xref: /linux/arch/arm64/Kconfig (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KEEPINITRD
34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37	select ARCH_HAS_PTE_DEVMAP
38	select ARCH_HAS_PTE_SPECIAL
39	select ARCH_HAS_HW_PTE_YOUNG
40	select ARCH_HAS_SETUP_DMA_OPS
41	select ARCH_HAS_SET_DIRECT_MAP
42	select ARCH_HAS_SET_MEMORY
43	select ARCH_STACKWALK
44	select ARCH_HAS_STRICT_KERNEL_RWX
45	select ARCH_HAS_STRICT_MODULE_RWX
46	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
47	select ARCH_HAS_SYNC_DMA_FOR_CPU
48	select ARCH_HAS_SYSCALL_WRAPPER
49	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
50	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
51	select ARCH_HAS_ZONE_DMA_SET if EXPERT
52	select ARCH_HAVE_ELF_PROT
53	select ARCH_HAVE_NMI_SAFE_CMPXCHG
54	select ARCH_HAVE_TRACE_MMIO_ACCESS
55	select ARCH_INLINE_READ_LOCK if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
72	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
80	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
81	select ARCH_KEEP_MEMBLOCK
82	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
83	select ARCH_USE_CMPXCHG_LOCKREF
84	select ARCH_USE_GNU_PROPERTY
85	select ARCH_USE_MEMTEST
86	select ARCH_USE_QUEUED_RWLOCKS
87	select ARCH_USE_QUEUED_SPINLOCKS
88	select ARCH_USE_SYM_ANNOTATIONS
89	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
90	select ARCH_SUPPORTS_HUGETLBFS
91	select ARCH_SUPPORTS_MEMORY_FAILURE
92	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
93	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
94	select ARCH_SUPPORTS_LTO_CLANG_THIN
95	select ARCH_SUPPORTS_CFI_CLANG
96	select ARCH_SUPPORTS_ATOMIC_RMW
97	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
98	select ARCH_SUPPORTS_NUMA_BALANCING
99	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
100	select ARCH_SUPPORTS_PER_VMA_LOCK
101	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
102	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
103	select ARCH_WANT_DEFAULT_BPF_JIT
104	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
105	select ARCH_WANT_FRAME_POINTERS
106	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
107	select ARCH_WANT_LD_ORPHAN_WARN
108	select ARCH_WANTS_NO_INSTR
109	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
110	select ARCH_HAS_UBSAN
111	select ARM_AMBA
112	select ARM_ARCH_TIMER
113	select ARM_GIC
114	select AUDIT_ARCH_COMPAT_GENERIC
115	select ARM_GIC_V2M if PCI
116	select ARM_GIC_V3
117	select ARM_GIC_V3_ITS if PCI
118	select ARM_PSCI_FW
119	select BUILDTIME_TABLE_SORT
120	select CLONE_BACKWARDS
121	select COMMON_CLK
122	select CPU_PM if (SUSPEND || CPU_IDLE)
123	select CRC32
124	select DCACHE_WORD_ACCESS
125	select DYNAMIC_FTRACE if FUNCTION_TRACER
126	select DMA_BOUNCE_UNALIGNED_KMALLOC
127	select DMA_DIRECT_REMAP
128	select EDAC_SUPPORT
129	select FRAME_POINTER
130	select FUNCTION_ALIGNMENT_4B
131	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
132	select GENERIC_ALLOCATOR
133	select GENERIC_ARCH_TOPOLOGY
134	select GENERIC_CLOCKEVENTS_BROADCAST
135	select GENERIC_CPU_AUTOPROBE
136	select GENERIC_CPU_DEVICES
137	select GENERIC_CPU_VULNERABILITIES
138	select GENERIC_EARLY_IOREMAP
139	select GENERIC_IDLE_POLL_SETUP
140	select GENERIC_IOREMAP
141	select GENERIC_IRQ_IPI
142	select GENERIC_IRQ_PROBE
143	select GENERIC_IRQ_SHOW
144	select GENERIC_IRQ_SHOW_LEVEL
145	select GENERIC_LIB_DEVMEM_IS_ALLOWED
146	select GENERIC_PCI_IOMAP
147	select GENERIC_PTDUMP
148	select GENERIC_SCHED_CLOCK
149	select GENERIC_SMP_IDLE_THREAD
150	select GENERIC_TIME_VSYSCALL
151	select GENERIC_GETTIMEOFDAY
152	select GENERIC_VDSO_TIME_NS
153	select HARDIRQS_SW_RESEND
154	select HAS_IOPORT
155	select HAVE_MOVE_PMD
156	select HAVE_MOVE_PUD
157	select HAVE_PCI
158	select HAVE_ACPI_APEI if (ACPI && EFI)
159	select HAVE_ALIGNED_STRUCT_PAGE
160	select HAVE_ARCH_AUDITSYSCALL
161	select HAVE_ARCH_BITREVERSE
162	select HAVE_ARCH_COMPILER_H
163	select HAVE_ARCH_HUGE_VMALLOC
164	select HAVE_ARCH_HUGE_VMAP
165	select HAVE_ARCH_JUMP_LABEL
166	select HAVE_ARCH_JUMP_LABEL_RELATIVE
167	select HAVE_ARCH_KASAN
168	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
169	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
170	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
171	# Some instrumentation may be unsound, hence EXPERT
172	select HAVE_ARCH_KCSAN if EXPERT
173	select HAVE_ARCH_KFENCE
174	select HAVE_ARCH_KGDB
175	select HAVE_ARCH_MMAP_RND_BITS
176	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
177	select HAVE_ARCH_PREL32_RELOCATIONS
178	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
179	select HAVE_ARCH_SECCOMP_FILTER
180	select HAVE_ARCH_STACKLEAK
181	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
182	select HAVE_ARCH_TRACEHOOK
183	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
184	select HAVE_ARCH_VMAP_STACK
185	select HAVE_ARM_SMCCC
186	select HAVE_ASM_MODVERSIONS
187	select HAVE_EBPF_JIT
188	select HAVE_C_RECORDMCOUNT
189	select HAVE_CMPXCHG_DOUBLE
190	select HAVE_CMPXCHG_LOCAL
191	select HAVE_CONTEXT_TRACKING_USER
192	select HAVE_DEBUG_KMEMLEAK
193	select HAVE_DMA_CONTIGUOUS
194	select HAVE_DYNAMIC_FTRACE
195	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
196		if $(cc-option,-fpatchable-function-entry=2)
197	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
198		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
199	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
200		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
201		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
202	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
203		if DYNAMIC_FTRACE_WITH_ARGS
204	select HAVE_SAMPLE_FTRACE_DIRECT
205	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
206	select HAVE_EFFICIENT_UNALIGNED_ACCESS
207	select HAVE_FAST_GUP
208	select HAVE_FTRACE_MCOUNT_RECORD
209	select HAVE_FUNCTION_TRACER
210	select HAVE_FUNCTION_ERROR_INJECTION
211	select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
212	select HAVE_FUNCTION_GRAPH_TRACER
213	select HAVE_GCC_PLUGINS
214	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
215		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
216	select HAVE_HW_BREAKPOINT if PERF_EVENTS
217	select HAVE_IOREMAP_PROT
218	select HAVE_IRQ_TIME_ACCOUNTING
219	select HAVE_MOD_ARCH_SPECIFIC
220	select HAVE_NMI
221	select HAVE_PERF_EVENTS
222	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
223	select HAVE_PERF_REGS
224	select HAVE_PERF_USER_STACK_DUMP
225	select HAVE_PREEMPT_DYNAMIC_KEY
226	select HAVE_REGS_AND_STACK_ACCESS_API
227	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
228	select HAVE_FUNCTION_ARG_ACCESS_API
229	select MMU_GATHER_RCU_TABLE_FREE
230	select HAVE_RSEQ
231	select HAVE_RUST if CPU_LITTLE_ENDIAN
232	select HAVE_STACKPROTECTOR
233	select HAVE_SYSCALL_TRACEPOINTS
234	select HAVE_KPROBES
235	select HAVE_KRETPROBES
236	select HAVE_GENERIC_VDSO
237	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
238	select IRQ_DOMAIN
239	select IRQ_FORCED_THREADING
240	select KASAN_VMALLOC if KASAN
241	select LOCK_MM_AND_FIND_VMA
242	select MODULES_USE_ELF_RELA
243	select NEED_DMA_MAP_STATE
244	select NEED_SG_DMA_LENGTH
245	select OF
246	select OF_EARLY_FLATTREE
247	select PCI_DOMAINS_GENERIC if PCI
248	select PCI_ECAM if (ACPI && PCI)
