xref: /linux/arch/arm64/Kconfig (revision cfd47302ac64b595beb0a67a337b81942146448a)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_OPS if XEN
28	select ARCH_HAS_DMA_PREP_COHERENT
29	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
30	select ARCH_HAS_FAST_MULTIPLIER
31	select ARCH_HAS_FORTIFY_SOURCE
32	select ARCH_HAS_GCOV_PROFILE_ALL
33	select ARCH_HAS_GIGANTIC_PAGE
34	select ARCH_HAS_KCOV
35	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
36	select ARCH_HAS_KEEPINITRD
37	select ARCH_HAS_MEMBARRIER_SYNC_CORE
38	select ARCH_HAS_MEM_ENCRYPT
39	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
40	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
41	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
42	select ARCH_HAS_PTE_DEVMAP
43	select ARCH_HAS_PTE_SPECIAL
44	select ARCH_HAS_HW_PTE_YOUNG
45	select ARCH_HAS_SETUP_DMA_OPS
46	select ARCH_HAS_SET_DIRECT_MAP
47	select ARCH_HAS_SET_MEMORY
48	select ARCH_HAS_MEM_ENCRYPT
49	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
50	select ARCH_STACKWALK
51	select ARCH_HAS_STRICT_KERNEL_RWX
52	select ARCH_HAS_STRICT_MODULE_RWX
53	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
54	select ARCH_HAS_SYNC_DMA_FOR_CPU
55	select ARCH_HAS_SYSCALL_WRAPPER
56	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
57	select ARCH_HAS_ZONE_DMA_SET if EXPERT
58	select ARCH_HAVE_ELF_PROT
59	select ARCH_HAVE_NMI_SAFE_CMPXCHG
60	select ARCH_HAVE_TRACE_MMIO_ACCESS
61	select ARCH_INLINE_READ_LOCK if !PREEMPTION
62	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
63	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
65	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
66	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
69	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
70	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
73	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
74	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
77	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
78	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
79	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
83	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
84	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
87	select ARCH_KEEP_MEMBLOCK
88	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
89	select ARCH_USE_CMPXCHG_LOCKREF
90	select ARCH_USE_GNU_PROPERTY
91	select ARCH_USE_MEMTEST
92	select ARCH_USE_QUEUED_RWLOCKS
93	select ARCH_USE_QUEUED_SPINLOCKS
94	select ARCH_USE_SYM_ANNOTATIONS
95	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
96	select ARCH_SUPPORTS_HUGETLBFS
97	select ARCH_SUPPORTS_MEMORY_FAILURE
98	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
99	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
100	select ARCH_SUPPORTS_LTO_CLANG_THIN
101	select ARCH_SUPPORTS_CFI_CLANG
102	select ARCH_SUPPORTS_ATOMIC_RMW
103	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
104	select ARCH_SUPPORTS_NUMA_BALANCING
105	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
106	select ARCH_SUPPORTS_PER_VMA_LOCK
107	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
108	select ARCH_SUPPORTS_RT
109	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
110	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
111	select ARCH_WANT_DEFAULT_BPF_JIT
112	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
113	select ARCH_WANT_FRAME_POINTERS
114	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
115	select ARCH_WANT_LD_ORPHAN_WARN
116	select ARCH_WANTS_EXECMEM_LATE if EXECMEM
117	select ARCH_WANTS_NO_INSTR
118	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
119	select ARCH_HAS_UBSAN
120	select ARM_AMBA
121	select ARM_ARCH_TIMER
122	select ARM_GIC
123	select AUDIT_ARCH_COMPAT_GENERIC
124	select ARM_GIC_V2M if PCI
125	select ARM_GIC_V3
126	select ARM_GIC_V3_ITS if PCI
127	select ARM_PSCI_FW
128	select BUILDTIME_TABLE_SORT
129	select CLONE_BACKWARDS
130	select COMMON_CLK
131	select CPU_PM if (SUSPEND || CPU_IDLE)
132	select CPUMASK_OFFSTACK if NR_CPUS > 256
133	select CRC32
134	select DCACHE_WORD_ACCESS
135	select DYNAMIC_FTRACE if FUNCTION_TRACER
136	select DMA_BOUNCE_UNALIGNED_KMALLOC
137	select DMA_DIRECT_REMAP
138	select EDAC_SUPPORT
139	select FRAME_POINTER
140	select FUNCTION_ALIGNMENT_4B
141	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
142	select GENERIC_ALLOCATOR
143	select GENERIC_ARCH_TOPOLOGY
144	select GENERIC_CLOCKEVENTS_BROADCAST
145	select GENERIC_CPU_AUTOPROBE
146	select GENERIC_CPU_DEVICES
147	select GENERIC_CPU_VULNERABILITIES
148	select GENERIC_EARLY_IOREMAP
149	select GENERIC_IDLE_POLL_SETUP
150	select GENERIC_IOREMAP
151	select GENERIC_IRQ_IPI
152	select GENERIC_IRQ_PROBE
153	select GENERIC_IRQ_SHOW
154	select GENERIC_IRQ_SHOW_LEVEL
155	select GENERIC_LIB_DEVMEM_IS_ALLOWED
156	select GENERIC_PCI_IOMAP
157	select GENERIC_PTDUMP
158	select GENERIC_SCHED_CLOCK
159	select GENERIC_SMP_IDLE_THREAD
160	select GENERIC_TIME_VSYSCALL
161	select GENERIC_GETTIMEOFDAY
162	select GENERIC_VDSO_TIME_NS
163	select HARDIRQS_SW_RESEND
164	select HAS_IOPORT
165	select HAVE_MOVE_PMD
166	select HAVE_MOVE_PUD
167	select HAVE_PCI
168	select HAVE_ACPI_APEI if (ACPI && EFI)
169	select HAVE_ALIGNED_STRUCT_PAGE
170	select HAVE_ARCH_AUDITSYSCALL
171	select HAVE_ARCH_BITREVERSE
172	select HAVE_ARCH_COMPILER_H
173	select HAVE_ARCH_HUGE_VMALLOC
174	select HAVE_ARCH_HUGE_VMAP
175	select HAVE_ARCH_JUMP_LABEL
176	select HAVE_ARCH_JUMP_LABEL_RELATIVE
177	select HAVE_ARCH_KASAN
178	select HAVE_ARCH_KASAN_VMALLOC
179	select HAVE_ARCH_KASAN_SW_TAGS
180	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
181	# Some instrumentation may be unsound, hence EXPERT
182	select HAVE_ARCH_KCSAN if EXPERT
183	select HAVE_ARCH_KFENCE
184	select HAVE_ARCH_KGDB
185	select HAVE_ARCH_MMAP_RND_BITS
186	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
187	select HAVE_ARCH_PREL32_RELOCATIONS
188	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
189	select HAVE_ARCH_SECCOMP_FILTER
190	select HAVE_ARCH_STACKLEAK
191	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
192	select HAVE_ARCH_TRACEHOOK
193	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
194	select HAVE_ARCH_VMAP_STACK
195	select HAVE_ARM_SMCCC
196	select HAVE_ASM_MODVERSIONS
197	select HAVE_EBPF_JIT
198	select HAVE_C_RECORDMCOUNT
199	select HAVE_CMPXCHG_DOUBLE
200	select HAVE_CMPXCHG_LOCAL
201	select HAVE_CONTEXT_TRACKING_USER
202	select HAVE_DEBUG_KMEMLEAK
203	select HAVE_DMA_CONTIGUOUS
204	select HAVE_DYNAMIC_FTRACE
205	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
206		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
207		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
208	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
209		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
210	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
211		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
212		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
213	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
214		if DYNAMIC_FTRACE_WITH_ARGS
215	select HAVE_SAMPLE_FTRACE_DIRECT
216	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
217	select HAVE_EFFICIENT_UNALIGNED_ACCESS
218	select HAVE_GUP_FAST
219	select HAVE_FTRACE_MCOUNT_RECORD
220	select HAVE_FUNCTION_TRACER
221	select HAVE_FUNCTION_ERROR_INJECTION
222	select HAVE_FUNCTION_GRAPH_TRACER
