xref: /linux/arch/arm64/Kconfig (revision d206cef03c4827984e6ac88a9472b70c41f5b28d)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_CURRENT_STACK_POINTER
23	select ARCH_HAS_DEBUG_VIRTUAL
24	select ARCH_HAS_DEBUG_VM_PGTABLE
25	select ARCH_HAS_DMA_PREP_COHERENT
26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27	select ARCH_HAS_FAST_MULTIPLIER
28	select ARCH_HAS_FORTIFY_SOURCE
29	select ARCH_HAS_GCOV_PROFILE_ALL
30	select ARCH_HAS_GIGANTIC_PAGE
31	select ARCH_HAS_KCOV
32	select ARCH_HAS_KEEPINITRD
33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35	select ARCH_HAS_PTE_DEVMAP
36	select ARCH_HAS_PTE_SPECIAL
37	select ARCH_HAS_SETUP_DMA_OPS
38	select ARCH_HAS_SET_DIRECT_MAP
39	select ARCH_HAS_SET_MEMORY
40	select ARCH_STACKWALK
41	select ARCH_HAS_STRICT_KERNEL_RWX
42	select ARCH_HAS_STRICT_MODULE_RWX
43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44	select ARCH_HAS_SYNC_DMA_FOR_CPU
45	select ARCH_HAS_SYSCALL_WRAPPER
46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
48	select ARCH_HAS_ZONE_DMA_SET if EXPERT
49	select ARCH_HAVE_ELF_PROT
50	select ARCH_HAVE_NMI_SAFE_CMPXCHG
51	select ARCH_HAVE_TRACE_MMIO_ACCESS
52	select ARCH_INLINE_READ_LOCK if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
54	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
69	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
78	select ARCH_KEEP_MEMBLOCK
79	select ARCH_USE_CMPXCHG_LOCKREF
80	select ARCH_USE_GNU_PROPERTY
81	select ARCH_USE_MEMTEST
82	select ARCH_USE_QUEUED_RWLOCKS
83	select ARCH_USE_QUEUED_SPINLOCKS
84	select ARCH_USE_SYM_ANNOTATIONS
85	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
86	select ARCH_SUPPORTS_HUGETLBFS
87	select ARCH_SUPPORTS_MEMORY_FAILURE
88	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
89	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
90	select ARCH_SUPPORTS_LTO_CLANG_THIN
91	select ARCH_SUPPORTS_CFI_CLANG
92	select ARCH_SUPPORTS_ATOMIC_RMW
93	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
94	select ARCH_SUPPORTS_NUMA_BALANCING
95	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
96	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
97	select ARCH_WANT_DEFAULT_BPF_JIT
98	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
99	select ARCH_WANT_FRAME_POINTERS
100	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
101	select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
102	select ARCH_WANT_LD_ORPHAN_WARN
103	select ARCH_WANTS_NO_INSTR
104	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
105	select ARCH_HAS_UBSAN_SANITIZE_ALL
106	select ARM_AMBA
107	select ARM_ARCH_TIMER
108	select ARM_GIC
109	select AUDIT_ARCH_COMPAT_GENERIC
110	select ARM_GIC_V2M if PCI
111	select ARM_GIC_V3
112	select ARM_GIC_V3_ITS if PCI
113	select ARM_PSCI_FW
114	select BUILDTIME_TABLE_SORT
115	select CLONE_BACKWARDS
116	select COMMON_CLK
117	select CPU_PM if (SUSPEND || CPU_IDLE)
118	select CRC32
119	select DCACHE_WORD_ACCESS
120	select DMA_DIRECT_REMAP
121	select EDAC_SUPPORT
122	select FRAME_POINTER
123	select GENERIC_ALLOCATOR
124	select GENERIC_ARCH_TOPOLOGY
125	select GENERIC_CLOCKEVENTS_BROADCAST
126	select GENERIC_CPU_AUTOPROBE
127	select GENERIC_CPU_VULNERABILITIES
128	select GENERIC_EARLY_IOREMAP
129	select GENERIC_IDLE_POLL_SETUP
130	select GENERIC_IOREMAP
131	select GENERIC_IRQ_IPI
132	select GENERIC_IRQ_PROBE
133	select GENERIC_IRQ_SHOW
134	select GENERIC_IRQ_SHOW_LEVEL
135	select GENERIC_LIB_DEVMEM_IS_ALLOWED
136	select GENERIC_PCI_IOMAP
137	select GENERIC_PTDUMP
138	select GENERIC_SCHED_CLOCK
139	select GENERIC_SMP_IDLE_THREAD
140	select GENERIC_TIME_VSYSCALL
141	select GENERIC_GETTIMEOFDAY
142	select GENERIC_VDSO_TIME_NS
143	select HARDIRQS_SW_RESEND
144	select HAVE_MOVE_PMD
145	select HAVE_MOVE_PUD
146	select HAVE_PCI
147	select HAVE_ACPI_APEI if (ACPI && EFI)
148	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
149	select HAVE_ARCH_AUDITSYSCALL
150	select HAVE_ARCH_BITREVERSE
151	select HAVE_ARCH_COMPILER_H
152	select HAVE_ARCH_HUGE_VMAP
153	select HAVE_ARCH_JUMP_LABEL
154	select HAVE_ARCH_JUMP_LABEL_RELATIVE
155	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
156	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
157	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
158	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
159	# Some instrumentation may be unsound, hence EXPERT
160	select HAVE_ARCH_KCSAN if EXPERT
161	select HAVE_ARCH_KFENCE
162	select HAVE_ARCH_KGDB
163	select HAVE_ARCH_MMAP_RND_BITS
164	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
165	select HAVE_ARCH_PREL32_RELOCATIONS
166	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
167	select HAVE_ARCH_SECCOMP_FILTER
168	select HAVE_ARCH_STACKLEAK
169	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
170	select HAVE_ARCH_TRACEHOOK
171	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
172	select HAVE_ARCH_VMAP_STACK
173	select HAVE_ARM_SMCCC
174	select HAVE_ASM_MODVERSIONS
175	select HAVE_EBPF_JIT
176	select HAVE_C_RECORDMCOUNT
177	select HAVE_CMPXCHG_DOUBLE
178	select HAVE_CMPXCHG_LOCAL
179	select HAVE_CONTEXT_TRACKING_USER
180	select HAVE_DEBUG_KMEMLEAK
181	select HAVE_DMA_CONTIGUOUS
182	select HAVE_DYNAMIC_FTRACE
183	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
184		if DYNAMIC_FTRACE_WITH_REGS
185	select HAVE_EFFICIENT_UNALIGNED_ACCESS
186	select HAVE_FAST_GUP
187	select HAVE_FTRACE_MCOUNT_RECORD
188	select HAVE_FUNCTION_TRACER
189	select HAVE_FUNCTION_ERROR_INJECTION
190	select HAVE_FUNCTION_GRAPH_TRACER
191	select HAVE_GCC_PLUGINS
192	select HAVE_HW_BREAKPOINT if PERF_EVENTS
193	select HAVE_IOREMAP_PROT
194	select HAVE_IRQ_TIME_ACCOUNTING
195	select HAVE_KVM
196	select HAVE_NMI
197	select HAVE_PATA_PLATFORM
198	select HAVE_PERF_EVENTS
199	select HAVE_PERF_REGS
200	select HAVE_PERF_USER_STACK_DUMP
201	select HAVE_PREEMPT_DYNAMIC_KEY
202	select HAVE_REGS_AND_STACK_ACCESS_API
203	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
204	select HAVE_FUNCTION_ARG_ACCESS_API
205	select MMU_GATHER_RCU_TABLE_FREE
206	select HAVE_RSEQ
207	select HAVE_STACKPROTECTOR
208	select HAVE_SYSCALL_TRACEPOINTS
209	select HAVE_KPROBES
210	select HAVE_KRETPROBES
211	select HAVE_GENERIC_VDSO
212	select IOMMU_DMA if IOMMU_SUPPORT
213	select IRQ_DOMAIN
214	select IRQ_FORCED_THREADING
215	select KASAN_VMALLOC if KASAN
216	select MODULES_USE_ELF_RELA
217	select NEED_DMA_MAP_STATE
218	select NEED_SG_DMA_LENGTH
219	select OF
220	select OF_EARLY_FLATTREE
221	select PCI_DOMAINS_GENERIC if PCI
222	select PCI_ECAM if (ACPI && PCI)
