1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_IORT if ACPI 9 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 10 select ACPI_MCFG if (ACPI && PCI) 11 select ACPI_SPCR_TABLE if ACPI 12 select ACPI_PPTT if ACPI 13 select ARCH_HAS_DEBUG_WX 14 select ARCH_BINFMT_ELF_EXTRA_PHDRS 15 select ARCH_BINFMT_ELF_STATE 16 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 18 select ARCH_ENABLE_MEMORY_HOTPLUG 19 select ARCH_ENABLE_MEMORY_HOTREMOVE 20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 22 select ARCH_HAS_CACHE_LINE_SIZE 23 select ARCH_HAS_CURRENT_STACK_POINTER 24 select ARCH_HAS_DEBUG_VIRTUAL 25 select ARCH_HAS_DEBUG_VM_PGTABLE 26 select ARCH_HAS_DMA_PREP_COHERENT 27 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 28 select ARCH_HAS_FAST_MULTIPLIER 29 select ARCH_HAS_FORTIFY_SOURCE 30 select ARCH_HAS_GCOV_PROFILE_ALL 31 select ARCH_HAS_GIGANTIC_PAGE 32 select ARCH_HAS_KCOV 33 select ARCH_HAS_KEEPINITRD 34 select ARCH_HAS_MEMBARRIER_SYNC_CORE 35 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 36 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 37 select ARCH_HAS_PTE_DEVMAP 38 select ARCH_HAS_PTE_SPECIAL 39 select ARCH_HAS_HW_PTE_YOUNG 40 select ARCH_HAS_SETUP_DMA_OPS 41 select ARCH_HAS_SET_DIRECT_MAP 42 select ARCH_HAS_SET_MEMORY 43 select ARCH_STACKWALK 44 select ARCH_HAS_STRICT_KERNEL_RWX 45 select ARCH_HAS_STRICT_MODULE_RWX 46 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 47 select ARCH_HAS_SYNC_DMA_FOR_CPU 48 select ARCH_HAS_SYSCALL_WRAPPER 49 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 50 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 51 select ARCH_HAS_ZONE_DMA_SET if EXPERT 52 select ARCH_HAVE_ELF_PROT 53 select ARCH_HAVE_NMI_SAFE_CMPXCHG 54 select ARCH_HAVE_TRACE_MMIO_ACCESS 55 select ARCH_INLINE_READ_LOCK if !PREEMPTION 56 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 57 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 58 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 59 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 60 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 62 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 63 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 64 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 66 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 67 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 68 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 70 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 71 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 72 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 73 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 74 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 76 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 77 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 78 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 80 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 81 select ARCH_KEEP_MEMBLOCK 82 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 83 select ARCH_USE_CMPXCHG_LOCKREF 84 select ARCH_USE_GNU_PROPERTY 85 select ARCH_USE_MEMTEST 86 select ARCH_USE_QUEUED_RWLOCKS 87 select ARCH_USE_QUEUED_SPINLOCKS 88 select ARCH_USE_SYM_ANNOTATIONS 89 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 90 select ARCH_SUPPORTS_HUGETLBFS 91 select ARCH_SUPPORTS_MEMORY_FAILURE 92 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 93 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 94 select ARCH_SUPPORTS_LTO_CLANG_THIN 95 select ARCH_SUPPORTS_CFI_CLANG 96 select ARCH_SUPPORTS_ATOMIC_RMW 97 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 98 select ARCH_SUPPORTS_NUMA_BALANCING 99 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 100 select ARCH_SUPPORTS_PER_VMA_LOCK 101 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 102 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 103 select ARCH_WANT_DEFAULT_BPF_JIT 104 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 105 select ARCH_WANT_FRAME_POINTERS 106 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 107 select ARCH_WANT_LD_ORPHAN_WARN 108 select ARCH_WANTS_NO_INSTR 109 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 110 select ARCH_HAS_UBSAN 111 select ARM_AMBA 112 select ARM_ARCH_TIMER 113 select ARM_GIC 114 select AUDIT_ARCH_COMPAT_GENERIC 115 select ARM_GIC_V2M if PCI 116 select ARM_GIC_V3 117 select ARM_GIC_V3_ITS if PCI 118 select ARM_PSCI_FW 119 select BUILDTIME_TABLE_SORT 120 select CLONE_BACKWARDS 121 select COMMON_CLK 122 select CPU_PM if (SUSPEND || CPU_IDLE) 123 select CRC32 124 select DCACHE_WORD_ACCESS 125 select DYNAMIC_FTRACE if FUNCTION_TRACER 126 select DMA_BOUNCE_UNALIGNED_KMALLOC 127 select DMA_DIRECT_REMAP 128 select EDAC_SUPPORT 129 select FRAME_POINTER 130 select FUNCTION_ALIGNMENT_4B 131 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 132 select GENERIC_ALLOCATOR 133 select GENERIC_ARCH_TOPOLOGY 134 select GENERIC_CLOCKEVENTS_BROADCAST 135 select GENERIC_CPU_AUTOPROBE 136 select GENERIC_CPU_DEVICES 137 select GENERIC_CPU_VULNERABILITIES 138 select GENERIC_EARLY_IOREMAP 139 select GENERIC_IDLE_POLL_SETUP 140 select GENERIC_IOREMAP 141 select GENERIC_IRQ_IPI 142 select GENERIC_IRQ_PROBE 143 select GENERIC_IRQ_SHOW 144 select GENERIC_IRQ_SHOW_LEVEL 145 select GENERIC_LIB_DEVMEM_IS_ALLOWED 146 select GENERIC_PCI_IOMAP 147 select GENERIC_PTDUMP 148 select GENERIC_SCHED_CLOCK 149 select GENERIC_SMP_IDLE_THREAD 150 select GENERIC_TIME_VSYSCALL 151 select GENERIC_GETTIMEOFDAY 152 select GENERIC_VDSO_TIME_NS 153 select HARDIRQS_SW_RESEND 154 select HAS_IOPORT 155 select HAVE_MOVE_PMD 156 select HAVE_MOVE_PUD 157 select HAVE_PCI 158 select HAVE_ACPI_APEI if (ACPI && EFI) 159 select HAVE_ALIGNED_STRUCT_PAGE 160 select HAVE_ARCH_AUDITSYSCALL 161 select HAVE_ARCH_BITREVERSE 162 select HAVE_ARCH_COMPILER_H 163 select HAVE_ARCH_HUGE_VMALLOC 164 select HAVE_ARCH_HUGE_VMAP 165 select HAVE_ARCH_JUMP_LABEL 166 select HAVE_ARCH_JUMP_LABEL_RELATIVE 167 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 168 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 169 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 170 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 171 # Some instrumentation may be unsound, hence EXPERT 172 select HAVE_ARCH_KCSAN if EXPERT 173 select HAVE_ARCH_KFENCE 174 select HAVE_ARCH_KGDB 175 select HAVE_ARCH_MMAP_RND_BITS 176 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 177 select HAVE_ARCH_PREL32_RELOCATIONS 178 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 179 select HAVE_ARCH_SECCOMP_FILTER 180 select HAVE_ARCH_STACKLEAK 181 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 182 select HAVE_ARCH_TRACEHOOK 183 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 184 select HAVE_ARCH_VMAP_STACK 185 select HAVE_ARM_SMCCC 186 select HAVE_ASM_MODVERSIONS 187 select HAVE_EBPF_JIT 188 select HAVE_C_RECORDMCOUNT 189 select HAVE_CMPXCHG_DOUBLE 190 select HAVE_CMPXCHG_LOCAL 191 select HAVE_CONTEXT_TRACKING_USER 192 select HAVE_DEBUG_KMEMLEAK 193 select HAVE_DMA_CONTIGUOUS 194 select HAVE_DYNAMIC_FTRACE 195 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 196 if $(cc-option,-fpatchable-function-entry=2) 197 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 198 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 199 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 200 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 201 !CC_OPTIMIZE_FOR_SIZE) 202 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 203 if DYNAMIC_FTRACE_WITH_ARGS 204 select HAVE_SAMPLE_FTRACE_DIRECT 205 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 206 select HAVE_EFFICIENT_UNALIGNED_ACCESS 207 select HAVE_FAST_GUP 208 select HAVE_FTRACE_MCOUNT_RECORD 209 select HAVE_FUNCTION_TRACER 210 select HAVE_FUNCTION_ERROR_INJECTION 211 select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER 212 select HAVE_FUNCTION_GRAPH_TRACER 213 select HAVE_GCC_PLUGINS 214 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 215 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 216 select HAVE_HW_BREAKPOINT if PERF_EVENTS 217 select HAVE_IOREMAP_PROT 218 select HAVE_IRQ_TIME_ACCOUNTING 219 select HAVE_KVM 220 select HAVE_MOD_ARCH_SPECIFIC 221 select HAVE_NMI 222 select HAVE_PERF_EVENTS 223 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 224 select HAVE_PERF_REGS 225 select HAVE_PERF_USER_STACK_DUMP 226 select HAVE_PREEMPT_DYNAMIC_KEY 227 select HAVE_REGS_AND_STACK_ACCESS_API 228 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 229 select HAVE_FUNCTION_ARG_ACCESS_API 230 select MMU_GATHER_RCU_TABLE_FREE 231 select HAVE_RSEQ 232 select HAVE_STACKPROTECTOR 233 select HAVE_SYSCALL_TRACEPOINTS 234 select HAVE_KPROBES 235 select HAVE_KRETPROBES 236 select HAVE_GENERIC_VDSO 237 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 238 select IRQ_DOMAIN 239 select IRQ_FORCED_THREADING 240 select KASAN_VMALLOC if KASAN 241 select LOCK_MM_AND_FIND_VMA 242 select MODULES_USE_ELF_RELA 243 select NEED_DMA_MAP_STATE 244 select NEED_SG_DMA_LENGTH 245 select OF 246 select OF_EARLY_FLATTREE 247 select PCI_DOMAINS_GENERIC if PCI 248 select PCI_ECAM if (ACPI && PCI) 249 select PCI_SYSCALL if PCI 250 select POWER_RESET 251 select POWER_SUPPLY 252 select SPARSE_IRQ 253 select SWIOTLB 254 select SYSCTL_EXCEPTION_TRACE 255 select THREAD_INFO_IN_TASK 256 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 257 select TRACE_IRQFLAGS_SUPPORT 258 select TRACE_IRQFLAGS_NMI_SUPPORT 259 select HAVE_SOFTIRQ_ON_OWN_STACK 260 help 261 ARM 64-bit (AArch64) Linux support. 