223	select HAVE_FUNCTION_GRAPH_RETVAL
224	select HAVE_GCC_PLUGINS
225	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
226		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
227	select HAVE_HW_BREAKPOINT if PERF_EVENTS
228	select HAVE_IOREMAP_PROT
229	select HAVE_IRQ_TIME_ACCOUNTING
230	select HAVE_MOD_ARCH_SPECIFIC
231	select HAVE_NMI
232	select HAVE_PERF_EVENTS
233	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
234	select HAVE_PERF_REGS
235	select HAVE_PERF_USER_STACK_DUMP
236	select HAVE_PREEMPT_DYNAMIC_KEY
237	select HAVE_REGS_AND_STACK_ACCESS_API
238	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
239	select HAVE_FUNCTION_ARG_ACCESS_API
240	select MMU_GATHER_RCU_TABLE_FREE
241	select HAVE_RSEQ
242	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
243	select HAVE_STACKPROTECTOR
244	select HAVE_SYSCALL_TRACEPOINTS
245	select HAVE_KPROBES
246	select HAVE_KRETPROBES
247	select HAVE_GENERIC_VDSO
248	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
249	select IRQ_DOMAIN
250	select IRQ_FORCED_THREADING
251	select KASAN_VMALLOC if KASAN
252	select LOCK_MM_AND_FIND_VMA
253	select MODULES_USE_ELF_RELA
254	select NEED_DMA_MAP_STATE
255	select NEED_SG_DMA_LENGTH
256	select OF
257	select OF_EARLY_FLATTREE
258	select PCI_DOMAINS_GENERIC if PCI
259	select PCI_ECAM if (ACPI && PCI)
260	select PCI_SYSCALL if PCI
261	select POWER_RESET
262	select POWER_SUPPLY
263	select SPARSE_IRQ
264	select SWIOTLB
265	select SYSCTL_EXCEPTION_TRACE
266	select THREAD_INFO_IN_TASK
267	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
268	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
269	select TRACE_IRQFLAGS_SUPPORT
270	select TRACE_IRQFLAGS_NMI_SUPPORT
271	select HAVE_SOFTIRQ_ON_OWN_STACK
272	select USER_STACKTRACE_SUPPORT
273	select VDSO_GETRANDOM
274	help
275	  ARM 64-bit (AArch64) Linux support.
276
277config RUSTC_SUPPORTS_ARM64
278	def_bool y
279	depends on CPU_LITTLE_ENDIAN
280	# Shadow call stack is only supported on certain rustc versions.
281	#
282	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
283	# required due to use of the -Zfixed-x18 flag.
284	#
285	# Otherwise, rustc version 1.82+ is required due to use of the
286	# -Zsanitizer=shadow-call-stack flag.
287	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
288
289config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
290	def_bool CC_IS_CLANG
291	# https://github.com/ClangBuiltLinux/linux/issues/1507
292	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
293
294config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
295	def_bool CC_IS_GCC
296	depends on $(cc-option,-fpatchable-function-entry=2)
297
298config 64BIT
299	def_bool y
300
301config MMU
302	def_bool y
303
304config ARM64_CONT_PTE_SHIFT
305	int
306	default 5 if PAGE_SIZE_64KB
307	default 7 if PAGE_SIZE_16KB
308	default 4
309
310config ARM64_CONT_PMD_SHIFT
311	int
312	default 5 if PAGE_SIZE_64KB
313	default 5 if PAGE_SIZE_16KB
314	default 4
315
316config ARCH_MMAP_RND_BITS_MIN
317	default 14 if PAGE_SIZE_64KB
318	default 16 if PAGE_SIZE_16KB
319	default 18
320
321# max bits determined by the following formula:
322#  VA_BITS - PAGE_SHIFT - 3
323config ARCH_MMAP_RND_BITS_MAX
324	default 19 if ARM64_VA_BITS=36
325	default 24 if ARM64_VA_BITS=39
326	default 27 if ARM64_VA_BITS=42
327	default 30 if ARM64_VA_BITS=47
328	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
329	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
330	default 33 if ARM64_VA_BITS=48
331	default 14 if ARM64_64K_PAGES
332	default 16 if ARM64_16K_PAGES
333	default 18
334
335config ARCH_MMAP_RND_COMPAT_BITS_MIN
336	default 7 if ARM64_64K_PAGES
337	default 9 if ARM64_16K_PAGES
338	default 11
339
340config ARCH_MMAP_RND_COMPAT_BITS_MAX
341	default 16
342
343config NO_IOPORT_MAP
344	def_bool y if !PCI
345
346config STACKTRACE_SUPPORT
347	def_bool y
348
349config ILLEGAL_POINTER_VALUE
350	hex
351	default 0xdead000000000000
352
353config LOCKDEP_SUPPORT
354	def_bool y
355
356config GENERIC_BUG
357	def_bool y
358	depends on BUG
359
360config GENERIC_BUG_RELATIVE_POINTERS
361	def_bool y
362	depends on GENERIC_BUG
363
364config GENERIC_HWEIGHT
365	def_bool y
366
367config GENERIC_CSUM
368	def_bool y
369
370config GENERIC_CALIBRATE_DELAY
371	def_bool y
372
373config SMP
374	def_bool y
375
376config KERNEL_MODE_NEON
377	def_bool y
378
379config FIX_EARLYCON_MEM
380	def_bool y
381
382config PGTABLE_LEVELS
383	int
384	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
385	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
386	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
387	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
388	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
389	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
390	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
391	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
392
393config ARCH_SUPPORTS_UPROBES
394	def_bool y
395
396config ARCH_PROC_KCORE_TEXT
397	def_bool y
398
399config BROKEN_GAS_INST
400	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
401
402config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
403	bool
404	# Clang's __builtin_return_address() strips the PAC since 12.0.0
405	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
406	default y if CC_IS_CLANG
407	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
408	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
409	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
410	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
411	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
412	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
413	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
414	default n
415
416config KASAN_SHADOW_OFFSET
417	hex
418	depends on KASAN_GENERIC || KASAN_SW_TAGS
419	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
420	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
421	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
422	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
423	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
424	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
425	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
426	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
427	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
428	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
429	default 0xffffffffffffffff
430
431config UNWIND_TABLES
432	bool
433
434source "arch/arm64/Kconfig.platforms"
435
436menu "Kernel Features"
437
438menu "ARM errata workarounds via the alternatives framework"
439
440config AMPERE_ERRATUM_AC03_CPU_38
441        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
442	default y
443	help
444	  This option adds an alternative code sequence to work around Ampere
445	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
446
447	  The affected design reports FEAT_HAFDBS as not implemented in
448	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
449	  as required by the architecture. The unadvertised HAFDBS
450	  implementation suffers from an additional erratum where hardware
451	  A/D updates can occur after a PTE has been marked invalid.
452
453	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
454	  which avoids enabling unadvertised hardware Access Flag management
455	  at stage-2.
