARM64_PTR_AUTH
1969	# Modern compilers insert a .note.gnu.property section note for PAC
1970	# which is only understood by binutils starting with version 2.33.1.
1971	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1972	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1973	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1974	help
1975	  If the compiler supports the -mbranch-protection or
1976	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1977	  will cause the kernel itself to be compiled with return address
1978	  protection. In this case, and if the target hardware is known to
1979	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1980	  disabled with minimal loss of protection.
1981
1982	  This feature works with FUNCTION_GRAPH_TRACER option only if
1983	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1984
1985config CC_HAS_BRANCH_PROT_PAC_RET
1986	# GCC 9 or later, clang 8 or later
1987	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1988
1989config AS_HAS_CFI_NEGATE_RA_STATE
1990	# binutils 2.34+
1991	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1992
1993endmenu # "ARMv8.3 architectural features"
1994
1995menu "ARMv8.4 architectural features"
1996
1997config ARM64_AMU_EXTN
1998	bool "Enable support for the Activity Monitors Unit CPU extension"
1999	default y
2000	help
2001	  The activity monitors extension is an optional extension introduced
2002	  by the ARMv8.4 CPU architecture. This enables support for version 1
2003	  of the activity monitors architecture, AMUv1.
2004
2005	  To enable the use of this extension on CPUs that implement it, say Y.
2006
2007	  Note that for architectural reasons, firmware _must_ implement AMU
2008	  support when running on CPUs that present the activity monitors
2009	  extension. The required support is present in:
2010	    * Version 1.5 and later of the ARM Trusted Firmware
2011
2012	  For kernels that have this configuration enabled but boot with broken
2013	  firmware, you may need to say N here until the firmware is fixed.
2014	  Otherwise you may experience firmware panics or lockups when
2015	  accessing the counter registers. Even if you are not observing these
2016	  symptoms, the values returned by the register reads might not
2017	  correctly reflect reality. Most commonly, the value read will be 0,
2018	  indicating that the counter is not enabled.
2019
2020config ARM64_TLB_RANGE
2021	bool "Enable support for tlbi range feature"
2022	default y
2023	help
2024	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2025	  range of input addresses.
2026
2027endmenu # "ARMv8.4 architectural features"
2028
2029menu "ARMv8.5 architectural features"
2030
2031config AS_HAS_ARMV8_5
2032	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2033
2034config ARM64_BTI
2035	bool "Branch Target Identification support"
2036	default y
2037	help
2038	  Branch Target Identification (part of the ARMv8.5 Extensions)
2039	  provides a mechanism to limit the set of locations to which computed
2040	  branch instructions such as BR or BLR can jump.
2041
2042	  To make use of BTI on CPUs that support it, say Y.
2043
2044	  BTI is intended to provide complementary protection to other control
2045	  flow integrity protection mechanisms, such as the Pointer
2046	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2047	  For this reason, it does not make sense to enable this option without
2048	  also enabling support for pointer authentication.  Thus, when
2049	  enabling this option you should also select ARM64_PTR_AUTH=y.
2050
2051	  Userspace binaries must also be specifically compiled to make use of
2052	  this mechanism.  If you say N here or the hardware does not support
2053	  BTI, such binaries can still run, but you get no additional
2054	  enforcement of branch destinations.
2055
2056config ARM64_BTI_KERNEL
2057	bool "Use Branch Target Identification for kernel"
2058	default y
2059	depends on ARM64_BTI
2060	depends on ARM64_PTR_AUTH_KERNEL
2061	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2062	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2063	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2064	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2065	depends on !CC_IS_GCC
2066	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2067	help
2068	  Build the kernel with Branch Target Identification annotations
2069	  and enable enforcement of this for kernel code. When this option
2070	  is enabled and the system supports BTI all kernel code including
2071	  modular code must have BTI enabled.
2072
2073config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2074	# GCC 9 or later, clang 8 or later
2075	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2076
2077config ARM64_E0PD
2078	bool "Enable support for E0PD"
2079	default y
2080	help
2081	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2082	  that EL0 accesses made via TTBR1 always fault in constant time,
2083	  providing similar benefits to KASLR as those provided by KPTI, but
2084	  with lower overhead and without disrupting legitimate access to
2085	  kernel memory such as SPE.
2086
2087	  This option enables E0PD for TTBR1 where available.
2088
2089config ARM64_AS_HAS_MTE
2090	# Initial support for MTE went in binutils 2.32.0, checked with
2091	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2092	# as a late addition to the final architecture spec (LDGM/STGM)
2093	# is only supported in the newer 2.32.x and 2.33 binutils
2094	# versions, hence the extra "stgm" instruction check below.