223	select PCI_SYSCALL if PCI
224	select POWER_RESET
225	select POWER_SUPPLY
226	select SPARSE_IRQ
227	select SWIOTLB
228	select SYSCTL_EXCEPTION_TRACE
229	select THREAD_INFO_IN_TASK
230	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
231	select TRACE_IRQFLAGS_SUPPORT
232	select TRACE_IRQFLAGS_NMI_SUPPORT
233	help
234	  ARM 64-bit (AArch64) Linux support.
235
236config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
237	def_bool CC_IS_CLANG
238	# https://github.com/ClangBuiltLinux/linux/issues/1507
239	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
240	select HAVE_DYNAMIC_FTRACE_WITH_REGS
241
242config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
243	def_bool CC_IS_GCC
244	depends on $(cc-option,-fpatchable-function-entry=2)
245	select HAVE_DYNAMIC_FTRACE_WITH_REGS
246
247config 64BIT
248	def_bool y
249
250config MMU
251	def_bool y
252
253config ARM64_PAGE_SHIFT
254	int
255	default 16 if ARM64_64K_PAGES
256	default 14 if ARM64_16K_PAGES
257	default 12
258
259config ARM64_CONT_PTE_SHIFT
260	int
261	default 5 if ARM64_64K_PAGES
262	default 7 if ARM64_16K_PAGES
263	default 4
264
265config ARM64_CONT_PMD_SHIFT
266	int
267	default 5 if ARM64_64K_PAGES
268	default 5 if ARM64_16K_PAGES
269	default 4
270
271config ARCH_MMAP_RND_BITS_MIN
272	default 14 if ARM64_64K_PAGES
273	default 16 if ARM64_16K_PAGES
274	default 18
275
276# max bits determined by the following formula:
277#  VA_BITS - PAGE_SHIFT - 3
278config ARCH_MMAP_RND_BITS_MAX
279	default 19 if ARM64_VA_BITS=36
280	default 24 if ARM64_VA_BITS=39
281	default 27 if ARM64_VA_BITS=42
282	default 30 if ARM64_VA_BITS=47
283	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
284	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
285	default 33 if ARM64_VA_BITS=48
286	default 14 if ARM64_64K_PAGES
287	default 16 if ARM64_16K_PAGES
288	default 18
289
290config ARCH_MMAP_RND_COMPAT_BITS_MIN
291	default 7 if ARM64_64K_PAGES
292	default 9 if ARM64_16K_PAGES
293	default 11
294
295config ARCH_MMAP_RND_COMPAT_BITS_MAX
296	default 16
297
298config NO_IOPORT_MAP
299	def_bool y if !PCI
300
301config STACKTRACE_SUPPORT
302	def_bool y
303
304config ILLEGAL_POINTER_VALUE
305	hex
306	default 0xdead000000000000
307
308config LOCKDEP_SUPPORT
309	def_bool y
310
311config GENERIC_BUG
312	def_bool y
313	depends on BUG
314
315config GENERIC_BUG_RELATIVE_POINTERS
316	def_bool y
317	depends on GENERIC_BUG
318
319config GENERIC_HWEIGHT
320	def_bool y
321
322config GENERIC_CSUM
323	def_bool y
324
325config GENERIC_CALIBRATE_DELAY
326	def_bool y
327
328config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
329	def_bool y
330
331config SMP
332	def_bool y
333
334config KERNEL_MODE_NEON
335	def_bool y
336
337config FIX_EARLYCON_MEM
338	def_bool y
339
340config PGTABLE_LEVELS
341	int
342	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
343	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
344	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
345	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
346	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
347	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
348
349config ARCH_SUPPORTS_UPROBES
350	def_bool y
351
352config ARCH_PROC_KCORE_TEXT
353	def_bool y
354
355config BROKEN_GAS_INST
356	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
357
358config KASAN_SHADOW_OFFSET
359	hex
360	depends on KASAN_GENERIC || KASAN_SW_TAGS
361	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
362	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
363	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
364	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
365	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
366	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
367	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
368	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
369	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
370	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
371	default 0xffffffffffffffff
372
373source "arch/arm64/Kconfig.platforms"
374
375menu "Kernel Features"
376
377menu "ARM errata workarounds via the alternatives framework"
378
379config ARM64_WORKAROUND_CLEAN_CACHE
380	bool
381
382config ARM64_ERRATUM_826319
383	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
384	default y
385	select ARM64_WORKAROUND_CLEAN_CACHE
386	help
387	  This option adds an alternative code sequence to work around ARM
388	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
389	  AXI master interface and an L2 cache.
390
391	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
392	  and is unable to accept a certain write via this interface, it will
393	  not progress on read data presented on the read data channel and the
394	  system can deadlock.
395
396	  The workaround promotes data cache clean instructions to
397	  data cache clean-and-invalidate.
398	  Please note that this does not necessarily enable the workaround,
399	  as it depends on the alternative framework, which will only patch
400	  the kernel if an affected CPU is detected.
401
402	  If unsure, say Y.
403
404config ARM64_ERRATUM_827319
405	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
406	default y
407	select ARM64_WORKAROUND_CLEAN_CACHE
408	help
409	  This option adds an alternative code sequence to work around ARM
410	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
411	  master interface and an L2 cache.
412
413	  Under certain conditions this erratum can cause a clean line eviction
414	  to occur at the same time as another transaction to the same address
415	  on the AMBA 5 CHI interface, which can cause data corruption if the
416	  interconnect reorders the two transactions.
417
418	  The workaround promotes data cache clean instructions to
419	  data cache clean-and-invalidate.
420	  Please note that this does not necessarily enable the workaround,
421	  as it depends on the alternative framework, which will only patch
422	  the kernel if an affected CPU is detected.
423
424	  If unsure, say Y.
425
426config ARM64_ERRATUM_824069
427	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
428	default y
429	select ARM64_WORKAROUND_CLEAN_CACHE
430	help
431	  This option adds an alternative code sequence to work around ARM
432	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
433	  to a coherent interconnect.
434
435	  If a Cortex-A53 processor is executing a store or prefetch for
436	  write instruction at the same time as a processor in another
437	  cluster is executing a cache maintenance operation to the same
438	  address, then this erratum might cause a clean cache line to be
439	  incorrectly marked as dirty.
440
441	  The workaround promotes data cache clean instructions to
442	  data cache clean-and-invalidate.
443	  Please note that this option does not necessarily enable the
444	  workaround, as it depends on the alternative framework, which will
445	  only patch the kernel if an affected CPU is detected.
446
447	  If unsure, say Y.
448
449config ARM64_ERRATUM_819472
450	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
451	default y
452	select ARM64_WORKAROUND_CLEAN_CACHE
453	help
454	  This option adds an alternative code sequence to work around ARM
455	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
456	  present when it is connected to a coherent interconnect.
457
458	  If the processor is executing a load and store exclusive sequence at
459	  the same time as a processor in another cluster is executing a cache
460	  maintenance operation to the same address, then this erratum might
461	  cause data corruption.
462
463	  The workaround promotes data cache clean instructions to
464	  data cache clean-and-invalidate.
465	  Please note that this does not necessarily enable the workaround,
466	  as it depends on the alternative framework, which will only patch
467	  the kernel if an affected CPU is detected.
468
469	  If unsure, say Y.
470
471config ARM64_ERRATUM_832075
472	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
473	default y
474	help
475	  This option adds an alternative code sequence to work around ARM
476	  erratum 832075 on Cortex-A57 parts up to r1p2.
477
478	  Affected Cortex-A57 parts might deadlock when exclusive load/store
479	  instructions to Write-Back memory are mixed with Device loads.
480
481	  The workaround is to promote device loads to use Load-Acquire
482	  semantics.
483	  Please note that this does not necessarily enable the workaround,
484	  as it depends on the alternative framework, which will only patch
485	  the kernel if an affected CPU is detected.
486
487	  If unsure, say Y.
488
489config ARM64_ERRATUM_834220
490	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
491	depends on KVM
492	default y
493	help
494	  This option adds an alternative code sequence to work around ARM
495	  erratum 834220 on Cortex-A57 parts up to r1p2.
496
497	  Affected Cortex-A57 parts might report a Stage 2 translation
498	  fault as the result of a Stage 1 fault for load crossing a
499	  page boundary when there is a permission or device memory
500	  alignment fault at Stage 1 and a translation fault at Stage 2.
501
502	  The workaround is to verify that the Stage 1 translation
503	  doesn't generate a fault before handling the Stage 2 fault.
504	  Please note that this does not necessarily enable the workaround,
505	  as it depends on the alternative framework, which will only patch
506	  the kernel if an affected CPU is detected.
507
508	  If unsure, say Y.
509
510config ARM64_ERRATUM_1742098
511	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
512	depends on COMPAT
513	default y
514	help
515	  This option removes the AES hwcap for aarch32 user-space to
516	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
517
518	  Affected parts may corrupt the AES state if an interrupt is
519	  taken between a pair of AES instructions. These instructions
520	  are only present if the cryptography extensions are present.
521	  All software should have a fallback implementation for CPUs
522	  that don't implement the cryptography extensions.
523
524	  If unsure, say Y.
525
526config ARM64_ERRATUM_845719
527	bool "Cortex-A53: 845719: a load might read incorrect data"
528	depends on COMPAT
529	default y
530	help
531	  This option adds an alternative code sequence to work around ARM
532	  erratum 845719 on Cortex-A53 parts up to r0p4.
533
534	  When running a compat (AArch32) userspace on an affected Cortex-A53
535	  part, a load at EL0 from a virtual address that matches the bottom 32
536	  bits of the virtual address used by a recent load at (AArch64) EL1
537	  might return incorrect data.
538
539	  The workaround is to write the contextidr_el1 register on exception
540	  return to a 32-bit task.
541	  Please note that this does not necessarily enable the workaround,
542	  as it depends on the alternative framework, which will only patch
543	  the kernel if an affected CPU is detected.