456
457	  If unsure, say Y.
458
459config ARM64_WORKAROUND_CLEAN_CACHE
460	bool
461
462config ARM64_ERRATUM_826319
463	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
464	default y
465	select ARM64_WORKAROUND_CLEAN_CACHE
466	help
467	  This option adds an alternative code sequence to work around ARM
468	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
469	  AXI master interface and an L2 cache.
470
471	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
472	  and is unable to accept a certain write via this interface, it will
473	  not progress on read data presented on the read data channel and the
474	  system can deadlock.
475
476	  The workaround promotes data cache clean instructions to
477	  data cache clean-and-invalidate.
478	  Please note that this does not necessarily enable the workaround,
479	  as it depends on the alternative framework, which will only patch
480	  the kernel if an affected CPU is detected.
481
482	  If unsure, say Y.
483
484config ARM64_ERRATUM_827319
485	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
486	default y
487	select ARM64_WORKAROUND_CLEAN_CACHE
488	help
489	  This option adds an alternative code sequence to work around ARM
490	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
491	  master interface and an L2 cache.
492
493	  Under certain conditions this erratum can cause a clean line eviction
494	  to occur at the same time as another transaction to the same address
495	  on the AMBA 5 CHI interface, which can cause data corruption if the
496	  interconnect reorders the two transactions.
497
498	  The workaround promotes data cache clean instructions to
499	  data cache clean-and-invalidate.
500	  Please note that this does not necessarily enable the workaround,
501	  as it depends on the alternative framework, which will only patch
502	  the kernel if an affected CPU is detected.
503
504	  If unsure, say Y.
505
506config ARM64_ERRATUM_824069
507	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
508	default y
509	select ARM64_WORKAROUND_CLEAN_CACHE
510	help
511	  This option adds an alternative code sequence to work around ARM
512	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
513	  to a coherent interconnect.
514
515	  If a Cortex-A53 processor is executing a store or prefetch for
516	  write instruction at the same time as a processor in another
517	  cluster is executing a cache maintenance operation to the same
518	  address, then this erratum might cause a clean cache line to be
519	  incorrectly marked as dirty.
520
521	  The workaround promotes data cache clean instructions to
522	  data cache clean-and-invalidate.
523	  Please note that this option does not necessarily enable the
524	  workaround, as it depends on the alternative framework, which will
525	  only patch the kernel if an affected CPU is detected.
526
527	  If unsure, say Y.
528
529config ARM64_ERRATUM_819472
530	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
531	default y
532	select ARM64_WORKAROUND_CLEAN_CACHE
533	help
534	  This option adds an alternative code sequence to work around ARM
535	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
536	  present when it is connected to a coherent interconnect.
537
538	  If the processor is executing a load and store exclusive sequence at
539	  the same time as a processor in another cluster is executing a cache
540	  maintenance operation to the same address, then this erratum might
541	  cause data corruption.
542
543	  The workaround promotes data cache clean instructions to
544	  data cache clean-and-invalidate.
545	  Please note that this does not necessarily enable the workaround,
546	  as it depends on the alternative framework, which will only patch
547	  the kernel if an affected CPU is detected.
548
549	  If unsure, say Y.
550
551config ARM64_ERRATUM_832075
552	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
553	default y
554	help
555	  This option adds an alternative code sequence to work around ARM
556	  erratum 832075 on Cortex-A57 parts up to r1p2.
557
558	  Affected Cortex-A57 parts might deadlock when exclusive load/store
559	  instructions to Write-Back memory are mixed with Device loads.
560
561	  The workaround is to promote device loads to use Load-Acquire
562	  semantics.
563	  Please note that this does not necessarily enable the workaround,
564	  as it depends on the alternative framework, which will only patch
565	  the kernel if an affected CPU is detected.
566
567	  If unsure, say Y.
568
569config ARM64_ERRATUM_834220
570	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
571	depends on KVM
572	help
573	  This option adds an alternative code sequence to work around ARM
574	  erratum 834220 on Cortex-A57 parts up to r1p2.
575
576	  Affected Cortex-A57 parts might report a Stage 2 translation
577	  fault as the result of a Stage 1 fault for load crossing a
578	  page boundary when there is a permission or device memory
579	  alignment fault at Stage 1 and a translation fault at Stage 2.
580
581	  The workaround is to verify that the Stage 1 translation
582	  doesn't generate a fault before handling the Stage 2 fault.
583	  Please note that this does not necessarily enable the workaround,
584	  as it depends on the alternative framework, which will only patch
585	  the kernel if an affected CPU is detected.
586
587	  If unsure, say N.
588
589config ARM64_ERRATUM_1742098
590	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
591	depends on COMPAT
592	default y
593	help
594	  This option removes the AES hwcap for aarch32 user-space to
595	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
596
597	  Affected parts may corrupt the AES state if an interrupt is
598	  taken between a pair of AES instructions. These instructions
599	  are only present if the cryptography extensions are present.
600	  All software should have a fallback implementation for CPUs
601	  that don't implement the cryptography extensions.
602
603	  If unsure, say Y.
604
605config ARM64_ERRATUM_845719
606	bool "Cortex-A53: 845719: a load might read incorrect data"
607	depends on COMPAT
608	default y
609	help
610	  This option adds an alternative code sequence to work around ARM
611	  erratum 845719 on Cortex-A53 parts up to r0p4.
612
613	  When running a compat (AArch32) userspace on an affected Cortex-A53
614	  part, a load at EL0 from a virtual address that matches the bottom 32
615	  bits of the virtual address used by a recent load at (AArch64) EL1
616	  might return incorrect data.
617
618	  The workaround is to write the contextidr_el1 register on exception
619	  return to a 32-bit task.
620	  Please note that this does not necessarily enable the workaround,
621	  as it depends on the alternative framework, which will only patch
622	  the kernel if an affected CPU is detected.
623
624	  If unsure, say Y.
625
626config ARM64_ERRATUM_843419
627	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
628	default y
629	help
630	  This option links the kernel with '--fix-cortex-a53-843419' and
631	  enables PLT support to replace certain ADRP instructions, which can
632	  cause subsequent memory accesses to use an incorrect address on
633	  Cortex-A53 parts up to r0p4.
634
635	  If unsure, say Y.
636
637config ARM64_LD_HAS_FIX_ERRATUM_843419
638	def_bool $(ld-option,--fix-cortex-a53-843419)
639
640config ARM64_ERRATUM_1024718
641	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
642	default y
643	help
644	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
645
646	  Affected Cortex-A55 cores (all revisions) could cause incorrect
647	  update of the hardware dirty bit when the DBM/AP bits are updated
648	  without a break-before-make. The workaround is to disable the usage
649	  of hardware DBM locally on the affected cores. CPUs not affected by
650	  this erratum will continue to use the feature.