2095	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2096
2097config ARM64_MTE
2098	bool "Memory Tagging Extension support"
2099	default y
2100	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2101	depends on AS_HAS_ARMV8_5
2102	# Required for tag checking in the uaccess routines
2103	select ARM64_PAN
2104	select ARCH_HAS_SUBPAGE_FAULTS
2105	select ARCH_USES_HIGH_VMA_FLAGS
2106	select ARCH_USES_PG_ARCH_2
2107	select ARCH_USES_PG_ARCH_3
2108	help
2109	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2110	  architectural support for run-time, always-on detection of
2111	  various classes of memory error to aid with software debugging
2112	  to eliminate vulnerabilities arising from memory-unsafe
2113	  languages.
2114
2115	  This option enables the support for the Memory Tagging
2116	  Extension at EL0 (i.e. for userspace).
2117
2118	  Selecting this option allows the feature to be detected at
2119	  runtime. Any secondary CPU not implementing this feature will
2120	  not be allowed a late bring-up.
2121
2122	  Userspace binaries that want to use this feature must
2123	  explicitly opt in. The mechanism for the userspace is
2124	  described in:
2125
2126	  Documentation/arch/arm64/memory-tagging-extension.rst.
2127
2128endmenu # "ARMv8.5 architectural features"
2129
2130menu "ARMv8.7 architectural features"
2131
2132config ARM64_EPAN
2133	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2134	default y
2135	depends on ARM64_PAN
2136	help
2137	  Enhanced Privileged Access Never (EPAN) allows Privileged
2138	  Access Never to be used with Execute-only mappings.
2139
2140	  The feature is detected at runtime, and will remain disabled
2141	  if the cpu does not implement the feature.
2142endmenu # "ARMv8.7 architectural features"
2143
2144config AS_HAS_MOPS
2145	def_bool $(as-instr,.arch_extension mops)
2146
2147menu "ARMv8.9 architectural features"
2148
2149config ARM64_POE
2150	prompt "Permission Overlay Extension"
2151	def_bool y
2152	select ARCH_USES_HIGH_VMA_FLAGS
2153	select ARCH_HAS_PKEYS
2154	help
2155	  The Permission Overlay Extension is used to implement Memory
2156	  Protection Keys. Memory Protection Keys provides a mechanism for
2157	  enforcing page-based protections, but without requiring modification
2158	  of the page tables when an application changes protection domains.
2159
2160	  For details, see Documentation/core-api/protection-keys.rst
2161
2162	  If unsure, say y.
2163
2164config ARCH_PKEY_BITS
2165	int
2166	default 3
2167
2168config ARM64_HAFT
2169	bool "Support for Hardware managed Access Flag for Table Descriptors"
2170	depends on ARM64_HW_AFDBM
2171	default y
2172	help
2173	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2174	  Flag for Table descriptors. When enabled an architectural executed
2175	  memory access will update the Access Flag in each Table descriptor
2176	  which is accessed during the translation table walk and for which
2177	  the Access Flag is 0. The Access Flag of the Table descriptor use
2178	  the same bit of PTE_AF.
2179
2180	  The feature will only be enabled if all the CPUs in the system
2181	  support this feature. If unsure, say Y.
2182
2183endmenu # "ARMv8.9 architectural features"
2184
2185menu "ARMv9.4 architectural features"
2186
2187config ARM64_GCS
2188	bool "Enable support for Guarded Control Stack (GCS)"
2189	default y
2190	select ARCH_HAS_USER_SHADOW_STACK
2191	select ARCH_USES_HIGH_VMA_FLAGS
2192	help
2193	  Guarded Control Stack (GCS) provides support for a separate
2194	  stack with restricted access which contains only return
2195	  addresses.  This can be used to harden against some attacks
2196	  by comparing return address used by the program with what is
2197	  stored in the GCS, and may also be used to efficiently obtain
2198	  the call stack for applications such as profiling.
2199
2200	  The feature is detected at runtime, and will remain disabled
2201	  if the system does not implement the feature.
2202
2203endmenu # "ARMv9.4 architectural features"
2204
2205config ARM64_SVE
2206	bool "ARM Scalable Vector Extension support"
2207	default y
2208	help
2209	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2210	  execution state which complements and extends the SIMD functionality
2211	  of the base architecture to support much larger vectors and to enable
2212	  additional vectorisation opportunities.
2213
2214	  To enable use of this extension on CPUs that implement it, say Y.
2215
2216	  On CPUs that support the SVE2 extensions, this option will enable
2217	  those too.
