xref: /linux/arch/arm64/Kconfig (revision db624e82c55f227b84ac9ebfa3de2f6f5fad666b)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KEEPINITRD
34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37	select ARCH_HAS_PTE_DEVMAP
38	select ARCH_HAS_PTE_SPECIAL
39	select ARCH_HAS_HW_PTE_YOUNG
40	select ARCH_HAS_SETUP_DMA_OPS
41	select ARCH_HAS_SET_DIRECT_MAP
42	select ARCH_HAS_SET_MEMORY
43	select ARCH_STACKWALK
44	select ARCH_HAS_STRICT_KERNEL_RWX
45	select ARCH_HAS_STRICT_MODULE_RWX
46	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
47	select ARCH_HAS_SYNC_DMA_FOR_CPU
48	select ARCH_HAS_SYSCALL_WRAPPER
49	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
50	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
51	select ARCH_HAS_ZONE_DMA_SET if EXPERT
52	select ARCH_HAVE_ELF_PROT
53	select ARCH_HAVE_NMI_SAFE_CMPXCHG
54	select ARCH_HAVE_TRACE_MMIO_ACCESS
55	select ARCH_INLINE_READ_LOCK if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
72	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
80	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
81	select ARCH_KEEP_MEMBLOCK
82	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
83	select ARCH_USE_CMPXCHG_LOCKREF
84	select ARCH_USE_GNU_PROPERTY
85	select ARCH_USE_MEMTEST
86	select ARCH_USE_QUEUED_RWLOCKS
87	select ARCH_USE_QUEUED_SPINLOCKS
88	select ARCH_USE_SYM_ANNOTATIONS
89	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
90	select ARCH_SUPPORTS_HUGETLBFS
91	select ARCH_SUPPORTS_MEMORY_FAILURE
92	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
93	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
94	select ARCH_SUPPORTS_LTO_CLANG_THIN
95	select ARCH_SUPPORTS_CFI_CLANG
96	select ARCH_SUPPORTS_ATOMIC_RMW
97	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
98	select ARCH_SUPPORTS_NUMA_BALANCING
99	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
100	select ARCH_SUPPORTS_PER_VMA_LOCK
101	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
102	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
103	select ARCH_WANT_DEFAULT_BPF_JIT
104	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
105	select ARCH_WANT_FRAME_POINTERS
106	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
107	select ARCH_WANT_LD_ORPHAN_WARN
108	select ARCH_WANTS_NO_INSTR
109	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
110	select ARCH_HAS_UBSAN
111	select ARM_AMBA
112	select ARM_ARCH_TIMER
113	select ARM_GIC
114	select AUDIT_ARCH_COMPAT_GENERIC
115	select ARM_GIC_V2M if PCI
116	select ARM_GIC_V3
117	select ARM_GIC_V3_ITS if PCI
118	select ARM_PSCI_FW
119	select BUILDTIME_TABLE_SORT
120	select CLONE_BACKWARDS
121	select COMMON_CLK
122	select CPU_PM if (SUSPEND || CPU_IDLE)
123	select CRC32
124	select DCACHE_WORD_ACCESS
125	select DYNAMIC_FTRACE if FUNCTION_TRACER
126	select DMA_BOUNCE_UNALIGNED_KMALLOC
127	select DMA_DIRECT_REMAP
128	select EDAC_SUPPORT
129	select FRAME_POINTER
130	select FUNCTION_ALIGNMENT_4B
131	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
132	select GENERIC_ALLOCATOR
133	select GENERIC_ARCH_TOPOLOGY
134	select GENERIC_CLOCKEVENTS_BROADCAST
135	select GENERIC_CPU_AUTOPROBE
136	select GENERIC_CPU_DEVICES
137	select GENERIC_CPU_VULNERABILITIES
138	select GENERIC_EARLY_IOREMAP
139	select GENERIC_IDLE_POLL_SETUP
140	select GENERIC_IOREMAP
141	select GENERIC_IRQ_IPI
142	select GENERIC_IRQ_PROBE
143	select GENERIC_IRQ_SHOW
144	select GENERIC_IRQ_SHOW_LEVEL
145	select GENERIC_LIB_DEVMEM_IS_ALLOWED
146	select GENERIC_PCI_IOMAP
147	select GENERIC_PTDUMP
148	select GENERIC_SCHED_CLOCK
149	select GENERIC_SMP_IDLE_THREAD
150	select GENERIC_TIME_VSYSCALL
151	select GENERIC_GETTIMEOFDAY
152	select GENERIC_VDSO_TIME_NS
153	select HARDIRQS_SW_RESEND
154	select HAS_IOPORT
155	select HAVE_MOVE_PMD
156	select HAVE_MOVE_PUD
157	select HAVE_PCI
158	select HAVE_ACPI_APEI if (ACPI && EFI)
159	select HAVE_ALIGNED_STRUCT_PAGE
160	select HAVE_ARCH_AUDITSYSCALL
161	select HAVE_ARCH_BITREVERSE
162	select HAVE_ARCH_COMPILER_H
163	select HAVE_ARCH_HUGE_VMALLOC
164	select HAVE_ARCH_HUGE_VMAP
165	select HAVE_ARCH_JUMP_LABEL
166	select HAVE_ARCH_JUMP_LABEL_RELATIVE
167	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
168	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
169	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
170	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
171	# Some instrumentation may be unsound, hence EXPERT
172	select HAVE_ARCH_KCSAN if EXPERT
173	select HAVE_ARCH_KFENCE
174	select HAVE_ARCH_KGDB
175	select HAVE_ARCH_MMAP_RND_BITS
176	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
177	select HAVE_ARCH_PREL32_RELOCATIONS
178	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
179	select HAVE_ARCH_SECCOMP_FILTER
180	select HAVE_ARCH_STACKLEAK
181	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
182	select HAVE_ARCH_TRACEHOOK
183	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
184	select HAVE_ARCH_VMAP_STACK
185	select HAVE_ARM_SMCCC
186	select HAVE_ASM_MODVERSIONS
187	select HAVE_EBPF_JIT
188	select HAVE_C_RECORDMCOUNT
189	select HAVE_CMPXCHG_DOUBLE
190	select HAVE_CMPXCHG_LOCAL
191	select HAVE_CONTEXT_TRACKING_USER
192	select HAVE_DEBUG_KMEMLEAK
193	select HAVE_DMA_CONTIGUOUS
194	select HAVE_DYNAMIC_FTRACE
195	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
196		if $(cc-option,-fpatchable-function-entry=2)
197	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
198		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
199	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
200		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
201		    !CC_OPTIMIZE_FOR_SIZE)
202	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
203		if DYNAMIC_FTRACE_WITH_ARGS
204	select HAVE_SAMPLE_FTRACE_DIRECT
205	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
206	select HAVE_EFFICIENT_UNALIGNED_ACCESS
207	select HAVE_FAST_GUP
208	select HAVE_FTRACE_MCOUNT_RECORD
209	select HAVE_FUNCTION_TRACER
210	select HAVE_FUNCTION_ERROR_INJECTION
211	select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
212	select HAVE_FUNCTION_GRAPH_TRACER
213	select HAVE_GCC_PLUGINS
214	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
215		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
216	select HAVE_HW_BREAKPOINT if PERF_EVENTS
217	select HAVE_IOREMAP_PROT
218	select HAVE_IRQ_TIME_ACCOUNTING
219	select HAVE_KVM
220	select HAVE_MOD_ARCH_SPECIFIC
221	select HAVE_NMI
222	select HAVE_PERF_EVENTS
223	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
224	select HAVE_PERF_REGS
225	select HAVE_PERF_USER_STACK_DUMP
226	select HAVE_PREEMPT_DYNAMIC_KEY
227	select HAVE_REGS_AND_STACK_ACCESS_API
228	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
229	select HAVE_FUNCTION_ARG_ACCESS_API
230	select MMU_GATHER_RCU_TABLE_FREE
231	select HAVE_RSEQ
232	select HAVE_STACKPROTECTOR
233	select HAVE_SYSCALL_TRACEPOINTS
234	select HAVE_KPROBES
235	select HAVE_KRETPROBES
236	select HAVE_GENERIC_VDSO
237	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
238	select IRQ_DOMAIN
239	select IRQ_FORCED_THREADING
240	select KASAN_VMALLOC if KASAN
241	select LOCK_MM_AND_FIND_VMA
242	select MODULES_USE_ELF_RELA
243	select NEED_DMA_MAP_STATE
244	select NEED_SG_DMA_LENGTH
245	select OF
246	select OF_EARLY_FLATTREE
247	select PCI_DOMAINS_GENERIC if PCI
248	select PCI_ECAM if (ACPI && PCI)