249	select PCI_SYSCALL if PCI
250	select POWER_RESET
251	select POWER_SUPPLY
252	select SPARSE_IRQ
253	select SWIOTLB
254	select SYSCTL_EXCEPTION_TRACE
255	select THREAD_INFO_IN_TASK
256	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
257	select TRACE_IRQFLAGS_SUPPORT
258	select TRACE_IRQFLAGS_NMI_SUPPORT
259	select HAVE_SOFTIRQ_ON_OWN_STACK
260	help
261	  ARM 64-bit (AArch64) Linux support.
262
263config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
264	def_bool CC_IS_CLANG
265	# https://github.com/ClangBuiltLinux/linux/issues/1507
266	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
267	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
268
269config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
270	def_bool CC_IS_GCC
271	depends on $(cc-option,-fpatchable-function-entry=2)
272	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
273
274config 64BIT
275	def_bool y
276
277config MMU
278	def_bool y
279
280config ARM64_CONT_PTE_SHIFT
281	int
282	default 5 if PAGE_SIZE_64KB
283	default 7 if PAGE_SIZE_16KB
284	default 4
285
286config ARM64_CONT_PMD_SHIFT
287	int
288	default 5 if PAGE_SIZE_64KB
289	default 5 if PAGE_SIZE_16KB
290	default 4
291
292config ARCH_MMAP_RND_BITS_MIN
293	default 14 if PAGE_SIZE_64KB
294	default 16 if PAGE_SIZE_16KB
295	default 18
296
297# max bits determined by the following formula:
298#  VA_BITS - PAGE_SHIFT - 3
299config ARCH_MMAP_RND_BITS_MAX
300	default 19 if ARM64_VA_BITS=36
301	default 24 if ARM64_VA_BITS=39
302	default 27 if ARM64_VA_BITS=42
303	default 30 if ARM64_VA_BITS=47
304	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
305	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
306	default 33 if ARM64_VA_BITS=48
307	default 14 if ARM64_64K_PAGES
308	default 16 if ARM64_16K_PAGES
309	default 18
310
311config ARCH_MMAP_RND_COMPAT_BITS_MIN
312	default 7 if ARM64_64K_PAGES
313	default 9 if ARM64_16K_PAGES
314	default 11
315
316config ARCH_MMAP_RND_COMPAT_BITS_MAX
317	default 16
318
319config NO_IOPORT_MAP
320	def_bool y if !PCI
321
322config STACKTRACE_SUPPORT
323	def_bool y
324
325config ILLEGAL_POINTER_VALUE
326	hex
327	default 0xdead000000000000
328
329config LOCKDEP_SUPPORT
330	def_bool y
331
332config GENERIC_BUG
333	def_bool y
334	depends on BUG
335
336config GENERIC_BUG_RELATIVE_POINTERS
337	def_bool y
338	depends on GENERIC_BUG
339
340config GENERIC_HWEIGHT
341	def_bool y
342
343config GENERIC_CSUM
344	def_bool y
345
346config GENERIC_CALIBRATE_DELAY
347	def_bool y
348
349config SMP
350	def_bool y
351
352config KERNEL_MODE_NEON
353	def_bool y
354
355config FIX_EARLYCON_MEM
356	def_bool y
357
358config PGTABLE_LEVELS
359	int
360	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
361	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
362	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
363	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
364	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
365	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
366	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
367	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
368
369config ARCH_SUPPORTS_UPROBES
370	def_bool y
371
372config ARCH_PROC_KCORE_TEXT
373	def_bool y
374
375config BROKEN_GAS_INST
376	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
377
378config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
379	bool
380	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
381	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
382	default y if CC_IS_CLANG
383	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
384	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
385	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
386	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
387	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
388	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
389	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
390	default n
391
392config KASAN_SHADOW_OFFSET
393	hex
394	depends on KASAN_GENERIC || KASAN_SW_TAGS
395	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
396	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
397	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
398	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
399	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
400	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
401	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
402	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
403	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
404	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
405	default 0xffffffffffffffff
406
407config UNWIND_TABLES
408	bool
409
410source "arch/arm64/Kconfig.platforms"
411
412menu "Kernel Features"
413
414menu "ARM errata workarounds via the alternatives framework"
415
416config AMPERE_ERRATUM_AC03_CPU_38
417        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
418	default y
419	help
420	  This option adds an alternative code sequence to work around Ampere
421	  erratum AC03_CPU_38 on AmpereOne.
422
423	  The affected design reports FEAT_HAFDBS as not implemented in
424	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
425	  as required by the architecture. The unadvertised HAFDBS
426	  implementation suffers from an additional erratum where hardware
427	  A/D updates can occur after a PTE has been marked invalid.
428
429	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
430	  which avoids enabling unadvertised hardware Access Flag management
431	  at stage-2.
432
433	  If unsure, say Y.
434
435config ARM64_WORKAROUND_CLEAN_CACHE
436	bool
437
438config ARM64_ERRATUM_826319
439	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
440	default y
441	select ARM64_WORKAROUND_CLEAN_CACHE
442	help
443	  This option adds an alternative code sequence to work around ARM
444	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
445	  AXI master interface and an L2 cache.
446
447	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
448	  and is unable to accept a certain write via this interface, it will
449	  not progress on read data presented on the read data channel and the
450	  system can deadlock.
451
452	  The workaround promotes data cache clean instructions to
453	  data cache clean-and-invalidate.
454	  Please note that this does not necessarily enable the workaround,
455	  as it depends on the alternative framework, which will only patch
456	  the kernel if an affected CPU is detected.
457
458	  If unsure, say Y.
459
460config ARM64_ERRATUM_827319
461	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
462	default y
463	select ARM64_WORKAROUND_CLEAN_CACHE
464	help
465	  This option adds an alternative code sequence to work around ARM
466	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
467	  master interface and an L2 cache.
468
469	  Under certain conditions this erratum can cause a clean line eviction
470	  to occur at the same time as another transaction to the same address
471	  on the AMBA 5 CHI interface, which can cause data corruption if the
472	  interconnect reorders the two transactions.
473
474	  The workaround promotes data cache clean instructions to
475	  data cache clean-and-invalidate.
476	  Please note that this does not necessarily enable the workaround,
477	  as it depends on the alternative framework, which will only patch
478	  the kernel if an affected CPU is detected.
479
480	  If unsure, say Y.
481
482config ARM64_ERRATUM_824069
483	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
484	default y
485	select ARM64_WORKAROUND_CLEAN_CACHE
486	help
487	  This option adds an alternative code sequence to work around ARM
488	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
489	  to a coherent interconnect.
490
491	  If a Cortex-A53 processor is executing a store or prefetch for
492	  write instruction at the same time as a processor in another
493	  cluster is executing a cache maintenance operation to the same
494	  address, then this erratum might cause a clean cache line to be
495	  incorrectly marked as dirty.
496
497	  The workaround promotes data cache clean instructions to
498	  data cache clean-and-invalidate.
499	  Please note that this option does not necessarily enable the
500	  workaround, as it depends on the alternative framework, which will
501	  only patch the kernel if an affected CPU is detected.
502
503	  If unsure, say Y.
504
505config ARM64_ERRATUM_819472
506	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
507	default y
508	select ARM64_WORKAROUND_CLEAN_CACHE
509	help
510	  This option adds an alternative code sequence to work around ARM
511	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
512	  present when it is connected to a coherent interconnect.
513
514	  If the processor is executing a load and store exclusive sequence at
515	  the same time as a processor in another cluster is executing a cache
516	  maintenance operation to the same address, then this erratum might
517	  cause data corruption.
518
519	  The workaround promotes data cache clean instructions to
520	  data cache clean-and-invalidate.
521	  Please note that this does not necessarily enable the workaround,
522	  as it depends on the alternative framework, which will only patch
523	  the kernel if an affected CPU is detected.
524
525	  If unsure, say Y.
526
527config ARM64_ERRATUM_832075
528	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
529	default y
530	help
531	  This option adds an alternative code sequence to work around ARM
532	  erratum 832075 on Cortex-A57 parts up to r1p2.
533
534	  Affected Cortex-A57 parts might deadlock when exclusive load/store
535	  instructions to Write-Back memory are mixed with Device loads.
536
537	  The workaround is to promote device loads to use Load-Acquire
538	  semantics.
539	  Please note that this does not necessarily enable the workaround,
540	  as it depends on the alternative framework, which will only patch
541	  the kernel if an affected CPU is detected.
542
543	  If unsure, say Y.
544
545config ARM64_ERRATUM_834220
546	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
547	depends on KVM
548	help
549	  This option adds an alternative code sequence to work around ARM
550	  erratum 834220 on Cortex-A57 parts up to r1p2.
551
552	  Affected Cortex-A57 parts might report a Stage 2 translation
553	  fault as the result of a Stage 1 fault for load crossing a
554	  page boundary when there is a permission or device memory
555	  alignment fault at Stage 1 and a translation fault at Stage 2.
556
557	  The workaround is to verify that the Stage 1 translation
558	  doesn't generate a fault before handling the Stage 2 fault.
559	  Please note that this does not necessarily enable the workaround,
560	  as it depends on the alternative framework, which will only patch
561	  the kernel if an affected CPU is detected.
562
563	  If unsure, say N.
564
565config ARM64_ERRATUM_1742098
566	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
567	depends on COMPAT
568	default y
569	help
570	  This option removes the AES hwcap for aarch32 user-space to
571	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
572
573	  Affected parts may corrupt the AES state if an interrupt is
574	  taken between a pair of AES instructions. These instructions
575	  are only present if the cryptography extensions are present.
576	  All software should have a fallback implementation for CPUs
577	  that don't implement the cryptography extensions.
578
579	  If unsure, say Y.
580
581config ARM64_ERRATUM_845719
582	bool "Cortex-A53: 845719: a load might read incorrect data"
583	depends on COMPAT
584	default y
585	help
586	  This option adds an alternative code sequence to work around ARM
587	  erratum 845719 on Cortex-A53 parts up to r0p4.
588
589	  When running a compat (AArch32) userspace on an affected Cortex-A53
590	  part, a load at EL0 from a virtual address that matches the bottom 32
591	  bits of the virtual address used by a recent load at (AArch64) EL1
592	  might return incorrect data.