544
545	  If unsure, say Y.
546
547config ARM64_ERRATUM_843419
548	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
549	default y
550	select ARM64_MODULE_PLTS if MODULES
551	help
552	  This option links the kernel with '--fix-cortex-a53-843419' and
553	  enables PLT support to replace certain ADRP instructions, which can
554	  cause subsequent memory accesses to use an incorrect address on
555	  Cortex-A53 parts up to r0p4.
556
557	  If unsure, say Y.
558
559config ARM64_LD_HAS_FIX_ERRATUM_843419
560	def_bool $(ld-option,--fix-cortex-a53-843419)
561
562config ARM64_ERRATUM_1024718
563	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
564	default y
565	help
566	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
567
568	  Affected Cortex-A55 cores (all revisions) could cause incorrect
569	  update of the hardware dirty bit when the DBM/AP bits are updated
570	  without a break-before-make. The workaround is to disable the usage
571	  of hardware DBM locally on the affected cores. CPUs not affected by
572	  this erratum will continue to use the feature.
573
574	  If unsure, say Y.
575
576config ARM64_ERRATUM_1418040
577	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
578	default y
579	depends on COMPAT
580	help
581	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
582	  errata 1188873 and 1418040.
583
584	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
585	  cause register corruption when accessing the timer registers
586	  from AArch32 userspace.
587
588	  If unsure, say Y.
589
590config ARM64_WORKAROUND_SPECULATIVE_AT
591	bool
592
593config ARM64_ERRATUM_1165522
594	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
595	default y
596	select ARM64_WORKAROUND_SPECULATIVE_AT
597	help
598	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
599
600	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
601	  corrupted TLBs by speculating an AT instruction during a guest
602	  context switch.
603
604	  If unsure, say Y.
605
606config ARM64_ERRATUM_1319367
607	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
608	default y
609	select ARM64_WORKAROUND_SPECULATIVE_AT
610	help
611	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
612	  and A72 erratum 1319367
613
614	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
615	  speculating an AT instruction during a guest context switch.
616
617	  If unsure, say Y.
618
619config ARM64_ERRATUM_1530923
620	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
621	default y
622	select ARM64_WORKAROUND_SPECULATIVE_AT
623	help
624	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
625
626	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
627	  corrupted TLBs by speculating an AT instruction during a guest
628	  context switch.
629
630	  If unsure, say Y.
631
632config ARM64_WORKAROUND_REPEAT_TLBI
633	bool
634
635config ARM64_ERRATUM_1286807
636	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
637	default y
638	select ARM64_WORKAROUND_REPEAT_TLBI
639	help
640	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
641
642	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
643	  address for a cacheable mapping of a location is being
644	  accessed by a core while another core is remapping the virtual
645	  address to a new physical page using the recommended
646	  break-before-make sequence, then under very rare circumstances
647	  TLBI+DSB completes before a read using the translation being
648	  invalidated has been observed by other observers. The
649	  workaround repeats the TLBI+DSB operation.
650
651config ARM64_ERRATUM_1463225
652	bool "Cortex-A76: Software Step might prevent interrupt recognition"
653	default y
654	help
655	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
656
657	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
658	  of a system call instruction (SVC) can prevent recognition of
659	  subsequent interrupts when software stepping is disabled in the
660	  exception handler of the system call and either kernel debugging
661	  is enabled or VHE is in use.
662
663	  Work around the erratum by triggering a dummy step exception
664	  when handling a system call from a task that is being stepped
665	  in a VHE configuration of the kernel.
666
667	  If unsure, say Y.
668
669config ARM64_ERRATUM_1542419
670	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
671	default y
672	help
673	  This option adds a workaround for ARM Neoverse-N1 erratum
674	  1542419.
675
676	  Affected Neoverse-N1 cores could execute a stale instruction when
677	  modified by another CPU. The workaround depends on a firmware
678	  counterpart.
679
680	  Workaround the issue by hiding the DIC feature from EL0. This
681	  forces user-space to perform cache maintenance.
682
683	  If unsure, say Y.
684
685config ARM64_ERRATUM_1508412
686	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
687	default y
688	help
689	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
690
691	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
692	  of a store-exclusive or read of PAR_EL1 and a load with device or
693	  non-cacheable memory attributes. The workaround depends on a firmware
694	  counterpart.
695
696	  KVM guests must also have the workaround implemented or they can
697	  deadlock the system.
698
699	  Work around the issue by inserting DMB SY barriers around PAR_EL1
700	  register reads and warning KVM users. The DMB barrier is sufficient
701	  to prevent a speculative PAR_EL1 read.
702
703	  If unsure, say Y.
704
705config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
706	bool
707
708config ARM64_ERRATUM_2051678
709	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
710	default y
711	help
712	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
713	  Affected Cortex-A510 might not respect the ordering rules for
714	  hardware update of the page table's dirty bit. The workaround
715	  is to not enable the feature on affected CPUs.
716
717	  If unsure, say Y.
718
719config ARM64_ERRATUM_2077057
720	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
721	default y
722	help
723	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
724	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
725	  expected, but a Pointer Authentication trap is taken instead. The
726	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
727	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
728
729	  This can only happen when EL2 is stepping EL1.
730
731	  When these conditions occur, the SPSR_EL2 value is unchanged from the
732	  previous guest entry, and can be restored from the in-memory copy.
733
734	  If unsure, say Y.
735
736config ARM64_ERRATUM_2119858
737	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
738	default y
739	depends on CORESIGHT_TRBE
740	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
741	help
742	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
743
744	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
745	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
746	  the event of a WRAP event.
747
748	  Work around the issue by always making sure we move the TRBPTR_EL1 by
749	  256 bytes before enabling the buffer and filling the first 256 bytes of
750	  the buffer with ETM ignore packets upon disabling.
751
752	  If unsure, say Y.
753
754config ARM64_ERRATUM_2139208
755	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
756	default y
757	depends on CORESIGHT_TRBE
758	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
759	help
760	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
761
762	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
763	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
764	  the event of a WRAP event.
765
766	  Work around the issue by always making sure we move the TRBPTR_EL1 by
767	  256 bytes before enabling the buffer and filling the first 256 bytes of
768	  the buffer with ETM ignore packets upon disabling.
769
770	  If unsure, say Y.
771
772config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
773	bool
774
775config ARM64_ERRATUM_2054223
776	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
777	default y
778	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
779	help
780	  Enable workaround for ARM Cortex-A710 erratum 2054223
781
782	  Affected cores may fail to flush the trace data on a TSB instruction, when
783	  the PE is in trace prohibited state. This will cause losing a few bytes
784	  of the trace cached.
785
786	  Workaround is to issue two TSB consecutively on affected cores.
787
788	  If unsure, say Y.
789
790config ARM64_ERRATUM_2067961
791	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
792	default y
793	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
794	help
795	  Enable workaround for ARM Neoverse-N2 erratum 2067961
796
797	  Affected cores may fail to flush the trace data on a TSB instruction, when
798	  the PE is in trace prohibited state. This will cause losing a few bytes
799	  of the trace cached.
800
801	  Workaround is to issue two TSB consecutively on affected cores.
802
803	  If unsure, say Y.
804
805config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
806	bool
807
808config ARM64_ERRATUM_2253138
809	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
810	depends on CORESIGHT_TRBE
811	default y
812	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
813	help
814	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
815
816	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
817	  for TRBE. Under some conditions, the TRBE might generate a write to the next
818	  virtually addressed page following the last page of the TRBE address space
819	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
820
821	  Work around this in the driver by always making sure that there is a
822	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
823
824	  If unsure, say Y.
825
826config ARM64_ERRATUM_2224489
827	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
828	depends on CORESIGHT_TRBE
829	default y
830	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
831	help
832	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
833
834	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
835	  for TRBE. Under some conditions, the TRBE might generate a write to the next
836	  virtually addressed page following the last page of the TRBE address space
837	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
838
839	  Work around this in the driver by always making sure that there is a
840	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
841
842	  If unsure, say Y.
843
844config ARM64_ERRATUM_2441009
845	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
846	default y
847	select ARM64_WORKAROUND_REPEAT_TLBI
848	help
849	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
850
851	  Under very rare circumstances, affected Cortex-A510 CPUs
852	  may not handle a race between a break-before-make sequence on one
853	  CPU, and another CPU accessing the same page. This could allow a
854	  store to a page that has been unmapped.
855
856	  Work around this by adding the affected CPUs to the list that needs
857	  TLB sequences to be done twice.
858
859	  If unsure, say Y.
860
861config ARM64_ERRATUM_2064142
862	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
863	depends on CORESIGHT_TRBE
864	default y
865	help
866	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
867
868	  Affected Cortex-A510 core might fail to write into system registers after the
869	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
870	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
871	  and TRBTRG_EL1 will be ignored and will not be effected.
872
873	  Work around this in the driver by executing TSB CSYNC and DSB after collection
874	  is stopped and before performing a system register write to one of the affected
875	  registers.
876
877	  If unsure, say Y.
878
879config ARM64_ERRATUM_2038923
880	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
881	depends on CORESIGHT_TRBE
882	default y
883	help
884	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
885
886	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
887	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
888	  might be corrupted. This happens after TRBE buffer has been enabled by setting
889	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
890	  execution changes from a context, in which trace is prohibited to one where it
891	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
892	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
893	  the trace buffer state might be corrupted.
894
895	  Work around this in the driver by preventing an inconsistent view of whether the
896	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
897	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
898	  two ISB instructions if no ERET is to take place.