249	select PCI_SYSCALL if PCI
250	select POWER_RESET
251	select POWER_SUPPLY
252	select SPARSE_IRQ
253	select SWIOTLB
254	select SYSCTL_EXCEPTION_TRACE
255	select THREAD_INFO_IN_TASK
256	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
257	select TRACE_IRQFLAGS_SUPPORT
258	select TRACE_IRQFLAGS_NMI_SUPPORT
259	select HAVE_SOFTIRQ_ON_OWN_STACK
260	help
261	  ARM 64-bit (AArch64) Linux support.
262
263config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
264	def_bool CC_IS_CLANG
265	# https://github.com/ClangBuiltLinux/linux/issues/1507
266	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
267	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
268
269config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
270	def_bool CC_IS_GCC
271	depends on $(cc-option,-fpatchable-function-entry=2)
272	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
273
274config 64BIT
275	def_bool y
276
277config MMU
278	def_bool y
279
280config ARM64_CONT_PTE_SHIFT
281	int
282	default 5 if PAGE_SIZE_64KB
283	default 7 if PAGE_SIZE_16KB
284	default 4
285
286config ARM64_CONT_PMD_SHIFT
287	int
288	default 5 if PAGE_SIZE_64KB
289	default 5 if PAGE_SIZE_16KB
290	default 4
291
292config ARCH_MMAP_RND_BITS_MIN
293	default 14 if PAGE_SIZE_64KB
294	default 16 if PAGE_SIZE_16KB
295	default 18
296
297# max bits determined by the following formula:
298#  VA_BITS - PAGE_SHIFT - 3
299config ARCH_MMAP_RND_BITS_MAX
300	default 19 if ARM64_VA_BITS=36
301	default 24 if ARM64_VA_BITS=39
302	default 27 if ARM64_VA_BITS=42
303	default 30 if ARM64_VA_BITS=47
304	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
305	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
306	default 33 if ARM64_VA_BITS=48
307	default 14 if ARM64_64K_PAGES
308	default 16 if ARM64_16K_PAGES
309	default 18
310
311config ARCH_MMAP_RND_COMPAT_BITS_MIN
312	default 7 if ARM64_64K_PAGES
313	default 9 if ARM64_16K_PAGES
314	default 11
315
316config ARCH_MMAP_RND_COMPAT_BITS_MAX
317	default 16
318
319config NO_IOPORT_MAP
320	def_bool y if !PCI
321
322config STACKTRACE_SUPPORT
323	def_bool y
324
325config ILLEGAL_POINTER_VALUE
326	hex
327	default 0xdead000000000000
328
329config LOCKDEP_SUPPORT
330	def_bool y
331
332config GENERIC_BUG
333	def_bool y
334	depends on BUG
335
336config GENERIC_BUG_RELATIVE_POINTERS
337	def_bool y
338	depends on GENERIC_BUG
339
340config GENERIC_HWEIGHT
341	def_bool y
342
343config GENERIC_CSUM
344	def_bool y
345
346config GENERIC_CALIBRATE_DELAY
347	def_bool y
348
349config SMP
350	def_bool y
351
352config KERNEL_MODE_NEON
353	def_bool y
354
355config FIX_EARLYCON_MEM
356	def_bool y
357
358config PGTABLE_LEVELS
359	int
360	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
361	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
362	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
363	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
364	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
365	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
366
367config ARCH_SUPPORTS_UPROBES
368	def_bool y
369
370config ARCH_PROC_KCORE_TEXT
371	def_bool y
372
373config BROKEN_GAS_INST
374	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
375
376config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
377	bool
378	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
379	# https://reviews.llvm.org/D75044
380	default y if CC_IS_CLANG && (CLANG_VERSION >= 120000)
381	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
382	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
383	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
384	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
385	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
386	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
387	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
388	default n
389
390config KASAN_SHADOW_OFFSET
391	hex
392	depends on KASAN_GENERIC || KASAN_SW_TAGS
393	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
394	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
395	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
396	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
397	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
398	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
399	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
400	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
401	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
402	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
403	default 0xffffffffffffffff
404
405config UNWIND_TABLES
406	bool
407
408source "arch/arm64/Kconfig.platforms"
409
410menu "Kernel Features"
411
412menu "ARM errata workarounds via the alternatives framework"
413
414config AMPERE_ERRATUM_AC03_CPU_38
415        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
416	default y
417	help
418	  This option adds an alternative code sequence to work around Ampere
419	  erratum AC03_CPU_38 on AmpereOne.
420
421	  The affected design reports FEAT_HAFDBS as not implemented in
422	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
423	  as required by the architecture. The unadvertised HAFDBS
424	  implementation suffers from an additional erratum where hardware
425	  A/D updates can occur after a PTE has been marked invalid.
426
427	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
428	  which avoids enabling unadvertised hardware Access Flag management
429	  at stage-2.
430
431	  If unsure, say Y.
432
433config ARM64_WORKAROUND_CLEAN_CACHE
434	bool
435
436config ARM64_ERRATUM_826319
437	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
438	default y
439	select ARM64_WORKAROUND_CLEAN_CACHE
440	help
441	  This option adds an alternative code sequence to work around ARM
442	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
443	  AXI master interface and an L2 cache.
444
445	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
446	  and is unable to accept a certain write via this interface, it will
447	  not progress on read data presented on the read data channel and the
448	  system can deadlock.
449
450	  The workaround promotes data cache clean instructions to
451	  data cache clean-and-invalidate.
452	  Please note that this does not necessarily enable the workaround,
453	  as it depends on the alternative framework, which will only patch
454	  the kernel if an affected CPU is detected.
455
456	  If unsure, say Y.
457
458config ARM64_ERRATUM_827319
459	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
460	default y
461	select ARM64_WORKAROUND_CLEAN_CACHE
462	help
463	  This option adds an alternative code sequence to work around ARM
464	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
465	  master interface and an L2 cache.
466
467	  Under certain conditions this erratum can cause a clean line eviction
468	  to occur at the same time as another transaction to the same address
469	  on the AMBA 5 CHI interface, which can cause data corruption if the
470	  interconnect reorders the two transactions.
471
472	  The workaround promotes data cache clean instructions to
473	  data cache clean-and-invalidate.
474	  Please note that this does not necessarily enable the workaround,
475	  as it depends on the alternative framework, which will only patch
476	  the kernel if an affected CPU is detected.
477
478	  If unsure, say Y.
479
480config ARM64_ERRATUM_824069
481	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
482	default y
483	select ARM64_WORKAROUND_CLEAN_CACHE
484	help
485	  This option adds an alternative code sequence to work around ARM
486	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
487	  to a coherent interconnect.
488
489	  If a Cortex-A53 processor is executing a store or prefetch for
490	  write instruction at the same time as a processor in another
491	  cluster is executing a cache maintenance operation to the same
492	  address, then this erratum might cause a clean cache line to be
493	  incorrectly marked as dirty.
494
495	  The workaround promotes data cache clean instructions to
496	  data cache clean-and-invalidate.
497	  Please note that this option does not necessarily enable the
498	  workaround, as it depends on the alternative framework, which will
499	  only patch the kernel if an affected CPU is detected.
500
501	  If unsure, say Y.
502
503config ARM64_ERRATUM_819472
504	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
505	default y
506	select ARM64_WORKAROUND_CLEAN_CACHE
507	help
508	  This option adds an alternative code sequence to work around ARM
509	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
510	  present when it is connected to a coherent interconnect.
511
512	  If the processor is executing a load and store exclusive sequence at
513	  the same time as a processor in another cluster is executing a cache
514	  maintenance operation to the same address, then this erratum might
515	  cause data corruption.
516
517	  The workaround promotes data cache clean instructions to
518	  data cache clean-and-invalidate.
519	  Please note that this does not necessarily enable the workaround,
520	  as it depends on the alternative framework, which will only patch
521	  the kernel if an affected CPU is detected.
522
523	  If unsure, say Y.
524
525config ARM64_ERRATUM_832075
526	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
527	default y
528	help
529	  This option adds an alternative code sequence to work around ARM
530	  erratum 832075 on Cortex-A57 parts up to r1p2.
531
532	  Affected Cortex-A57 parts might deadlock when exclusive load/store
533	  instructions to Write-Back memory are mixed with Device loads.
534
535	  The workaround is to promote device loads to use Load-Acquire
536	  semantics.
537	  Please note that this does not necessarily enable the workaround,
538	  as it depends on the alternative framework, which will only patch
539	  the kernel if an affected CPU is detected.
540
541	  If unsure, say Y.
542
543config ARM64_ERRATUM_834220
544	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
545	depends on KVM
546	default y
547	help
548	  This option adds an alternative code sequence to work around ARM
549	  erratum 834220 on Cortex-A57 parts up to r1p2.
550
551	  Affected Cortex-A57 parts might report a Stage 2 translation
552	  fault as the result of a Stage 1 fault for load crossing a
553	  page boundary when there is a permission or device memory
554	  alignment fault at Stage 1 and a translation fault at Stage 2.
555
556	  The workaround is to verify that the Stage 1 translation
557	  doesn't generate a fault before handling the Stage 2 fault.
558	  Please note that this does not necessarily enable the workaround,
559	  as it depends on the alternative framework, which will only patch
560	  the kernel if an affected CPU is detected.
561
562	  If unsure, say Y.
563
564config ARM64_ERRATUM_1742098
565	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
566	depends on COMPAT
567	default y
568	help
569	  This option removes the AES hwcap for aarch32 user-space to
570	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
571
572	  Affected parts may corrupt the AES state if an interrupt is
573	  taken between a pair of AES instructions. These instructions
574	  are only present if the cryptography extensions are present.
575	  All software should have a fallback implementation for CPUs
576	  that don't implement the cryptography extensions.
577
578	  If unsure, say Y.
579
580config ARM64_ERRATUM_845719
581	bool "Cortex-A53: 845719: a load might read incorrect data"
582	depends on COMPAT
583	default y
584	help
585	  This option adds an alternative code sequence to work around ARM
586	  erratum 845719 on Cortex-A53 parts up to r0p4.