593
594	  The workaround is to write the contextidr_el1 register on exception
595	  return to a 32-bit task.
596	  Please note that this does not necessarily enable the workaround,
597	  as it depends on the alternative framework, which will only patch
598	  the kernel if an affected CPU is detected.
599
600	  If unsure, say Y.
601
602config ARM64_ERRATUM_843419
603	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
604	default y
605	help
606	  This option links the kernel with '--fix-cortex-a53-843419' and
607	  enables PLT support to replace certain ADRP instructions, which can
608	  cause subsequent memory accesses to use an incorrect address on
609	  Cortex-A53 parts up to r0p4.
610
611	  If unsure, say Y.
612
613config ARM64_LD_HAS_FIX_ERRATUM_843419
614	def_bool $(ld-option,--fix-cortex-a53-843419)
615
616config ARM64_ERRATUM_1024718
617	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
618	default y
619	help
620	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
621
622	  Affected Cortex-A55 cores (all revisions) could cause incorrect
623	  update of the hardware dirty bit when the DBM/AP bits are updated
624	  without a break-before-make. The workaround is to disable the usage
625	  of hardware DBM locally on the affected cores. CPUs not affected by
626	  this erratum will continue to use the feature.
627
628	  If unsure, say Y.
629
630config ARM64_ERRATUM_1418040
631	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
632	default y
633	depends on COMPAT
634	help
635	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
636	  errata 1188873 and 1418040.
637
638	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
639	  cause register corruption when accessing the timer registers
640	  from AArch32 userspace.
641
642	  If unsure, say Y.
643
644config ARM64_WORKAROUND_SPECULATIVE_AT
645	bool
646
647config ARM64_ERRATUM_1165522
648	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
649	default y
650	select ARM64_WORKAROUND_SPECULATIVE_AT
651	help
652	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
653
654	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
655	  corrupted TLBs by speculating an AT instruction during a guest
656	  context switch.
657
658	  If unsure, say Y.
659
660config ARM64_ERRATUM_1319367
661	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
662	default y
663	select ARM64_WORKAROUND_SPECULATIVE_AT
664	help
665	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
666	  and A72 erratum 1319367
667
668	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
669	  speculating an AT instruction during a guest context switch.
670
671	  If unsure, say Y.
672
673config ARM64_ERRATUM_1530923
674	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
675	default y
676	select ARM64_WORKAROUND_SPECULATIVE_AT
677	help
678	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
679
680	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
681	  corrupted TLBs by speculating an AT instruction during a guest
682	  context switch.
683
684	  If unsure, say Y.
685
686config ARM64_WORKAROUND_REPEAT_TLBI
687	bool
688
689config ARM64_ERRATUM_2441007
690	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
691	select ARM64_WORKAROUND_REPEAT_TLBI
692	help
693	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
694
695	  Under very rare circumstances, affected Cortex-A55 CPUs
696	  may not handle a race between a break-before-make sequence on one
697	  CPU, and another CPU accessing the same page. This could allow a
698	  store to a page that has been unmapped.
699
700	  Work around this by adding the affected CPUs to the list that needs
701	  TLB sequences to be done twice.
702
703	  If unsure, say N.
704
705config ARM64_ERRATUM_1286807
706	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
707	select ARM64_WORKAROUND_REPEAT_TLBI
708	help
709	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
710
711	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
712	  address for a cacheable mapping of a location is being
713	  accessed by a core while another core is remapping the virtual
714	  address to a new physical page using the recommended
715	  break-before-make sequence, then under very rare circumstances
716	  TLBI+DSB completes before a read using the translation being
717	  invalidated has been observed by other observers. The
718	  workaround repeats the TLBI+DSB operation.
719
720	  If unsure, say N.
721
722config ARM64_ERRATUM_1463225
723	bool "Cortex-A76: Software Step might prevent interrupt recognition"
724	default y
725	help
726	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
727
728	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
729	  of a system call instruction (SVC) can prevent recognition of
730	  subsequent interrupts when software stepping is disabled in the
731	  exception handler of the system call and either kernel debugging
732	  is enabled or VHE is in use.
733
734	  Work around the erratum by triggering a dummy step exception
735	  when handling a system call from a task that is being stepped
736	  in a VHE configuration of the kernel.
737
738	  If unsure, say Y.
739
740config ARM64_ERRATUM_1542419
741	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
742	help
743	  This option adds a workaround for ARM Neoverse-N1 erratum
744	  1542419.
745
746	  Affected Neoverse-N1 cores could execute a stale instruction when
747	  modified by another CPU. The workaround depends on a firmware
748	  counterpart.
749
750	  Workaround the issue by hiding the DIC feature from EL0. This
751	  forces user-space to perform cache maintenance.
752
753	  If unsure, say N.
754
755config ARM64_ERRATUM_1508412
756	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
757	default y
758	help
759	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
760
761	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
762	  of a store-exclusive or read of PAR_EL1 and a load with device or
763	  non-cacheable memory attributes. The workaround depends on a firmware
764	  counterpart.
765
766	  KVM guests must also have the workaround implemented or they can
767	  deadlock the system.
768
769	  Work around the issue by inserting DMB SY barriers around PAR_EL1
770	  register reads and warning KVM users. The DMB barrier is sufficient
771	  to prevent a speculative PAR_EL1 read.
772
773	  If unsure, say Y.
774
775config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
776	bool
777
778config ARM64_ERRATUM_2051678
779	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
780	default y
781	help
782	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
783	  Affected Cortex-A510 might not respect the ordering rules for
784	  hardware update of the page table's dirty bit. The workaround
785	  is to not enable the feature on affected CPUs.
786
787	  If unsure, say Y.
788
789config ARM64_ERRATUM_2077057
790	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
791	default y
792	help
793	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
794	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
795	  expected, but a Pointer Authentication trap is taken instead. The
796	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
797	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
798
799	  This can only happen when EL2 is stepping EL1.
800
801	  When these conditions occur, the SPSR_EL2 value is unchanged from the
802	  previous guest entry, and can be restored from the in-memory copy.
803
804	  If unsure, say Y.
805
806config ARM64_ERRATUM_2658417
807	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
808	default y
809	help
810	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
811	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
812	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
813	  A510 CPUs are using shared neon hardware. As the sharing is not
814	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
815	  user-space should not be using these instructions.
816
817	  If unsure, say Y.
818
819config ARM64_ERRATUM_2119858
820	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
821	default y
822	depends on CORESIGHT_TRBE
823	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
824	help
825	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
826
827	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
828	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
829	  the event of a WRAP event.
830
831	  Work around the issue by always making sure we move the TRBPTR_EL1 by
832	  256 bytes before enabling the buffer and filling the first 256 bytes of
833	  the buffer with ETM ignore packets upon disabling.
834
835	  If unsure, say Y.
836
837config ARM64_ERRATUM_2139208
838	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
839	default y
840	depends on CORESIGHT_TRBE
841	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
842	help
843	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
844
845	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
846	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
847	  the event of a WRAP event.
848
849	  Work around the issue by always making sure we move the TRBPTR_EL1 by
850	  256 bytes before enabling the buffer and filling the first 256 bytes of
851	  the buffer with ETM ignore packets upon disabling.
852
853	  If unsure, say Y.
854
855config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
856	bool
857
858config ARM64_ERRATUM_2054223
859	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
860	default y
861	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
862	help
863	  Enable workaround for ARM Cortex-A710 erratum 2054223
864
865	  Affected cores may fail to flush the trace data on a TSB instruction, when
866	  the PE is in trace prohibited state. This will cause losing a few bytes
867	  of the trace cached.
868
869	  Workaround is to issue two TSB consecutively on affected cores.
870
871	  If unsure, say Y.
872
873config ARM64_ERRATUM_2067961
874	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
875	default y
876	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
877	help
878	  Enable workaround for ARM Neoverse-N2 erratum 2067961
879
880	  Affected cores may fail to flush the trace data on a TSB instruction, when
881	  the PE is in trace prohibited state. This will cause losing a few bytes
882	  of the trace cached.
883
884	  Workaround is to issue two TSB consecutively on affected cores.
885
886	  If unsure, say Y.
887
888config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
889	bool
890
891config ARM64_ERRATUM_2253138
892	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
893	depends on CORESIGHT_TRBE
894	default y
895	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
896	help
897	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
898
899	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
900	  for TRBE. Under some conditions, the TRBE might generate a write to the next
901	  virtually addressed page following the last page of the TRBE address space
902	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
903
904	  Work around this in the driver by always making sure that there is a
905	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
906
907	  If unsure, say Y.
908
909config ARM64_ERRATUM_2224489
910	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
911	depends on CORESIGHT_TRBE
912	default y
913	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
914	help
915	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
916
917	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
918	  for TRBE. Under some conditions, the TRBE might generate a write to the next
919	  virtually addressed page following the last page of the TRBE address space
920	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
921
922	  Work around this in the driver by always making sure that there is a
923	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
924
925	  If unsure, say Y.
926
927config ARM64_ERRATUM_2441009
928	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
929	select ARM64_WORKAROUND_REPEAT_TLBI
930	help
931	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
932
933	  Under very rare circumstances, affected Cortex-A510 CPUs
934	  may not handle a race between a break-before-make sequence on one
935	  CPU, and another CPU accessing the same page. This could allow a
936	  store to a page that has been unmapped.