262 263config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 264 def_bool CC_IS_CLANG 265 # https://github.com/ClangBuiltLinux/linux/issues/1507 266 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 267 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 268 269config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 270 def_bool CC_IS_GCC 271 depends on $(cc-option,-fpatchable-function-entry=2) 272 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 273 274config 64BIT 275 def_bool y 276 277config MMU 278 def_bool y 279 280config ARM64_CONT_PTE_SHIFT 281 int 282 default 5 if PAGE_SIZE_64KB 283 default 7 if PAGE_SIZE_16KB 284 default 4 285 286config ARM64_CONT_PMD_SHIFT 287 int 288 default 5 if PAGE_SIZE_64KB 289 default 5 if PAGE_SIZE_16KB 290 default 4 291 292config ARCH_MMAP_RND_BITS_MIN 293 default 14 if PAGE_SIZE_64KB 294 default 16 if PAGE_SIZE_16KB 295 default 18 296 297# max bits determined by the following formula: 298# VA_BITS - PAGE_SHIFT - 3 299config ARCH_MMAP_RND_BITS_MAX 300 default 19 if ARM64_VA_BITS=36 301 default 24 if ARM64_VA_BITS=39 302 default 27 if ARM64_VA_BITS=42 303 default 30 if ARM64_VA_BITS=47 304 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 305 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 306 default 33 if ARM64_VA_BITS=48 307 default 14 if ARM64_64K_PAGES 308 default 16 if ARM64_16K_PAGES 309 default 18 310 311config ARCH_MMAP_RND_COMPAT_BITS_MIN 312 default 7 if ARM64_64K_PAGES 313 default 9 if ARM64_16K_PAGES 314 default 11 315 316config ARCH_MMAP_RND_COMPAT_BITS_MAX 317 default 16 318 319config NO_IOPORT_MAP 320 def_bool y if !PCI 321 322config STACKTRACE_SUPPORT 323 def_bool y 324 325config ILLEGAL_POINTER_VALUE 326 hex 327 default 0xdead000000000000 328 329config LOCKDEP_SUPPORT 330 def_bool y 331 332config GENERIC_BUG 333 def_bool y 334 depends on BUG 335 336config GENERIC_BUG_RELATIVE_POINTERS 337 def_bool y 338 depends on GENERIC_BUG 339 340config GENERIC_HWEIGHT 341 def_bool y 342 343config GENERIC_CSUM 344 def_bool y 345 346config GENERIC_CALIBRATE_DELAY 347 def_bool y 348 349config SMP 350 def_bool y 351 352config KERNEL_MODE_NEON 353 def_bool y 354 355config FIX_EARLYCON_MEM 356 def_bool y 357 358config PGTABLE_LEVELS 359 int 360 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 361 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 362 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 363 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 364 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 365 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 366 367config ARCH_SUPPORTS_UPROBES 368 def_bool y 369 370config ARCH_PROC_KCORE_TEXT 371 def_bool y 372 373config BROKEN_GAS_INST 374 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 375 376config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 377 bool 378 # Clang's __builtin_return_adddress() strips the PAC since 12.0.0 379 # https://reviews.llvm.org/D75044 380 default y if CC_IS_CLANG && (CLANG_VERSION >= 120000) 381 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 382 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 383 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 384 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 385 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 386 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 387 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 388 default n 389 390config KASAN_SHADOW_OFFSET 391 hex 392 depends on KASAN_GENERIC || KASAN_SW_TAGS 393 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 394 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 395 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 396 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 397 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 398 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 399 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 400 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 401 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 402 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 403 default 0xffffffffffffffff 404 405config UNWIND_TABLES 406 bool 407 408source "arch/arm64/Kconfig.platforms" 409 410menu "Kernel Features" 411 412menu "ARM errata workarounds via the alternatives framework" 413 414config AMPERE_ERRATUM_AC03_CPU_38 415 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 416 default y 417 help 418 This option adds an alternative code sequence to work around Ampere 419 erratum AC03_CPU_38 on AmpereOne. 420 421 The affected design reports FEAT_HAFDBS as not implemented in 422 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 423 as required by the architecture. The unadvertised HAFDBS 424 implementation suffers from an additional erratum where hardware 425 A/D updates can occur after a PTE has been marked invalid. 426 427 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 428 which avoids enabling unadvertised hardware Access Flag management 429 at stage-2. 430 431 If unsure, say Y. 432 433config ARM64_WORKAROUND_CLEAN_CACHE 434 bool 435 436config ARM64_ERRATUM_826319 437 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 438 default y 439 select ARM64_WORKAROUND_CLEAN_CACHE 440 help 441 This option adds an alternative code sequence to work around ARM 442 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 443 AXI master interface and an L2 cache. 444 445 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 446 and is unable to accept a certain write via this interface, it will 447 not progress on read data presented on the read data channel and the 448 system can deadlock. 449 450 The workaround promotes data cache clean instructions to 451 data cache clean-and-invalidate. 452 Please note that this does not necessarily enable the workaround, 453 as it depends on the alternative framework, which will only patch 454 the kernel if an affected CPU is detected. 455 456 If unsure, say Y. 457 458config ARM64_ERRATUM_827319 459 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 460 default y 461 select ARM64_WORKAROUND_CLEAN_CACHE 462 help 463 This option adds an alternative code sequence to work around ARM 464 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 465 master interface and an L2 cache. 466 467 Under certain conditions this erratum can cause a clean line eviction 468 to occur at the same time as another transaction to the same address 469 on the AMBA 5 CHI interface, which can cause data corruption if the 470 interconnect reorders the two transactions. 471 472 The workaround promotes data cache clean instructions to 473 data cache clean-and-invalidate. 474 Please note that this does not necessarily enable the workaround, 475 as it depends on the alternative framework, which will only patch 476 the kernel if an affected CPU is detected. 477 478 If unsure, say Y. 479 480config ARM64_ERRATUM_824069 481 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 482 default y 483 select ARM64_WORKAROUND_CLEAN_CACHE 484 help 485 This option adds an alternative code sequence to work around ARM 486 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 487 to a coherent interconnect. 488 489 If a Cortex-A53 processor is executing a store or prefetch for 490 write instruction at the same time as a processor in another 491 cluster is executing a cache maintenance operation to the same 492 address, then this erratum might cause a clean cache line to be 493 incorrectly marked as dirty. 494 495 The workaround promotes data cache clean instructions to 496 data cache clean-and-invalidate. 497 Please note that this option does not necessarily enable the 498 workaround, as it depends on the alternative framework, which will 499 only patch the kernel if an affected CPU is detected. 500 501 If unsure, say Y. 502 503config ARM64_ERRATUM_819472 504 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 505 default y 506 select ARM64_WORKAROUND_CLEAN_CACHE 507 help 508 This option adds an alternative code sequence to work around ARM 509 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 510 present when it is connected to a coherent interconnect. 511 512 If the processor is executing a load and store exclusive sequence at 513 the same time as a processor in another cluster is executing a cache 514 maintenance operation to the same address, then this erratum might 515 cause data corruption. 516 517 The workaround promotes data cache clean instructions to 518 data cache clean-and-invalidate. 519 Please note that this does not necessarily enable the workaround, 520 as it depends on the alternative framework, which will only patch 521 the kernel if an affected CPU is detected. 522 523 If unsure, say Y. 524 525config ARM64_ERRATUM_832075 526 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 527 default y 528 help 529 This option adds an alternative code sequence to work around ARM 530 erratum 832075 on Cortex-A57 parts up to r1p2. 531 532 Affected Cortex-A57 parts might deadlock when exclusive load/store 533 instructions to Write-Back memory are mixed with Device loads. 534 535 The workaround is to promote device loads to use Load-Acquire 536 semantics. 537 Please note that this does not necessarily enable the workaround, 538 as it depends on the alternative framework, which will only patch 539 the kernel if an affected CPU is detected. 540 541 If unsure, say Y. 542 543config ARM64_ERRATUM_834220 544 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 545 depends on KVM 546 default y 547 help 548 This option adds an alternative code sequence to work around ARM 549 erratum 834220 on Cortex-A57 parts up to r1p2. 550 551 Affected Cortex-A57 parts might report a Stage 2 translation 552 fault as the result of a Stage 1 fault for load crossing a 553 page boundary when there is a permission or device memory 554 alignment fault at Stage 1 and a translation fault at Stage 2. 555 556 The workaround is to verify that the Stage 1 translation 557 doesn't generate a fault before handling the Stage 2 fault. 558 Please note that this does not necessarily enable the workaround, 559 as it depends on the alternative framework, which will only patch 560 the kernel if an affected CPU is detected. 561 562 If unsure, say Y. 563 564config ARM64_ERRATUM_1742098 565 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 566 depends on COMPAT 567 default y 568 help 569 This option removes the AES hwcap for aarch32 user-space to 570 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 571 572 Affected parts may corrupt the AES state if an interrupt is 573 taken between a pair of AES instructions. These instructions 574 are only present if the cryptography extensions are present. 575 All software should have a fallback implementation for CPUs 576 that don't implement the cryptography extensions. 577 578 If unsure, say Y. 579 580config ARM64_ERRATUM_845719 581 bool "Cortex-A53: 845719: a load might read incorrect data" 582 depends on COMPAT 583 default y 584 help 585 This option adds an alternative code sequence to work around ARM 586 erratum 845719 on Cortex-A53 parts up to r0p4. 587 588 When running a compat (AArch32) userspace on an affected Cortex-A53 589 part, a load at EL0 from a virtual address that matches the bottom 32 590 bits of the virtual address used by a recent load at (AArch64) EL1 591 might return incorrect data. 592 593 The workaround is to write the contextidr_el1 register on exception 594 return to a 32-bit task. 595 Please note that this does not necessarily enable the workaround, 596 as it depends on the alternative framework, which will only patch 597 the kernel if an affected CPU is detected. 