587
588	  When running a compat (AArch32) userspace on an affected Cortex-A53
589	  part, a load at EL0 from a virtual address that matches the bottom 32
590	  bits of the virtual address used by a recent load at (AArch64) EL1
591	  might return incorrect data.
592
593	  The workaround is to write the contextidr_el1 register on exception
594	  return to a 32-bit task.
595	  Please note that this does not necessarily enable the workaround,
596	  as it depends on the alternative framework, which will only patch
597	  the kernel if an affected CPU is detected.
598
599	  If unsure, say Y.
600
601config ARM64_ERRATUM_843419
602	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
603	default y
604	help
605	  This option links the kernel with '--fix-cortex-a53-843419' and
606	  enables PLT support to replace certain ADRP instructions, which can
607	  cause subsequent memory accesses to use an incorrect address on
608	  Cortex-A53 parts up to r0p4.
609
610	  If unsure, say Y.
611
612config ARM64_LD_HAS_FIX_ERRATUM_843419
613	def_bool $(ld-option,--fix-cortex-a53-843419)
614
615config ARM64_ERRATUM_1024718
616	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
617	default y
618	help
619	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
620
621	  Affected Cortex-A55 cores (all revisions) could cause incorrect
622	  update of the hardware dirty bit when the DBM/AP bits are updated
623	  without a break-before-make. The workaround is to disable the usage
624	  of hardware DBM locally on the affected cores. CPUs not affected by
625	  this erratum will continue to use the feature.
626
627	  If unsure, say Y.
628
629config ARM64_ERRATUM_1418040
630	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
631	default y
632	depends on COMPAT
633	help
634	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
635	  errata 1188873 and 1418040.
636
637	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
638	  cause register corruption when accessing the timer registers
639	  from AArch32 userspace.
640
641	  If unsure, say Y.
642
643config ARM64_WORKAROUND_SPECULATIVE_AT
644	bool
645
646config ARM64_ERRATUM_1165522
647	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
648	default y
649	select ARM64_WORKAROUND_SPECULATIVE_AT
650	help
651	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
652
653	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
654	  corrupted TLBs by speculating an AT instruction during a guest
655	  context switch.
656
657	  If unsure, say Y.
658
659config ARM64_ERRATUM_1319367
660	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
661	default y
662	select ARM64_WORKAROUND_SPECULATIVE_AT
663	help
664	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
665	  and A72 erratum 1319367
666
667	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
668	  speculating an AT instruction during a guest context switch.
669
670	  If unsure, say Y.
671
672config ARM64_ERRATUM_1530923
673	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
674	default y
675	select ARM64_WORKAROUND_SPECULATIVE_AT
676	help
677	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
678
679	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
680	  corrupted TLBs by speculating an AT instruction during a guest
681	  context switch.
682
683	  If unsure, say Y.
684
685config ARM64_WORKAROUND_REPEAT_TLBI
686	bool
687
688config ARM64_ERRATUM_2441007
689	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
690	default y
691	select ARM64_WORKAROUND_REPEAT_TLBI
692	help
693	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
694
695	  Under very rare circumstances, affected Cortex-A55 CPUs
696	  may not handle a race between a break-before-make sequence on one
697	  CPU, and another CPU accessing the same page. This could allow a
698	  store to a page that has been unmapped.
699
700	  Work around this by adding the affected CPUs to the list that needs
701	  TLB sequences to be done twice.
702
703	  If unsure, say Y.
704
705config ARM64_ERRATUM_1286807
706	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
707	default y
708	select ARM64_WORKAROUND_REPEAT_TLBI
709	help
710	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
711
712	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
713	  address for a cacheable mapping of a location is being
714	  accessed by a core while another core is remapping the virtual
715	  address to a new physical page using the recommended
716	  break-before-make sequence, then under very rare circumstances
717	  TLBI+DSB completes before a read using the translation being
718	  invalidated has been observed by other observers. The
719	  workaround repeats the TLBI+DSB operation.
720
721config ARM64_ERRATUM_1463225
722	bool "Cortex-A76: Software Step might prevent interrupt recognition"
723	default y
724	help
725	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
726
727	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
728	  of a system call instruction (SVC) can prevent recognition of
729	  subsequent interrupts when software stepping is disabled in the
730	  exception handler of the system call and either kernel debugging
731	  is enabled or VHE is in use.
732
733	  Work around the erratum by triggering a dummy step exception
734	  when handling a system call from a task that is being stepped
735	  in a VHE configuration of the kernel.
736
737	  If unsure, say Y.
738
739config ARM64_ERRATUM_1542419
740	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
741	default y
742	help
743	  This option adds a workaround for ARM Neoverse-N1 erratum
744	  1542419.
745
746	  Affected Neoverse-N1 cores could execute a stale instruction when
747	  modified by another CPU. The workaround depends on a firmware
748	  counterpart.
749
750	  Workaround the issue by hiding the DIC feature from EL0. This
751	  forces user-space to perform cache maintenance.
752
753	  If unsure, say Y.
754
755config ARM64_ERRATUM_1508412
756	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
757	default y
758	help
759	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
760
761	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
762	  of a store-exclusive or read of PAR_EL1 and a load with device or
763	  non-cacheable memory attributes. The workaround depends on a firmware
764	  counterpart.
765
766	  KVM guests must also have the workaround implemented or they can
767	  deadlock the system.
768
769	  Work around the issue by inserting DMB SY barriers around PAR_EL1
770	  register reads and warning KVM users. The DMB barrier is sufficient
771	  to prevent a speculative PAR_EL1 read.
772
773	  If unsure, say Y.
774
775config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
776	bool
777
778config ARM64_ERRATUM_2051678
779	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
780	default y
781	help
782	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
783	  Affected Cortex-A510 might not respect the ordering rules for
784	  hardware update of the page table's dirty bit. The workaround
785	  is to not enable the feature on affected CPUs.
786
787	  If unsure, say Y.
788
789config ARM64_ERRATUM_2077057
790	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
791	default y
792	help
793	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
794	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
795	  expected, but a Pointer Authentication trap is taken instead. The
796	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
797	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
798
799	  This can only happen when EL2 is stepping EL1.
800
801	  When these conditions occur, the SPSR_EL2 value is unchanged from the
802	  previous guest entry, and can be restored from the in-memory copy.
803
804	  If unsure, say Y.
805
806config ARM64_ERRATUM_2658417
807	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
808	default y
809	help
810	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
811	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
812	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
813	  A510 CPUs are using shared neon hardware. As the sharing is not
814	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
815	  user-space should not be using these instructions.
816
817	  If unsure, say Y.
818
819config ARM64_ERRATUM_2119858
820	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
821	default y
822	depends on CORESIGHT_TRBE
823	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
824	help
825	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
826
827	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
828	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
829	  the event of a WRAP event.
830
831	  Work around the issue by always making sure we move the TRBPTR_EL1 by
832	  256 bytes before enabling the buffer and filling the first 256 bytes of
833	  the buffer with ETM ignore packets upon disabling.
834
835	  If unsure, say Y.
836
837config ARM64_ERRATUM_2139208
838	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
839	default y
840	depends on CORESIGHT_TRBE
841	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
842	help
843	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
844
845	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
846	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
847	  the event of a WRAP event.
848
849	  Work around the issue by always making sure we move the TRBPTR_EL1 by
850	  256 bytes before enabling the buffer and filling the first 256 bytes of
851	  the buffer with ETM ignore packets upon disabling.
852
853	  If unsure, say Y.
854
855config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
856	bool
857
858config ARM64_ERRATUM_2054223
859	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
860	default y
861	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
862	help
863	  Enable workaround for ARM Cortex-A710 erratum 2054223
864
865	  Affected cores may fail to flush the trace data on a TSB instruction, when
866	  the PE is in trace prohibited state. This will cause losing a few bytes
867	  of the trace cached.
868
869	  Workaround is to issue two TSB consecutively on affected cores.
870
871	  If unsure, say Y.
872
873config ARM64_ERRATUM_2067961
874	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
875	default y
876	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
877	help
878	  Enable workaround for ARM Neoverse-N2 erratum 2067961
879
880	  Affected cores may fail to flush the trace data on a TSB instruction, when
881	  the PE is in trace prohibited state. This will cause losing a few bytes
882	  of the trace cached.
883
884	  Workaround is to issue two TSB consecutively on affected cores.
885
886	  If unsure, say Y.
887
888config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
889	bool
890
891config ARM64_ERRATUM_2253138
892	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
893	depends on CORESIGHT_TRBE
894	default y
895	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
896	help
897	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
898
899	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
900	  for TRBE. Under some conditions, the TRBE might generate a write to the next
901	  virtually addressed page following the last page of the TRBE address space
902	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
903
904	  Work around this in the driver by always making sure that there is a
905	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
906
907	  If unsure, say Y.
908
909config ARM64_ERRATUM_2224489
910	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
911	depends on CORESIGHT_TRBE
912	default y
913	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
914	help
915	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
916
917	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
918	  for TRBE. Under some conditions, the TRBE might generate a write to the next
919	  virtually addressed page following the last page of the TRBE address space
920	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
921
922	  Work around this in the driver by always making sure that there is a
923	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
924
925	  If unsure, say Y.
926
927config ARM64_ERRATUM_2441009
928	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
929	default y
930	select ARM64_WORKAROUND_REPEAT_TLBI
931	help
932	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
933
934	  Under very rare circumstances, affected Cortex-A510 CPUs
935	  may not handle a race between a break-before-make sequence on one
936	  CPU, and another CPU accessing the same page. This could allow a
937	  store to a page that has been unmapped.