937
938	  Work around this by adding the affected CPUs to the list that needs
939	  TLB sequences to be done twice.
940
941	  If unsure, say N.
942
943config ARM64_ERRATUM_2064142
944	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
945	depends on CORESIGHT_TRBE
946	default y
947	help
948	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
949
950	  Affected Cortex-A510 core might fail to write into system registers after the
951	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
952	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
953	  and TRBTRG_EL1 will be ignored and will not be effected.
954
955	  Work around this in the driver by executing TSB CSYNC and DSB after collection
956	  is stopped and before performing a system register write to one of the affected
957	  registers.
958
959	  If unsure, say Y.
960
961config ARM64_ERRATUM_2038923
962	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
963	depends on CORESIGHT_TRBE
964	default y
965	help
966	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
967
968	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
969	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
970	  might be corrupted. This happens after TRBE buffer has been enabled by setting
971	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
972	  execution changes from a context, in which trace is prohibited to one where it
973	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
974	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
975	  the trace buffer state might be corrupted.
976
977	  Work around this in the driver by preventing an inconsistent view of whether the
978	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
979	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
980	  two ISB instructions if no ERET is to take place.
981
982	  If unsure, say Y.
983
984config ARM64_ERRATUM_1902691
985	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
986	depends on CORESIGHT_TRBE
987	default y
988	help
989	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
990
991	  Affected Cortex-A510 core might cause trace data corruption, when being written
992	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
993	  trace data.
994
995	  Work around this problem in the driver by just preventing TRBE initialization on
996	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
997	  on such implementations. This will cover the kernel for any firmware that doesn't
998	  do this already.
999
1000	  If unsure, say Y.
1001
1002config ARM64_ERRATUM_2457168
1003	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1004	depends on ARM64_AMU_EXTN
1005	default y
1006	help
1007	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1008
1009	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1010	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1011	  incorrectly giving a significantly higher output value.
1012
1013	  Work around this problem by returning 0 when reading the affected counter in
1014	  key locations that results in disabling all users of this counter. This effect
1015	  is the same to firmware disabling affected counters.
1016
1017	  If unsure, say Y.
1018
1019config ARM64_ERRATUM_2645198
1020	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1021	default y
1022	help
1023	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1024
1025	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1026	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1027	  next instruction abort caused by permission fault.
1028
1029	  Only user-space does executable to non-executable permission transition via
1030	  mprotect() system call. Workaround the problem by doing a break-before-make
1031	  TLB invalidation, for all changes to executable user space mappings.
1032
1033	  If unsure, say Y.
1034
1035config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1036	bool
1037
1038config ARM64_ERRATUM_2966298
1039	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1040	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1041	default y
1042	help
1043	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1044
1045	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1046	  load might leak data from a privileged level via a cache side channel.
1047
1048	  Work around this problem by executing a TLBI before returning to EL0.
1049
1050	  If unsure, say Y.
1051
1052config ARM64_ERRATUM_3117295
1053	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1054	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1055	default y
1056	help
1057	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1058
1059	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1060	  load might leak data from a privileged level via a cache side channel.
1061
1062	  Work around this problem by executing a TLBI before returning to EL0.
1063
1064	  If unsure, say Y.
1065
1066config CAVIUM_ERRATUM_22375
1067	bool "Cavium erratum 22375, 24313"
1068	default y
1069	help
1070	  Enable workaround for errata 22375 and 24313.
1071
1072	  This implements two gicv3-its errata workarounds for ThunderX. Both
1073	  with a small impact affecting only ITS table allocation.
1074
1075	    erratum 22375: only alloc 8MB table size
1076	    erratum 24313: ignore memory access type
1077
1078	  The fixes are in ITS initialization and basically ignore memory access
1079	  type and table size provided by the TYPER and BASER registers.
1080
1081	  If unsure, say Y.
1082
1083config CAVIUM_ERRATUM_23144
1084	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1085	depends on NUMA
1086	default y
1087	help
1088	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1089
1090	  If unsure, say Y.
1091
1092config CAVIUM_ERRATUM_23154
1093	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1094	default y
1095	help
1096	  The ThunderX GICv3 implementation requires a modified version for
1097	  reading the IAR status to ensure data synchronization
1098	  (access to icc_iar1_el1 is not sync'ed before and after).
1099
1100	  It also suffers from erratum 38545 (also present on Marvell's
1101	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1102	  spuriously presented to the CPU interface.
1103
1104	  If unsure, say Y.
1105
1106config CAVIUM_ERRATUM_27456
1107	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1108	default y
1109	help
1110	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1111	  instructions may cause the icache to become corrupted if it
1112	  contains data for a non-current ASID.  The fix is to
1113	  invalidate the icache when changing the mm context.
1114
1115	  If unsure, say Y.
1116
1117config CAVIUM_ERRATUM_30115
1118	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1119	default y
1120	help
1121	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1122	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1123	  interrupts in host. Trapping both GICv3 group-0 and group-1
1124	  accesses sidesteps the issue.
1125
1126	  If unsure, say Y.
1127
1128config CAVIUM_TX2_ERRATUM_219
1129	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1130	default y
1131	help
1132	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1133	  TTBR update and the corresponding context synchronizing operation can
1134	  cause a spurious Data Abort to be delivered to any hardware thread in
1135	  the CPU core.
1136
1137	  Work around the issue by avoiding the problematic code sequence and
1138	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1139	  trap handler performs the corresponding register access, skips the
1140	  instruction and ensures context synchronization by virtue of the
1141	  exception return.
1142
1143	  If unsure, say Y.
1144
1145config FUJITSU_ERRATUM_010001
1146	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1147	default y
1148	help
1149	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1150	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1151	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1152	  This fault occurs under a specific hardware condition when a
1153	  load/store instruction performs an address translation using:
1154	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1155	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1156	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1157	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1158
1159	  The workaround is to ensure these bits are clear in TCR_ELx.
1160	  The workaround only affects the Fujitsu-A64FX.
1161
1162	  If unsure, say Y.
1163
1164config HISILICON_ERRATUM_161600802
1165	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1166	default y
1167	help
1168	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1169	  when issued ITS commands such as VMOVP and VMAPP, and requires
1170	  a 128kB offset to be applied to the target address in this commands.
1171
1172	  If unsure, say Y.
1173
1174config QCOM_FALKOR_ERRATUM_1003
1175	bool "Falkor E1003: Incorrect translation due to ASID change"
1176	default y
1177	help
1178	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1179	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1180	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1181	  then only for entries in the walk cache, since the leaf translation
1182	  is unchanged. Work around the erratum by invalidating the walk cache
1183	  entries for the trampoline before entering the kernel proper.
1184
1185config QCOM_FALKOR_ERRATUM_1009
1186	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1187	default y
1188	select ARM64_WORKAROUND_REPEAT_TLBI
1189	help
1190	  On Falkor v1, the CPU may prematurely complete a DSB following a
1191	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1192	  one more time to fix the issue.
1193
1194	  If unsure, say Y.
1195
1196config QCOM_QDF2400_ERRATUM_0065
1197	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1198	default y
1199	help
1200	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1201	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1202	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1203
1204	  If unsure, say Y.
1205
1206config QCOM_FALKOR_ERRATUM_E1041
1207	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1208	default y
1209	help
1210	  Falkor CPU may speculatively fetch instructions from an improper
1211	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1212	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1213
1214	  If unsure, say Y.
1215
1216config NVIDIA_CARMEL_CNP_ERRATUM
1217	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1218	default y
1219	help
1220	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1221	  invalidate shared TLB entries installed by a different core, as it would
1222	  on standard ARM cores.
1223
1224	  If unsure, say Y.
1225
1226config ROCKCHIP_ERRATUM_3588001
1227	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1228	default y
1229	help
1230	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1231	  This means, that its sharability feature may not be used, even though it
1232	  is supported by the IP itself.
1233
1234	  If unsure, say Y.
1235
1236config SOCIONEXT_SYNQUACER_PREITS
1237	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1238	default y
1239	help
1240	  Socionext Synquacer SoCs implement a separate h/w block to generate
1241	  MSI doorbell writes with non-zero values for the device ID.
1242
1243	  If unsure, say Y.
1244
1245endmenu # "ARM errata workarounds via the alternatives framework"
1246
1247choice
1248	prompt "Page size"
1249	default ARM64_4K_PAGES
1250	help
1251	  Page size (translation granule) configuration.
1252
1253config ARM64_4K_PAGES
1254	bool "4KB"
1255	select HAVE_PAGE_SIZE_4KB
1256	help
1257	  This feature enables 4KB pages support.
1258
1259config ARM64_16K_PAGES
1260	bool "16KB"
1261	select HAVE_PAGE_SIZE_16KB
1262	help
1263	  The system will use 16KB pages support. AArch32 emulation
1264	  requires applications compiled with 16K (or a multiple of 16K)
1265	  aligned segments.
1266
1267config ARM64_64K_PAGES
1268	bool "64KB"
1269	select HAVE_PAGE_SIZE_64KB
1270	help
1271	  This feature enables 64KB pages support (4KB by default)
1272	  allowing only two levels of page tables and faster TLB
1273	  look-up. AArch32 emulation requires applications compiled
1274	  with 64K aligned segments.
1275
1276endchoice
1277
1278choice
1279	prompt "Virtual address space size"
1280	default ARM64_VA_BITS_52
1281	help
1282	  Allows choosing one of multiple possible virtual address
1283	  space sizes. The level of translation table is determined by
1284	  a combination of page size and virtual address space size.