598 599 If unsure, say Y. 600 601config ARM64_ERRATUM_843419 602 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 603 default y 604 help 605 This option links the kernel with '--fix-cortex-a53-843419' and 606 enables PLT support to replace certain ADRP instructions, which can 607 cause subsequent memory accesses to use an incorrect address on 608 Cortex-A53 parts up to r0p4. 609 610 If unsure, say Y. 611 612config ARM64_LD_HAS_FIX_ERRATUM_843419 613 def_bool $(ld-option,--fix-cortex-a53-843419) 614 615config ARM64_ERRATUM_1024718 616 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 617 default y 618 help 619 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 620 621 Affected Cortex-A55 cores (all revisions) could cause incorrect 622 update of the hardware dirty bit when the DBM/AP bits are updated 623 without a break-before-make. The workaround is to disable the usage 624 of hardware DBM locally on the affected cores. CPUs not affected by 625 this erratum will continue to use the feature. 626 627 If unsure, say Y. 628 629config ARM64_ERRATUM_1418040 630 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 631 default y 632 depends on COMPAT 633 help 634 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 635 errata 1188873 and 1418040. 636 637 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 638 cause register corruption when accessing the timer registers 639 from AArch32 userspace. 640 641 If unsure, say Y. 642 643config ARM64_WORKAROUND_SPECULATIVE_AT 644 bool 645 646config ARM64_ERRATUM_1165522 647 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 648 default y 649 select ARM64_WORKAROUND_SPECULATIVE_AT 650 help 651 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 652 653 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 654 corrupted TLBs by speculating an AT instruction during a guest 655 context switch. 656 657 If unsure, say Y. 658 659config ARM64_ERRATUM_1319367 660 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 661 default y 662 select ARM64_WORKAROUND_SPECULATIVE_AT 663 help 664 This option adds work arounds for ARM Cortex-A57 erratum 1319537 665 and A72 erratum 1319367 666 667 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 668 speculating an AT instruction during a guest context switch. 669 670 If unsure, say Y. 671 672config ARM64_ERRATUM_1530923 673 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 674 default y 675 select ARM64_WORKAROUND_SPECULATIVE_AT 676 help 677 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 678 679 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 680 corrupted TLBs by speculating an AT instruction during a guest 681 context switch. 682 683 If unsure, say Y. 684 685config ARM64_WORKAROUND_REPEAT_TLBI 686 bool 687 688config ARM64_ERRATUM_2441007 689 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI" 690 default y 691 select ARM64_WORKAROUND_REPEAT_TLBI 692 help 693 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 694 695 Under very rare circumstances, affected Cortex-A55 CPUs 696 may not handle a race between a break-before-make sequence on one 697 CPU, and another CPU accessing the same page. This could allow a 698 store to a page that has been unmapped. 699 700 Work around this by adding the affected CPUs to the list that needs 701 TLB sequences to be done twice. 702 703 If unsure, say Y. 704 705config ARM64_ERRATUM_1286807 706 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 707 default y 708 select ARM64_WORKAROUND_REPEAT_TLBI 709 help 710 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 711 712 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 713 address for a cacheable mapping of a location is being 714 accessed by a core while another core is remapping the virtual 715 address to a new physical page using the recommended 716 break-before-make sequence, then under very rare circumstances 717 TLBI+DSB completes before a read using the translation being 718 invalidated has been observed by other observers. The 719 workaround repeats the TLBI+DSB operation. 720 721config ARM64_ERRATUM_1463225 722 bool "Cortex-A76: Software Step might prevent interrupt recognition" 723 default y 724 help 725 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 726 727 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 728 of a system call instruction (SVC) can prevent recognition of 729 subsequent interrupts when software stepping is disabled in the 730 exception handler of the system call and either kernel debugging 731 is enabled or VHE is in use. 732 733 Work around the erratum by triggering a dummy step exception 734 when handling a system call from a task that is being stepped 735 in a VHE configuration of the kernel. 736 737 If unsure, say Y. 738 739config ARM64_ERRATUM_1542419 740 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 741 default y 742 help 743 This option adds a workaround for ARM Neoverse-N1 erratum 744 1542419. 745 746 Affected Neoverse-N1 cores could execute a stale instruction when 747 modified by another CPU. The workaround depends on a firmware 748 counterpart. 749 750 Workaround the issue by hiding the DIC feature from EL0. This 751 forces user-space to perform cache maintenance. 752 753 If unsure, say Y. 754 755config ARM64_ERRATUM_1508412 756 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 757 default y 758 help 759 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 760 761 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 762 of a store-exclusive or read of PAR_EL1 and a load with device or 763 non-cacheable memory attributes. The workaround depends on a firmware 764 counterpart. 765 766 KVM guests must also have the workaround implemented or they can 767 deadlock the system. 768 769 Work around the issue by inserting DMB SY barriers around PAR_EL1 770 register reads and warning KVM users. The DMB barrier is sufficient 771 to prevent a speculative PAR_EL1 read. 772 773 If unsure, say Y. 774 775config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 776 bool 777 778config ARM64_ERRATUM_2051678 779 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 780 default y 781 help 782 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 783 Affected Cortex-A510 might not respect the ordering rules for 784 hardware update of the page table's dirty bit. The workaround 785 is to not enable the feature on affected CPUs. 786 787 If unsure, say Y. 788 789config ARM64_ERRATUM_2077057 790 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 791 default y 792 help 793 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 794 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 795 expected, but a Pointer Authentication trap is taken instead. The 796 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 797 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 798 799 This can only happen when EL2 is stepping EL1. 800 801 When these conditions occur, the SPSR_EL2 value is unchanged from the 802 previous guest entry, and can be restored from the in-memory copy. 803 804 If unsure, say Y. 805 806config ARM64_ERRATUM_2658417 807 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 808 default y 809 help 810 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 811 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 812 BFMMLA or VMMLA instructions in rare circumstances when a pair of 813 A510 CPUs are using shared neon hardware. As the sharing is not 814 discoverable by the kernel, hide the BF16 HWCAP to indicate that 815 user-space should not be using these instructions. 816 817 If unsure, say Y. 818 819config ARM64_ERRATUM_2119858 820 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 821 default y 822 depends on CORESIGHT_TRBE 823 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 824 help 825 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 826 827 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 828 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 829 the event of a WRAP event. 830 831 Work around the issue by always making sure we move the TRBPTR_EL1 by 832 256 bytes before enabling the buffer and filling the first 256 bytes of 833 the buffer with ETM ignore packets upon disabling. 834 835 If unsure, say Y. 836 837config ARM64_ERRATUM_2139208 838 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 839 default y 840 depends on CORESIGHT_TRBE 841 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 842 help 843 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 844 845 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 846 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 847 the event of a WRAP event. 848 849 Work around the issue by always making sure we move the TRBPTR_EL1 by 850 256 bytes before enabling the buffer and filling the first 256 bytes of 851 the buffer with ETM ignore packets upon disabling. 852 853 If unsure, say Y. 854 855config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 856 bool 857 858config ARM64_ERRATUM_2054223 859 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 860 default y 861 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 862 help 863 Enable workaround for ARM Cortex-A710 erratum 2054223 864 865 Affected cores may fail to flush the trace data on a TSB instruction, when 866 the PE is in trace prohibited state. This will cause losing a few bytes 867 of the trace cached. 868 869 Workaround is to issue two TSB consecutively on affected cores. 870 871 If unsure, say Y. 872 873config ARM64_ERRATUM_2067961 874 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 875 default y 876 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 877 help 878 Enable workaround for ARM Neoverse-N2 erratum 2067961 879 880 Affected cores may fail to flush the trace data on a TSB instruction, when 881 the PE is in trace prohibited state. This will cause losing a few bytes 882 of the trace cached. 883 884 Workaround is to issue two TSB consecutively on affected cores. 