899
900	  If unsure, say Y.
901
902config ARM64_ERRATUM_1902691
903	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
904	depends on CORESIGHT_TRBE
905	default y
906	help
907	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
908
909	  Affected Cortex-A510 core might cause trace data corruption, when being written
910	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
911	  trace data.
912
913	  Work around this problem in the driver by just preventing TRBE initialization on
914	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
915	  on such implementations. This will cover the kernel for any firmware that doesn't
916	  do this already.
917
918	  If unsure, say Y.
919
920config ARM64_ERRATUM_2457168
921	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
922	depends on ARM64_AMU_EXTN
923	default y
924	help
925	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
926
927	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
928	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
929	  incorrectly giving a significantly higher output value.
930
931	  Work around this problem by returning 0 when reading the affected counter in
932	  key locations that results in disabling all users of this counter. This effect
933	  is the same to firmware disabling affected counters.
934
935	  If unsure, say Y.
936
937config CAVIUM_ERRATUM_22375
938	bool "Cavium erratum 22375, 24313"
939	default y
940	help
941	  Enable workaround for errata 22375 and 24313.
942
943	  This implements two gicv3-its errata workarounds for ThunderX. Both
944	  with a small impact affecting only ITS table allocation.
945
946	    erratum 22375: only alloc 8MB table size
947	    erratum 24313: ignore memory access type
948
949	  The fixes are in ITS initialization and basically ignore memory access
950	  type and table size provided by the TYPER and BASER registers.
951
952	  If unsure, say Y.
953
954config CAVIUM_ERRATUM_23144
955	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
956	depends on NUMA
957	default y
958	help
959	  ITS SYNC command hang for cross node io and collections/cpu mapping.
960
961	  If unsure, say Y.
962
963config CAVIUM_ERRATUM_23154
964	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
965	default y
966	help
967	  The ThunderX GICv3 implementation requires a modified version for
968	  reading the IAR status to ensure data synchronization
969	  (access to icc_iar1_el1 is not sync'ed before and after).
970
971	  It also suffers from erratum 38545 (also present on Marvell's
972	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
973	  spuriously presented to the CPU interface.
974
975	  If unsure, say Y.
976
977config CAVIUM_ERRATUM_27456
978	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
979	default y
980	help
981	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
982	  instructions may cause the icache to become corrupted if it
983	  contains data for a non-current ASID.  The fix is to
984	  invalidate the icache when changing the mm context.
985
986	  If unsure, say Y.
987
988config CAVIUM_ERRATUM_30115
989	bool "Cavium erratum 30115: Guest may disable interrupts in host"
990	default y
991	help
992	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
993	  1.2, and T83 Pass 1.0, KVM guest execution may disable
994	  interrupts in host. Trapping both GICv3 group-0 and group-1
995	  accesses sidesteps the issue.
996
997	  If unsure, say Y.
998
999config CAVIUM_TX2_ERRATUM_219
1000	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1001	default y
1002	help
1003	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1004	  TTBR update and the corresponding context synchronizing operation can
1005	  cause a spurious Data Abort to be delivered to any hardware thread in
1006	  the CPU core.
1007
1008	  Work around the issue by avoiding the problematic code sequence and
1009	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1010	  trap handler performs the corresponding register access, skips the
1011	  instruction and ensures context synchronization by virtue of the
1012	  exception return.
1013
1014	  If unsure, say Y.
1015
1016config FUJITSU_ERRATUM_010001
1017	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1018	default y
1019	help
1020	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1021	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1022	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1023	  This fault occurs under a specific hardware condition when a
1024	  load/store instruction performs an address translation using:
1025	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1026	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1027	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1028	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1029
1030	  The workaround is to ensure these bits are clear in TCR_ELx.
1031	  The workaround only affects the Fujitsu-A64FX.
1032
1033	  If unsure, say Y.
1034
1035config HISILICON_ERRATUM_161600802
1036	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1037	default y
1038	help
1039	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1040	  when issued ITS commands such as VMOVP and VMAPP, and requires
1041	  a 128kB offset to be applied to the target address in this commands.
1042
1043	  If unsure, say Y.
1044
1045config QCOM_FALKOR_ERRATUM_1003
1046	bool "Falkor E1003: Incorrect translation due to ASID change"
1047	default y
1048	help
1049	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1050	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1051	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1052	  then only for entries in the walk cache, since the leaf translation
1053	  is unchanged. Work around the erratum by invalidating the walk cache
1054	  entries for the trampoline before entering the kernel proper.
1055
1056config QCOM_FALKOR_ERRATUM_1009
1057	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1058	default y
1059	select ARM64_WORKAROUND_REPEAT_TLBI
1060	help
1061	  On Falkor v1, the CPU may prematurely complete a DSB following a
1062	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1063	  one more time to fix the issue.
1064
1065	  If unsure, say Y.
1066
1067config QCOM_QDF2400_ERRATUM_0065
1068	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1069	default y
1070	help
1071	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1072	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1073	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1074
1075	  If unsure, say Y.
1076
1077config QCOM_FALKOR_ERRATUM_E1041
1078	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1079	default y
1080	help
1081	  Falkor CPU may speculatively fetch instructions from an improper
1082	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1083	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1084
1085	  If unsure, say Y.
1086
1087config NVIDIA_CARMEL_CNP_ERRATUM
1088	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1089	default y
1090	help
1091	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1092	  invalidate shared TLB entries installed by a different core, as it would
1093	  on standard ARM cores.
1094
1095	  If unsure, say Y.
1096
1097config SOCIONEXT_SYNQUACER_PREITS
1098	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1099	default y
1100	help
1101	  Socionext Synquacer SoCs implement a separate h/w block to generate
1102	  MSI doorbell writes with non-zero values for the device ID.
1103
1104	  If unsure, say Y.
1105
1106endmenu # "ARM errata workarounds via the alternatives framework"
1107
1108choice
1109	prompt "Page size"
1110	default ARM64_4K_PAGES
1111	help
1112	  Page size (translation granule) configuration.
1113
1114config ARM64_4K_PAGES
1115	bool "4KB"
1116	help
1117	  This feature enables 4KB pages support.
1118
1119config ARM64_16K_PAGES
1120	bool "16KB"
1121	help
1122	  The system will use 16KB pages support. AArch32 emulation
1123	  requires applications compiled with 16K (or a multiple of 16K)
1124	  aligned segments.
1125
1126config ARM64_64K_PAGES
1127	bool "64KB"
1128	help
1129	  This feature enables 64KB pages support (4KB by default)
1130	  allowing only two levels of page tables and faster TLB
1131	  look-up. AArch32 emulation requires applications compiled
1132	  with 64K aligned segments.
1133
1134endchoice
1135
1136choice
1137	prompt "Virtual address space size"
1138	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1139	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1140	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1141	help
1142	  Allows choosing one of multiple possible virtual address
1143	  space sizes. The level of translation table is determined by
1144	  a combination of page size and virtual address space size.
1145
1146config ARM64_VA_BITS_36
1147	bool "36-bit" if EXPERT
1148	depends on ARM64_16K_PAGES
1149
1150config ARM64_VA_BITS_39
1151	bool "39-bit"
1152	depends on ARM64_4K_PAGES
1153
1154config ARM64_VA_BITS_42
1155	bool "42-bit"
1156	depends on ARM64_64K_PAGES
1157
1158config ARM64_VA_BITS_47
1159	bool "47-bit"
1160	depends on ARM64_16K_PAGES
1161
1162config ARM64_VA_BITS_48
1163	bool "48-bit"
1164
1165config ARM64_VA_BITS_52
1166	bool "52-bit"
1167	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1168	help
1169	  Enable 52-bit virtual addressing for userspace when explicitly
1170	  requested via a hint to mmap(). The kernel will also use 52-bit
1171	  virtual addresses for its own mappings (provided HW support for
1172	  this feature is available, otherwise it reverts to 48-bit).
1173
1174	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1175	  ARMv8.3 Pointer Authentication will result in the PAC being
1176	  reduced from 7 bits to 3 bits, which may have a significant
1177	  impact on its susceptibility to brute-force attacks.
1178
1179	  If unsure, select 48-bit virtual addressing instead.
1180
1181endchoice
1182
1183config ARM64_FORCE_52BIT
1184	bool "Force 52-bit virtual addresses for userspace"
1185	depends on ARM64_VA_BITS_52 && EXPERT
1186	help
1187	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1188	  to maintain compatibility with older software by providing 48-bit VAs
1189	  unless a hint is supplied to mmap.
1190
1191	  This configuration option disables the 48-bit compatibility logic, and
1192	  forces all userspace addresses to be 52-bit on HW that supports it. One
1193	  should only enable this configuration option for stress testing userspace
1194	  memory management code. If unsure say N here.
1195
1196config ARM64_VA_BITS
1197	int
1198	default 36 if ARM64_VA_BITS_36
1199	default 39 if ARM64_VA_BITS_39
1200	default 42 if ARM64_VA_BITS_42
1201	default 47 if ARM64_VA_BITS_47
1202	default 48 if ARM64_VA_BITS_48
1203	default 52 if ARM64_VA_BITS_52
1204
1205choice
1206	prompt "Physical address space size"
1207	default ARM64_PA_BITS_48
1208	help
1209	  Choose the maximum physical address range that the kernel will
1210	  support.