1285
1286config ARM64_VA_BITS_36
1287	bool "36-bit" if EXPERT
1288	depends on PAGE_SIZE_16KB
1289
1290config ARM64_VA_BITS_39
1291	bool "39-bit"
1292	depends on PAGE_SIZE_4KB
1293
1294config ARM64_VA_BITS_42
1295	bool "42-bit"
1296	depends on PAGE_SIZE_64KB
1297
1298config ARM64_VA_BITS_47
1299	bool "47-bit"
1300	depends on PAGE_SIZE_16KB
1301
1302config ARM64_VA_BITS_48
1303	bool "48-bit"
1304
1305config ARM64_VA_BITS_52
1306	bool "52-bit"
1307	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1308	help
1309	  Enable 52-bit virtual addressing for userspace when explicitly
1310	  requested via a hint to mmap(). The kernel will also use 52-bit
1311	  virtual addresses for its own mappings (provided HW support for
1312	  this feature is available, otherwise it reverts to 48-bit).
1313
1314	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1315	  ARMv8.3 Pointer Authentication will result in the PAC being
1316	  reduced from 7 bits to 3 bits, which may have a significant
1317	  impact on its susceptibility to brute-force attacks.
1318
1319	  If unsure, select 48-bit virtual addressing instead.
1320
1321endchoice
1322
1323config ARM64_FORCE_52BIT
1324	bool "Force 52-bit virtual addresses for userspace"
1325	depends on ARM64_VA_BITS_52 && EXPERT
1326	help
1327	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1328	  to maintain compatibility with older software by providing 48-bit VAs
1329	  unless a hint is supplied to mmap.
1330
1331	  This configuration option disables the 48-bit compatibility logic, and
1332	  forces all userspace addresses to be 52-bit on HW that supports it. One
1333	  should only enable this configuration option for stress testing userspace
1334	  memory management code. If unsure say N here.
1335
1336config ARM64_VA_BITS
1337	int
1338	default 36 if ARM64_VA_BITS_36
1339	default 39 if ARM64_VA_BITS_39
1340	default 42 if ARM64_VA_BITS_42
1341	default 47 if ARM64_VA_BITS_47
1342	default 48 if ARM64_VA_BITS_48
1343	default 52 if ARM64_VA_BITS_52
1344
1345choice
1346	prompt "Physical address space size"
1347	default ARM64_PA_BITS_48
1348	help
1349	  Choose the maximum physical address range that the kernel will
1350	  support.
1351
1352config ARM64_PA_BITS_48
1353	bool "48-bit"
1354	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1355
1356config ARM64_PA_BITS_52
1357	bool "52-bit"
1358	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1359	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1360	help
1361	  Enable support for a 52-bit physical address space, introduced as
1362	  part of the ARMv8.2-LPA extension.
1363
1364	  With this enabled, the kernel will also continue to work on CPUs that
1365	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1366	  minor performance overhead).
1367
1368endchoice
1369
1370config ARM64_PA_BITS
1371	int
1372	default 48 if ARM64_PA_BITS_48
1373	default 52 if ARM64_PA_BITS_52
1374
1375config ARM64_LPA2
1376	def_bool y
1377	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1378
1379choice
1380	prompt "Endianness"
1381	default CPU_LITTLE_ENDIAN
1382	help
1383	  Select the endianness of data accesses performed by the CPU. Userspace
1384	  applications will need to be compiled and linked for the endianness
1385	  that is selected here.
1386
1387config CPU_BIG_ENDIAN
1388	bool "Build big-endian kernel"
1389	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1390	depends on AS_IS_GNU || AS_VERSION >= 150000
1391	help
1392	  Say Y if you plan on running a kernel with a big-endian userspace.
1393
1394config CPU_LITTLE_ENDIAN
1395	bool "Build little-endian kernel"
1396	help
1397	  Say Y if you plan on running a kernel with a little-endian userspace.
1398	  This is usually the case for distributions targeting arm64.
1399
1400endchoice
1401
1402config SCHED_MC
1403	bool "Multi-core scheduler support"
1404	help
1405	  Multi-core scheduler support improves the CPU scheduler's decision
1406	  making when dealing with multi-core CPU chips at a cost of slightly
1407	  increased overhead in some places. If unsure say N here.
1408
1409config SCHED_CLUSTER
1410	bool "Cluster scheduler support"
1411	help
1412	  Cluster scheduler support improves the CPU scheduler's decision
1413	  making when dealing with machines that have clusters of CPUs.
1414	  Cluster usually means a couple of CPUs which are placed closely
1415	  by sharing mid-level caches, last-level cache tags or internal
1416	  busses.
1417
1418config SCHED_SMT
1419	bool "SMT scheduler support"
1420	help
1421	  Improves the CPU scheduler's decision making when dealing with
1422	  MultiThreading at a cost of slightly increased overhead in some
1423	  places. If unsure say N here.
1424
1425config NR_CPUS
1426	int "Maximum number of CPUs (2-4096)"
1427	range 2 4096
1428	default "256"
1429
1430config HOTPLUG_CPU
1431	bool "Support for hot-pluggable CPUs"
1432	select GENERIC_IRQ_MIGRATION
1433	help
1434	  Say Y here to experiment with turning CPUs off and on.  CPUs
1435	  can be controlled through /sys/devices/system/cpu.
1436
1437# Common NUMA Features
1438config NUMA
1439	bool "NUMA Memory Allocation and Scheduler Support"
1440	select GENERIC_ARCH_NUMA
1441	select ACPI_NUMA if ACPI
1442	select OF_NUMA
1443	select HAVE_SETUP_PER_CPU_AREA
1444	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1445	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1446	select USE_PERCPU_NUMA_NODE_ID
1447	help
1448	  Enable NUMA (Non-Uniform Memory Access) support.
1449
1450	  The kernel will try to allocate memory used by a CPU on the
1451	  local memory of the CPU and add some more
1452	  NUMA awareness to the kernel.
1453
1454config NODES_SHIFT
1455	int "Maximum NUMA Nodes (as a power of 2)"
1456	range 1 10
1457	default "4"
1458	depends on NUMA
1459	help
1460	  Specify the maximum number of NUMA Nodes available on the target
1461	  system.  Increases memory reserved to accommodate various tables.
1462
1463source "kernel/Kconfig.hz"
1464
1465config ARCH_SPARSEMEM_ENABLE
1466	def_bool y
1467	select SPARSEMEM_VMEMMAP_ENABLE
1468	select SPARSEMEM_VMEMMAP
1469
1470config HW_PERF_EVENTS
1471	def_bool y
1472	depends on ARM_PMU
1473
1474# Supported by clang >= 7.0 or GCC >= 12.0.0
1475config CC_HAVE_SHADOW_CALL_STACK
1476	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1477
1478config PARAVIRT
1479	bool "Enable paravirtualization code"
1480	help
1481	  This changes the kernel so it can modify itself when it is run
1482	  under a hypervisor, potentially improving performance significantly
1483	  over full virtualization.
1484
1485config PARAVIRT_TIME_ACCOUNTING
1486	bool "Paravirtual steal time accounting"
1487	select PARAVIRT
1488	help
1489	  Select this option to enable fine granularity task steal time
1490	  accounting. Time spent executing other tasks in parallel with
1491	  the current vCPU is discounted from the vCPU power. To account for
1492	  that, there can be a small performance impact.
1493
1494	  If in doubt, say N here.
1495
1496config ARCH_SUPPORTS_KEXEC
1497	def_bool PM_SLEEP_SMP
1498
1499config ARCH_SUPPORTS_KEXEC_FILE
1500	def_bool y
1501
1502config ARCH_SELECTS_KEXEC_FILE
1503	def_bool y
1504	depends on KEXEC_FILE
1505	select HAVE_IMA_KEXEC if IMA
1506
1507config ARCH_SUPPORTS_KEXEC_SIG
1508	def_bool y
1509
1510config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1511	def_bool y
1512
1513config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1514	def_bool y
1515
1516config ARCH_SUPPORTS_CRASH_DUMP
1517	def_bool y
1518
1519config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1520	def_bool CRASH_RESERVE
1521
1522config TRANS_TABLE
1523	def_bool y
1524	depends on HIBERNATION || KEXEC_CORE
1525
1526config XEN_DOM0
1527	def_bool y
1528	depends on XEN
1529
1530config XEN
1531	bool "Xen guest support on ARM64"
1532	depends on ARM64 && OF
1533	select SWIOTLB_XEN
1534	select PARAVIRT
1535	help
1536	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1537
1538# include/linux/mmzone.h requires the following to be true:
1539#
1540#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1541#
1542# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1543#
1544#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1545# ----+-------------------+--------------+----------------------+-------------------------+
1546# 4K  |       27          |      12      |       15             |         10              |
1547# 16K |       27          |      14      |       13             |         11              |
1548# 64K |       29          |      16      |       13             |         13              |
1549config ARCH_FORCE_MAX_ORDER
1550	int
1551	default "13" if ARM64_64K_PAGES
1552	default "11" if ARM64_16K_PAGES
1553	default "10"
1554	help
1555	  The kernel page allocator limits the size of maximal physically
1556	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1557	  defines the maximal power of two of number of pages that can be
1558	  allocated as a single contiguous block. This option allows
1559	  overriding the default setting when ability to allocate very
1560	  large blocks of physically contiguous memory is required.