885 886 If unsure, say Y. 887 888config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 889 bool 890 891config ARM64_ERRATUM_2253138 892 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 893 depends on CORESIGHT_TRBE 894 default y 895 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 896 help 897 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 898 899 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 900 for TRBE. Under some conditions, the TRBE might generate a write to the next 901 virtually addressed page following the last page of the TRBE address space 902 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 903 904 Work around this in the driver by always making sure that there is a 905 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 906 907 If unsure, say Y. 908 909config ARM64_ERRATUM_2224489 910 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 911 depends on CORESIGHT_TRBE 912 default y 913 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 914 help 915 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 916 917 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 918 for TRBE. Under some conditions, the TRBE might generate a write to the next 919 virtually addressed page following the last page of the TRBE address space 920 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 921 922 Work around this in the driver by always making sure that there is a 923 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 924 925 If unsure, say Y. 926 927config ARM64_ERRATUM_2441009 928 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI" 929 default y 930 select ARM64_WORKAROUND_REPEAT_TLBI 931 help 932 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 933 934 Under very rare circumstances, affected Cortex-A510 CPUs 935 may not handle a race between a break-before-make sequence on one 936 CPU, and another CPU accessing the same page. This could allow a 937 store to a page that has been unmapped. 938 939 Work around this by adding the affected CPUs to the list that needs 940 TLB sequences to be done twice. 941 942 If unsure, say Y. 943 944config ARM64_ERRATUM_2064142 945 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 946 depends on CORESIGHT_TRBE 947 default y 948 help 949 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 950 951 Affected Cortex-A510 core might fail to write into system registers after the 952 TRBE has been disabled. Under some conditions after the TRBE has been disabled 953 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 954 and TRBTRG_EL1 will be ignored and will not be effected. 955 956 Work around this in the driver by executing TSB CSYNC and DSB after collection 957 is stopped and before performing a system register write to one of the affected 958 registers. 959 960 If unsure, say Y. 961 962config ARM64_ERRATUM_2038923 963 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 964 depends on CORESIGHT_TRBE 965 default y 966 help 967 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 968 969 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 970 prohibited within the CPU. As a result, the trace buffer or trace buffer state 971 might be corrupted. This happens after TRBE buffer has been enabled by setting 972 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 973 execution changes from a context, in which trace is prohibited to one where it 974 isn't, or vice versa. In these mentioned conditions, the view of whether trace 975 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 976 the trace buffer state might be corrupted. 977 978 Work around this in the driver by preventing an inconsistent view of whether the 979 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 980 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 981 two ISB instructions if no ERET is to take place. 982 983 If unsure, say Y. 984 985config ARM64_ERRATUM_1902691 986 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 987 depends on CORESIGHT_TRBE 988 default y 989 help 990 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 991 992 Affected Cortex-A510 core might cause trace data corruption, when being written 993 into the memory. Effectively TRBE is broken and hence cannot be used to capture 994 trace data. 995 996 Work around this problem in the driver by just preventing TRBE initialization on 997 affected cpus. The firmware must have disabled the access to TRBE for the kernel 998 on such implementations. This will cover the kernel for any firmware that doesn't 999 do this already. 1000 1001 If unsure, say Y. 1002 1003config ARM64_ERRATUM_2457168 1004 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1005 depends on ARM64_AMU_EXTN 1006 default y 1007 help 1008 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1009 1010 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1011 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1012 incorrectly giving a significantly higher output value. 1013 1014 Work around this problem by returning 0 when reading the affected counter in 1015 key locations that results in disabling all users of this counter. This effect 1016 is the same to firmware disabling affected counters. 1017 1018 If unsure, say Y. 1019 1020config ARM64_ERRATUM_2645198 1021 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1022 default y 1023 help 1024 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1025 1026 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1027 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1028 next instruction abort caused by permission fault. 1029 1030 Only user-space does executable to non-executable permission transition via 1031 mprotect() system call. Workaround the problem by doing a break-before-make 1032 TLB invalidation, for all changes to executable user space mappings. 1033 1034 If unsure, say Y. 1035 1036config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1037 bool 1038 1039config ARM64_ERRATUM_2966298 1040 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1041 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1042 default y 1043 help 1044 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1045 1046 On an affected Cortex-A520 core, a speculatively executed unprivileged 1047 load might leak data from a privileged level via a cache side channel. 1048 1049 Work around this problem by executing a TLBI before returning to EL0. 1050 1051 If unsure, say Y. 1052 1053config ARM64_ERRATUM_3117295 1054 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1055 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1056 default y 1057 help 1058 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1059 1060 On an affected Cortex-A510 core, a speculatively executed unprivileged 1061 load might leak data from a privileged level via a cache side channel. 1062 1063 Work around this problem by executing a TLBI before returning to EL0. 1064 1065 If unsure, say Y. 1066 1067config CAVIUM_ERRATUM_22375 1068 bool "Cavium erratum 22375, 24313" 1069 default y 1070 help 1071 Enable workaround for errata 22375 and 24313. 1072 1073 This implements two gicv3-its errata workarounds for ThunderX. Both 1074 with a small impact affecting only ITS table allocation. 1075 1076 erratum 22375: only alloc 8MB table size 1077 erratum 24313: ignore memory access type 1078 1079 The fixes are in ITS initialization and basically ignore memory access 1080 type and table size provided by the TYPER and BASER registers. 1081 1082 If unsure, say Y. 1083 1084config CAVIUM_ERRATUM_23144 1085 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1086 depends on NUMA 1087 default y 1088 help 1089 ITS SYNC command hang for cross node io and collections/cpu mapping. 1090 1091 If unsure, say Y. 1092 1093config CAVIUM_ERRATUM_23154 1094 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1095 default y 1096 help 1097 The ThunderX GICv3 implementation requires a modified version for 1098 reading the IAR status to ensure data synchronization 1099 (access to icc_iar1_el1 is not sync'ed before and after). 1100 1101 It also suffers from erratum 38545 (also present on Marvell's 1102 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1103 spuriously presented to the CPU interface. 1104 1105 If unsure, say Y. 1106 1107config CAVIUM_ERRATUM_27456 1108 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1109 default y 1110 help 1111 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1112 instructions may cause the icache to become corrupted if it 1113 contains data for a non-current ASID. The fix is to 1114 invalidate the icache when changing the mm context. 1115 1116 If unsure, say Y. 1117 1118config CAVIUM_ERRATUM_30115 1119 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1120 default y 1121 help 1122 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1123 1.2, and T83 Pass 1.0, KVM guest execution may disable 1124 interrupts in host. Trapping both GICv3 group-0 and group-1 1125 accesses sidesteps the issue. 1126 1127 If unsure, say Y. 1128 1129config CAVIUM_TX2_ERRATUM_219 1130 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1131 default y 1132 help 1133 On Cavium ThunderX2, a load, store or prefetch instruction between a 1134 TTBR update and the corresponding context synchronizing operation can 1135 cause a spurious Data Abort to be delivered to any hardware thread in 1136 the CPU core. 1137 1138 Work around the issue by avoiding the problematic code sequence and 1139 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1140 trap handler performs the corresponding register access, skips the 1141 instruction and ensures context synchronization by virtue of the 1142 exception return. 1143 1144 If unsure, say Y. 1145 1146config FUJITSU_ERRATUM_010001 1147 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1148 default y 1149 help 1150 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1151 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1152 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1153 This fault occurs under a specific hardware condition when a 1154 load/store instruction performs an address translation using: 1155 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1156 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1157 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1158 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1159 1160 The workaround is to ensure these bits are clear in TCR_ELx. 1161 The workaround only affects the Fujitsu-A64FX. 1162 1163 If unsure, say Y. 1164 1165config HISILICON_ERRATUM_161600802 1166 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1167 default y 1168 help 1169 The HiSilicon Hip07 SoC uses the wrong redistributor base 1170 when issued ITS commands such as VMOVP and VMAPP, and requires 1171 a 128kB offset to be applied to the target address in this commands. 