1211
1212config ARM64_PA_BITS_48
1213	bool "48-bit"
1214
1215config ARM64_PA_BITS_52
1216	bool "52-bit (ARMv8.2)"
1217	depends on ARM64_64K_PAGES
1218	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1219	help
1220	  Enable support for a 52-bit physical address space, introduced as
1221	  part of the ARMv8.2-LPA extension.
1222
1223	  With this enabled, the kernel will also continue to work on CPUs that
1224	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1225	  minor performance overhead).
1226
1227endchoice
1228
1229config ARM64_PA_BITS
1230	int
1231	default 48 if ARM64_PA_BITS_48
1232	default 52 if ARM64_PA_BITS_52
1233
1234choice
1235	prompt "Endianness"
1236	default CPU_LITTLE_ENDIAN
1237	help
1238	  Select the endianness of data accesses performed by the CPU. Userspace
1239	  applications will need to be compiled and linked for the endianness
1240	  that is selected here.
1241
1242config CPU_BIG_ENDIAN
1243	bool "Build big-endian kernel"
1244	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1245	help
1246	  Say Y if you plan on running a kernel with a big-endian userspace.
1247
1248config CPU_LITTLE_ENDIAN
1249	bool "Build little-endian kernel"
1250	help
1251	  Say Y if you plan on running a kernel with a little-endian userspace.
1252	  This is usually the case for distributions targeting arm64.
1253
1254endchoice
1255
1256config SCHED_MC
1257	bool "Multi-core scheduler support"
1258	help
1259	  Multi-core scheduler support improves the CPU scheduler's decision
1260	  making when dealing with multi-core CPU chips at a cost of slightly
1261	  increased overhead in some places. If unsure say N here.
1262
1263config SCHED_CLUSTER
1264	bool "Cluster scheduler support"
1265	help
1266	  Cluster scheduler support improves the CPU scheduler's decision
1267	  making when dealing with machines that have clusters of CPUs.
1268	  Cluster usually means a couple of CPUs which are placed closely
1269	  by sharing mid-level caches, last-level cache tags or internal
1270	  busses.
1271
1272config SCHED_SMT
1273	bool "SMT scheduler support"
1274	help
1275	  Improves the CPU scheduler's decision making when dealing with
1276	  MultiThreading at a cost of slightly increased overhead in some
1277	  places. If unsure say N here.
1278
1279config NR_CPUS
1280	int "Maximum number of CPUs (2-4096)"
1281	range 2 4096
1282	default "256"
1283
1284config HOTPLUG_CPU
1285	bool "Support for hot-pluggable CPUs"
1286	select GENERIC_IRQ_MIGRATION
1287	help
1288	  Say Y here to experiment with turning CPUs off and on.  CPUs
1289	  can be controlled through /sys/devices/system/cpu.
1290
1291# Common NUMA Features
1292config NUMA
1293	bool "NUMA Memory Allocation and Scheduler Support"
1294	select GENERIC_ARCH_NUMA
1295	select ACPI_NUMA if ACPI
1296	select OF_NUMA
1297	select HAVE_SETUP_PER_CPU_AREA
1298	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1299	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1300	select USE_PERCPU_NUMA_NODE_ID
1301	help
1302	  Enable NUMA (Non-Uniform Memory Access) support.
1303
1304	  The kernel will try to allocate memory used by a CPU on the
1305	  local memory of the CPU and add some more
1306	  NUMA awareness to the kernel.
1307
1308config NODES_SHIFT
1309	int "Maximum NUMA Nodes (as a power of 2)"
1310	range 1 10
1311	default "4"
1312	depends on NUMA
1313	help
1314	  Specify the maximum number of NUMA Nodes available on the target
1315	  system.  Increases memory reserved to accommodate various tables.
1316
1317source "kernel/Kconfig.hz"
1318
1319config ARCH_SPARSEMEM_ENABLE
1320	def_bool y
1321	select SPARSEMEM_VMEMMAP_ENABLE
1322	select SPARSEMEM_VMEMMAP
1323
1324config HW_PERF_EVENTS
1325	def_bool y
1326	depends on ARM_PMU
1327
1328# Supported by clang >= 7.0 or GCC >= 12.0.0
1329config CC_HAVE_SHADOW_CALL_STACK
1330	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1331
1332config PARAVIRT
1333	bool "Enable paravirtualization code"
1334	help
1335	  This changes the kernel so it can modify itself when it is run
1336	  under a hypervisor, potentially improving performance significantly
1337	  over full virtualization.
1338
1339config PARAVIRT_TIME_ACCOUNTING
1340	bool "Paravirtual steal time accounting"
1341	select PARAVIRT
1342	help
1343	  Select this option to enable fine granularity task steal time
1344	  accounting. Time spent executing other tasks in parallel with
1345	  the current vCPU is discounted from the vCPU power. To account for
1346	  that, there can be a small performance impact.
1347
1348	  If in doubt, say N here.
1349
1350config KEXEC
1351	depends on PM_SLEEP_SMP
1352	select KEXEC_CORE
1353	bool "kexec system call"
1354	help
1355	  kexec is a system call that implements the ability to shutdown your
1356	  current kernel, and to start another kernel.  It is like a reboot
1357	  but it is independent of the system firmware.   And like a reboot
1358	  you can start any kernel with it, not just Linux.
1359
1360config KEXEC_FILE
1361	bool "kexec file based system call"
1362	select KEXEC_CORE
1363	select HAVE_IMA_KEXEC if IMA
1364	help
1365	  This is new version of kexec system call. This system call is
1366	  file based and takes file descriptors as system call argument
1367	  for kernel and initramfs as opposed to list of segments as
1368	  accepted by previous system call.
1369
1370config KEXEC_SIG
1371	bool "Verify kernel signature during kexec_file_load() syscall"
1372	depends on KEXEC_FILE
1373	help
1374	  Select this option to verify a signature with loaded kernel
1375	  image. If configured, any attempt of loading a image without
1376	  valid signature will fail.
1377
1378	  In addition to that option, you need to enable signature
1379	  verification for the corresponding kernel image type being
1380	  loaded in order for this to work.
1381
1382config KEXEC_IMAGE_VERIFY_SIG
1383	bool "Enable Image signature verification support"
1384	default y
1385	depends on KEXEC_SIG
1386	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1387	help
1388	  Enable Image signature verification support.
1389
1390comment "Support for PE file signature verification disabled"
1391	depends on KEXEC_SIG
1392	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1393
1394config CRASH_DUMP
1395	bool "Build kdump crash kernel"
1396	help
1397	  Generate crash dump after being started by kexec. This should
1398	  be normally only set in special crash dump kernels which are
1399	  loaded in the main kernel with kexec-tools into a specially
1400	  reserved region and then later executed after a crash by
1401	  kdump/kexec.
1402
1403	  For more details see Documentation/admin-guide/kdump/kdump.rst
1404
1405config TRANS_TABLE
1406	def_bool y
1407	depends on HIBERNATION || KEXEC_CORE
1408
1409config XEN_DOM0
1410	def_bool y
1411	depends on XEN
1412
1413config XEN
1414	bool "Xen guest support on ARM64"
1415	depends on ARM64 && OF
1416	select SWIOTLB_XEN
1417	select PARAVIRT
1418	help
1419	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1420
1421config FORCE_MAX_ZONEORDER
1422	int
1423	default "14" if ARM64_64K_PAGES
1424	default "12" if ARM64_16K_PAGES
1425	default "11"
1426	help
1427	  The kernel memory allocator divides physically contiguous memory
1428	  blocks into "zones", where each zone is a power of two number of
1429	  pages.  This option selects the largest power of two that the kernel
1430	  keeps in the memory allocator.  If you need to allocate very large
1431	  blocks of physically contiguous memory, then you may need to
1432	  increase this value.
1433
1434	  This config option is actually maximum order plus one. For example,
1435	  a value of 11 means that the largest free memory block is 2^10 pages.
1436
1437	  We make sure that we can allocate upto a HugePage size for each configuration.
1438	  Hence we have :
1439		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1440
1441	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1442	  4M allocations matching the default size used by generic code.
1443
1444config UNMAP_KERNEL_AT_EL0
1445	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1446	default y
1447	help
1448	  Speculation attacks against some high-performance processors can
1449	  be used to bypass MMU permission checks and leak kernel data to
1450	  userspace. This can be defended against by unmapping the kernel
1451	  when running in userspace, mapping it back in on exception entry
1452	  via a trampoline page in the vector table.
1453
1454	  If unsure, say Y.
1455
1456config MITIGATE_SPECTRE_BRANCH_HISTORY
1457	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1458	default y
1459	help
1460	  Speculation attacks against some high-performance processors can
1461	  make use of branch history to influence future speculation.
1462	  When taking an exception from user-space, a sequence of branches
1463	  or a firmware call overwrites the branch history.
1464
1465config RODATA_FULL_DEFAULT_ENABLED
1466	bool "Apply r/o permissions of VM areas also to their linear aliases"
1467	default y
1468	help
1469	  Apply read-only attributes of VM areas to the linear alias of
1470	  the backing pages as well. This prevents code or read-only data
1471	  from being modified (inadvertently or intentionally) via another
1472	  mapping of the same memory page. This additional enhancement can
1473	  be turned off at runtime by passing rodata=[off|on] (and turned on
1474	  with rodata=full if this option is set to 'n')
1475
1476	  This requires the linear region to be mapped down to pages,
1477	  which may adversely affect performance in some cases.