651
652	  If unsure, say Y.
653
654config ARM64_ERRATUM_1418040
655	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
656	default y
657	depends on COMPAT
658	help
659	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
660	  errata 1188873 and 1418040.
661
662	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
663	  cause register corruption when accessing the timer registers
664	  from AArch32 userspace.
665
666	  If unsure, say Y.
667
668config ARM64_WORKAROUND_SPECULATIVE_AT
669	bool
670
671config ARM64_ERRATUM_1165522
672	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
673	default y
674	select ARM64_WORKAROUND_SPECULATIVE_AT
675	help
676	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
677
678	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
679	  corrupted TLBs by speculating an AT instruction during a guest
680	  context switch.
681
682	  If unsure, say Y.
683
684config ARM64_ERRATUM_1319367
685	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
686	default y
687	select ARM64_WORKAROUND_SPECULATIVE_AT
688	help
689	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
690	  and A72 erratum 1319367
691
692	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
693	  speculating an AT instruction during a guest context switch.
694
695	  If unsure, say Y.
696
697config ARM64_ERRATUM_1530923
698	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
699	default y
700	select ARM64_WORKAROUND_SPECULATIVE_AT
701	help
702	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
703
704	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
705	  corrupted TLBs by speculating an AT instruction during a guest
706	  context switch.
707
708	  If unsure, say Y.
709
710config ARM64_WORKAROUND_REPEAT_TLBI
711	bool
712
713config ARM64_ERRATUM_2441007
714	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
715	select ARM64_WORKAROUND_REPEAT_TLBI
716	help
717	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
718
719	  Under very rare circumstances, affected Cortex-A55 CPUs
720	  may not handle a race between a break-before-make sequence on one
721	  CPU, and another CPU accessing the same page. This could allow a
722	  store to a page that has been unmapped.
723
724	  Work around this by adding the affected CPUs to the list that needs
725	  TLB sequences to be done twice.
726
727	  If unsure, say N.
728
729config ARM64_ERRATUM_1286807
730	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
731	select ARM64_WORKAROUND_REPEAT_TLBI
732	help
733	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
734
735	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
736	  address for a cacheable mapping of a location is being
737	  accessed by a core while another core is remapping the virtual
738	  address to a new physical page using the recommended
739	  break-before-make sequence, then under very rare circumstances
740	  TLBI+DSB completes before a read using the translation being
741	  invalidated has been observed by other observers. The
742	  workaround repeats the TLBI+DSB operation.
743
744	  If unsure, say N.
745
746config ARM64_ERRATUM_1463225
747	bool "Cortex-A76: Software Step might prevent interrupt recognition"
748	default y
749	help
750	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
751
752	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
753	  of a system call instruction (SVC) can prevent recognition of
754	  subsequent interrupts when software stepping is disabled in the
755	  exception handler of the system call and either kernel debugging
756	  is enabled or VHE is in use.
757
758	  Work around the erratum by triggering a dummy step exception
759	  when handling a system call from a task that is being stepped
760	  in a VHE configuration of the kernel.
761
762	  If unsure, say Y.
763
764config ARM64_ERRATUM_1542419
765	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
766	help
767	  This option adds a workaround for ARM Neoverse-N1 erratum
768	  1542419.
769
770	  Affected Neoverse-N1 cores could execute a stale instruction when
771	  modified by another CPU. The workaround depends on a firmware
772	  counterpart.
773
774	  Workaround the issue by hiding the DIC feature from EL0. This
775	  forces user-space to perform cache maintenance.
776
777	  If unsure, say N.
778
779config ARM64_ERRATUM_1508412
780	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
781	default y
782	help
783	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
784
785	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
786	  of a store-exclusive or read of PAR_EL1 and a load with device or
787	  non-cacheable memory attributes. The workaround depends on a firmware
788	  counterpart.
789
790	  KVM guests must also have the workaround implemented or they can
791	  deadlock the system.
792
793	  Work around the issue by inserting DMB SY barriers around PAR_EL1
794	  register reads and warning KVM users. The DMB barrier is sufficient
795	  to prevent a speculative PAR_EL1 read.
796
797	  If unsure, say Y.
798
799config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
800	bool
801
802config ARM64_ERRATUM_2051678
803	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
804	default y
805	help
806	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
807	  Affected Cortex-A510 might not respect the ordering rules for
808	  hardware update of the page table's dirty bit. The workaround
809	  is to not enable the feature on affected CPUs.
810
811	  If unsure, say Y.
812
813config ARM64_ERRATUM_2077057
814	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
815	default y
816	help
817	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
818	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
819	  expected, but a Pointer Authentication trap is taken instead. The
820	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
821	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
822
823	  This can only happen when EL2 is stepping EL1.
824
825	  When these conditions occur, the SPSR_EL2 value is unchanged from the
826	  previous guest entry, and can be restored from the in-memory copy.
827
828	  If unsure, say Y.
829
830config ARM64_ERRATUM_2658417
831	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
832	default y
833	help
834	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
835	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
836	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
837	  A510 CPUs are using shared neon hardware. As the sharing is not
838	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
839	  user-space should not be using these instructions.
840
841	  If unsure, say Y.
842
843config ARM64_ERRATUM_2119858
844	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
845	default y
846	depends on CORESIGHT_TRBE
847	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
848	help
849	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
850
851	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
852	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
853	  the event of a WRAP event.
854
855	  Work around the issue by always making sure we move the TRBPTR_EL1 by
856	  256 bytes before enabling the buffer and filling the first 256 bytes of
857	  the buffer with ETM ignore packets upon disabling.
858
859	  If unsure, say Y.
860
861config ARM64_ERRATUM_2139208
862	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
863	default y
864	depends on CORESIGHT_TRBE
865	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
866	help
867	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
868
869	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
870	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
871	  the event of a WRAP event.
872
873	  Work around the issue by always making sure we move the TRBPTR_EL1 by
874	  256 bytes before enabling the buffer and filling the first 256 bytes of
875	  the buffer with ETM ignore packets upon disabling.
876
877	  If unsure, say Y.
878
879config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
880	bool
881
882config ARM64_ERRATUM_2054223
883	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
884	default y
885	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
886	help
887	  Enable workaround for ARM Cortex-A710 erratum 2054223
888
889	  Affected cores may fail to flush the trace data on a TSB instruction, when
890	  the PE is in trace prohibited state. This will cause losing a few bytes
891	  of the trace cached.
892
893	  Workaround is to issue two TSB consecutively on affected cores.
894
895	  If unsure, say Y.
896
897config ARM64_ERRATUM_2067961
898	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
899	default y
900	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
901	help
902	  Enable workaround for ARM Neoverse-N2 erratum 2067961
903
904	  Affected cores may fail to flush the trace data on a TSB instruction, when
905	  the PE is in trace prohibited state. This will cause losing a few bytes
906	  of the trace cached.