1561
1562	  The maximal size of allocation cannot exceed the size of the
1563	  section, so the value of MAX_PAGE_ORDER should satisfy
1564
1565	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1566
1567	  Don't change if unsure.
1568
1569config UNMAP_KERNEL_AT_EL0
1570	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1571	default y
1572	help
1573	  Speculation attacks against some high-performance processors can
1574	  be used to bypass MMU permission checks and leak kernel data to
1575	  userspace. This can be defended against by unmapping the kernel
1576	  when running in userspace, mapping it back in on exception entry
1577	  via a trampoline page in the vector table.
1578
1579	  If unsure, say Y.
1580
1581config MITIGATE_SPECTRE_BRANCH_HISTORY
1582	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1583	default y
1584	help
1585	  Speculation attacks against some high-performance processors can
1586	  make use of branch history to influence future speculation.
1587	  When taking an exception from user-space, a sequence of branches
1588	  or a firmware call overwrites the branch history.
1589
1590config RODATA_FULL_DEFAULT_ENABLED
1591	bool "Apply r/o permissions of VM areas also to their linear aliases"
1592	default y
1593	help
1594	  Apply read-only attributes of VM areas to the linear alias of
1595	  the backing pages as well. This prevents code or read-only data
1596	  from being modified (inadvertently or intentionally) via another
1597	  mapping of the same memory page. This additional enhancement can
1598	  be turned off at runtime by passing rodata=[off|on] (and turned on
1599	  with rodata=full if this option is set to 'n')
1600
1601	  This requires the linear region to be mapped down to pages,
1602	  which may adversely affect performance in some cases.
1603
1604config ARM64_SW_TTBR0_PAN
1605	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1606	help
1607	  Enabling this option prevents the kernel from accessing
1608	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1609	  zeroed area and reserved ASID. The user access routines
1610	  restore the valid TTBR0_EL1 temporarily.
1611
1612config ARM64_TAGGED_ADDR_ABI
1613	bool "Enable the tagged user addresses syscall ABI"
1614	default y
1615	help
1616	  When this option is enabled, user applications can opt in to a
1617	  relaxed ABI via prctl() allowing tagged addresses to be passed
1618	  to system calls as pointer arguments. For details, see
1619	  Documentation/arch/arm64/tagged-address-abi.rst.
1620
1621menuconfig COMPAT
1622	bool "Kernel support for 32-bit EL0"
1623	depends on ARM64_4K_PAGES || EXPERT
1624	select HAVE_UID16
1625	select OLD_SIGSUSPEND3
1626	select COMPAT_OLD_SIGACTION
1627	help
1628	  This option enables support for a 32-bit EL0 running under a 64-bit
1629	  kernel at EL1. AArch32-specific components such as system calls,
1630	  the user helper functions, VFP support and the ptrace interface are
1631	  handled appropriately by the kernel.
1632
1633	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1634	  that you will only be able to execute AArch32 binaries that were compiled
1635	  with page size aligned segments.
1636
1637	  If you want to execute 32-bit userspace applications, say Y.
1638
1639if COMPAT
1640
1641config KUSER_HELPERS
1642	bool "Enable kuser helpers page for 32-bit applications"
1643	default y
1644	help
1645	  Warning: disabling this option may break 32-bit user programs.
1646
1647	  Provide kuser helpers to compat tasks. The kernel provides
1648	  helper code to userspace in read only form at a fixed location
1649	  to allow userspace to be independent of the CPU type fitted to
1650	  the system. This permits binaries to be run on ARMv4 through
1651	  to ARMv8 without modification.
1652
1653	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1654
1655	  However, the fixed address nature of these helpers can be used
1656	  by ROP (return orientated programming) authors when creating
1657	  exploits.
1658
1659	  If all of the binaries and libraries which run on your platform
1660	  are built specifically for your platform, and make no use of
1661	  these helpers, then you can turn this option off to hinder
1662	  such exploits. However, in that case, if a binary or library
1663	  relying on those helpers is run, it will not function correctly.
1664
1665	  Say N here only if you are absolutely certain that you do not
1666	  need these helpers; otherwise, the safe option is to say Y.
1667
1668config COMPAT_VDSO
1669	bool "Enable vDSO for 32-bit applications"
1670	depends on !CPU_BIG_ENDIAN
1671	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1672	select GENERIC_COMPAT_VDSO
1673	default y
1674	help
1675	  Place in the process address space of 32-bit applications an
1676	  ELF shared object providing fast implementations of gettimeofday
1677	  and clock_gettime.
1678
1679	  You must have a 32-bit build of glibc 2.22 or later for programs
1680	  to seamlessly take advantage of this.
1681
1682config THUMB2_COMPAT_VDSO
1683	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1684	depends on COMPAT_VDSO
1685	default y
1686	help
1687	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1688	  otherwise with '-marm'.
1689
1690config COMPAT_ALIGNMENT_FIXUPS
1691	bool "Fix up misaligned multi-word loads and stores in user space"
1692
1693menuconfig ARMV8_DEPRECATED
1694	bool "Emulate deprecated/obsolete ARMv8 instructions"
1695	depends on SYSCTL
1696	help
1697	  Legacy software support may require certain instructions
1698	  that have been deprecated or obsoleted in the architecture.
1699
1700	  Enable this config to enable selective emulation of these
1701	  features.
1702
1703	  If unsure, say Y
1704
1705if ARMV8_DEPRECATED
1706
1707config SWP_EMULATION
1708	bool "Emulate SWP/SWPB instructions"
1709	help
1710	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1711	  they are always undefined. Say Y here to enable software
1712	  emulation of these instructions for userspace using LDXR/STXR.
1713	  This feature can be controlled at runtime with the abi.swp
1714	  sysctl which is disabled by default.
1715
1716	  In some older versions of glibc [<=2.8] SWP is used during futex
1717	  trylock() operations with the assumption that the code will not
1718	  be preempted. This invalid assumption may be more likely to fail
1719	  with SWP emulation enabled, leading to deadlock of the user
1720	  application.
1721
1722	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1723	  on an external transaction monitoring block called a global
1724	  monitor to maintain update atomicity. If your system does not
1725	  implement a global monitor, this option can cause programs that
1726	  perform SWP operations to uncached memory to deadlock.
1727
1728	  If unsure, say Y
1729
1730config CP15_BARRIER_EMULATION
1731	bool "Emulate CP15 Barrier instructions"
1732	help
1733	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1734	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1735	  strongly recommended to use the ISB, DSB, and DMB
1736	  instructions instead.
1737
1738	  Say Y here to enable software emulation of these
1739	  instructions for AArch32 userspace code. When this option is
1740	  enabled, CP15 barrier usage is traced which can help
1741	  identify software that needs updating. This feature can be
1742	  controlled at runtime with the abi.cp15_barrier sysctl.
1743
1744	  If unsure, say Y
1745
1746config SETEND_EMULATION
1747	bool "Emulate SETEND instruction"
1748	help
1749	  The SETEND instruction alters the data-endianness of the
1750	  AArch32 EL0, and is deprecated in ARMv8.
1751
1752	  Say Y here to enable software emulation of the instruction
1753	  for AArch32 userspace code. This feature can be controlled
1754	  at runtime with the abi.setend sysctl.
1755
1756	  Note: All the cpus on the system must have mixed endian support at EL0
1757	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1758	  endian - is hotplugged in after this feature has been enabled, there could
1759	  be unexpected results in the applications.
1760
1761	  If unsure, say Y
1762endif # ARMV8_DEPRECATED
1763
1764endif # COMPAT
1765
1766menu "ARMv8.1 architectural features"
1767
1768config ARM64_HW_AFDBM
1769	bool "Support for hardware updates of the Access and Dirty page flags"
1770	default y
1771	help
1772	  The ARMv8.1 architecture extensions introduce support for
1773	  hardware updates of the access and dirty information in page
1774	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1775	  capable processors, accesses to pages with PTE_AF cleared will
1776	  set this bit instead of raising an access flag fault.
1777	  Similarly, writes to read-only pages with the DBM bit set will
1778	  clear the read-only bit (AP[2]) instead of raising a
1779	  permission fault.
1780
1781	  Kernels built with this configuration option enabled continue
1782	  to work on pre-ARMv8.1 hardware and the performance impact is
1783	  minimal. If unsure, say Y.
1784
1785config ARM64_PAN
1786	bool "Enable support for Privileged Access Never (PAN)"
1787	default y
1788	help
1789	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1790	  prevents the kernel or hypervisor from accessing user-space (EL0)
1791	  memory directly.
1792
1793	  Choosing this option will cause any unprotected (not using
1794	  copy_to_user et al) memory access to fail with a permission fault.
1795
1796	  The feature is detected at runtime, and will remain as a 'nop'
1797	  instruction if the cpu does not implement the feature.
1798
1799config AS_HAS_LSE_ATOMICS
1800	def_bool $(as-instr,.arch_extension lse)
1801
1802config ARM64_LSE_ATOMICS
1803	bool
1804	default ARM64_USE_LSE_ATOMICS
1805	depends on AS_HAS_LSE_ATOMICS
1806
1807config ARM64_USE_LSE_ATOMICS
1808	bool "Atomic instructions"
1809	default y
1810	help
1811	  As part of the Large System Extensions, ARMv8.1 introduces new
1812	  atomic instructions that are designed specifically to scale in
1813	  very large systems.
1814
1815	  Say Y here to make use of these instructions for the in-kernel
1816	  atomic routines. This incurs a small overhead on CPUs that do
1817	  not support these instructions and requires the kernel to be
1818	  built with binutils >= 2.25 in order for the new instructions
1819	  to be used.