1478
1479config ARM64_SW_TTBR0_PAN
1480	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1481	help
1482	  Enabling this option prevents the kernel from accessing
1483	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1484	  zeroed area and reserved ASID. The user access routines
1485	  restore the valid TTBR0_EL1 temporarily.
1486
1487config ARM64_TAGGED_ADDR_ABI
1488	bool "Enable the tagged user addresses syscall ABI"
1489	default y
1490	help
1491	  When this option is enabled, user applications can opt in to a
1492	  relaxed ABI via prctl() allowing tagged addresses to be passed
1493	  to system calls as pointer arguments. For details, see
1494	  Documentation/arm64/tagged-address-abi.rst.
1495
1496menuconfig COMPAT
1497	bool "Kernel support for 32-bit EL0"
1498	depends on ARM64_4K_PAGES || EXPERT
1499	select HAVE_UID16
1500	select OLD_SIGSUSPEND3
1501	select COMPAT_OLD_SIGACTION
1502	help
1503	  This option enables support for a 32-bit EL0 running under a 64-bit
1504	  kernel at EL1. AArch32-specific components such as system calls,
1505	  the user helper functions, VFP support and the ptrace interface are
1506	  handled appropriately by the kernel.
1507
1508	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1509	  that you will only be able to execute AArch32 binaries that were compiled
1510	  with page size aligned segments.
1511
1512	  If you want to execute 32-bit userspace applications, say Y.
1513
1514if COMPAT
1515
1516config KUSER_HELPERS
1517	bool "Enable kuser helpers page for 32-bit applications"
1518	default y
1519	help
1520	  Warning: disabling this option may break 32-bit user programs.
1521
1522	  Provide kuser helpers to compat tasks. The kernel provides
1523	  helper code to userspace in read only form at a fixed location
1524	  to allow userspace to be independent of the CPU type fitted to
1525	  the system. This permits binaries to be run on ARMv4 through
1526	  to ARMv8 without modification.
1527
1528	  See Documentation/arm/kernel_user_helpers.rst for details.
1529
1530	  However, the fixed address nature of these helpers can be used
1531	  by ROP (return orientated programming) authors when creating
1532	  exploits.
1533
1534	  If all of the binaries and libraries which run on your platform
1535	  are built specifically for your platform, and make no use of
1536	  these helpers, then you can turn this option off to hinder
1537	  such exploits. However, in that case, if a binary or library
1538	  relying on those helpers is run, it will not function correctly.
1539
1540	  Say N here only if you are absolutely certain that you do not
1541	  need these helpers; otherwise, the safe option is to say Y.
1542
1543config COMPAT_VDSO
1544	bool "Enable vDSO for 32-bit applications"
1545	depends on !CPU_BIG_ENDIAN
1546	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1547	select GENERIC_COMPAT_VDSO
1548	default y
1549	help
1550	  Place in the process address space of 32-bit applications an
1551	  ELF shared object providing fast implementations of gettimeofday
1552	  and clock_gettime.
1553
1554	  You must have a 32-bit build of glibc 2.22 or later for programs
1555	  to seamlessly take advantage of this.
1556
1557config THUMB2_COMPAT_VDSO
1558	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1559	depends on COMPAT_VDSO
1560	default y
1561	help
1562	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1563	  otherwise with '-marm'.
1564
1565menuconfig ARMV8_DEPRECATED
1566	bool "Emulate deprecated/obsolete ARMv8 instructions"
1567	depends on SYSCTL
1568	help
1569	  Legacy software support may require certain instructions
1570	  that have been deprecated or obsoleted in the architecture.
1571
1572	  Enable this config to enable selective emulation of these
1573	  features.
1574
1575	  If unsure, say Y
1576
1577if ARMV8_DEPRECATED
1578
1579config SWP_EMULATION
1580	bool "Emulate SWP/SWPB instructions"
1581	help
1582	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1583	  they are always undefined. Say Y here to enable software
1584	  emulation of these instructions for userspace using LDXR/STXR.
1585	  This feature can be controlled at runtime with the abi.swp
1586	  sysctl which is disabled by default.
1587
1588	  In some older versions of glibc [<=2.8] SWP is used during futex
1589	  trylock() operations with the assumption that the code will not
1590	  be preempted. This invalid assumption may be more likely to fail
1591	  with SWP emulation enabled, leading to deadlock of the user
1592	  application.
1593
1594	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1595	  on an external transaction monitoring block called a global
1596	  monitor to maintain update atomicity. If your system does not
1597	  implement a global monitor, this option can cause programs that
1598	  perform SWP operations to uncached memory to deadlock.
1599
1600	  If unsure, say Y
1601
1602config CP15_BARRIER_EMULATION
1603	bool "Emulate CP15 Barrier instructions"
1604	help
1605	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1606	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1607	  strongly recommended to use the ISB, DSB, and DMB
1608	  instructions instead.
1609
1610	  Say Y here to enable software emulation of these
1611	  instructions for AArch32 userspace code. When this option is
1612	  enabled, CP15 barrier usage is traced which can help
1613	  identify software that needs updating. This feature can be
1614	  controlled at runtime with the abi.cp15_barrier sysctl.
1615
1616	  If unsure, say Y
1617
1618config SETEND_EMULATION
1619	bool "Emulate SETEND instruction"
1620	help
1621	  The SETEND instruction alters the data-endianness of the
1622	  AArch32 EL0, and is deprecated in ARMv8.
1623
1624	  Say Y here to enable software emulation of the instruction
1625	  for AArch32 userspace code. This feature can be controlled
1626	  at runtime with the abi.setend sysctl.
1627
1628	  Note: All the cpus on the system must have mixed endian support at EL0
1629	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1630	  endian - is hotplugged in after this feature has been enabled, there could
1631	  be unexpected results in the applications.
1632
1633	  If unsure, say Y
1634endif # ARMV8_DEPRECATED
1635
1636endif # COMPAT
1637
1638menu "ARMv8.1 architectural features"
1639
1640config ARM64_HW_AFDBM
1641	bool "Support for hardware updates of the Access and Dirty page flags"
1642	default y
1643	help
1644	  The ARMv8.1 architecture extensions introduce support for
1645	  hardware updates of the access and dirty information in page
1646	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1647	  capable processors, accesses to pages with PTE_AF cleared will
1648	  set this bit instead of raising an access flag fault.
1649	  Similarly, writes to read-only pages with the DBM bit set will
1650	  clear the read-only bit (AP[2]) instead of raising a
1651	  permission fault.
1652
1653	  Kernels built with this configuration option enabled continue
1654	  to work on pre-ARMv8.1 hardware and the performance impact is
1655	  minimal. If unsure, say Y.
1656
1657config ARM64_PAN
1658	bool "Enable support for Privileged Access Never (PAN)"
1659	default y
1660	help
1661	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1662	  prevents the kernel or hypervisor from accessing user-space (EL0)
1663	  memory directly.
1664
1665	  Choosing this option will cause any unprotected (not using
1666	  copy_to_user et al) memory access to fail with a permission fault.
1667
1668	  The feature is detected at runtime, and will remain as a 'nop'
1669	  instruction if the cpu does not implement the feature.
1670
1671config AS_HAS_LDAPR
1672	def_bool $(as-instr,.arch_extension rcpc)
1673
1674config AS_HAS_LSE_ATOMICS
1675	def_bool $(as-instr,.arch_extension lse)
1676
1677config ARM64_LSE_ATOMICS
1678	bool
1679	default ARM64_USE_LSE_ATOMICS
1680	depends on AS_HAS_LSE_ATOMICS
1681
1682config ARM64_USE_LSE_ATOMICS
1683	bool "Atomic instructions"
1684	depends on JUMP_LABEL
1685	default y
1686	help
1687	  As part of the Large System Extensions, ARMv8.1 introduces new
1688	  atomic instructions that are designed specifically to scale in
1689	  very large systems.
1690
1691	  Say Y here to make use of these instructions for the in-kernel
1692	  atomic routines. This incurs a small overhead on CPUs that do
1693	  not support these instructions and requires the kernel to be
1694	  built with binutils >= 2.25 in order for the new instructions
1695	  to be used.
1696
1697endmenu # "ARMv8.1 architectural features"
1698
1699menu "ARMv8.2 architectural features"
1700
1701config AS_HAS_ARMV8_2
1702	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1703
1704config AS_HAS_SHA3
1705	def_bool $(as-instr,.arch armv8.2-a+sha3)
1706
1707config ARM64_PMEM
1708	bool "Enable support for persistent memory"
1709	select ARCH_HAS_PMEM_API
1710	select ARCH_HAS_UACCESS_FLUSHCACHE
1711	help
1712	  Say Y to enable support for the persistent memory API based on the
1713	  ARMv8.2 DCPoP feature.
1714
1715	  The feature is detected at runtime, and the kernel will use DC CVAC
1716	  operations if DC CVAP is not supported (following the behaviour of
1717	  DC CVAP itself if the system does not define a point of persistence).
1718
1719config ARM64_RAS_EXTN
1720	bool "Enable support for RAS CPU Extensions"
1721	default y
1722	help
1723	  CPUs that support the Reliability, Availability and Serviceability
1724	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1725	  errors, classify them and report them to software.