907
908	  Workaround is to issue two TSB consecutively on affected cores.
909
910	  If unsure, say Y.
911
912config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
913	bool
914
915config ARM64_ERRATUM_2253138
916	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
917	depends on CORESIGHT_TRBE
918	default y
919	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
920	help
921	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
922
923	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
924	  for TRBE. Under some conditions, the TRBE might generate a write to the next
925	  virtually addressed page following the last page of the TRBE address space
926	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
927
928	  Work around this in the driver by always making sure that there is a
929	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
930
931	  If unsure, say Y.
932
933config ARM64_ERRATUM_2224489
934	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
935	depends on CORESIGHT_TRBE
936	default y
937	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
938	help
939	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
940
941	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
942	  for TRBE. Under some conditions, the TRBE might generate a write to the next
943	  virtually addressed page following the last page of the TRBE address space
944	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
945
946	  Work around this in the driver by always making sure that there is a
947	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
948
949	  If unsure, say Y.
950
951config ARM64_ERRATUM_2441009
952	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
953	select ARM64_WORKAROUND_REPEAT_TLBI
954	help
955	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
956
957	  Under very rare circumstances, affected Cortex-A510 CPUs
958	  may not handle a race between a break-before-make sequence on one
959	  CPU, and another CPU accessing the same page. This could allow a
960	  store to a page that has been unmapped.
961
962	  Work around this by adding the affected CPUs to the list that needs
963	  TLB sequences to be done twice.
964
965	  If unsure, say N.
966
967config ARM64_ERRATUM_2064142
968	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
969	depends on CORESIGHT_TRBE
970	default y
971	help
972	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
973
974	  Affected Cortex-A510 core might fail to write into system registers after the
975	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
976	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
977	  and TRBTRG_EL1 will be ignored and will not be effected.
978
979	  Work around this in the driver by executing TSB CSYNC and DSB after collection
980	  is stopped and before performing a system register write to one of the affected
981	  registers.
982
983	  If unsure, say Y.
984
985config ARM64_ERRATUM_2038923
986	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
987	depends on CORESIGHT_TRBE
988	default y
989	help
990	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
991
992	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
993	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
994	  might be corrupted. This happens after TRBE buffer has been enabled by setting
995	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
996	  execution changes from a context, in which trace is prohibited to one where it
997	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
998	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
999	  the trace buffer state might be corrupted.
1000
1001	  Work around this in the driver by preventing an inconsistent view of whether the
1002	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1003	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1004	  two ISB instructions if no ERET is to take place.
1005
1006	  If unsure, say Y.
1007
1008config ARM64_ERRATUM_1902691
1009	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1010	depends on CORESIGHT_TRBE
1011	default y
1012	help
1013	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1014
1015	  Affected Cortex-A510 core might cause trace data corruption, when being written
1016	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1017	  trace data.
1018
1019	  Work around this problem in the driver by just preventing TRBE initialization on
1020	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1021	  on such implementations. This will cover the kernel for any firmware that doesn't
1022	  do this already.
1023
1024	  If unsure, say Y.
1025
1026config ARM64_ERRATUM_2457168
1027	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1028	depends on ARM64_AMU_EXTN
1029	default y
1030	help
1031	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1032
1033	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1034	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1035	  incorrectly giving a significantly higher output value.
1036
1037	  Work around this problem by returning 0 when reading the affected counter in
1038	  key locations that results in disabling all users of this counter. This effect
1039	  is the same to firmware disabling affected counters.
1040
1041	  If unsure, say Y.
1042
1043config ARM64_ERRATUM_2645198
1044	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1045	default y
1046	help
1047	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1048
1049	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1050	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1051	  next instruction abort caused by permission fault.
1052
1053	  Only user-space does executable to non-executable permission transition via
1054	  mprotect() system call. Workaround the problem by doing a break-before-make
1055	  TLB invalidation, for all changes to executable user space mappings.
1056
1057	  If unsure, say Y.
1058
1059config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1060	bool
1061
1062config ARM64_ERRATUM_2966298
1063	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1064	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1065	default y
1066	help
1067	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1068
1069	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1070	  load might leak data from a privileged level via a cache side channel.
1071
1072	  Work around this problem by executing a TLBI before returning to EL0.
1073
1074	  If unsure, say Y.
1075
1076config ARM64_ERRATUM_3117295
1077	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1078	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1079	default y
1080	help
1081	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1082
1083	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1084	  load might leak data from a privileged level via a cache side channel.
1085
1086	  Work around this problem by executing a TLBI before returning to EL0.
1087
1088	  If unsure, say Y.
1089
1090config ARM64_ERRATUM_3194386
1091	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1092	default y
1093	help
1094	  This option adds the workaround for the following errata:
1095
1096	  * ARM Cortex-A76 erratum 3324349
1097	  * ARM Cortex-A77 erratum 3324348
1098	  * ARM Cortex-A78 erratum 3324344
1099	  * ARM Cortex-A78C erratum 3324346
1100	  * ARM Cortex-A78C erratum 3324347
1101	  * ARM Cortex-A710 erratam 3324338
1102	  * ARM Cortex-A715 errartum 3456084
1103	  * ARM Cortex-A720 erratum 3456091
1104	  * ARM Cortex-A725 erratum 3456106
1105	  * ARM Cortex-X1 erratum 3324344
1106	  * ARM Cortex-X1C erratum 3324346
1107	  * ARM Cortex-X2 erratum 3324338
1108	  * ARM Cortex-X3 erratum 3324335
1109	  * ARM Cortex-X4 erratum 3194386
1110	  * ARM Cortex-X925 erratum 3324334
1111	  * ARM Neoverse-N1 erratum 3324349
1112	  * ARM Neoverse N2 erratum 3324339
1113	  * ARM Neoverse-N3 erratum 3456111
1114	  * ARM Neoverse-V1 erratum 3324341
1115	  * ARM Neoverse V2 erratum 3324336
1116	  * ARM Neoverse-V3 erratum 3312417
1117
1118	  On affected cores "MSR SSBS, #0" instructions may not affect
1119	  subsequent speculative instructions, which may permit unexepected
1120	  speculative store bypassing.
1121
1122	  Work around this problem by placing a Speculation Barrier (SB) or
1123	  Instruction Synchronization Barrier (ISB) after kernel changes to
1124	  SSBS. The presence of the SSBS special-purpose register is hidden
1125	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1126	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1127
1128	  If unsure, say Y.
1129
1130config CAVIUM_ERRATUM_22375
1131	bool "Cavium erratum 22375, 24313"
1132	default y
1133	help
1134	  Enable workaround for errata 22375 and 24313.
1135
1136	  This implements two gicv3-its errata workarounds for ThunderX. Both
1137	  with a small impact affecting only ITS table allocation.
1138
1139	    erratum 22375: only alloc 8MB table size
1140	    erratum 24313: ignore memory access type
1141
1142	  The fixes are in ITS initialization and basically ignore memory access
1143	  type and table size provided by the TYPER and BASER registers.