938
939	  Work around this by adding the affected CPUs to the list that needs
940	  TLB sequences to be done twice.
941
942	  If unsure, say Y.
943
944config ARM64_ERRATUM_2064142
945	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
946	depends on CORESIGHT_TRBE
947	default y
948	help
949	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
950
951	  Affected Cortex-A510 core might fail to write into system registers after the
952	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
953	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
954	  and TRBTRG_EL1 will be ignored and will not be effected.
955
956	  Work around this in the driver by executing TSB CSYNC and DSB after collection
957	  is stopped and before performing a system register write to one of the affected
958	  registers.
959
960	  If unsure, say Y.
961
962config ARM64_ERRATUM_2038923
963	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
964	depends on CORESIGHT_TRBE
965	default y
966	help
967	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
968
969	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
970	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
971	  might be corrupted. This happens after TRBE buffer has been enabled by setting
972	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
973	  execution changes from a context, in which trace is prohibited to one where it
974	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
975	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
976	  the trace buffer state might be corrupted.
977
978	  Work around this in the driver by preventing an inconsistent view of whether the
979	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
980	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
981	  two ISB instructions if no ERET is to take place.
982
983	  If unsure, say Y.
984
985config ARM64_ERRATUM_1902691
986	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
987	depends on CORESIGHT_TRBE
988	default y
989	help
990	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
991
992	  Affected Cortex-A510 core might cause trace data corruption, when being written
993	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
994	  trace data.
995
996	  Work around this problem in the driver by just preventing TRBE initialization on
997	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
998	  on such implementations. This will cover the kernel for any firmware that doesn't
999	  do this already.
1000
1001	  If unsure, say Y.
1002
1003config ARM64_ERRATUM_2457168
1004	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1005	depends on ARM64_AMU_EXTN
1006	default y
1007	help
1008	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1009
1010	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1011	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1012	  incorrectly giving a significantly higher output value.
1013
1014	  Work around this problem by returning 0 when reading the affected counter in
1015	  key locations that results in disabling all users of this counter. This effect
1016	  is the same to firmware disabling affected counters.
1017
1018	  If unsure, say Y.
1019
1020config ARM64_ERRATUM_2645198
1021	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1022	default y
1023	help
1024	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1025
1026	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1027	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1028	  next instruction abort caused by permission fault.
1029
1030	  Only user-space does executable to non-executable permission transition via
1031	  mprotect() system call. Workaround the problem by doing a break-before-make
1032	  TLB invalidation, for all changes to executable user space mappings.
1033
1034	  If unsure, say Y.
1035
1036config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1037	bool
1038
1039config ARM64_ERRATUM_2966298
1040	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1041	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1042	default y
1043	help
1044	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1045
1046	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1047	  load might leak data from a privileged level via a cache side channel.
1048
1049	  Work around this problem by executing a TLBI before returning to EL0.
1050
1051	  If unsure, say Y.
1052
1053config ARM64_ERRATUM_3117295
1054	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1055	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1056	default y
1057	help
1058	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1059
1060	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1061	  load might leak data from a privileged level via a cache side channel.
1062
1063	  Work around this problem by executing a TLBI before returning to EL0.
1064
1065	  If unsure, say Y.
1066
1067config CAVIUM_ERRATUM_22375
1068	bool "Cavium erratum 22375, 24313"
1069	default y
1070	help
1071	  Enable workaround for errata 22375 and 24313.
1072
1073	  This implements two gicv3-its errata workarounds for ThunderX. Both
1074	  with a small impact affecting only ITS table allocation.
1075
1076	    erratum 22375: only alloc 8MB table size
1077	    erratum 24313: ignore memory access type
1078
1079	  The fixes are in ITS initialization and basically ignore memory access
1080	  type and table size provided by the TYPER and BASER registers.
1081
1082	  If unsure, say Y.
1083
1084config CAVIUM_ERRATUM_23144
1085	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1086	depends on NUMA
1087	default y
1088	help
1089	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1090
1091	  If unsure, say Y.
1092
1093config CAVIUM_ERRATUM_23154
1094	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1095	default y
1096	help
1097	  The ThunderX GICv3 implementation requires a modified version for
1098	  reading the IAR status to ensure data synchronization
1099	  (access to icc_iar1_el1 is not sync'ed before and after).
1100
1101	  It also suffers from erratum 38545 (also present on Marvell's
1102	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1103	  spuriously presented to the CPU interface.
1104
1105	  If unsure, say Y.
1106
1107config CAVIUM_ERRATUM_27456
1108	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1109	default y
1110	help
1111	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1112	  instructions may cause the icache to become corrupted if it
1113	  contains data for a non-current ASID.  The fix is to
1114	  invalidate the icache when changing the mm context.
1115
1116	  If unsure, say Y.
1117
1118config CAVIUM_ERRATUM_30115
1119	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1120	default y
1121	help
1122	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1123	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1124	  interrupts in host. Trapping both GICv3 group-0 and group-1
1125	  accesses sidesteps the issue.
1126
1127	  If unsure, say Y.
1128
1129config CAVIUM_TX2_ERRATUM_219
1130	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1131	default y
1132	help
1133	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1134	  TTBR update and the corresponding context synchronizing operation can
1135	  cause a spurious Data Abort to be delivered to any hardware thread in
1136	  the CPU core.
1137
1138	  Work around the issue by avoiding the problematic code sequence and
1139	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1140	  trap handler performs the corresponding register access, skips the
1141	  instruction and ensures context synchronization by virtue of the
1142	  exception return.
1143
1144	  If unsure, say Y.
1145
1146config FUJITSU_ERRATUM_010001
1147	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1148	default y
1149	help
1150	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1151	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1152	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1153	  This fault occurs under a specific hardware condition when a
1154	  load/store instruction performs an address translation using:
1155	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1156	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1157	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1158	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1159
1160	  The workaround is to ensure these bits are clear in TCR_ELx.
1161	  The workaround only affects the Fujitsu-A64FX.
1162
1163	  If unsure, say Y.
1164
1165config HISILICON_ERRATUM_161600802
1166	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1167	default y
1168	help
1169	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1170	  when issued ITS commands such as VMOVP and VMAPP, and requires
1171	  a 128kB offset to be applied to the target address in this commands.
1172
1173	  If unsure, say Y.
1174
1175config QCOM_FALKOR_ERRATUM_1003
1176	bool "Falkor E1003: Incorrect translation due to ASID change"
1177	default y
1178	help
1179	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1180	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1181	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1182	  then only for entries in the walk cache, since the leaf translation
1183	  is unchanged. Work around the erratum by invalidating the walk cache
1184	  entries for the trampoline before entering the kernel proper.
1185
1186config QCOM_FALKOR_ERRATUM_1009
1187	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1188	default y
1189	select ARM64_WORKAROUND_REPEAT_TLBI
1190	help
1191	  On Falkor v1, the CPU may prematurely complete a DSB following a
1192	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1193	  one more time to fix the issue.
1194
1195	  If unsure, say Y.
1196
1197config QCOM_QDF2400_ERRATUM_0065
1198	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1199	default y
1200	help
1201	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1202	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1203	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1204
1205	  If unsure, say Y.
1206
1207config QCOM_FALKOR_ERRATUM_E1041
1208	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1209	default y
1210	help
1211	  Falkor CPU may speculatively fetch instructions from an improper
1212	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1213	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1214
1215	  If unsure, say Y.
1216
1217config NVIDIA_CARMEL_CNP_ERRATUM
1218	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1219	default y
1220	help
1221	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1222	  invalidate shared TLB entries installed by a different core, as it would
1223	  on standard ARM cores.
1224
1225	  If unsure, say Y.
1226
1227config ROCKCHIP_ERRATUM_3588001
1228	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1229	default y
1230	help
1231	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1232	  This means, that its sharability feature may not be used, even though it
1233	  is supported by the IP itself.
1234
1235	  If unsure, say Y.
1236
1237config SOCIONEXT_SYNQUACER_PREITS
1238	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1239	default y
1240	help
1241	  Socionext Synquacer SoCs implement a separate h/w block to generate
1242	  MSI doorbell writes with non-zero values for the device ID.
1243
1244	  If unsure, say Y.
1245
1246endmenu # "ARM errata workarounds via the alternatives framework"
1247
1248choice
1249	prompt "Page size"
1250	default ARM64_4K_PAGES
1251	help
1252	  Page size (translation granule) configuration.
1253
1254config ARM64_4K_PAGES
1255	bool "4KB"
1256	select HAVE_PAGE_SIZE_4KB
1257	help
1258	  This feature enables 4KB pages support.
1259
1260config ARM64_16K_PAGES
1261	bool "16KB"
1262	select HAVE_PAGE_SIZE_16KB
1263	help
1264	  The system will use 16KB pages support. AArch32 emulation
1265	  requires applications compiled with 16K (or a multiple of 16K)
1266	  aligned segments.
1267
1268config ARM64_64K_PAGES
1269	bool "64KB"
1270	select HAVE_PAGE_SIZE_64KB
1271	help
1272	  This feature enables 64KB pages support (4KB by default)
1273	  allowing only two levels of page tables and faster TLB
1274	  look-up. AArch32 emulation requires applications compiled
1275	  with 64K aligned segments.
1276
1277endchoice
1278
1279choice
1280	prompt "Virtual address space size"
1281	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1282	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1283	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1284	help
1285	  Allows choosing one of multiple possible virtual address
1286	  space sizes. The level of translation table is determined by
1287	  a combination of page size and virtual address space size.