1820
1821endmenu # "ARMv8.1 architectural features"
1822
1823menu "ARMv8.2 architectural features"
1824
1825config AS_HAS_ARMV8_2
1826	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1827
1828config AS_HAS_SHA3
1829	def_bool $(as-instr,.arch armv8.2-a+sha3)
1830
1831config ARM64_PMEM
1832	bool "Enable support for persistent memory"
1833	select ARCH_HAS_PMEM_API
1834	select ARCH_HAS_UACCESS_FLUSHCACHE
1835	help
1836	  Say Y to enable support for the persistent memory API based on the
1837	  ARMv8.2 DCPoP feature.
1838
1839	  The feature is detected at runtime, and the kernel will use DC CVAC
1840	  operations if DC CVAP is not supported (following the behaviour of
1841	  DC CVAP itself if the system does not define a point of persistence).
1842
1843config ARM64_RAS_EXTN
1844	bool "Enable support for RAS CPU Extensions"
1845	default y
1846	help
1847	  CPUs that support the Reliability, Availability and Serviceability
1848	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1849	  errors, classify them and report them to software.
1850
1851	  On CPUs with these extensions system software can use additional
1852	  barriers to determine if faults are pending and read the
1853	  classification from a new set of registers.
1854
1855	  Selecting this feature will allow the kernel to use these barriers
1856	  and access the new registers if the system supports the extension.
1857	  Platform RAS features may additionally depend on firmware support.
1858
1859config ARM64_CNP
1860	bool "Enable support for Common Not Private (CNP) translations"
1861	default y
1862	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1863	help
1864	  Common Not Private (CNP) allows translation table entries to
1865	  be shared between different PEs in the same inner shareable
1866	  domain, so the hardware can use this fact to optimise the
1867	  caching of such entries in the TLB.
1868
1869	  Selecting this option allows the CNP feature to be detected
1870	  at runtime, and does not affect PEs that do not implement
1871	  this feature.
1872
1873endmenu # "ARMv8.2 architectural features"
1874
1875menu "ARMv8.3 architectural features"
1876
1877config ARM64_PTR_AUTH
1878	bool "Enable support for pointer authentication"
1879	default y
1880	help
1881	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1882	  instructions for signing and authenticating pointers against secret
1883	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1884	  and other attacks.
1885
1886	  This option enables these instructions at EL0 (i.e. for userspace).
1887	  Choosing this option will cause the kernel to initialise secret keys
1888	  for each process at exec() time, with these keys being
1889	  context-switched along with the process.
1890
1891	  The feature is detected at runtime. If the feature is not present in
1892	  hardware it will not be advertised to userspace/KVM guest nor will it
1893	  be enabled.
1894
1895	  If the feature is present on the boot CPU but not on a late CPU, then
1896	  the late CPU will be parked. Also, if the boot CPU does not have
1897	  address auth and the late CPU has then the late CPU will still boot
1898	  but with the feature disabled. On such a system, this option should
1899	  not be selected.
1900
1901config ARM64_PTR_AUTH_KERNEL
1902	bool "Use pointer authentication for kernel"
1903	default y
1904	depends on ARM64_PTR_AUTH
1905	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1906	# Modern compilers insert a .note.gnu.property section note for PAC
1907	# which is only understood by binutils starting with version 2.33.1.
1908	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1909	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1910	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1911	help
1912	  If the compiler supports the -mbranch-protection or
1913	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1914	  will cause the kernel itself to be compiled with return address
1915	  protection. In this case, and if the target hardware is known to
1916	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1917	  disabled with minimal loss of protection.
1918
1919	  This feature works with FUNCTION_GRAPH_TRACER option only if
1920	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1921
1922config CC_HAS_BRANCH_PROT_PAC_RET
1923	# GCC 9 or later, clang 8 or later
1924	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1925
1926config CC_HAS_SIGN_RETURN_ADDRESS
1927	# GCC 7, 8
1928	def_bool $(cc-option,-msign-return-address=all)
1929
1930config AS_HAS_ARMV8_3
1931	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1932
1933config AS_HAS_CFI_NEGATE_RA_STATE
1934	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1935
1936config AS_HAS_LDAPR
1937	def_bool $(as-instr,.arch_extension rcpc)
1938
1939endmenu # "ARMv8.3 architectural features"
1940
1941menu "ARMv8.4 architectural features"
1942
1943config ARM64_AMU_EXTN
1944	bool "Enable support for the Activity Monitors Unit CPU extension"
1945	default y
1946	help
1947	  The activity monitors extension is an optional extension introduced
1948	  by the ARMv8.4 CPU architecture. This enables support for version 1
1949	  of the activity monitors architecture, AMUv1.
1950
1951	  To enable the use of this extension on CPUs that implement it, say Y.
1952
1953	  Note that for architectural reasons, firmware _must_ implement AMU
1954	  support when running on CPUs that present the activity monitors
1955	  extension. The required support is present in:
1956	    * Version 1.5 and later of the ARM Trusted Firmware
1957
1958	  For kernels that have this configuration enabled but boot with broken
1959	  firmware, you may need to say N here until the firmware is fixed.
1960	  Otherwise you may experience firmware panics or lockups when
1961	  accessing the counter registers. Even if you are not observing these
1962	  symptoms, the values returned by the register reads might not
1963	  correctly reflect reality. Most commonly, the value read will be 0,
1964	  indicating that the counter is not enabled.
1965
1966config AS_HAS_ARMV8_4
1967	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1968
1969config ARM64_TLB_RANGE
1970	bool "Enable support for tlbi range feature"
1971	default y
1972	depends on AS_HAS_ARMV8_4
1973	help
1974	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1975	  range of input addresses.
1976
1977	  The feature introduces new assembly instructions, and they were
1978	  support when binutils >= 2.30.
1979
1980endmenu # "ARMv8.4 architectural features"
1981
1982menu "ARMv8.5 architectural features"
1983
1984config AS_HAS_ARMV8_5
1985	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1986
1987config ARM64_BTI
1988	bool "Branch Target Identification support"
1989	default y
1990	help
1991	  Branch Target Identification (part of the ARMv8.5 Extensions)
1992	  provides a mechanism to limit the set of locations to which computed
1993	  branch instructions such as BR or BLR can jump.
1994
1995	  To make use of BTI on CPUs that support it, say Y.
1996
1997	  BTI is intended to provide complementary protection to other control
1998	  flow integrity protection mechanisms, such as the Pointer
1999	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2000	  For this reason, it does not make sense to enable this option without
2001	  also enabling support for pointer authentication.  Thus, when
2002	  enabling this option you should also select ARM64_PTR_AUTH=y.
2003
2004	  Userspace binaries must also be specifically compiled to make use of
2005	  this mechanism.  If you say N here or the hardware does not support
2006	  BTI, such binaries can still run, but you get no additional
2007	  enforcement of branch destinations.
2008
2009config ARM64_BTI_KERNEL
2010	bool "Use Branch Target Identification for kernel"
2011	default y
2012	depends on ARM64_BTI
2013	depends on ARM64_PTR_AUTH_KERNEL
2014	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2015	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2016	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2017	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2018	depends on !CC_IS_GCC
2019	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2020	help
2021	  Build the kernel with Branch Target Identification annotations
2022	  and enable enforcement of this for kernel code. When this option
2023	  is enabled and the system supports BTI all kernel code including
2024	  modular code must have BTI enabled.
2025
2026config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2027	# GCC 9 or later, clang 8 or later
2028	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2029
2030config ARM64_E0PD
2031	bool "Enable support for E0PD"
2032	default y
2033	help
2034	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2035	  that EL0 accesses made via TTBR1 always fault in constant time,
2036	  providing similar benefits to KASLR as those provided by KPTI, but
2037	  with lower overhead and without disrupting legitimate access to
2038	  kernel memory such as SPE.
2039
2040	  This option enables E0PD for TTBR1 where available.
2041
2042config ARM64_AS_HAS_MTE
2043	# Initial support for MTE went in binutils 2.32.0, checked with
2044	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2045	# as a late addition to the final architecture spec (LDGM/STGM)
2046	# is only supported in the newer 2.32.x and 2.33 binutils
2047	# versions, hence the extra "stgm" instruction check below.
2048	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2049
2050config ARM64_MTE
2051	bool "Memory Tagging Extension support"
2052	default y
2053	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2054	depends on AS_HAS_ARMV8_5
2055	depends on AS_HAS_LSE_ATOMICS
2056	# Required for tag checking in the uaccess routines
2057	depends on ARM64_PAN
2058	select ARCH_HAS_SUBPAGE_FAULTS
2059	select ARCH_USES_HIGH_VMA_FLAGS
2060	select ARCH_USES_PG_ARCH_X
2061	help
2062	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2063	  architectural support for run-time, always-on detection of
2064	  various classes of memory error to aid with software debugging
2065	  to eliminate vulnerabilities arising from memory-unsafe
2066	  languages.
2067
2068	  This option enables the support for the Memory Tagging
2069	  Extension at EL0 (i.e. for userspace).
2070
2071	  Selecting this option allows the feature to be detected at
2072	  runtime. Any secondary CPU not implementing this feature will
2073	  not be allowed a late bring-up.
2074
2075	  Userspace binaries that want to use this feature must
2076	  explicitly opt in. The mechanism for the userspace is
2077	  described in:
2078
2079	  Documentation/arch/arm64/memory-tagging-extension.rst.
2080
2081endmenu # "ARMv8.5 architectural features"
2082
2083menu "ARMv8.7 architectural features"
2084
2085config ARM64_EPAN
2086	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2087	default y
2088	depends on ARM64_PAN
2089	help
2090	  Enhanced Privileged Access Never (EPAN) allows Privileged
2091	  Access Never to be used with Execute-only mappings.
2092
2093	  The feature is detected at runtime, and will remain disabled
2094	  if the cpu does not implement the feature.