1144
1145	  If unsure, say Y.
1146
1147config CAVIUM_ERRATUM_23144
1148	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1149	depends on NUMA
1150	default y
1151	help
1152	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1153
1154	  If unsure, say Y.
1155
1156config CAVIUM_ERRATUM_23154
1157	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1158	default y
1159	help
1160	  The ThunderX GICv3 implementation requires a modified version for
1161	  reading the IAR status to ensure data synchronization
1162	  (access to icc_iar1_el1 is not sync'ed before and after).
1163
1164	  It also suffers from erratum 38545 (also present on Marvell's
1165	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1166	  spuriously presented to the CPU interface.
1167
1168	  If unsure, say Y.
1169
1170config CAVIUM_ERRATUM_27456
1171	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1172	default y
1173	help
1174	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1175	  instructions may cause the icache to become corrupted if it
1176	  contains data for a non-current ASID.  The fix is to
1177	  invalidate the icache when changing the mm context.
1178
1179	  If unsure, say Y.
1180
1181config CAVIUM_ERRATUM_30115
1182	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1183	default y
1184	help
1185	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1186	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1187	  interrupts in host. Trapping both GICv3 group-0 and group-1
1188	  accesses sidesteps the issue.
1189
1190	  If unsure, say Y.
1191
1192config CAVIUM_TX2_ERRATUM_219
1193	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1194	default y
1195	help
1196	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1197	  TTBR update and the corresponding context synchronizing operation can
1198	  cause a spurious Data Abort to be delivered to any hardware thread in
1199	  the CPU core.
1200
1201	  Work around the issue by avoiding the problematic code sequence and
1202	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1203	  trap handler performs the corresponding register access, skips the
1204	  instruction and ensures context synchronization by virtue of the
1205	  exception return.
1206
1207	  If unsure, say Y.
1208
1209config FUJITSU_ERRATUM_010001
1210	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1211	default y
1212	help
1213	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1214	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1215	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1216	  This fault occurs under a specific hardware condition when a
1217	  load/store instruction performs an address translation using:
1218	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1219	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1220	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1221	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1222
1223	  The workaround is to ensure these bits are clear in TCR_ELx.
1224	  The workaround only affects the Fujitsu-A64FX.
1225
1226	  If unsure, say Y.
1227
1228config HISILICON_ERRATUM_161600802
1229	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1230	default y
1231	help
1232	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1233	  when issued ITS commands such as VMOVP and VMAPP, and requires
1234	  a 128kB offset to be applied to the target address in this commands.
1235
1236	  If unsure, say Y.
1237
1238config QCOM_FALKOR_ERRATUM_1003
1239	bool "Falkor E1003: Incorrect translation due to ASID change"
1240	default y
1241	help
1242	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1243	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1244	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1245	  then only for entries in the walk cache, since the leaf translation
1246	  is unchanged. Work around the erratum by invalidating the walk cache
1247	  entries for the trampoline before entering the kernel proper.
1248
1249config QCOM_FALKOR_ERRATUM_1009
1250	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1251	default y
1252	select ARM64_WORKAROUND_REPEAT_TLBI
1253	help
1254	  On Falkor v1, the CPU may prematurely complete a DSB following a
1255	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1256	  one more time to fix the issue.
1257
1258	  If unsure, say Y.
1259
1260config QCOM_QDF2400_ERRATUM_0065
1261	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1262	default y
1263	help
1264	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1265	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1266	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1267
1268	  If unsure, say Y.
1269
1270config QCOM_FALKOR_ERRATUM_E1041
1271	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1272	default y
1273	help
1274	  Falkor CPU may speculatively fetch instructions from an improper
1275	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1276	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1277
1278	  If unsure, say Y.
1279
1280config NVIDIA_CARMEL_CNP_ERRATUM
1281	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1282	default y
1283	help
1284	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1285	  invalidate shared TLB entries installed by a different core, as it would
1286	  on standard ARM cores.
1287
1288	  If unsure, say Y.
1289
1290config ROCKCHIP_ERRATUM_3588001
1291	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1292	default y
1293	help
1294	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1295	  This means, that its sharability feature may not be used, even though it
1296	  is supported by the IP itself.
1297
1298	  If unsure, say Y.
1299
1300config SOCIONEXT_SYNQUACER_PREITS
1301	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1302	default y
1303	help
1304	  Socionext Synquacer SoCs implement a separate h/w block to generate
1305	  MSI doorbell writes with non-zero values for the device ID.
1306
1307	  If unsure, say Y.
1308
1309endmenu # "ARM errata workarounds via the alternatives framework"
1310
1311choice
1312	prompt "Page size"
1313	default ARM64_4K_PAGES
1314	help
1315	  Page size (translation granule) configuration.
1316
1317config ARM64_4K_PAGES
1318	bool "4KB"
1319	select HAVE_PAGE_SIZE_4KB
1320	help
1321	  This feature enables 4KB pages support.
1322
1323config ARM64_16K_PAGES
1324	bool "16KB"
1325	select HAVE_PAGE_SIZE_16KB
1326	help
1327	  The system will use 16KB pages support. AArch32 emulation
1328	  requires applications compiled with 16K (or a multiple of 16K)
1329	  aligned segments.
1330
1331config ARM64_64K_PAGES
1332	bool "64KB"
1333	select HAVE_PAGE_SIZE_64KB
1334	help
1335	  This feature enables 64KB pages support (4KB by default)
1336	  allowing only two levels of page tables and faster TLB
1337	  look-up. AArch32 emulation requires applications compiled
1338	  with 64K aligned segments.
1339
1340endchoice
1341
1342choice
1343	prompt "Virtual address space size"
1344	default ARM64_VA_BITS_52
1345	help
1346	  Allows choosing one of multiple possible virtual address
1347	  space sizes. The level of translation table is determined by
1348	  a combination of page size and virtual address space size.
1349
1350config ARM64_VA_BITS_36
1351	bool "36-bit" if EXPERT
1352	depends on PAGE_SIZE_16KB
1353
1354config ARM64_VA_BITS_39
1355	bool "39-bit"
1356	depends on PAGE_SIZE_4KB
1357
1358config ARM64_VA_BITS_42
1359	bool "42-bit"
1360	depends on PAGE_SIZE_64KB
1361
1362config ARM64_VA_BITS_47
1363	bool "47-bit"
1364	depends on PAGE_SIZE_16KB
1365
1366config ARM64_VA_BITS_48
1367	bool "48-bit"
1368
1369config ARM64_VA_BITS_52
1370	bool "52-bit"
1371	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1372	help
1373	  Enable 52-bit virtual addressing for userspace when explicitly
1374	  requested via a hint to mmap(). The kernel will also use 52-bit
1375	  virtual addresses for its own mappings (provided HW support for
1376	  this feature is available, otherwise it reverts to 48-bit).
1377
1378	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1379	  ARMv8.3 Pointer Authentication will result in the PAC being
1380	  reduced from 7 bits to 3 bits, which may have a significant
1381	  impact on its susceptibility to brute-force attacks.