1172 1173 If unsure, say Y. 1174 1175config QCOM_FALKOR_ERRATUM_1003 1176 bool "Falkor E1003: Incorrect translation due to ASID change" 1177 default y 1178 help 1179 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1180 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1181 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1182 then only for entries in the walk cache, since the leaf translation 1183 is unchanged. Work around the erratum by invalidating the walk cache 1184 entries for the trampoline before entering the kernel proper. 1185 1186config QCOM_FALKOR_ERRATUM_1009 1187 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1188 default y 1189 select ARM64_WORKAROUND_REPEAT_TLBI 1190 help 1191 On Falkor v1, the CPU may prematurely complete a DSB following a 1192 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1193 one more time to fix the issue. 1194 1195 If unsure, say Y. 1196 1197config QCOM_QDF2400_ERRATUM_0065 1198 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1199 default y 1200 help 1201 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1202 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1203 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1204 1205 If unsure, say Y. 1206 1207config QCOM_FALKOR_ERRATUM_E1041 1208 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1209 default y 1210 help 1211 Falkor CPU may speculatively fetch instructions from an improper 1212 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1213 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1214 1215 If unsure, say Y. 1216 1217config NVIDIA_CARMEL_CNP_ERRATUM 1218 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1219 default y 1220 help 1221 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1222 invalidate shared TLB entries installed by a different core, as it would 1223 on standard ARM cores. 1224 1225 If unsure, say Y. 1226 1227config ROCKCHIP_ERRATUM_3588001 1228 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1229 default y 1230 help 1231 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1232 This means, that its sharability feature may not be used, even though it 1233 is supported by the IP itself. 1234 1235 If unsure, say Y. 1236 1237config SOCIONEXT_SYNQUACER_PREITS 1238 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1239 default y 1240 help 1241 Socionext Synquacer SoCs implement a separate h/w block to generate 1242 MSI doorbell writes with non-zero values for the device ID. 1243 1244 If unsure, say Y. 1245 1246endmenu # "ARM errata workarounds via the alternatives framework" 1247 1248choice 1249 prompt "Page size" 1250 default ARM64_4K_PAGES 1251 help 1252 Page size (translation granule) configuration. 1253 1254config ARM64_4K_PAGES 1255 bool "4KB" 1256 select HAVE_PAGE_SIZE_4KB 1257 help 1258 This feature enables 4KB pages support. 1259 1260config ARM64_16K_PAGES 1261 bool "16KB" 1262 select HAVE_PAGE_SIZE_16KB 1263 help 1264 The system will use 16KB pages support. AArch32 emulation 1265 requires applications compiled with 16K (or a multiple of 16K) 1266 aligned segments. 1267 1268config ARM64_64K_PAGES 1269 bool "64KB" 1270 select HAVE_PAGE_SIZE_64KB 1271 help 1272 This feature enables 64KB pages support (4KB by default) 1273 allowing only two levels of page tables and faster TLB 1274 look-up. AArch32 emulation requires applications compiled 1275 with 64K aligned segments. 1276 1277endchoice 1278 1279choice 1280 prompt "Virtual address space size" 1281 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 1282 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 1283 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 1284 help 1285 Allows choosing one of multiple possible virtual address 1286 space sizes. The level of translation table is determined by 1287 a combination of page size and virtual address space size. 1288 1289config ARM64_VA_BITS_36 1290 bool "36-bit" if EXPERT 1291 depends on PAGE_SIZE_16KB 1292 1293config ARM64_VA_BITS_39 1294 bool "39-bit" 1295 depends on PAGE_SIZE_4KB 1296 1297config ARM64_VA_BITS_42 1298 bool "42-bit" 1299 depends on PAGE_SIZE_64KB 1300 1301config ARM64_VA_BITS_47 1302 bool "47-bit" 1303 depends on PAGE_SIZE_16KB 1304 1305config ARM64_VA_BITS_48 1306 bool "48-bit" 1307 1308config ARM64_VA_BITS_52 1309 bool "52-bit" 1310 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 1311 help 1312 Enable 52-bit virtual addressing for userspace when explicitly 1313 requested via a hint to mmap(). The kernel will also use 52-bit 1314 virtual addresses for its own mappings (provided HW support for 1315 this feature is available, otherwise it reverts to 48-bit). 1316 1317 NOTE: Enabling 52-bit virtual addressing in conjunction with 1318 ARMv8.3 Pointer Authentication will result in the PAC being 1319 reduced from 7 bits to 3 bits, which may have a significant 1320 impact on its susceptibility to brute-force attacks. 1321 1322 If unsure, select 48-bit virtual addressing instead. 1323 1324endchoice 1325 1326config ARM64_FORCE_52BIT 1327 bool "Force 52-bit virtual addresses for userspace" 1328 depends on ARM64_VA_BITS_52 && EXPERT 1329 help 1330 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1331 to maintain compatibility with older software by providing 48-bit VAs 1332 unless a hint is supplied to mmap. 1333 1334 This configuration option disables the 48-bit compatibility logic, and 1335 forces all userspace addresses to be 52-bit on HW that supports it. One 1336 should only enable this configuration option for stress testing userspace 1337 memory management code. If unsure say N here. 1338 1339config ARM64_VA_BITS 1340 int 1341 default 36 if ARM64_VA_BITS_36 1342 default 39 if ARM64_VA_BITS_39 1343 default 42 if ARM64_VA_BITS_42 1344 default 47 if ARM64_VA_BITS_47 1345 default 48 if ARM64_VA_BITS_48 1346 default 52 if ARM64_VA_BITS_52 1347 1348choice 1349 prompt "Physical address space size" 1350 default ARM64_PA_BITS_48 1351 help 1352 Choose the maximum physical address range that the kernel will 1353 support. 1354 1355config ARM64_PA_BITS_48 1356 bool "48-bit" 1357 1358config ARM64_PA_BITS_52 1359 bool "52-bit (ARMv8.2)" 1360 depends on ARM64_64K_PAGES 1361 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1362 help 1363 Enable support for a 52-bit physical address space, introduced as 1364 part of the ARMv8.2-LPA extension. 1365 1366 With this enabled, the kernel will also continue to work on CPUs that 1367 do not support ARMv8.2-LPA, but with some added memory overhead (and 1368 minor performance overhead). 1369 1370endchoice 1371 1372config ARM64_PA_BITS 1373 int 1374 default 48 if ARM64_PA_BITS_48 1375 default 52 if ARM64_PA_BITS_52 1376 1377choice 1378 prompt "Endianness" 1379 default CPU_LITTLE_ENDIAN 1380 help 1381 Select the endianness of data accesses performed by the CPU. Userspace 1382 applications will need to be compiled and linked for the endianness 1383 that is selected here. 1384 1385config CPU_BIG_ENDIAN 1386 bool "Build big-endian kernel" 1387 depends on !LD_IS_LLD || LLD_VERSION >= 130000 1388 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c 1389 depends on AS_IS_GNU || AS_VERSION >= 150000 1390 help 1391 Say Y if you plan on running a kernel with a big-endian userspace. 1392 1393config CPU_LITTLE_ENDIAN 1394 bool "Build little-endian kernel" 1395 help 1396 Say Y if you plan on running a kernel with a little-endian userspace. 1397 This is usually the case for distributions targeting arm64. 1398 1399endchoice 1400 1401config SCHED_MC 1402 bool "Multi-core scheduler support" 1403 help 1404 Multi-core scheduler support improves the CPU scheduler's decision 1405 making when dealing with multi-core CPU chips at a cost of slightly 1406 increased overhead in some places. If unsure say N here. 1407 1408config SCHED_CLUSTER 1409 bool "Cluster scheduler support" 1410 help 1411 Cluster scheduler support improves the CPU scheduler's decision 1412 making when dealing with machines that have clusters of CPUs. 1413 Cluster usually means a couple of CPUs which are placed closely 1414 by sharing mid-level caches, last-level cache tags or internal 1415 busses. 1416 1417config SCHED_SMT 1418 bool "SMT scheduler support" 1419 help 1420 Improves the CPU scheduler's decision making when dealing with 1421 MultiThreading at a cost of slightly increased overhead in some 1422 places. If unsure say N here. 1423 1424config NR_CPUS 1425 int "Maximum number of CPUs (2-4096)" 1426 range 2 4096 1427 default "256" 1428 1429config HOTPLUG_CPU 1430 bool "Support for hot-pluggable CPUs" 1431 select GENERIC_IRQ_MIGRATION 1432 help 1433 Say Y here to experiment with turning CPUs off and on. CPUs 1434 can be controlled through /sys/devices/system/cpu. 1435 1436# Common NUMA Features 1437config NUMA 1438 bool "NUMA Memory Allocation and Scheduler Support" 1439 select GENERIC_ARCH_NUMA 1440 select ACPI_NUMA if ACPI 1441 select OF_NUMA 1442 select HAVE_SETUP_PER_CPU_AREA 1443 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1444 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1445 select USE_PERCPU_NUMA_NODE_ID 1446 help 1447 Enable NUMA (Non-Uniform Memory Access) support. 1448 1449 The kernel will try to allocate memory used by a CPU on the 1450 local memory of the CPU and add some more 1451 NUMA awareness to the kernel. 1452 1453config NODES_SHIFT 1454 int "Maximum NUMA Nodes (as a power of 2)" 1455 range 1 10 1456 default "4" 1457 depends on NUMA 1458 help 1459 Specify the maximum number of NUMA Nodes available on the target 1460 system. Increases memory reserved to accommodate various tables. 1461 1462source "kernel/Kconfig.hz" 1463 1464config ARCH_SPARSEMEM_ENABLE 1465 def_bool y 1466 select SPARSEMEM_VMEMMAP_ENABLE 1467 select SPARSEMEM_VMEMMAP 1468 1469config HW_PERF_EVENTS 1470 def_bool y 1471 depends on ARM_PMU 1472 1473# Supported by clang >= 7.0 or GCC >= 12.0.0 1474config CC_HAVE_SHADOW_CALL_STACK 1475 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1476 1477config PARAVIRT 1478 bool "Enable paravirtualization code" 1479 help 1480 This changes the kernel so it can modify itself when it is run 1481 under a hypervisor, potentially improving performance significantly 1482 over full virtualization. 1483 1484config PARAVIRT_TIME_ACCOUNTING 1485 bool "Paravirtual steal time accounting" 1486 select PARAVIRT 1487 help 1488 Select this option to enable fine granularity task steal time 1489 accounting. Time spent executing other tasks in parallel with 1490 the current vCPU is discounted from the vCPU power. To account for 1491 that, there can be a small performance impact. 