1726
1727	  On CPUs with these extensions system software can use additional
1728	  barriers to determine if faults are pending and read the
1729	  classification from a new set of registers.
1730
1731	  Selecting this feature will allow the kernel to use these barriers
1732	  and access the new registers if the system supports the extension.
1733	  Platform RAS features may additionally depend on firmware support.
1734
1735config ARM64_CNP
1736	bool "Enable support for Common Not Private (CNP) translations"
1737	default y
1738	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1739	help
1740	  Common Not Private (CNP) allows translation table entries to
1741	  be shared between different PEs in the same inner shareable
1742	  domain, so the hardware can use this fact to optimise the
1743	  caching of such entries in the TLB.
1744
1745	  Selecting this option allows the CNP feature to be detected
1746	  at runtime, and does not affect PEs that do not implement
1747	  this feature.
1748
1749endmenu # "ARMv8.2 architectural features"
1750
1751menu "ARMv8.3 architectural features"
1752
1753config ARM64_PTR_AUTH
1754	bool "Enable support for pointer authentication"
1755	default y
1756	help
1757	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1758	  instructions for signing and authenticating pointers against secret
1759	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1760	  and other attacks.
1761
1762	  This option enables these instructions at EL0 (i.e. for userspace).
1763	  Choosing this option will cause the kernel to initialise secret keys
1764	  for each process at exec() time, with these keys being
1765	  context-switched along with the process.
1766
1767	  The feature is detected at runtime. If the feature is not present in
1768	  hardware it will not be advertised to userspace/KVM guest nor will it
1769	  be enabled.
1770
1771	  If the feature is present on the boot CPU but not on a late CPU, then
1772	  the late CPU will be parked. Also, if the boot CPU does not have
1773	  address auth and the late CPU has then the late CPU will still boot
1774	  but with the feature disabled. On such a system, this option should
1775	  not be selected.
1776
1777config ARM64_PTR_AUTH_KERNEL
1778	bool "Use pointer authentication for kernel"
1779	default y
1780	depends on ARM64_PTR_AUTH
1781	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1782	# Modern compilers insert a .note.gnu.property section note for PAC
1783	# which is only understood by binutils starting with version 2.33.1.
1784	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1785	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1786	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1787	help
1788	  If the compiler supports the -mbranch-protection or
1789	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1790	  will cause the kernel itself to be compiled with return address
1791	  protection. In this case, and if the target hardware is known to
1792	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1793	  disabled with minimal loss of protection.
1794
1795	  This feature works with FUNCTION_GRAPH_TRACER option only if
1796	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1797
1798config CC_HAS_BRANCH_PROT_PAC_RET
1799	# GCC 9 or later, clang 8 or later
1800	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1801
1802config CC_HAS_SIGN_RETURN_ADDRESS
1803	# GCC 7, 8
1804	def_bool $(cc-option,-msign-return-address=all)
1805
1806config AS_HAS_PAC
1807	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1808
1809config AS_HAS_CFI_NEGATE_RA_STATE
1810	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1811
1812endmenu # "ARMv8.3 architectural features"
1813
1814menu "ARMv8.4 architectural features"
1815
1816config ARM64_AMU_EXTN
1817	bool "Enable support for the Activity Monitors Unit CPU extension"
1818	default y
1819	help
1820	  The activity monitors extension is an optional extension introduced
1821	  by the ARMv8.4 CPU architecture. This enables support for version 1
1822	  of the activity monitors architecture, AMUv1.
1823
1824	  To enable the use of this extension on CPUs that implement it, say Y.
1825
1826	  Note that for architectural reasons, firmware _must_ implement AMU
1827	  support when running on CPUs that present the activity monitors
1828	  extension. The required support is present in:
1829	    * Version 1.5 and later of the ARM Trusted Firmware
1830
1831	  For kernels that have this configuration enabled but boot with broken
1832	  firmware, you may need to say N here until the firmware is fixed.
1833	  Otherwise you may experience firmware panics or lockups when
1834	  accessing the counter registers. Even if you are not observing these
1835	  symptoms, the values returned by the register reads might not
1836	  correctly reflect reality. Most commonly, the value read will be 0,
1837	  indicating that the counter is not enabled.
1838
1839config AS_HAS_ARMV8_4
1840	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1841
1842config ARM64_TLB_RANGE
1843	bool "Enable support for tlbi range feature"
1844	default y
1845	depends on AS_HAS_ARMV8_4
1846	help
1847	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1848	  range of input addresses.
1849
1850	  The feature introduces new assembly instructions, and they were
1851	  support when binutils >= 2.30.
1852
1853endmenu # "ARMv8.4 architectural features"
1854
1855menu "ARMv8.5 architectural features"
1856
1857config AS_HAS_ARMV8_5
1858	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1859
1860config ARM64_BTI
1861	bool "Branch Target Identification support"
1862	default y
1863	help
1864	  Branch Target Identification (part of the ARMv8.5 Extensions)
1865	  provides a mechanism to limit the set of locations to which computed
1866	  branch instructions such as BR or BLR can jump.
1867
1868	  To make use of BTI on CPUs that support it, say Y.
1869
1870	  BTI is intended to provide complementary protection to other control
1871	  flow integrity protection mechanisms, such as the Pointer
1872	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1873	  For this reason, it does not make sense to enable this option without
1874	  also enabling support for pointer authentication.  Thus, when
1875	  enabling this option you should also select ARM64_PTR_AUTH=y.
1876
1877	  Userspace binaries must also be specifically compiled to make use of
1878	  this mechanism.  If you say N here or the hardware does not support
1879	  BTI, such binaries can still run, but you get no additional
1880	  enforcement of branch destinations.
1881
1882config ARM64_BTI_KERNEL
1883	bool "Use Branch Target Identification for kernel"
1884	default y
1885	depends on ARM64_BTI
1886	depends on ARM64_PTR_AUTH_KERNEL
1887	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1888	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1889	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1890	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1891	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1892	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1893	help
1894	  Build the kernel with Branch Target Identification annotations
1895	  and enable enforcement of this for kernel code. When this option
1896	  is enabled and the system supports BTI all kernel code including
1897	  modular code must have BTI enabled.
1898
1899config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1900	# GCC 9 or later, clang 8 or later
1901	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1902
1903config ARM64_E0PD
1904	bool "Enable support for E0PD"
1905	default y
1906	help
1907	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1908	  that EL0 accesses made via TTBR1 always fault in constant time,
1909	  providing similar benefits to KASLR as those provided by KPTI, but
1910	  with lower overhead and without disrupting legitimate access to
1911	  kernel memory such as SPE.
1912
1913	  This option enables E0PD for TTBR1 where available.
1914
1915config ARM64_AS_HAS_MTE
1916	# Initial support for MTE went in binutils 2.32.0, checked with
1917	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1918	# as a late addition to the final architecture spec (LDGM/STGM)
1919	# is only supported in the newer 2.32.x and 2.33 binutils
1920	# versions, hence the extra "stgm" instruction check below.
1921	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1922
1923config ARM64_MTE
1924	bool "Memory Tagging Extension support"
1925	default y
1926	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1927	depends on AS_HAS_ARMV8_5
1928	depends on AS_HAS_LSE_ATOMICS
1929	# Required for tag checking in the uaccess routines
1930	depends on ARM64_PAN
1931	select ARCH_HAS_SUBPAGE_FAULTS
1932	select ARCH_USES_HIGH_VMA_FLAGS
1933	help
1934	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1935	  architectural support for run-time, always-on detection of
1936	  various classes of memory error to aid with software debugging
1937	  to eliminate vulnerabilities arising from memory-unsafe
1938	  languages.
1939
1940	  This option enables the support for the Memory Tagging
1941	  Extension at EL0 (i.e. for userspace).
1942
1943	  Selecting this option allows the feature to be detected at
1944	  runtime. Any secondary CPU not implementing this feature will
1945	  not be allowed a late bring-up.
1946
1947	  Userspace binaries that want to use this feature must
1948	  explicitly opt in. The mechanism for the userspace is
1949	  described in:
1950
1951	  Documentation/arm64/memory-tagging-extension.rst.
1952
1953endmenu # "ARMv8.5 architectural features"
1954
1955menu "ARMv8.7 architectural features"
1956
1957config ARM64_EPAN
1958	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1959	default y
1960	depends on ARM64_PAN
1961	help
1962	  Enhanced Privileged Access Never (EPAN) allows Privileged
1963	  Access Never to be used with Execute-only mappings.
1964
1965	  The feature is detected at runtime, and will remain disabled
1966	  if the cpu does not implement the feature.
1967endmenu # "ARMv8.7 architectural features"
1968
1969config ARM64_SVE
1970	bool "ARM Scalable Vector Extension support"
1971	default y
1972	help
1973	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1974	  execution state which complements and extends the SIMD functionality
1975	  of the base architecture to support much larger vectors and to enable
1976	  additional vectorisation opportunities.
1977
1978	  To enable use of this extension on CPUs that implement it, say Y.
1979
1980	  On CPUs that support the SVE2 extensions, this option will enable
1981	  those too.