1382
1383	  If unsure, select 48-bit virtual addressing instead.
1384
1385endchoice
1386
1387config ARM64_FORCE_52BIT
1388	bool "Force 52-bit virtual addresses for userspace"
1389	depends on ARM64_VA_BITS_52 && EXPERT
1390	help
1391	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1392	  to maintain compatibility with older software by providing 48-bit VAs
1393	  unless a hint is supplied to mmap.
1394
1395	  This configuration option disables the 48-bit compatibility logic, and
1396	  forces all userspace addresses to be 52-bit on HW that supports it. One
1397	  should only enable this configuration option for stress testing userspace
1398	  memory management code. If unsure say N here.
1399
1400config ARM64_VA_BITS
1401	int
1402	default 36 if ARM64_VA_BITS_36
1403	default 39 if ARM64_VA_BITS_39
1404	default 42 if ARM64_VA_BITS_42
1405	default 47 if ARM64_VA_BITS_47
1406	default 48 if ARM64_VA_BITS_48
1407	default 52 if ARM64_VA_BITS_52
1408
1409choice
1410	prompt "Physical address space size"
1411	default ARM64_PA_BITS_48
1412	help
1413	  Choose the maximum physical address range that the kernel will
1414	  support.
1415
1416config ARM64_PA_BITS_48
1417	bool "48-bit"
1418	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1419
1420config ARM64_PA_BITS_52
1421	bool "52-bit"
1422	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1423	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1424	help
1425	  Enable support for a 52-bit physical address space, introduced as
1426	  part of the ARMv8.2-LPA extension.
1427
1428	  With this enabled, the kernel will also continue to work on CPUs that
1429	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1430	  minor performance overhead).
1431
1432endchoice
1433
1434config ARM64_PA_BITS
1435	int
1436	default 48 if ARM64_PA_BITS_48
1437	default 52 if ARM64_PA_BITS_52
1438
1439config ARM64_LPA2
1440	def_bool y
1441	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1442
1443choice
1444	prompt "Endianness"
1445	default CPU_LITTLE_ENDIAN
1446	help
1447	  Select the endianness of data accesses performed by the CPU. Userspace
1448	  applications will need to be compiled and linked for the endianness
1449	  that is selected here.
1450
1451config CPU_BIG_ENDIAN
1452	bool "Build big-endian kernel"
1453	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1454	depends on AS_IS_GNU || AS_VERSION >= 150000
1455	help
1456	  Say Y if you plan on running a kernel with a big-endian userspace.
1457
1458config CPU_LITTLE_ENDIAN
1459	bool "Build little-endian kernel"
1460	help
1461	  Say Y if you plan on running a kernel with a little-endian userspace.
1462	  This is usually the case for distributions targeting arm64.
1463
1464endchoice
1465
1466config SCHED_MC
1467	bool "Multi-core scheduler support"
1468	help
1469	  Multi-core scheduler support improves the CPU scheduler's decision
1470	  making when dealing with multi-core CPU chips at a cost of slightly
1471	  increased overhead in some places. If unsure say N here.
1472
1473config SCHED_CLUSTER
1474	bool "Cluster scheduler support"
1475	help
1476	  Cluster scheduler support improves the CPU scheduler's decision
1477	  making when dealing with machines that have clusters of CPUs.
1478	  Cluster usually means a couple of CPUs which are placed closely
1479	  by sharing mid-level caches, last-level cache tags or internal
1480	  busses.
1481
1482config SCHED_SMT
1483	bool "SMT scheduler support"
1484	help
1485	  Improves the CPU scheduler's decision making when dealing with
1486	  MultiThreading at a cost of slightly increased overhead in some
1487	  places. If unsure say N here.
1488
1489config NR_CPUS
1490	int "Maximum number of CPUs (2-4096)"
1491	range 2 4096
1492	default "512"
1493
1494config HOTPLUG_CPU
1495	bool "Support for hot-pluggable CPUs"
1496	select GENERIC_IRQ_MIGRATION
1497	help
1498	  Say Y here to experiment with turning CPUs off and on.  CPUs
1499	  can be controlled through /sys/devices/system/cpu.
1500
1501# Common NUMA Features
1502config NUMA
1503	bool "NUMA Memory Allocation and Scheduler Support"
1504	select GENERIC_ARCH_NUMA
1505	select OF_NUMA
1506	select HAVE_SETUP_PER_CPU_AREA
1507	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1508	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1509	select USE_PERCPU_NUMA_NODE_ID
1510	help
1511	  Enable NUMA (Non-Uniform Memory Access) support.
1512
1513	  The kernel will try to allocate memory used by a CPU on the
1514	  local memory of the CPU and add some more
1515	  NUMA awareness to the kernel.
1516
1517config NODES_SHIFT
1518	int "Maximum NUMA Nodes (as a power of 2)"
1519	range 1 10
1520	default "4"
1521	depends on NUMA
1522	help
1523	  Specify the maximum number of NUMA Nodes available on the target
1524	  system.  Increases memory reserved to accommodate various tables.
1525
1526source "kernel/Kconfig.hz"
1527
1528config ARCH_SPARSEMEM_ENABLE
1529	def_bool y
1530	select SPARSEMEM_VMEMMAP_ENABLE
1531	select SPARSEMEM_VMEMMAP
1532
1533config HW_PERF_EVENTS
1534	def_bool y
1535	depends on ARM_PMU
1536
1537# Supported by clang >= 7.0 or GCC >= 12.0.0
1538config CC_HAVE_SHADOW_CALL_STACK
1539	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1540
1541config PARAVIRT
1542	bool "Enable paravirtualization code"
1543	help
1544	  This changes the kernel so it can modify itself when it is run
1545	  under a hypervisor, potentially improving performance significantly
1546	  over full virtualization.
1547
1548config PARAVIRT_TIME_ACCOUNTING
1549	bool "Paravirtual steal time accounting"
1550	select PARAVIRT
1551	help
1552	  Select this option to enable fine granularity task steal time
1553	  accounting. Time spent executing other tasks in parallel with
1554	  the current vCPU is discounted from the vCPU power. To account for
1555	  that, there can be a small performance impact.