1492 1493 If in doubt, say N here. 1494 1495config ARCH_SUPPORTS_KEXEC 1496 def_bool PM_SLEEP_SMP 1497 1498config ARCH_SUPPORTS_KEXEC_FILE 1499 def_bool y 1500 1501config ARCH_SELECTS_KEXEC_FILE 1502 def_bool y 1503 depends on KEXEC_FILE 1504 select HAVE_IMA_KEXEC if IMA 1505 1506config ARCH_SUPPORTS_KEXEC_SIG 1507 def_bool y 1508 1509config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1510 def_bool y 1511 1512config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1513 def_bool y 1514 1515config ARCH_SUPPORTS_CRASH_DUMP 1516 def_bool y 1517 1518config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1519 def_bool CRASH_CORE 1520 1521config TRANS_TABLE 1522 def_bool y 1523 depends on HIBERNATION || KEXEC_CORE 1524 1525config XEN_DOM0 1526 def_bool y 1527 depends on XEN 1528 1529config XEN 1530 bool "Xen guest support on ARM64" 1531 depends on ARM64 && OF 1532 select SWIOTLB_XEN 1533 select PARAVIRT 1534 help 1535 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1536 1537# include/linux/mmzone.h requires the following to be true: 1538# 1539# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1540# 1541# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1542# 1543# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1544# ----+-------------------+--------------+----------------------+-------------------------+ 1545# 4K | 27 | 12 | 15 | 10 | 1546# 16K | 27 | 14 | 13 | 11 | 1547# 64K | 29 | 16 | 13 | 13 | 1548config ARCH_FORCE_MAX_ORDER 1549 int 1550 default "13" if ARM64_64K_PAGES 1551 default "11" if ARM64_16K_PAGES 1552 default "10" 1553 help 1554 The kernel page allocator limits the size of maximal physically 1555 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1556 defines the maximal power of two of number of pages that can be 1557 allocated as a single contiguous block. This option allows 1558 overriding the default setting when ability to allocate very 1559 large blocks of physically contiguous memory is required. 1560 1561 The maximal size of allocation cannot exceed the size of the 1562 section, so the value of MAX_PAGE_ORDER should satisfy 1563 1564 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1565 1566 Don't change if unsure. 1567 1568config UNMAP_KERNEL_AT_EL0 1569 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1570 default y 1571 help 1572 Speculation attacks against some high-performance processors can 1573 be used to bypass MMU permission checks and leak kernel data to 1574 userspace. This can be defended against by unmapping the kernel 1575 when running in userspace, mapping it back in on exception entry 1576 via a trampoline page in the vector table. 1577 1578 If unsure, say Y. 1579 1580config MITIGATE_SPECTRE_BRANCH_HISTORY 1581 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1582 default y 1583 help 1584 Speculation attacks against some high-performance processors can 1585 make use of branch history to influence future speculation. 1586 When taking an exception from user-space, a sequence of branches 1587 or a firmware call overwrites the branch history. 1588 1589config RODATA_FULL_DEFAULT_ENABLED 1590 bool "Apply r/o permissions of VM areas also to their linear aliases" 1591 default y 1592 help 1593 Apply read-only attributes of VM areas to the linear alias of 1594 the backing pages as well. This prevents code or read-only data 1595 from being modified (inadvertently or intentionally) via another 1596 mapping of the same memory page. This additional enhancement can 1597 be turned off at runtime by passing rodata=[off|on] (and turned on 1598 with rodata=full if this option is set to 'n') 1599 1600 This requires the linear region to be mapped down to pages, 1601 which may adversely affect performance in some cases. 1602 1603config ARM64_SW_TTBR0_PAN 1604 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1605 help 1606 Enabling this option prevents the kernel from accessing 1607 user-space memory directly by pointing TTBR0_EL1 to a reserved 1608 zeroed area and reserved ASID. The user access routines 1609 restore the valid TTBR0_EL1 temporarily. 1610 1611config ARM64_TAGGED_ADDR_ABI 1612 bool "Enable the tagged user addresses syscall ABI" 1613 default y 1614 help 1615 When this option is enabled, user applications can opt in to a 1616 relaxed ABI via prctl() allowing tagged addresses to be passed 1617 to system calls as pointer arguments. For details, see 1618 Documentation/arch/arm64/tagged-address-abi.rst. 1619 1620menuconfig COMPAT 1621 bool "Kernel support for 32-bit EL0" 1622 depends on ARM64_4K_PAGES || EXPERT 1623 select HAVE_UID16 1624 select OLD_SIGSUSPEND3 1625 select COMPAT_OLD_SIGACTION 1626 help 1627 This option enables support for a 32-bit EL0 running under a 64-bit 1628 kernel at EL1. AArch32-specific components such as system calls, 1629 the user helper functions, VFP support and the ptrace interface are 1630 handled appropriately by the kernel. 1631 1632 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1633 that you will only be able to execute AArch32 binaries that were compiled 1634 with page size aligned segments. 1635 1636 If you want to execute 32-bit userspace applications, say Y. 1637 1638if COMPAT 1639 1640config KUSER_HELPERS 1641 bool "Enable kuser helpers page for 32-bit applications" 1642 default y 1643 help 1644 Warning: disabling this option may break 32-bit user programs. 1645 1646 Provide kuser helpers to compat tasks. The kernel provides 1647 helper code to userspace in read only form at a fixed location 1648 to allow userspace to be independent of the CPU type fitted to 1649 the system. This permits binaries to be run on ARMv4 through 1650 to ARMv8 without modification. 1651 1652 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1653 1654 However, the fixed address nature of these helpers can be used 1655 by ROP (return orientated programming) authors when creating 1656 exploits. 1657 1658 If all of the binaries and libraries which run on your platform 1659 are built specifically for your platform, and make no use of 1660 these helpers, then you can turn this option off to hinder 1661 such exploits. However, in that case, if a binary or library 1662 relying on those helpers is run, it will not function correctly. 1663 1664 Say N here only if you are absolutely certain that you do not 1665 need these helpers; otherwise, the safe option is to say Y. 1666 1667config COMPAT_VDSO 1668 bool "Enable vDSO for 32-bit applications" 1669 depends on !CPU_BIG_ENDIAN 1670 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1671 select GENERIC_COMPAT_VDSO 1672 default y 1673 help 1674 Place in the process address space of 32-bit applications an 1675 ELF shared object providing fast implementations of gettimeofday 1676 and clock_gettime. 1677 1678 You must have a 32-bit build of glibc 2.22 or later for programs 1679 to seamlessly take advantage of this. 1680 1681config THUMB2_COMPAT_VDSO 1682 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1683 depends on COMPAT_VDSO 1684 default y 1685 help 1686 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1687 otherwise with '-marm'. 1688 1689config COMPAT_ALIGNMENT_FIXUPS 1690 bool "Fix up misaligned multi-word loads and stores in user space" 1691 1692menuconfig ARMV8_DEPRECATED 1693 bool "Emulate deprecated/obsolete ARMv8 instructions" 1694 depends on SYSCTL 1695 help 1696 Legacy software support may require certain instructions 1697 that have been deprecated or obsoleted in the architecture. 1698 1699 Enable this config to enable selective emulation of these 1700 features. 1701 1702 If unsure, say Y 1703 1704if ARMV8_DEPRECATED 1705 1706config SWP_EMULATION 1707 bool "Emulate SWP/SWPB instructions" 1708 help 1709 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1710 they are always undefined. Say Y here to enable software 1711 emulation of these instructions for userspace using LDXR/STXR. 1712 This feature can be controlled at runtime with the abi.swp 1713 sysctl which is disabled by default. 1714 1715 In some older versions of glibc [<=2.8] SWP is used during futex 1716 trylock() operations with the assumption that the code will not 1717 be preempted. This invalid assumption may be more likely to fail 1718 with SWP emulation enabled, leading to deadlock of the user 1719 application. 1720 1721 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1722 on an external transaction monitoring block called a global 1723 monitor to maintain update atomicity. If your system does not 1724 implement a global monitor, this option can cause programs that 1725 perform SWP operations to uncached memory to deadlock. 1726 1727 If unsure, say Y 1728 1729config CP15_BARRIER_EMULATION 1730 bool "Emulate CP15 Barrier instructions" 1731 help 1732 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1733 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1734 strongly recommended to use the ISB, DSB, and DMB 1735 instructions instead. 1736 1737 Say Y here to enable software emulation of these 1738 instructions for AArch32 userspace code. When this option is 1739 enabled, CP15 barrier usage is traced which can help 1740 identify software that needs updating. This feature can be 1741 controlled at runtime with the abi.cp15_barrier sysctl. 1742 1743 If unsure, say Y 1744 1745config SETEND_EMULATION 1746 bool "Emulate SETEND instruction" 1747 help 1748 The SETEND instruction alters the data-endianness of the 1749 AArch32 EL0, and is deprecated in ARMv8. 1750 1751 Say Y here to enable software emulation of the instruction 1752 for AArch32 userspace code. This feature can be controlled 1753 at runtime with the abi.setend sysctl. 1754 1755 Note: All the cpus on the system must have mixed endian support at EL0 1756 for this feature to be enabled. If a new CPU - which doesn't support mixed 1757 endian - is hotplugged in after this feature has been enabled, there could 1758 be unexpected results in the applications. 1759 1760 If unsure, say Y 1761endif # ARMV8_DEPRECATED 1762 1763endif # COMPAT 1764 1765menu "ARMv8.1 architectural features" 1766 1767config ARM64_HW_AFDBM 1768 bool "Support for hardware updates of the Access and Dirty page flags" 1769 default y 1770 help 1771 The ARMv8.1 architecture extensions introduce support for 1772 hardware updates of the access and dirty information in page 1773 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1774 capable processors, accesses to pages with PTE_AF cleared will 1775 set this bit instead of raising an access flag fault. 1776 Similarly, writes to read-only pages with the DBM bit set will 1777 clear the read-only bit (AP[2]) instead of raising a 1778 permission fault. 