2218
2219	  Note that for architectural reasons, firmware _must_ implement SVE
2220	  support when running on SVE capable hardware.  The required support
2221	  is present in:
2222
2223	    * version 1.5 and later of the ARM Trusted Firmware
2224	    * the AArch64 boot wrapper since commit 5e1261e08abf
2225	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2226
2227	  For other firmware implementations, consult the firmware documentation
2228	  or vendor.
2229
2230	  If you need the kernel to boot on SVE-capable hardware with broken
2231	  firmware, you may need to say N here until you get your firmware
2232	  fixed.  Otherwise, you may experience firmware panics or lockups when
2233	  booting the kernel.  If unsure and you are not observing these
2234	  symptoms, you should assume that it is safe to say Y.
2235
2236config ARM64_SME
2237	bool "ARM Scalable Matrix Extension support"
2238	default y
2239	depends on ARM64_SVE
2240	help
2241	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2242	  execution state which utilises a substantial subset of the SVE
2243	  instruction set, together with the addition of new architectural
2244	  register state capable of holding two dimensional matrix tiles to
2245	  enable various matrix operations.
2246
2247config ARM64_PSEUDO_NMI
2248	bool "Support for NMI-like interrupts"
2249	select ARM_GIC_V3
2250	help
2251	  Adds support for mimicking Non-Maskable Interrupts through the use of
2252	  GIC interrupt priority. This support requires version 3 or later of
2253	  ARM GIC.
2254
2255	  This high priority configuration for interrupts needs to be
2256	  explicitly enabled by setting the kernel parameter
2257	  "irqchip.gicv3_pseudo_nmi" to 1.
2258
2259	  If unsure, say N
2260
2261if ARM64_PSEUDO_NMI
2262config ARM64_DEBUG_PRIORITY_MASKING
2263	bool "Debug interrupt priority masking"
2264	help
2265	  This adds runtime checks to functions enabling/disabling
2266	  interrupts when using priority masking. The additional checks verify
2267	  the validity of ICC_PMR_EL1 when calling concerned functions.
2268
2269	  If unsure, say N
2270endif # ARM64_PSEUDO_NMI
2271
2272config RELOCATABLE
2273	bool "Build a relocatable kernel image" if EXPERT
2274	select ARCH_HAS_RELR
2275	default y
2276	help
2277	  This builds the kernel as a Position Independent Executable (PIE),
2278	  which retains all relocation metadata required to relocate the
2279	  kernel binary at runtime to a different virtual address than the
2280	  address it was linked at.
2281	  Since AArch64 uses the RELA relocation format, this requires a
2282	  relocation pass at runtime even if the kernel is loaded at the
2283	  same address it was linked at.
2284
2285config RANDOMIZE_BASE
2286	bool "Randomize the address of the kernel image"
2287	select RELOCATABLE
2288	help
2289	  Randomizes the virtual address at which the kernel image is
2290	  loaded, as a security feature that deters exploit attempts
2291	  relying on knowledge of the location of kernel internals.
2292
2293	  It is the bootloader's job to provide entropy, by passing a
2294	  random u64 value in /chosen/kaslr-seed at kernel entry.
2295
2296	  When booting via the UEFI stub, it will invoke the firmware's
2297	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2298	  to the kernel proper. In addition, it will randomise the physical
2299	  location of the kernel Image as well.
2300
2301	  If unsure, say N.
2302
2303config RANDOMIZE_MODULE_REGION_FULL
2304	bool "Randomize the module region over a 2 GB range"
2305	depends on RANDOMIZE_BASE
2306	default y
2307	help
2308	  Randomizes the location of the module region inside a 2 GB window
2309	  covering the core kernel. This way, it is less likely for modules
2310	  to leak information about the location of core kernel data structures
2311	  but it does imply that function calls between modules and the core
2312	  kernel will need to be resolved via veneers in the module PLT.
2313
2314	  When this option is not set, the module region will be randomized over
2315	  a limited range that contains the [_stext, _etext] interval of the
2316	  core kernel, so branch relocations are almost always in range unless
2317	  the region is exhausted. In this particular case of region
2318	  exhaustion, modules might be able to fall back to a larger 2GB area.
2319
2320config CC_HAVE_STACKPROTECTOR_SYSREG
2321	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2322
2323config STACKPROTECTOR_PER_TASK
2324	def_bool y
2325	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2326
2327config UNWIND_PATCH_PAC_INTO_SCS
2328	bool "Enable shadow call stack dynamically using code patching"
2329	depends on CC_IS_CLANG
2330	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2331	depends on SHADOW_CALL_STACK
2332	select UNWIND_TABLES
2333	select DYNAMIC_SCS
2334
2335config ARM64_CONTPTE
2336	bool "Contiguous PTE mappings for user memory" if EXPERT
2337	depends on TRANSPARENT_HUGEPAGE
2338	default y
2339	help
2340	  When enabled, user mappings are configured using the PTE contiguous
2341	  bit, for any mappings that meet the size and alignment requirements.