2095endmenu # "ARMv8.7 architectural features"
2096
2097config ARM64_SVE
2098	bool "ARM Scalable Vector Extension support"
2099	default y
2100	help
2101	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2102	  execution state which complements and extends the SIMD functionality
2103	  of the base architecture to support much larger vectors and to enable
2104	  additional vectorisation opportunities.
2105
2106	  To enable use of this extension on CPUs that implement it, say Y.
2107
2108	  On CPUs that support the SVE2 extensions, this option will enable
2109	  those too.
2110
2111	  Note that for architectural reasons, firmware _must_ implement SVE
2112	  support when running on SVE capable hardware.  The required support
2113	  is present in:
2114
2115	    * version 1.5 and later of the ARM Trusted Firmware
2116	    * the AArch64 boot wrapper since commit 5e1261e08abf
2117	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2118
2119	  For other firmware implementations, consult the firmware documentation
2120	  or vendor.
2121
2122	  If you need the kernel to boot on SVE-capable hardware with broken
2123	  firmware, you may need to say N here until you get your firmware
2124	  fixed.  Otherwise, you may experience firmware panics or lockups when
2125	  booting the kernel.  If unsure and you are not observing these
2126	  symptoms, you should assume that it is safe to say Y.
2127
2128config ARM64_SME
2129	bool "ARM Scalable Matrix Extension support"
2130	default y
2131	depends on ARM64_SVE
2132	help
2133	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2134	  execution state which utilises a substantial subset of the SVE
2135	  instruction set, together with the addition of new architectural
2136	  register state capable of holding two dimensional matrix tiles to
2137	  enable various matrix operations.
2138
2139config ARM64_PSEUDO_NMI
2140	bool "Support for NMI-like interrupts"
2141	select ARM_GIC_V3
2142	help
2143	  Adds support for mimicking Non-Maskable Interrupts through the use of
2144	  GIC interrupt priority. This support requires version 3 or later of
2145	  ARM GIC.
2146
2147	  This high priority configuration for interrupts needs to be
2148	  explicitly enabled by setting the kernel parameter
2149	  "irqchip.gicv3_pseudo_nmi" to 1.
2150
2151	  If unsure, say N
2152
2153if ARM64_PSEUDO_NMI
2154config ARM64_DEBUG_PRIORITY_MASKING
2155	bool "Debug interrupt priority masking"
2156	help
2157	  This adds runtime checks to functions enabling/disabling
2158	  interrupts when using priority masking. The additional checks verify
2159	  the validity of ICC_PMR_EL1 when calling concerned functions.
2160
2161	  If unsure, say N
2162endif # ARM64_PSEUDO_NMI
2163
2164config RELOCATABLE
2165	bool "Build a relocatable kernel image" if EXPERT
2166	select ARCH_HAS_RELR
2167	default y
2168	help
2169	  This builds the kernel as a Position Independent Executable (PIE),
2170	  which retains all relocation metadata required to relocate the
2171	  kernel binary at runtime to a different virtual address than the
2172	  address it was linked at.
2173	  Since AArch64 uses the RELA relocation format, this requires a
2174	  relocation pass at runtime even if the kernel is loaded at the
2175	  same address it was linked at.
2176
2177config RANDOMIZE_BASE
2178	bool "Randomize the address of the kernel image"
2179	select RELOCATABLE
2180	help
2181	  Randomizes the virtual address at which the kernel image is
2182	  loaded, as a security feature that deters exploit attempts
2183	  relying on knowledge of the location of kernel internals.
2184
2185	  It is the bootloader's job to provide entropy, by passing a
2186	  random u64 value in /chosen/kaslr-seed at kernel entry.
2187
2188	  When booting via the UEFI stub, it will invoke the firmware's
2189	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2190	  to the kernel proper. In addition, it will randomise the physical
2191	  location of the kernel Image as well.
2192
2193	  If unsure, say N.
2194
2195config RANDOMIZE_MODULE_REGION_FULL
2196	bool "Randomize the module region over a 2 GB range"
2197	depends on RANDOMIZE_BASE
2198	default y
2199	help
2200	  Randomizes the location of the module region inside a 2 GB window
2201	  covering the core kernel. This way, it is less likely for modules
2202	  to leak information about the location of core kernel data structures
2203	  but it does imply that function calls between modules and the core
2204	  kernel will need to be resolved via veneers in the module PLT.
2205
2206	  When this option is not set, the module region will be randomized over
2207	  a limited range that contains the [_stext, _etext] interval of the
2208	  core kernel, so branch relocations are almost always in range unless
2209	  the region is exhausted. In this particular case of region
2210	  exhaustion, modules might be able to fall back to a larger 2GB area.
2211
2212config CC_HAVE_STACKPROTECTOR_SYSREG
2213	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2214
2215config STACKPROTECTOR_PER_TASK
2216	def_bool y
2217	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2218
2219config UNWIND_PATCH_PAC_INTO_SCS
2220	bool "Enable shadow call stack dynamically using code patching"
2221	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2222	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2223	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2224	depends on SHADOW_CALL_STACK
2225	select UNWIND_TABLES
2226	select DYNAMIC_SCS
2227
2228config ARM64_CONTPTE
2229	bool "Contiguous PTE mappings for user memory" if EXPERT
2230	depends on TRANSPARENT_HUGEPAGE
2231	default y
2232	help
2233	  When enabled, user mappings are configured using the PTE contiguous
2234	  bit, for any mappings that meet the size and alignment requirements.
2235	  This reduces TLB pressure and improves performance.
2236
2237endmenu # "Kernel Features"
2238
2239menu "Boot options"
2240
2241config ARM64_ACPI_PARKING_PROTOCOL
2242	bool "Enable support for the ARM64 ACPI parking protocol"
2243	depends on ACPI
2244	help
2245	  Enable support for the ARM64 ACPI parking protocol. If disabled
2246	  the kernel will not allow booting through the ARM64 ACPI parking
2247	  protocol even if the corresponding data is present in the ACPI
2248	  MADT table.
2249
2250config CMDLINE
2251	string "Default kernel command string"
2252	default ""
2253	help
2254	  Provide a set of default command-line options at build time by
2255	  entering them here. As a minimum, you should specify the the
2256	  root device (e.g. root=/dev/nfs).
2257
2258choice
2259	prompt "Kernel command line type" if CMDLINE != ""
2260	default CMDLINE_FROM_BOOTLOADER
2261	help
2262	  Choose how the kernel will handle the provided default kernel
2263	  command line string.
2264
2265config CMDLINE_FROM_BOOTLOADER
2266	bool "Use bootloader kernel arguments if available"
2267	help
2268	  Uses the command-line options passed by the boot loader. If
2269	  the boot loader doesn't provide any, the default kernel command
2270	  string provided in CMDLINE will be used.
2271
2272config CMDLINE_FORCE
2273	bool "Always use the default kernel command string"
2274	help
2275	  Always use the default kernel command string, even if the boot
2276	  loader passes other arguments to the kernel.
2277	  This is useful if you cannot or don't want to change the
2278	  command-line options your boot loader passes to the kernel.
2279
2280endchoice
2281
2282config EFI_STUB
2283	bool
2284
2285config EFI
2286	bool "UEFI runtime support"
2287	depends on OF && !CPU_BIG_ENDIAN
2288	depends on KERNEL_MODE_NEON
2289	select ARCH_SUPPORTS_ACPI
2290	select LIBFDT
2291	select UCS2_STRING
2292	select EFI_PARAMS_FROM_FDT
2293	select EFI_RUNTIME_WRAPPERS
2294	select EFI_STUB
2295	select EFI_GENERIC_STUB
2296	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2297	default y
2298	help
2299	  This option provides support for runtime services provided
2300	  by UEFI firmware (such as non-volatile variables, realtime
2301	  clock, and platform reset). A UEFI stub is also provided to
2302	  allow the kernel to be booted as an EFI application. This
2303	  is only useful on systems that have UEFI firmware.
2304
2305config DMI
2306	bool "Enable support for SMBIOS (DMI) tables"
2307	depends on EFI
2308	default y
2309	help
2310	  This enables SMBIOS/DMI feature for systems.
2311
2312	  This option is only useful on systems that have UEFI firmware.
2313	  However, even with this option, the resultant kernel should
2314	  continue to boot on existing non-UEFI platforms.
2315
2316endmenu # "Boot options"
2317
2318menu "Power management options"
2319
2320source "kernel/power/Kconfig"
2321
2322config ARCH_HIBERNATION_POSSIBLE
2323	def_bool y
2324	depends on CPU_PM
2325
2326config ARCH_HIBERNATION_HEADER
2327	def_bool y
2328	depends on HIBERNATION
2329
2330config ARCH_SUSPEND_POSSIBLE
2331	def_bool y
2332
2333endmenu # "Power management options"
2334
2335menu "CPU Power Management"
2336
2337source "drivers/cpuidle/Kconfig"
2338
2339source "drivers/cpufreq/Kconfig"
2340
2341endmenu # "CPU Power Management"
2342
2343source "drivers/acpi/Kconfig"
2344
2345source "arch/arm64/kvm/Kconfig"
2346
2347