1779 1780 Kernels built with this configuration option enabled continue 1781 to work on pre-ARMv8.1 hardware and the performance impact is 1782 minimal. If unsure, say Y. 1783 1784config ARM64_PAN 1785 bool "Enable support for Privileged Access Never (PAN)" 1786 default y 1787 help 1788 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1789 prevents the kernel or hypervisor from accessing user-space (EL0) 1790 memory directly. 1791 1792 Choosing this option will cause any unprotected (not using 1793 copy_to_user et al) memory access to fail with a permission fault. 1794 1795 The feature is detected at runtime, and will remain as a 'nop' 1796 instruction if the cpu does not implement the feature. 1797 1798config AS_HAS_LSE_ATOMICS 1799 def_bool $(as-instr,.arch_extension lse) 1800 1801config ARM64_LSE_ATOMICS 1802 bool 1803 default ARM64_USE_LSE_ATOMICS 1804 depends on AS_HAS_LSE_ATOMICS 1805 1806config ARM64_USE_LSE_ATOMICS 1807 bool "Atomic instructions" 1808 default y 1809 help 1810 As part of the Large System Extensions, ARMv8.1 introduces new 1811 atomic instructions that are designed specifically to scale in 1812 very large systems. 1813 1814 Say Y here to make use of these instructions for the in-kernel 1815 atomic routines. This incurs a small overhead on CPUs that do 1816 not support these instructions and requires the kernel to be 1817 built with binutils >= 2.25 in order for the new instructions 1818 to be used. 1819 1820endmenu # "ARMv8.1 architectural features" 1821 1822menu "ARMv8.2 architectural features" 1823 1824config AS_HAS_ARMV8_2 1825 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1826 1827config AS_HAS_SHA3 1828 def_bool $(as-instr,.arch armv8.2-a+sha3) 1829 1830config ARM64_PMEM 1831 bool "Enable support for persistent memory" 1832 select ARCH_HAS_PMEM_API 1833 select ARCH_HAS_UACCESS_FLUSHCACHE 1834 help 1835 Say Y to enable support for the persistent memory API based on the 1836 ARMv8.2 DCPoP feature. 1837 1838 The feature is detected at runtime, and the kernel will use DC CVAC 1839 operations if DC CVAP is not supported (following the behaviour of 1840 DC CVAP itself if the system does not define a point of persistence). 1841 1842config ARM64_RAS_EXTN 1843 bool "Enable support for RAS CPU Extensions" 1844 default y 1845 help 1846 CPUs that support the Reliability, Availability and Serviceability 1847 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1848 errors, classify them and report them to software. 1849 1850 On CPUs with these extensions system software can use additional 1851 barriers to determine if faults are pending and read the 1852 classification from a new set of registers. 1853 1854 Selecting this feature will allow the kernel to use these barriers 1855 and access the new registers if the system supports the extension. 1856 Platform RAS features may additionally depend on firmware support. 1857 1858config ARM64_CNP 1859 bool "Enable support for Common Not Private (CNP) translations" 1860 default y 1861 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1862 help 1863 Common Not Private (CNP) allows translation table entries to 1864 be shared between different PEs in the same inner shareable 1865 domain, so the hardware can use this fact to optimise the 1866 caching of such entries in the TLB. 1867 1868 Selecting this option allows the CNP feature to be detected 1869 at runtime, and does not affect PEs that do not implement 1870 this feature. 1871 1872endmenu # "ARMv8.2 architectural features" 1873 1874menu "ARMv8.3 architectural features" 1875 1876config ARM64_PTR_AUTH 1877 bool "Enable support for pointer authentication" 1878 default y 1879 help 1880 Pointer authentication (part of the ARMv8.3 Extensions) provides 1881 instructions for signing and authenticating pointers against secret 1882 keys, which can be used to mitigate Return Oriented Programming (ROP) 1883 and other attacks. 1884 1885 This option enables these instructions at EL0 (i.e. for userspace). 1886 Choosing this option will cause the kernel to initialise secret keys 1887 for each process at exec() time, with these keys being 1888 context-switched along with the process. 1889 1890 The feature is detected at runtime. If the feature is not present in 1891 hardware it will not be advertised to userspace/KVM guest nor will it 1892 be enabled. 1893 1894 If the feature is present on the boot CPU but not on a late CPU, then 1895 the late CPU will be parked. Also, if the boot CPU does not have 1896 address auth and the late CPU has then the late CPU will still boot 1897 but with the feature disabled. On such a system, this option should 1898 not be selected. 1899 1900config ARM64_PTR_AUTH_KERNEL 1901 bool "Use pointer authentication for kernel" 1902 default y 1903 depends on ARM64_PTR_AUTH 1904 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1905 # Modern compilers insert a .note.gnu.property section note for PAC 1906 # which is only understood by binutils starting with version 2.33.1. 1907 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1908 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1909 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1910 help 1911 If the compiler supports the -mbranch-protection or 1912 -msign-return-address flag (e.g. GCC 7 or later), then this option 1913 will cause the kernel itself to be compiled with return address 1914 protection. In this case, and if the target hardware is known to 1915 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1916 disabled with minimal loss of protection. 1917 1918 This feature works with FUNCTION_GRAPH_TRACER option only if 1919 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1920 1921config CC_HAS_BRANCH_PROT_PAC_RET 1922 # GCC 9 or later, clang 8 or later 1923 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1924 1925config CC_HAS_SIGN_RETURN_ADDRESS 1926 # GCC 7, 8 1927 def_bool $(cc-option,-msign-return-address=all) 1928 1929config AS_HAS_ARMV8_3 1930 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1931 1932config AS_HAS_CFI_NEGATE_RA_STATE 1933 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1934 1935config AS_HAS_LDAPR 1936 def_bool $(as-instr,.arch_extension rcpc) 1937 1938endmenu # "ARMv8.3 architectural features" 1939 1940menu "ARMv8.4 architectural features" 1941 1942config ARM64_AMU_EXTN 1943 bool "Enable support for the Activity Monitors Unit CPU extension" 1944 default y 1945 help 1946 The activity monitors extension is an optional extension introduced 1947 by the ARMv8.4 CPU architecture. This enables support for version 1 1948 of the activity monitors architecture, AMUv1. 1949 1950 To enable the use of this extension on CPUs that implement it, say Y. 1951 1952 Note that for architectural reasons, firmware _must_ implement AMU 1953 support when running on CPUs that present the activity monitors 1954 extension. The required support is present in: 1955 * Version 1.5 and later of the ARM Trusted Firmware 1956 1957 For kernels that have this configuration enabled but boot with broken 1958 firmware, you may need to say N here until the firmware is fixed. 1959 Otherwise you may experience firmware panics or lockups when 1960 accessing the counter registers. Even if you are not observing these 1961 symptoms, the values returned by the register reads might not 1962 correctly reflect reality. Most commonly, the value read will be 0, 1963 indicating that the counter is not enabled. 1964 1965config AS_HAS_ARMV8_4 1966 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1967 1968config ARM64_TLB_RANGE 1969 bool "Enable support for tlbi range feature" 1970 default y 1971 depends on AS_HAS_ARMV8_4 1972 help 1973 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1974 range of input addresses. 1975 1976 The feature introduces new assembly instructions, and they were 1977 support when binutils >= 2.30. 1978 1979endmenu # "ARMv8.4 architectural features" 1980 1981menu "ARMv8.5 architectural features" 1982 1983config AS_HAS_ARMV8_5 1984 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1985 1986config ARM64_BTI 1987 bool "Branch Target Identification support" 1988 default y 1989 help 1990 Branch Target Identification (part of the ARMv8.5 Extensions) 1991 provides a mechanism to limit the set of locations to which computed 1992 branch instructions such as BR or BLR can jump. 1993 1994 To make use of BTI on CPUs that support it, say Y. 1995 1996 BTI is intended to provide complementary protection to other control 1997 flow integrity protection mechanisms, such as the Pointer 1998 authentication mechanism provided as part of the ARMv8.3 Extensions. 1999 For this reason, it does not make sense to enable this option without 2000 also enabling support for pointer authentication. Thus, when 2001 enabling this option you should also select ARM64_PTR_AUTH=y. 2002 2003 Userspace binaries must also be specifically compiled to make use of 2004 this mechanism. If you say N here or the hardware does not support 2005 BTI, such binaries can still run, but you get no additional 2006 enforcement of branch destinations. 2007 2008config ARM64_BTI_KERNEL 2009 bool "Use Branch Target Identification for kernel" 2010 default y 2011 depends on ARM64_BTI 2012 depends on ARM64_PTR_AUTH_KERNEL 2013 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2014 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2015 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2016 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2017 depends on !CC_IS_GCC 2018 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 2019 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 2020 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2021 help 2022 Build the kernel with Branch Target Identification annotations 2023 and enable enforcement of this for kernel code. When this option 2024 is enabled and the system supports BTI all kernel code including 2025 modular code must have BTI enabled. 2026 2027config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2028 # GCC 9 or later, clang 8 or later 2029 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2030 2031config ARM64_E0PD 2032 bool "Enable support for E0PD" 2033 default y 2034 help 2035 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2036 that EL0 accesses made via TTBR1 always fault in constant time, 2037 providing similar benefits to KASLR as those provided by KPTI, but 2038 with lower overhead and without disrupting legitimate access to 2039 kernel memory such as SPE. 2040 2041 This option enables E0PD for TTBR1 where available. 