1288
1289config ARM64_VA_BITS_36
1290	bool "36-bit" if EXPERT
1291	depends on PAGE_SIZE_16KB
1292
1293config ARM64_VA_BITS_39
1294	bool "39-bit"
1295	depends on PAGE_SIZE_4KB
1296
1297config ARM64_VA_BITS_42
1298	bool "42-bit"
1299	depends on PAGE_SIZE_64KB
1300
1301config ARM64_VA_BITS_47
1302	bool "47-bit"
1303	depends on PAGE_SIZE_16KB
1304
1305config ARM64_VA_BITS_48
1306	bool "48-bit"
1307
1308config ARM64_VA_BITS_52
1309	bool "52-bit"
1310	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1311	help
1312	  Enable 52-bit virtual addressing for userspace when explicitly
1313	  requested via a hint to mmap(). The kernel will also use 52-bit
1314	  virtual addresses for its own mappings (provided HW support for
1315	  this feature is available, otherwise it reverts to 48-bit).
1316
1317	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1318	  ARMv8.3 Pointer Authentication will result in the PAC being
1319	  reduced from 7 bits to 3 bits, which may have a significant
1320	  impact on its susceptibility to brute-force attacks.
1321
1322	  If unsure, select 48-bit virtual addressing instead.
1323
1324endchoice
1325
1326config ARM64_FORCE_52BIT
1327	bool "Force 52-bit virtual addresses for userspace"
1328	depends on ARM64_VA_BITS_52 && EXPERT
1329	help
1330	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1331	  to maintain compatibility with older software by providing 48-bit VAs
1332	  unless a hint is supplied to mmap.
1333
1334	  This configuration option disables the 48-bit compatibility logic, and
1335	  forces all userspace addresses to be 52-bit on HW that supports it. One
1336	  should only enable this configuration option for stress testing userspace
1337	  memory management code. If unsure say N here.
1338
1339config ARM64_VA_BITS
1340	int
1341	default 36 if ARM64_VA_BITS_36
1342	default 39 if ARM64_VA_BITS_39
1343	default 42 if ARM64_VA_BITS_42
1344	default 47 if ARM64_VA_BITS_47
1345	default 48 if ARM64_VA_BITS_48
1346	default 52 if ARM64_VA_BITS_52
1347
1348choice
1349	prompt "Physical address space size"
1350	default ARM64_PA_BITS_48
1351	help
1352	  Choose the maximum physical address range that the kernel will
1353	  support.
1354
1355config ARM64_PA_BITS_48
1356	bool "48-bit"
1357
1358config ARM64_PA_BITS_52
1359	bool "52-bit (ARMv8.2)"
1360	depends on ARM64_64K_PAGES
1361	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1362	help
1363	  Enable support for a 52-bit physical address space, introduced as
1364	  part of the ARMv8.2-LPA extension.
1365
1366	  With this enabled, the kernel will also continue to work on CPUs that
1367	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1368	  minor performance overhead).
1369
1370endchoice
1371
1372config ARM64_PA_BITS
1373	int
1374	default 48 if ARM64_PA_BITS_48
1375	default 52 if ARM64_PA_BITS_52
1376
1377choice
1378	prompt "Endianness"
1379	default CPU_LITTLE_ENDIAN
1380	help
1381	  Select the endianness of data accesses performed by the CPU. Userspace
1382	  applications will need to be compiled and linked for the endianness
1383	  that is selected here.
1384
1385config CPU_BIG_ENDIAN
1386	bool "Build big-endian kernel"
1387	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1388	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1389	depends on AS_IS_GNU || AS_VERSION >= 150000
1390	help
1391	  Say Y if you plan on running a kernel with a big-endian userspace.
1392
1393config CPU_LITTLE_ENDIAN
1394	bool "Build little-endian kernel"
1395	help
1396	  Say Y if you plan on running a kernel with a little-endian userspace.
1397	  This is usually the case for distributions targeting arm64.
1398
1399endchoice
1400
1401config SCHED_MC
1402	bool "Multi-core scheduler support"
1403	help
1404	  Multi-core scheduler support improves the CPU scheduler's decision
1405	  making when dealing with multi-core CPU chips at a cost of slightly
1406	  increased overhead in some places. If unsure say N here.
1407
1408config SCHED_CLUSTER
1409	bool "Cluster scheduler support"
1410	help
1411	  Cluster scheduler support improves the CPU scheduler's decision
1412	  making when dealing with machines that have clusters of CPUs.
1413	  Cluster usually means a couple of CPUs which are placed closely
1414	  by sharing mid-level caches, last-level cache tags or internal
1415	  busses.
1416
1417config SCHED_SMT
1418	bool "SMT scheduler support"
1419	help
1420	  Improves the CPU scheduler's decision making when dealing with
1421	  MultiThreading at a cost of slightly increased overhead in some
1422	  places. If unsure say N here.
1423
1424config NR_CPUS
1425	int "Maximum number of CPUs (2-4096)"
1426	range 2 4096
1427	default "256"
1428
1429config HOTPLUG_CPU
1430	bool "Support for hot-pluggable CPUs"
1431	select GENERIC_IRQ_MIGRATION
1432	help
1433	  Say Y here to experiment with turning CPUs off and on.  CPUs
1434	  can be controlled through /sys/devices/system/cpu.
1435
1436# Common NUMA Features
1437config NUMA
1438	bool "NUMA Memory Allocation and Scheduler Support"
1439	select GENERIC_ARCH_NUMA
1440	select ACPI_NUMA if ACPI
1441	select OF_NUMA
1442	select HAVE_SETUP_PER_CPU_AREA
1443	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1444	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1445	select USE_PERCPU_NUMA_NODE_ID
1446	help
1447	  Enable NUMA (Non-Uniform Memory Access) support.
1448
1449	  The kernel will try to allocate memory used by a CPU on the
1450	  local memory of the CPU and add some more
1451	  NUMA awareness to the kernel.
1452
1453config NODES_SHIFT
1454	int "Maximum NUMA Nodes (as a power of 2)"
1455	range 1 10
1456	default "4"
1457	depends on NUMA
1458	help
1459	  Specify the maximum number of NUMA Nodes available on the target
1460	  system.  Increases memory reserved to accommodate various tables.
1461
1462source "kernel/Kconfig.hz"
1463
1464config ARCH_SPARSEMEM_ENABLE
1465	def_bool y
1466	select SPARSEMEM_VMEMMAP_ENABLE
1467	select SPARSEMEM_VMEMMAP
1468
1469config HW_PERF_EVENTS
1470	def_bool y
1471	depends on ARM_PMU
1472
1473# Supported by clang >= 7.0 or GCC >= 12.0.0
1474config CC_HAVE_SHADOW_CALL_STACK
1475	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1476
1477config PARAVIRT
1478	bool "Enable paravirtualization code"
1479	help
1480	  This changes the kernel so it can modify itself when it is run
1481	  under a hypervisor, potentially improving performance significantly
1482	  over full virtualization.
1483
1484config PARAVIRT_TIME_ACCOUNTING
1485	bool "Paravirtual steal time accounting"
1486	select PARAVIRT
1487	help
1488	  Select this option to enable fine granularity task steal time
1489	  accounting. Time spent executing other tasks in parallel with
1490	  the current vCPU is discounted from the vCPU power. To account for
1491	  that, there can be a small performance impact.
1492
1493	  If in doubt, say N here.
1494
1495config ARCH_SUPPORTS_KEXEC
1496	def_bool PM_SLEEP_SMP
1497
1498config ARCH_SUPPORTS_KEXEC_FILE
1499	def_bool y
1500
1501config ARCH_SELECTS_KEXEC_FILE
1502	def_bool y
1503	depends on KEXEC_FILE
1504	select HAVE_IMA_KEXEC if IMA
1505
1506config ARCH_SUPPORTS_KEXEC_SIG
1507	def_bool y
1508
1509config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1510	def_bool y
1511
1512config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1513	def_bool y
1514
1515config ARCH_SUPPORTS_CRASH_DUMP
1516	def_bool y
1517
1518config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1519	def_bool CRASH_CORE
1520
1521config TRANS_TABLE
1522	def_bool y
1523	depends on HIBERNATION || KEXEC_CORE
1524
1525config XEN_DOM0
1526	def_bool y
1527	depends on XEN
1528
1529config XEN
1530	bool "Xen guest support on ARM64"
1531	depends on ARM64 && OF
1532	select SWIOTLB_XEN
1533	select PARAVIRT
1534	help
1535	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1536
1537# include/linux/mmzone.h requires the following to be true:
1538#
1539#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1540#
1541# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1542#
1543#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1544# ----+-------------------+--------------+----------------------+-------------------------+
1545# 4K  |       27          |      12      |       15             |         10              |
1546# 16K |       27          |      14      |       13             |         11              |
1547# 64K |       29          |      16      |       13             |         13              |
1548config ARCH_FORCE_MAX_ORDER
1549	int
1550	default "13" if ARM64_64K_PAGES
1551	default "11" if ARM64_16K_PAGES
1552	default "10"
1553	help
1554	  The kernel page allocator limits the size of maximal physically
1555	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1556	  defines the maximal power of two of number of pages that can be
1557	  allocated as a single contiguous block. This option allows
1558	  overriding the default setting when ability to allocate very
1559	  large blocks of physically contiguous memory is required.