1982
1983	  Note that for architectural reasons, firmware _must_ implement SVE
1984	  support when running on SVE capable hardware.  The required support
1985	  is present in:
1986
1987	    * version 1.5 and later of the ARM Trusted Firmware
1988	    * the AArch64 boot wrapper since commit 5e1261e08abf
1989	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1990
1991	  For other firmware implementations, consult the firmware documentation
1992	  or vendor.
1993
1994	  If you need the kernel to boot on SVE-capable hardware with broken
1995	  firmware, you may need to say N here until you get your firmware
1996	  fixed.  Otherwise, you may experience firmware panics or lockups when
1997	  booting the kernel.  If unsure and you are not observing these
1998	  symptoms, you should assume that it is safe to say Y.
1999
2000config ARM64_SME
2001	bool "ARM Scalable Matrix Extension support"
2002	default y
2003	depends on ARM64_SVE
2004	help
2005	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2006	  execution state which utilises a substantial subset of the SVE
2007	  instruction set, together with the addition of new architectural
2008	  register state capable of holding two dimensional matrix tiles to
2009	  enable various matrix operations.
2010
2011config ARM64_MODULE_PLTS
2012	bool "Use PLTs to allow module memory to spill over into vmalloc area"
2013	depends on MODULES
2014	select HAVE_MOD_ARCH_SPECIFIC
2015	help
2016	  Allocate PLTs when loading modules so that jumps and calls whose
2017	  targets are too far away for their relative offsets to be encoded
2018	  in the instructions themselves can be bounced via veneers in the
2019	  module's PLT. This allows modules to be allocated in the generic
2020	  vmalloc area after the dedicated module memory area has been
2021	  exhausted.
2022
2023	  When running with address space randomization (KASLR), the module
2024	  region itself may be too far away for ordinary relative jumps and
2025	  calls, and so in that case, module PLTs are required and cannot be
2026	  disabled.
2027
2028	  Specific errata workaround(s) might also force module PLTs to be
2029	  enabled (ARM64_ERRATUM_843419).
2030
2031config ARM64_PSEUDO_NMI
2032	bool "Support for NMI-like interrupts"
2033	select ARM_GIC_V3
2034	help
2035	  Adds support for mimicking Non-Maskable Interrupts through the use of
2036	  GIC interrupt priority. This support requires version 3 or later of
2037	  ARM GIC.
2038
2039	  This high priority configuration for interrupts needs to be
2040	  explicitly enabled by setting the kernel parameter
2041	  "irqchip.gicv3_pseudo_nmi" to 1.
2042
2043	  If unsure, say N
2044
2045if ARM64_PSEUDO_NMI
2046config ARM64_DEBUG_PRIORITY_MASKING
2047	bool "Debug interrupt priority masking"
2048	help
2049	  This adds runtime checks to functions enabling/disabling
2050	  interrupts when using priority masking. The additional checks verify
2051	  the validity of ICC_PMR_EL1 when calling concerned functions.
2052
2053	  If unsure, say N
2054endif # ARM64_PSEUDO_NMI
2055
2056config RELOCATABLE
2057	bool "Build a relocatable kernel image" if EXPERT
2058	select ARCH_HAS_RELR
2059	default y
2060	help
2061	  This builds the kernel as a Position Independent Executable (PIE),
2062	  which retains all relocation metadata required to relocate the
2063	  kernel binary at runtime to a different virtual address than the
2064	  address it was linked at.
2065	  Since AArch64 uses the RELA relocation format, this requires a
2066	  relocation pass at runtime even if the kernel is loaded at the
2067	  same address it was linked at.
2068
2069config RANDOMIZE_BASE
2070	bool "Randomize the address of the kernel image"
2071	select ARM64_MODULE_PLTS if MODULES
2072	select RELOCATABLE
2073	help
2074	  Randomizes the virtual address at which the kernel image is
2075	  loaded, as a security feature that deters exploit attempts
2076	  relying on knowledge of the location of kernel internals.
2077
2078	  It is the bootloader's job to provide entropy, by passing a
2079	  random u64 value in /chosen/kaslr-seed at kernel entry.
2080
2081	  When booting via the UEFI stub, it will invoke the firmware's
2082	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2083	  to the kernel proper. In addition, it will randomise the physical
2084	  location of the kernel Image as well.
2085
2086	  If unsure, say N.
2087
2088config RANDOMIZE_MODULE_REGION_FULL
2089	bool "Randomize the module region over a 2 GB range"
2090	depends on RANDOMIZE_BASE
2091	default y
2092	help
2093	  Randomizes the location of the module region inside a 2 GB window
2094	  covering the core kernel. This way, it is less likely for modules
2095	  to leak information about the location of core kernel data structures
2096	  but it does imply that function calls between modules and the core
2097	  kernel will need to be resolved via veneers in the module PLT.
2098
2099	  When this option is not set, the module region will be randomized over
2100	  a limited range that contains the [_stext, _etext] interval of the
2101	  core kernel, so branch relocations are almost always in range unless
2102	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2103	  particular case of region exhaustion, modules might be able to fall
2104	  back to a larger 2GB area.
2105
2106config CC_HAVE_STACKPROTECTOR_SYSREG
2107	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2108
2109config STACKPROTECTOR_PER_TASK
2110	def_bool y
2111	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2112
2113# The GPIO number here must be sorted by descending number. In case of
2114# a multiplatform kernel, we just want the highest value required by the
2115# selected platforms.
2116config ARCH_NR_GPIO
2117        int
2118        default 2048 if ARCH_APPLE
2119        default 0
2120        help
2121          Maximum number of GPIOs in the system.
2122
2123          If unsure, leave the default value.
2124
2125endmenu # "Kernel Features"
2126
2127menu "Boot options"
2128
2129config ARM64_ACPI_PARKING_PROTOCOL
2130	bool "Enable support for the ARM64 ACPI parking protocol"
2131	depends on ACPI
2132	help
2133	  Enable support for the ARM64 ACPI parking protocol. If disabled
2134	  the kernel will not allow booting through the ARM64 ACPI parking
2135	  protocol even if the corresponding data is present in the ACPI
2136	  MADT table.
2137
2138config CMDLINE
2139	string "Default kernel command string"
2140	default ""
2141	help
2142	  Provide a set of default command-line options at build time by
2143	  entering them here. As a minimum, you should specify the the
2144	  root device (e.g. root=/dev/nfs).
2145
2146choice
2147	prompt "Kernel command line type" if CMDLINE != ""
2148	default CMDLINE_FROM_BOOTLOADER
2149	help
2150	  Choose how the kernel will handle the provided default kernel
2151	  command line string.
2152
2153config CMDLINE_FROM_BOOTLOADER
2154	bool "Use bootloader kernel arguments if available"
2155	help
2156	  Uses the command-line options passed by the boot loader. If
2157	  the boot loader doesn't provide any, the default kernel command
2158	  string provided in CMDLINE will be used.
2159
2160config CMDLINE_FORCE
2161	bool "Always use the default kernel command string"
2162	help
2163	  Always use the default kernel command string, even if the boot
2164	  loader passes other arguments to the kernel.
2165	  This is useful if you cannot or don't want to change the
2166	  command-line options your boot loader passes to the kernel.
2167
2168endchoice
2169
2170config EFI_STUB
2171	bool
2172
2173config EFI
2174	bool "UEFI runtime support"
2175	depends on OF && !CPU_BIG_ENDIAN
2176	depends on KERNEL_MODE_NEON
2177	select ARCH_SUPPORTS_ACPI
2178	select LIBFDT
2179	select UCS2_STRING
2180	select EFI_PARAMS_FROM_FDT
2181	select EFI_RUNTIME_WRAPPERS
2182	select EFI_STUB
2183	select EFI_GENERIC_STUB
2184	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2185	default y
2186	help
2187	  This option provides support for runtime services provided
2188	  by UEFI firmware (such as non-volatile variables, realtime
2189	  clock, and platform reset). A UEFI stub is also provided to
2190	  allow the kernel to be booted as an EFI application. This
2191	  is only useful on systems that have UEFI firmware.
2192
2193config DMI
2194	bool "Enable support for SMBIOS (DMI) tables"
2195	depends on EFI
2196	default y
2197	help
2198	  This enables SMBIOS/DMI feature for systems.
2199
2200	  This option is only useful on systems that have UEFI firmware.
2201	  However, even with this option, the resultant kernel should
2202	  continue to boot on existing non-UEFI platforms.
2203
2204endmenu # "Boot options"
2205
2206menu "Power management options"
2207
2208source "kernel/power/Kconfig"
2209
2210config ARCH_HIBERNATION_POSSIBLE
2211	def_bool y
2212	depends on CPU_PM
2213
2214config ARCH_HIBERNATION_HEADER
2215	def_bool y
2216	depends on HIBERNATION
2217
2218config ARCH_SUSPEND_POSSIBLE
2219	def_bool y
2220
2221endmenu # "Power management options"
2222
2223menu "CPU Power Management"
2224
2225source "drivers/cpuidle/Kconfig"
2226
2227source "drivers/cpufreq/Kconfig"
2228
2229endmenu # "CPU Power Management"
2230
2231source "drivers/acpi/Kconfig"
2232
2233source "arch/arm64/kvm/Kconfig"
2234
2235if CRYPTO
2236source "arch/arm64/crypto/Kconfig"
2237endif # CRYPTO
2238