2042 2043config ARM64_AS_HAS_MTE 2044 # Initial support for MTE went in binutils 2.32.0, checked with 2045 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2046 # as a late addition to the final architecture spec (LDGM/STGM) 2047 # is only supported in the newer 2.32.x and 2.33 binutils 2048 # versions, hence the extra "stgm" instruction check below. 2049 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2050 2051config ARM64_MTE 2052 bool "Memory Tagging Extension support" 2053 default y 2054 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2055 depends on AS_HAS_ARMV8_5 2056 depends on AS_HAS_LSE_ATOMICS 2057 # Required for tag checking in the uaccess routines 2058 depends on ARM64_PAN 2059 select ARCH_HAS_SUBPAGE_FAULTS 2060 select ARCH_USES_HIGH_VMA_FLAGS 2061 select ARCH_USES_PG_ARCH_X 2062 help 2063 Memory Tagging (part of the ARMv8.5 Extensions) provides 2064 architectural support for run-time, always-on detection of 2065 various classes of memory error to aid with software debugging 2066 to eliminate vulnerabilities arising from memory-unsafe 2067 languages. 2068 2069 This option enables the support for the Memory Tagging 2070 Extension at EL0 (i.e. for userspace). 2071 2072 Selecting this option allows the feature to be detected at 2073 runtime. Any secondary CPU not implementing this feature will 2074 not be allowed a late bring-up. 2075 2076 Userspace binaries that want to use this feature must 2077 explicitly opt in. The mechanism for the userspace is 2078 described in: 2079 2080 Documentation/arch/arm64/memory-tagging-extension.rst. 2081 2082endmenu # "ARMv8.5 architectural features" 2083 2084menu "ARMv8.7 architectural features" 2085 2086config ARM64_EPAN 2087 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2088 default y 2089 depends on ARM64_PAN 2090 help 2091 Enhanced Privileged Access Never (EPAN) allows Privileged 2092 Access Never to be used with Execute-only mappings. 2093 2094 The feature is detected at runtime, and will remain disabled 2095 if the cpu does not implement the feature. 2096endmenu # "ARMv8.7 architectural features" 2097 2098config ARM64_SVE 2099 bool "ARM Scalable Vector Extension support" 2100 default y 2101 help 2102 The Scalable Vector Extension (SVE) is an extension to the AArch64 2103 execution state which complements and extends the SIMD functionality 2104 of the base architecture to support much larger vectors and to enable 2105 additional vectorisation opportunities. 2106 2107 To enable use of this extension on CPUs that implement it, say Y. 2108 2109 On CPUs that support the SVE2 extensions, this option will enable 2110 those too. 2111 2112 Note that for architectural reasons, firmware _must_ implement SVE 2113 support when running on SVE capable hardware. The required support 2114 is present in: 2115 2116 * version 1.5 and later of the ARM Trusted Firmware 2117 * the AArch64 boot wrapper since commit 5e1261e08abf 2118 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2119 2120 For other firmware implementations, consult the firmware documentation 2121 or vendor. 2122 2123 If you need the kernel to boot on SVE-capable hardware with broken 2124 firmware, you may need to say N here until you get your firmware 2125 fixed. Otherwise, you may experience firmware panics or lockups when 2126 booting the kernel. If unsure and you are not observing these 2127 symptoms, you should assume that it is safe to say Y. 2128 2129config ARM64_SME 2130 bool "ARM Scalable Matrix Extension support" 2131 default y 2132 depends on ARM64_SVE 2133 help 2134 The Scalable Matrix Extension (SME) is an extension to the AArch64 2135 execution state which utilises a substantial subset of the SVE 2136 instruction set, together with the addition of new architectural 2137 register state capable of holding two dimensional matrix tiles to 2138 enable various matrix operations. 2139 2140config ARM64_PSEUDO_NMI 2141 bool "Support for NMI-like interrupts" 2142 select ARM_GIC_V3 2143 help 2144 Adds support for mimicking Non-Maskable Interrupts through the use of 2145 GIC interrupt priority. This support requires version 3 or later of 2146 ARM GIC. 2147 2148 This high priority configuration for interrupts needs to be 2149 explicitly enabled by setting the kernel parameter 2150 "irqchip.gicv3_pseudo_nmi" to 1. 2151 2152 If unsure, say N 2153 2154if ARM64_PSEUDO_NMI 2155config ARM64_DEBUG_PRIORITY_MASKING 2156 bool "Debug interrupt priority masking" 2157 help 2158 This adds runtime checks to functions enabling/disabling 2159 interrupts when using priority masking. The additional checks verify 2160 the validity of ICC_PMR_EL1 when calling concerned functions. 2161 2162 If unsure, say N 2163endif # ARM64_PSEUDO_NMI 2164 2165config RELOCATABLE 2166 bool "Build a relocatable kernel image" if EXPERT 2167 select ARCH_HAS_RELR 2168 default y 2169 help 2170 This builds the kernel as a Position Independent Executable (PIE), 2171 which retains all relocation metadata required to relocate the 2172 kernel binary at runtime to a different virtual address than the 2173 address it was linked at. 2174 Since AArch64 uses the RELA relocation format, this requires a 2175 relocation pass at runtime even if the kernel is loaded at the 2176 same address it was linked at. 2177 2178config RANDOMIZE_BASE 2179 bool "Randomize the address of the kernel image" 2180 select RELOCATABLE 2181 help 2182 Randomizes the virtual address at which the kernel image is 2183 loaded, as a security feature that deters exploit attempts 2184 relying on knowledge of the location of kernel internals. 2185 2186 It is the bootloader's job to provide entropy, by passing a 2187 random u64 value in /chosen/kaslr-seed at kernel entry. 2188 2189 When booting via the UEFI stub, it will invoke the firmware's 2190 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2191 to the kernel proper. In addition, it will randomise the physical 2192 location of the kernel Image as well. 2193 2194 If unsure, say N. 2195 2196config RANDOMIZE_MODULE_REGION_FULL 2197 bool "Randomize the module region over a 2 GB range" 2198 depends on RANDOMIZE_BASE 2199 default y 2200 help 2201 Randomizes the location of the module region inside a 2 GB window 2202 covering the core kernel. This way, it is less likely for modules 2203 to leak information about the location of core kernel data structures 2204 but it does imply that function calls between modules and the core 2205 kernel will need to be resolved via veneers in the module PLT. 2206 2207 When this option is not set, the module region will be randomized over 2208 a limited range that contains the [_stext, _etext] interval of the 2209 core kernel, so branch relocations are almost always in range unless 2210 the region is exhausted. In this particular case of region 2211 exhaustion, modules might be able to fall back to a larger 2GB area. 2212 2213config CC_HAVE_STACKPROTECTOR_SYSREG 2214 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2215 2216config STACKPROTECTOR_PER_TASK 2217 def_bool y 2218 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2219 2220config UNWIND_PATCH_PAC_INTO_SCS 2221 bool "Enable shadow call stack dynamically using code patching" 2222 # needs Clang with https://reviews.llvm.org/D111780 incorporated 2223 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2224 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2225 depends on SHADOW_CALL_STACK 2226 select UNWIND_TABLES 2227 select DYNAMIC_SCS 2228 2229endmenu # "Kernel Features" 2230 2231menu "Boot options" 2232 2233config ARM64_ACPI_PARKING_PROTOCOL 2234 bool "Enable support for the ARM64 ACPI parking protocol" 2235 depends on ACPI 2236 help 2237 Enable support for the ARM64 ACPI parking protocol. If disabled 2238 the kernel will not allow booting through the ARM64 ACPI parking 2239 protocol even if the corresponding data is present in the ACPI 2240 MADT table. 2241 2242config CMDLINE 2243 string "Default kernel command string" 2244 default "" 2245 help 2246 Provide a set of default command-line options at build time by 2247 entering them here. As a minimum, you should specify the the 2248 root device (e.g. root=/dev/nfs). 2249 2250choice 2251 prompt "Kernel command line type" if CMDLINE != "" 2252 default CMDLINE_FROM_BOOTLOADER 2253 help 2254 Choose how the kernel will handle the provided default kernel 2255 command line string. 2256 2257config CMDLINE_FROM_BOOTLOADER 2258 bool "Use bootloader kernel arguments if available" 2259 help 2260 Uses the command-line options passed by the boot loader. If 2261 the boot loader doesn't provide any, the default kernel command 2262 string provided in CMDLINE will be used. 2263 2264config CMDLINE_FORCE 2265 bool "Always use the default kernel command string" 2266 help 2267 Always use the default kernel command string, even if the boot 2268 loader passes other arguments to the kernel. 2269 This is useful if you cannot or don't want to change the 2270 command-line options your boot loader passes to the kernel. 2271 2272endchoice 2273 2274config EFI_STUB 2275 bool 2276 2277config EFI 2278 bool "UEFI runtime support" 2279 depends on OF && !CPU_BIG_ENDIAN 2280 depends on KERNEL_MODE_NEON 2281 select ARCH_SUPPORTS_ACPI 2282 select LIBFDT 2283 select UCS2_STRING 2284 select EFI_PARAMS_FROM_FDT 2285 select EFI_RUNTIME_WRAPPERS 2286 select EFI_STUB 2287 select EFI_GENERIC_STUB 2288 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2289 default y 2290 help 2291 This option provides support for runtime services provided 2292 by UEFI firmware (such as non-volatile variables, realtime 2293 clock, and platform reset). A UEFI stub is also provided to 2294 allow the kernel to be booted as an EFI application. This 2295 is only useful on systems that have UEFI firmware. 2296 2297config DMI 2298 bool "Enable support for SMBIOS (DMI) tables" 2299 depends on EFI 2300 default y 2301 help 2302 This enables SMBIOS/DMI feature for systems. 2303 2304 This option is only useful on systems that have UEFI firmware. 2305 However, even with this option, the resultant kernel should 2306 continue to boot on existing non-UEFI platforms. 2307 2308endmenu # "Boot options" 2309 2310menu "Power management options" 2311 2312source "kernel/power/Kconfig" 2313 2314config ARCH_HIBERNATION_POSSIBLE 2315 def_bool y 2316 depends on CPU_PM 2317 2318config ARCH_HIBERNATION_HEADER 2319 def_bool y 2320 depends on HIBERNATION 2321 2322config ARCH_SUSPEND_POSSIBLE 2323 def_bool y 2324 2325endmenu # "Power management options" 2326 2327menu "CPU Power Management" 2328 2329source "drivers/cpuidle/Kconfig" 2330 2331source "drivers/cpufreq/Kconfig" 2332 2333endmenu # "CPU Power Management" 2334 2335source "drivers/acpi/Kconfig" 2336 2337source "arch/arm64/kvm/Kconfig" 2338 2339