1560
1561	  The maximal size of allocation cannot exceed the size of the
1562	  section, so the value of MAX_PAGE_ORDER should satisfy
1563
1564	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1565
1566	  Don't change if unsure.
1567
1568config UNMAP_KERNEL_AT_EL0
1569	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1570	default y
1571	help
1572	  Speculation attacks against some high-performance processors can
1573	  be used to bypass MMU permission checks and leak kernel data to
1574	  userspace. This can be defended against by unmapping the kernel
1575	  when running in userspace, mapping it back in on exception entry
1576	  via a trampoline page in the vector table.
1577
1578	  If unsure, say Y.
1579
1580config MITIGATE_SPECTRE_BRANCH_HISTORY
1581	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1582	default y
1583	help
1584	  Speculation attacks against some high-performance processors can
1585	  make use of branch history to influence future speculation.
1586	  When taking an exception from user-space, a sequence of branches
1587	  or a firmware call overwrites the branch history.
1588
1589config RODATA_FULL_DEFAULT_ENABLED
1590	bool "Apply r/o permissions of VM areas also to their linear aliases"
1591	default y
1592	help
1593	  Apply read-only attributes of VM areas to the linear alias of
1594	  the backing pages as well. This prevents code or read-only data
1595	  from being modified (inadvertently or intentionally) via another
1596	  mapping of the same memory page. This additional enhancement can
1597	  be turned off at runtime by passing rodata=[off|on] (and turned on
1598	  with rodata=full if this option is set to 'n')
1599
1600	  This requires the linear region to be mapped down to pages,
1601	  which may adversely affect performance in some cases.
1602
1603config ARM64_SW_TTBR0_PAN
1604	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1605	help
1606	  Enabling this option prevents the kernel from accessing
1607	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1608	  zeroed area and reserved ASID. The user access routines
1609	  restore the valid TTBR0_EL1 temporarily.
1610
1611config ARM64_TAGGED_ADDR_ABI
1612	bool "Enable the tagged user addresses syscall ABI"
1613	default y
1614	help
1615	  When this option is enabled, user applications can opt in to a
1616	  relaxed ABI via prctl() allowing tagged addresses to be passed
1617	  to system calls as pointer arguments. For details, see
1618	  Documentation/arch/arm64/tagged-address-abi.rst.
1619
1620menuconfig COMPAT
1621	bool "Kernel support for 32-bit EL0"
1622	depends on ARM64_4K_PAGES || EXPERT
1623	select HAVE_UID16
1624	select OLD_SIGSUSPEND3
1625	select COMPAT_OLD_SIGACTION
1626	help
1627	  This option enables support for a 32-bit EL0 running under a 64-bit
1628	  kernel at EL1. AArch32-specific components such as system calls,
1629	  the user helper functions, VFP support and the ptrace interface are
1630	  handled appropriately by the kernel.
1631
1632	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1633	  that you will only be able to execute AArch32 binaries that were compiled
1634	  with page size aligned segments.
1635
1636	  If you want to execute 32-bit userspace applications, say Y.
1637
1638if COMPAT
1639
1640config KUSER_HELPERS
1641	bool "Enable kuser helpers page for 32-bit applications"
1642	default y
1643	help
1644	  Warning: disabling this option may break 32-bit user programs.
1645
1646	  Provide kuser helpers to compat tasks. The kernel provides
1647	  helper code to userspace in read only form at a fixed location
1648	  to allow userspace to be independent of the CPU type fitted to
1649	  the system. This permits binaries to be run on ARMv4 through
1650	  to ARMv8 without modification.
1651
1652	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1653
1654	  However, the fixed address nature of these helpers can be used
1655	  by ROP (return orientated programming) authors when creating
1656	  exploits.
1657
1658	  If all of the binaries and libraries which run on your platform
1659	  are built specifically for your platform, and make no use of
1660	  these helpers, then you can turn this option off to hinder
1661	  such exploits. However, in that case, if a binary or library
1662	  relying on those helpers is run, it will not function correctly.
1663
1664	  Say N here only if you are absolutely certain that you do not
1665	  need these helpers; otherwise, the safe option is to say Y.
1666
1667config COMPAT_VDSO
1668	bool "Enable vDSO for 32-bit applications"
1669	depends on !CPU_BIG_ENDIAN
1670	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1671	select GENERIC_COMPAT_VDSO
1672	default y
1673	help
1674	  Place in the process address space of 32-bit applications an
1675	  ELF shared object providing fast implementations of gettimeofday
1676	  and clock_gettime.
1677
1678	  You must have a 32-bit build of glibc 2.22 or later for programs
1679	  to seamlessly take advantage of this.
1680
1681config THUMB2_COMPAT_VDSO
1682	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1683	depends on COMPAT_VDSO
1684	default y
1685	help
1686	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1687	  otherwise with '-marm'.
1688
1689config COMPAT_ALIGNMENT_FIXUPS
1690	bool "Fix up misaligned multi-word loads and stores in user space"
1691
1692menuconfig ARMV8_DEPRECATED
1693	bool "Emulate deprecated/obsolete ARMv8 instructions"
1694	depends on SYSCTL
1695	help
1696	  Legacy software support may require certain instructions
1697	  that have been deprecated or obsoleted in the architecture.
1698
1699	  Enable this config to enable selective emulation of these
1700	  features.
1701
1702	  If unsure, say Y
1703
1704if ARMV8_DEPRECATED
1705
1706config SWP_EMULATION
1707	bool "Emulate SWP/SWPB instructions"
1708	help
1709	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1710	  they are always undefined. Say Y here to enable software
1711	  emulation of these instructions for userspace using LDXR/STXR.
1712	  This feature can be controlled at runtime with the abi.swp
1713	  sysctl which is disabled by default.
1714
1715	  In some older versions of glibc [<=2.8] SWP is used during futex
1716	  trylock() operations with the assumption that the code will not
1717	  be preempted. This invalid assumption may be more likely to fail
1718	  with SWP emulation enabled, leading to deadlock of the user
1719	  application.
1720
1721	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1722	  on an external transaction monitoring block called a global
1723	  monitor to maintain update atomicity. If your system does not
1724	  implement a global monitor, this option can cause programs that
1725	  perform SWP operations to uncached memory to deadlock.
1726
1727	  If unsure, say Y
1728
1729config CP15_BARRIER_EMULATION
1730	bool "Emulate CP15 Barrier instructions"
1731	help
1732	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1733	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1734	  strongly recommended to use the ISB, DSB, and DMB
1735	  instructions instead.
1736
1737	  Say Y here to enable software emulation of these
1738	  instructions for AArch32 userspace code. When this option is
1739	  enabled, CP15 barrier usage is traced which can help
1740	  identify software that needs updating. This feature can be
1741	  controlled at runtime with the abi.cp15_barrier sysctl.
1742
1743	  If unsure, say Y
1744
1745config SETEND_EMULATION
1746	bool "Emulate SETEND instruction"
1747	help
1748	  The SETEND instruction alters the data-endianness of the
1749	  AArch32 EL0, and is deprecated in ARMv8.
1750
1751	  Say Y here to enable software emulation of the instruction
1752	  for AArch32 userspace code. This feature can be controlled
1753	  at runtime with the abi.setend sysctl.
1754
1755	  Note: All the cpus on the system must have mixed endian support at EL0
1756	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1757	  endian - is hotplugged in after this feature has been enabled, there could
1758	  be unexpected results in the applications.
1759
1760	  If unsure, say Y
1761endif # ARMV8_DEPRECATED
1762
1763endif # COMPAT
1764
1765menu "ARMv8.1 architectural features"
1766
1767config ARM64_HW_AFDBM
1768	bool "Support for hardware updates of the Access and Dirty page flags"
1769	default y
1770	help
1771	  The ARMv8.1 architecture extensions introduce support for
1772	  hardware updates of the access and dirty information in page
1773	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1774	  capable processors, accesses to pages with PTE_AF cleared will
1775	  set this bit instead of raising an access flag fault.
1776	  Similarly, writes to read-only pages with the DBM bit set will
1777	  clear the read-only bit (AP[2]) instead of raising a
1778	  permission fault.
1779
1780	  Kernels built with this configuration option enabled continue
1781	  to work on pre-ARMv8.1 hardware and the performance impact is
1782	  minimal. If unsure, say Y.
1783
1784config ARM64_PAN
1785	bool "Enable support for Privileged Access Never (PAN)"
1786	default y
1787	help
1788	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1789	  prevents the kernel or hypervisor from accessing user-space (EL0)
1790	  memory directly.
1791
1792	  Choosing this option will cause any unprotected (not using
1793	  copy_to_user et al) memory access to fail with a permission fault.
1794
1795	  The feature is detected at runtime, and will remain as a 'nop'
1796	  instruction if the cpu does not implement the feature.
1797
1798config AS_HAS_LSE_ATOMICS
1799	def_bool $(as-instr,.arch_extension lse)
1800
1801config ARM64_LSE_ATOMICS
1802	bool
1803	default ARM64_USE_LSE_ATOMICS
1804	depends on AS_HAS_LSE_ATOMICS
1805
1806config ARM64_USE_LSE_ATOMICS
1807	bool "Atomic instructions"
1808	default y
1809	help
1810	  As part of the Large System Extensions, ARMv8.1 introduces new
1811	  atomic instructions that are designed specifically to scale in
1812	  very large systems.