2342	  This reduces TLB pressure and improves performance.
2343
2344endmenu # "Kernel Features"
2345
2346menu "Boot options"
2347
2348config ARM64_ACPI_PARKING_PROTOCOL
2349	bool "Enable support for the ARM64 ACPI parking protocol"
2350	depends on ACPI
2351	help
2352	  Enable support for the ARM64 ACPI parking protocol. If disabled
2353	  the kernel will not allow booting through the ARM64 ACPI parking
2354	  protocol even if the corresponding data is present in the ACPI
2355	  MADT table.
2356
2357config CMDLINE
2358	string "Default kernel command string"
2359	default ""
2360	help
2361	  Provide a set of default command-line options at build time by
2362	  entering them here. As a minimum, you should specify the the
2363	  root device (e.g. root=/dev/nfs).
2364
2365choice
2366	prompt "Kernel command line type"
2367	depends on CMDLINE != ""
2368	default CMDLINE_FROM_BOOTLOADER
2369	help
2370	  Choose how the kernel will handle the provided default kernel
2371	  command line string.
2372
2373config CMDLINE_FROM_BOOTLOADER
2374	bool "Use bootloader kernel arguments if available"
2375	help
2376	  Uses the command-line options passed by the boot loader. If
2377	  the boot loader doesn't provide any, the default kernel command
2378	  string provided in CMDLINE will be used.
2379
2380config CMDLINE_FORCE
2381	bool "Always use the default kernel command string"
2382	help
2383	  Always use the default kernel command string, even if the boot
2384	  loader passes other arguments to the kernel.
2385	  This is useful if you cannot or don't want to change the
2386	  command-line options your boot loader passes to the kernel.
2387
2388endchoice
2389
2390config EFI_STUB
2391	bool
2392
2393config EFI
2394	bool "UEFI runtime support"
2395	depends on OF && !CPU_BIG_ENDIAN
2396	depends on KERNEL_MODE_NEON
2397	select ARCH_SUPPORTS_ACPI
2398	select LIBFDT
2399	select UCS2_STRING
2400	select EFI_PARAMS_FROM_FDT
2401	select EFI_RUNTIME_WRAPPERS
2402	select EFI_STUB
2403	select EFI_GENERIC_STUB
2404	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2405	default y
2406	help
2407	  This option provides support for runtime services provided
2408	  by UEFI firmware (such as non-volatile variables, realtime
2409	  clock, and platform reset). A UEFI stub is also provided to
2410	  allow the kernel to be booted as an EFI application. This
2411	  is only useful on systems that have UEFI firmware.
2412
2413config COMPRESSED_INSTALL
2414	bool "Install compressed image by default"
2415	help
2416	  This makes the regular "make install" install the compressed
2417	  image we built, not the legacy uncompressed one.
2418
2419	  You can check that a compressed image works for you by doing
2420	  "make zinstall" first, and verifying that everything is fine
2421	  in your environment before making "make install" do this for
2422	  you.
2423
2424config DMI
2425	bool "Enable support for SMBIOS (DMI) tables"
2426	depends on EFI
2427	default y
2428	help
2429	  This enables SMBIOS/DMI feature for systems.
2430
2431	  This option is only useful on systems that have UEFI firmware.
2432	  However, even with this option, the resultant kernel should
2433	  continue to boot on existing non-UEFI platforms.
2434
2435endmenu # "Boot options"
2436
2437menu "Power management options"
2438
2439source "kernel/power/Kconfig"
2440
2441config ARCH_HIBERNATION_POSSIBLE
2442	def_bool y
2443	depends on CPU_PM
2444
2445config ARCH_HIBERNATION_HEADER
2446	def_bool y
2447	depends on HIBERNATION
2448
2449config ARCH_SUSPEND_POSSIBLE
2450	def_bool y
2451
2452endmenu # "Power management options"
2453
2454menu "CPU Power Management"
2455
2456source "drivers/cpuidle/Kconfig"
2457
2458source "drivers/cpufreq/Kconfig"
2459
2460endmenu # "CPU Power Management"
2461
2462source "drivers/acpi/Kconfig"
2463
2464source "arch/arm64/kvm/Kconfig"
2465
2466source "kernel/livepatch/Kconfig"
2467