1813
1814	  Say Y here to make use of these instructions for the in-kernel
1815	  atomic routines. This incurs a small overhead on CPUs that do
1816	  not support these instructions and requires the kernel to be
1817	  built with binutils >= 2.25 in order for the new instructions
1818	  to be used.
1819
1820endmenu # "ARMv8.1 architectural features"
1821
1822menu "ARMv8.2 architectural features"
1823
1824config AS_HAS_ARMV8_2
1825	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1826
1827config AS_HAS_SHA3
1828	def_bool $(as-instr,.arch armv8.2-a+sha3)
1829
1830config ARM64_PMEM
1831	bool "Enable support for persistent memory"
1832	select ARCH_HAS_PMEM_API
1833	select ARCH_HAS_UACCESS_FLUSHCACHE
1834	help
1835	  Say Y to enable support for the persistent memory API based on the
1836	  ARMv8.2 DCPoP feature.
1837
1838	  The feature is detected at runtime, and the kernel will use DC CVAC
1839	  operations if DC CVAP is not supported (following the behaviour of
1840	  DC CVAP itself if the system does not define a point of persistence).
1841
1842config ARM64_RAS_EXTN
1843	bool "Enable support for RAS CPU Extensions"
1844	default y
1845	help
1846	  CPUs that support the Reliability, Availability and Serviceability
1847	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1848	  errors, classify them and report them to software.
1849
1850	  On CPUs with these extensions system software can use additional
1851	  barriers to determine if faults are pending and read the
1852	  classification from a new set of registers.
1853
1854	  Selecting this feature will allow the kernel to use these barriers
1855	  and access the new registers if the system supports the extension.
1856	  Platform RAS features may additionally depend on firmware support.
1857
1858config ARM64_CNP
1859	bool "Enable support for Common Not Private (CNP) translations"
1860	default y
1861	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1862	help
1863	  Common Not Private (CNP) allows translation table entries to
1864	  be shared between different PEs in the same inner shareable
1865	  domain, so the hardware can use this fact to optimise the
1866	  caching of such entries in the TLB.
1867
1868	  Selecting this option allows the CNP feature to be detected
1869	  at runtime, and does not affect PEs that do not implement
1870	  this feature.
1871
1872endmenu # "ARMv8.2 architectural features"
1873
1874menu "ARMv8.3 architectural features"
1875
1876config ARM64_PTR_AUTH
1877	bool "Enable support for pointer authentication"
1878	default y
1879	help
1880	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1881	  instructions for signing and authenticating pointers against secret
1882	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1883	  and other attacks.
1884
1885	  This option enables these instructions at EL0 (i.e. for userspace).
1886	  Choosing this option will cause the kernel to initialise secret keys
1887	  for each process at exec() time, with these keys being
1888	  context-switched along with the process.
1889
1890	  The feature is detected at runtime. If the feature is not present in
1891	  hardware it will not be advertised to userspace/KVM guest nor will it
1892	  be enabled.
1893
1894	  If the feature is present on the boot CPU but not on a late CPU, then
1895	  the late CPU will be parked. Also, if the boot CPU does not have
1896	  address auth and the late CPU has then the late CPU will still boot
1897	  but with the feature disabled. On such a system, this option should
1898	  not be selected.
1899
1900config ARM64_PTR_AUTH_KERNEL
1901	bool "Use pointer authentication for kernel"
1902	default y
1903	depends on ARM64_PTR_AUTH
1904	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1905	# Modern compilers insert a .note.gnu.property section note for PAC
1906	# which is only understood by binutils starting with version 2.33.1.
1907	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1908	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1909	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1910	help
1911	  If the compiler supports the -mbranch-protection or
1912	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1913	  will cause the kernel itself to be compiled with return address
1914	  protection. In this case, and if the target hardware is known to
1915	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1916	  disabled with minimal loss of protection.
1917
1918	  This feature works with FUNCTION_GRAPH_TRACER option only if
1919	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1920
1921config CC_HAS_BRANCH_PROT_PAC_RET
1922	# GCC 9 or later, clang 8 or later
1923	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1924
1925config CC_HAS_SIGN_RETURN_ADDRESS
1926	# GCC 7, 8
1927	def_bool $(cc-option,-msign-return-address=all)
1928
1929config AS_HAS_ARMV8_3
1930	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1931
1932config AS_HAS_CFI_NEGATE_RA_STATE
1933	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1934
1935config AS_HAS_LDAPR
1936	def_bool $(as-instr,.arch_extension rcpc)
1937
1938endmenu # "ARMv8.3 architectural features"
1939
1940menu "ARMv8.4 architectural features"
1941
1942config ARM64_AMU_EXTN
1943	bool "Enable support for the Activity Monitors Unit CPU extension"
1944	default y
1945	help
1946	  The activity monitors extension is an optional extension introduced
1947	  by the ARMv8.4 CPU architecture. This enables support for version 1
1948	  of the activity monitors architecture, AMUv1.
1949
1950	  To enable the use of this extension on CPUs that implement it, say Y.
1951
1952	  Note that for architectural reasons, firmware _must_ implement AMU
1953	  support when running on CPUs that present the activity monitors
1954	  extension. The required support is present in:
1955	    * Version 1.5 and later of the ARM Trusted Firmware
1956
1957	  For kernels that have this configuration enabled but boot with broken
1958	  firmware, you may need to say N here until the firmware is fixed.
1959	  Otherwise you may experience firmware panics or lockups when
1960	  accessing the counter registers. Even if you are not observing these
1961	  symptoms, the values returned by the register reads might not
1962	  correctly reflect reality. Most commonly, the value read will be 0,
1963	  indicating that the counter is not enabled.
1964
1965config AS_HAS_ARMV8_4
1966	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1967
1968config ARM64_TLB_RANGE
1969	bool "Enable support for tlbi range feature"
1970	default y
1971	depends on AS_HAS_ARMV8_4
1972	help
1973	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1974	  range of input addresses.
1975
1976	  The feature introduces new assembly instructions, and they were
1977	  support when binutils >= 2.30.
1978
1979endmenu # "ARMv8.4 architectural features"
1980
1981menu "ARMv8.5 architectural features"
1982
1983config AS_HAS_ARMV8_5
1984	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1985
1986config ARM64_BTI
1987	bool "Branch Target Identification support"
1988	default y
1989	help
1990	  Branch Target Identification (part of the ARMv8.5 Extensions)
1991	  provides a mechanism to limit the set of locations to which computed
1992	  branch instructions such as BR or BLR can jump.
1993
1994	  To make use of BTI on CPUs that support it, say Y.
1995
1996	  BTI is intended to provide complementary protection to other control
1997	  flow integrity protection mechanisms, such as the Pointer
1998	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1999	  For this reason, it does not make sense to enable this option without
2000	  also enabling support for pointer authentication.  Thus, when
2001	  enabling this option you should also select ARM64_PTR_AUTH=y.
2002
2003	  Userspace binaries must also be specifically compiled to make use of
2004	  this mechanism.  If you say N here or the hardware does not support
2005	  BTI, such binaries can still run, but you get no additional
2006	  enforcement of branch destinations.
2007
2008config ARM64_BTI_KERNEL
2009	bool "Use Branch Target Identification for kernel"
2010	default y
2011	depends on ARM64_BTI
2012	depends on ARM64_PTR_AUTH_KERNEL
2013	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2014	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2015	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2016	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2017	depends on !CC_IS_GCC
2018	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
2019	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
2020	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2021	help
2022	  Build the kernel with Branch Target Identification annotations
2023	  and enable enforcement of this for kernel code. When this option
2024	  is enabled and the system supports BTI all kernel code including
2025	  modular code must have BTI enabled.
2026
2027config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2028	# GCC 9 or later, clang 8 or later
2029	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2030
2031config ARM64_E0PD
2032	bool "Enable support for E0PD"
2033	default y
2034	help
2035	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2036	  that EL0 accesses made via TTBR1 always fault in constant time,
2037	  providing similar benefits to KASLR as those provided by KPTI, but
2038	  with lower overhead and without disrupting legitimate access to
2039	  kernel memory such as SPE.
2040
2041	  This option enables E0PD for TTBR1 where available.
2042
2043config ARM64_AS_HAS_MTE
2044	# Initial support for MTE went in binutils 2.32.0, checked with
2045	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2046	# as a late addition to the final architecture spec (LDGM/STGM)
2047	# is only supported in the newer 2.32.x and 2.33 binutils
2048	# versions, hence the extra "stgm" instruction check below.
2049	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2050
2051config ARM64_MTE
2052	bool "Memory Tagging Extension support"
2053	default y
2054	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2055	depends on AS_HAS_ARMV8_5
2056	depends on AS_HAS_LSE_ATOMICS
2057	# Required for tag checking in the uaccess routines
2058	depends on ARM64_PAN
2059	select ARCH_HAS_SUBPAGE_FAULTS
2060	select ARCH_USES_HIGH_VMA_FLAGS
2061	select ARCH_USES_PG_ARCH_X
2062	help
2063	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2064	  architectural support for run-time, always-on detection of
2065	  various classes of memory error to aid with software debugging
2066	  to eliminate vulnerabilities arising from memory-unsafe
2067	  languages.
2068
2069	  This option enables the support for the Memory Tagging
2070	  Extension at EL0 (i.e. for userspace).
2071
2072	  Selecting this option allows the feature to be detected at
2073	  runtime. Any secondary CPU not implementing this feature will
2074	  not be allowed a late bring-up.
2075
2076	  Userspace binaries that want to use this feature must
2077	  explicitly opt in. The mechanism for the userspace is
2078	  described in:
2079
2080	  Documentation/arch/arm64/memory-tagging-extension.rst.
2081
2082endmenu # "ARMv8.5 architectural features"
2083
2084menu "ARMv8.7 architectural features"
2085
2086config ARM64_EPAN
2087	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2088	default y
2089	depends on ARM64_PAN
2090	help
2091	  Enhanced Privileged Access Never (EPAN) allows Privileged
2092	  Access Never to be used with Execute-only mappings.
2093
2094	  The feature is detected at runtime, and will remain disabled
2095	  if the cpu does not implement the feature.
2096endmenu # "ARMv8.7 architectural features"
2097
2098config ARM64_SVE
2099	bool "ARM Scalable Vector Extension support"
2100	default y
2101	help
2102	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2103	  execution state which complements and extends the SIMD functionality
2104	  of the base architecture to support much larger vectors and to enable
2105	  additional vectorisation opportunities.
2106
2107	  To enable use of this extension on CPUs that implement it, say Y.
2108
2109	  On CPUs that support the SVE2 extensions, this option will enable
2110	  those too.
2111
2112	  Note that for architectural reasons, firmware _must_ implement SVE
2113	  support when running on SVE capable hardware.  The required support
2114	  is present in:
2115
2116	    * version 1.5 and later of the ARM Trusted Firmware
2117	    * the AArch64 boot wrapper since commit 5e1261e08abf
2118	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2119
2120	  For other firmware implementations, consult the firmware documentation
2121	  or vendor.
2122
2123	  If you need the kernel to boot on SVE-capable hardware with broken
2124	  firmware, you may need to say N here until you get your firmware
2125	  fixed.  Otherwise, you may experience firmware panics or lockups when
2126	  booting the kernel.  If unsure and you are not observing these
2127	  symptoms, you should assume that it is safe to say Y.
2128
2129config ARM64_SME
2130	bool "ARM Scalable Matrix Extension support"
2131	default y
2132	depends on ARM64_SVE
2133	help
2134	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2135	  execution state which utilises a substantial subset of the SVE
2136	  instruction set, together with the addition of new architectural
2137	  register state capable of holding two dimensional matrix tiles to
2138	  enable various matrix operations.
2139
2140config ARM64_PSEUDO_NMI
2141	bool "Support for NMI-like interrupts"
2142	select ARM_GIC_V3
2143	help
2144	  Adds support for mimicking Non-Maskable Interrupts through the use of
2145	  GIC interrupt priority. This support requires version 3 or later of
2146	  ARM GIC.
2147
2148	  This high priority configuration for interrupts needs to be
2149	  explicitly enabled by setting the kernel parameter
2150	  "irqchip.gicv3_pseudo_nmi" to 1.
2151
2152	  If unsure, say N
2153
2154if ARM64_PSEUDO_NMI
2155config ARM64_DEBUG_PRIORITY_MASKING
2156	bool "Debug interrupt priority masking"
2157	help
2158	  This adds runtime checks to functions enabling/disabling
2159	  interrupts when using priority masking. The additional checks verify
2160	  the validity of ICC_PMR_EL1 when calling concerned functions.
2161
2162	  If unsure, say N
2163endif # ARM64_PSEUDO_NMI
2164
2165config RELOCATABLE
2166	bool "Build a relocatable kernel image" if EXPERT
2167	select ARCH_HAS_RELR
2168	default y
2169	help
2170	  This builds the kernel as a Position Independent Executable (PIE),
2171	  which retains all relocation metadata required to relocate the
2172	  kernel binary at runtime to a different virtual address than the
2173	  address it was linked at.
2174	  Since AArch64 uses the RELA relocation format, this requires a
2175	  relocation pass at runtime even if the kernel is loaded at the
2176	  same address it was linked at.
2177
2178config RANDOMIZE_BASE
2179	bool "Randomize the address of the kernel image"
2180	select RELOCATABLE
2181	help
2182	  Randomizes the virtual address at which the kernel image is
2183	  loaded, as a security feature that deters exploit attempts
2184	  relying on knowledge of the location of kernel internals.
2185
2186	  It is the bootloader's job to provide entropy, by passing a
2187	  random u64 value in /chosen/kaslr-seed at kernel entry.
2188
2189	  When booting via the UEFI stub, it will invoke the firmware's
2190	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2191	  to the kernel proper. In addition, it will randomise the physical
2192	  location of the kernel Image as well.
2193
2194	  If unsure, say N.
2195
2196config RANDOMIZE_MODULE_REGION_FULL
2197	bool "Randomize the module region over a 2 GB range"
2198	depends on RANDOMIZE_BASE
2199	default y
2200	help
2201	  Randomizes the location of the module region inside a 2 GB window
2202	  covering the core kernel. This way, it is less likely for modules
2203	  to leak information about the location of core kernel data structures
2204	  but it does imply that function calls between modules and the core
2205	  kernel will need to be resolved via veneers in the module PLT.
2206
2207	  When this option is not set, the module region will be randomized over
2208	  a limited range that contains the [_stext, _etext] interval of the
2209	  core kernel, so branch relocations are almost always in range unless
2210	  the region is exhausted. In this particular case of region
2211	  exhaustion, modules might be able to fall back to a larger 2GB area.
2212
2213config CC_HAVE_STACKPROTECTOR_SYSREG
2214	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2215
2216config STACKPROTECTOR_PER_TASK
2217	def_bool y
2218	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2219
2220config UNWIND_PATCH_PAC_INTO_SCS
2221	bool "Enable shadow call stack dynamically using code patching"
2222	# needs Clang with https://reviews.llvm.org/D111780 incorporated
2223	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2224	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2225	depends on SHADOW_CALL_STACK
2226	select UNWIND_TABLES
2227	select DYNAMIC_SCS
2228
2229endmenu # "Kernel Features"
2230
2231menu "Boot options"
2232
2233config ARM64_ACPI_PARKING_PROTOCOL
2234	bool "Enable support for the ARM64 ACPI parking protocol"
2235	depends on ACPI
2236	help
2237	  Enable support for the ARM64 ACPI parking protocol. If disabled
2238	  the kernel will not allow booting through the ARM64 ACPI parking
2239	  protocol even if the corresponding data is present in the ACPI
2240	  MADT table.
2241
2242config CMDLINE
2243	string "Default kernel command string"
2244	default ""
2245	help
2246	  Provide a set of default command-line options at build time by
2247	  entering them here. As a minimum, you should specify the the
2248	  root device (e.g. root=/dev/nfs).
2249
2250choice
2251	prompt "Kernel command line type" if CMDLINE != ""
2252	default CMDLINE_FROM_BOOTLOADER
2253	help
2254	  Choose how the kernel will handle the provided default kernel
2255	  command line string.
2256
2257config CMDLINE_FROM_BOOTLOADER
2258	bool "Use bootloader kernel arguments if available"
2259	help
2260	  Uses the command-line options passed by the boot loader. If
2261	  the boot loader doesn't provide any, the default kernel command
2262	  string provided in CMDLINE will be used.
2263
2264config CMDLINE_FORCE
2265	bool "Always use the default kernel command string"
2266	help
2267	  Always use the default kernel command string, even if the boot
2268	  loader passes other arguments to the kernel.
2269	  This is useful if you cannot or don't want to change the
2270	  command-line options your boot loader passes to the kernel.
2271
2272endchoice
2273
2274config EFI_STUB
2275	bool
2276
2277config EFI
2278	bool "UEFI runtime support"
2279	depends on OF && !CPU_BIG_ENDIAN
2280	depends on KERNEL_MODE_NEON
2281	select ARCH_SUPPORTS_ACPI
2282	select LIBFDT
2283	select UCS2_STRING
2284	select EFI_PARAMS_FROM_FDT
2285	select EFI_RUNTIME_WRAPPERS
2286	select EFI_STUB
2287	select EFI_GENERIC_STUB
2288	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2289	default y
2290	help
2291	  This option provides support for runtime services provided
2292	  by UEFI firmware (such as non-volatile variables, realtime
2293	  clock, and platform reset). A UEFI stub is also provided to
2294	  allow the kernel to be booted as an EFI application. This
2295	  is only useful on systems that have UEFI firmware.
2296
2297config DMI
2298	bool "Enable support for SMBIOS (DMI) tables"
2299	depends on EFI
2300	default y
2301	help
2302	  This enables SMBIOS/DMI feature for systems.
2303
2304	  This option is only useful on systems that have UEFI firmware.
2305	  However, even with this option, the resultant kernel should
2306	  continue to boot on existing non-UEFI platforms.
2307
2308endmenu # "Boot options"
2309
2310menu "Power management options"
2311
2312source "kernel/power/Kconfig"
2313
2314config ARCH_HIBERNATION_POSSIBLE
2315	def_bool y
2316	depends on CPU_PM
2317
2318config ARCH_HIBERNATION_HEADER
2319	def_bool y
2320	depends on HIBERNATION
2321
2322config ARCH_SUSPEND_POSSIBLE
2323	def_bool y
2324
2325endmenu # "Power management options"
2326
2327menu "CPU Power Management"
2328
2329source "drivers/cpuidle/Kconfig"
2330
2331source "drivers/cpufreq/Kconfig"
2332
2333endmenu # "CPU Power Management"
2334
2335source "drivers/acpi/Kconfig"
2336
2337source "arch/arm64/kvm/Kconfig"
2338
2339