1556
1557	  If in doubt, say N here.
1558
1559config ARCH_SUPPORTS_KEXEC
1560	def_bool PM_SLEEP_SMP
1561
1562config ARCH_SUPPORTS_KEXEC_FILE
1563	def_bool y
1564
1565config ARCH_SELECTS_KEXEC_FILE
1566	def_bool y
1567	depends on KEXEC_FILE
1568	select HAVE_IMA_KEXEC if IMA
1569
1570config ARCH_SUPPORTS_KEXEC_SIG
1571	def_bool y
1572
1573config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1574	def_bool y
1575
1576config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1577	def_bool y
1578
1579config ARCH_SUPPORTS_CRASH_DUMP
1580	def_bool y
1581
1582config ARCH_DEFAULT_CRASH_DUMP
1583	def_bool y
1584
1585config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1586	def_bool CRASH_RESERVE
1587
1588config TRANS_TABLE
1589	def_bool y
1590	depends on HIBERNATION || KEXEC_CORE
1591
1592config XEN_DOM0
1593	def_bool y
1594	depends on XEN
1595
1596config XEN
1597	bool "Xen guest support on ARM64"
1598	depends on ARM64 && OF
1599	select SWIOTLB_XEN
1600	select PARAVIRT
1601	help
1602	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1603
1604# include/linux/mmzone.h requires the following to be true:
1605#
1606#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1607#
1608# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1609#
1610#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1611# ----+-------------------+--------------+----------------------+-------------------------+
1612# 4K  |       27          |      12      |       15             |         10              |
1613# 16K |       27          |      14      |       13             |         11              |
1614# 64K |       29          |      16      |       13             |         13              |
1615config ARCH_FORCE_MAX_ORDER
1616	int
1617	default "13" if ARM64_64K_PAGES
1618	default "11" if ARM64_16K_PAGES
1619	default "10"
1620	help
1621	  The kernel page allocator limits the size of maximal physically
1622	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1623	  defines the maximal power of two of number of pages that can be
1624	  allocated as a single contiguous block. This option allows
1625	  overriding the default setting when ability to allocate very
1626	  large blocks of physically contiguous memory is required.
1627
1628	  The maximal size of allocation cannot exceed the size of the
1629	  section, so the value of MAX_PAGE_ORDER should satisfy
1630
1631	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1632
1633	  Don't change if unsure.
1634
1635config UNMAP_KERNEL_AT_EL0
1636	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1637	default y
1638	help
1639	  Speculation attacks against some high-performance processors can
1640	  be used to bypass MMU permission checks and leak kernel data to
1641	  userspace. This can be defended against by unmapping the kernel
1642	  when running in userspace, mapping it back in on exception entry
1643	  via a trampoline page in the vector table.
1644
1645	  If unsure, say Y.
1646
1647config MITIGATE_SPECTRE_BRANCH_HISTORY
1648	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1649	default y
1650	help
1651	  Speculation attacks against some high-performance processors can
1652	  make use of branch history to influence future speculation.
1653	  When taking an exception from user-space, a sequence of branches
1654	  or a firmware call overwrites the branch history.
1655
1656config RODATA_FULL_DEFAULT_ENABLED
1657	bool "Apply r/o permissions of VM areas also to their linear aliases"
1658	default y
1659	help
1660	  Apply read-only attributes of VM areas to the linear alias of
1661	  the backing pages as well. This prevents code or read-only data
1662	  from being modified (inadvertently or intentionally) via another
1663	  mapping of the same memory page. This additional enhancement can
1664	  be turned off at runtime by passing rodata=[off|on] (and turned on
1665	  with rodata=full if this option is set to 'n')
1666
1667	  This requires the linear region to be mapped down to pages,
1668	  which may adversely affect performance in some cases.
1669
1670config ARM64_SW_TTBR0_PAN
1671	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1672	depends on !KCSAN
1673	help
1674	  Enabling this option prevents the kernel from accessing
1675	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1676	  zeroed area and reserved ASID. The user access routines
1677	  restore the valid TTBR0_EL1 temporarily.
1678
1679config ARM64_TAGGED_ADDR_ABI
1680	bool "Enable the tagged user addresses syscall ABI"
1681	default y
1682	help
1683	  When this option is enabled, user applications can opt in to a
1684	  relaxed ABI via prctl() allowing tagged addresses to be passed
1685	  to system calls as pointer arguments. For details, see
1686	  Documentation/arch/arm64/tagged-address-abi.rst.
1687
1688menuconfig COMPAT
1689	bool "Kernel support for 32-bit EL0"
1690	depends on ARM64_4K_PAGES || EXPERT
1691	select HAVE_UID16
1692	select OLD_SIGSUSPEND3
1693	select COMPAT_OLD_SIGACTION
1694	help
1695	  This option enables support for a 32-bit EL0 running under a 64-bit
1696	  kernel at EL1. AArch32-specific components such as system calls,
1697	  the user helper functions, VFP support and the ptrace interface are
1698	  handled appropriately by the kernel.
1699
1700	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1701	  that you will only be able to execute AArch32 binaries that were compiled
1702	  with page size aligned segments.
1703
1704	  If you want to execute 32-bit userspace applications, say Y.
1705
1706if COMPAT
1707
1708config KUSER_HELPERS
1709	bool "Enable kuser helpers page for 32-bit applications"
1710	default y
1711	help
1712	  Warning: disabling this option may break 32-bit user programs.
1713
1714	  Provide kuser helpers to compat tasks. The kernel provides
1715	  helper code to userspace in read only form at a fixed location
1716	  to allow userspace to be independent of the CPU type fitted to
1717	  the system. This permits binaries to be run on ARMv4 through
1718	  to ARMv8 without modification.
1719
1720	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1721
1722	  However, the fixed address nature of these helpers can be used
1723	  by ROP (return orientated programming) authors when creating
1724	  exploits.
1725
1726	  If all of the binaries and libraries which run on your platform
1727	  are built specifically for your platform, and make no use of
1728	  these helpers, then you can turn this option off to hinder
1729	  such exploits. However, in that case, if a binary or library
1730	  relying on those helpers is run, it will not function correctly.
1731
1732	  Say N here only if you are absolutely certain that you do not
1733	  need these helpers; otherwise, the safe option is to say Y.
1734
1735config COMPAT_VDSO
1736	bool "Enable vDSO for 32-bit applications"
1737	depends on !CPU_BIG_ENDIAN
1738	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1739	select GENERIC_COMPAT_VDSO
1740	default y
1741	help
1742	  Place in the process address space of 32-bit applications an
1743	  ELF shared object providing fast implementations of gettimeofday
1744	  and clock_gettime.
1745
1746	  You must have a 32-bit build of glibc 2.22 or later for programs
1747	  to seamlessly take advantage of this.
1748
1749config THUMB2_COMPAT_VDSO
1750	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1751	depends on COMPAT_VDSO
1752	default y
1753	help
1754	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1755	  otherwise with '-marm'.
1756
1757config COMPAT_ALIGNMENT_FIXUPS
1758	bool "Fix up misaligned multi-word loads and stores in user space"
1759
1760menuconfig ARMV8_DEPRECATED
1761	bool "Emulate deprecated/obsolete ARMv8 instructions"
1762	depends on SYSCTL
1763	help
1764	  Legacy software support may require certain instructions
1765	  that have been deprecated or obsoleted in the architecture.
1766
1767	  Enable this config to enable selective emulation of these
1768	  features.
1769
1770	  If unsure, say Y
1771
1772if ARMV8_DEPRECATED
1773
1774config SWP_EMULATION
1775	bool "Emulate SWP/SWPB instructions"
1776	help
1777	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1778	  they are always undefined. Say Y here to enable software
1779	  emulation of these instructions for userspace using LDXR/STXR.
1780	  This feature can be controlled at runtime with the abi.swp
1781	  sysctl which is disabled by default.
1782
1783	  In some older versions of glibc [<=2.8] SWP is used during futex
1784	  trylock() operations with the assumption that the code will not
1785	  be preempted. This invalid assumption may be more likely to fail
1786	  with SWP emulation enabled, leading to deadlock of the user
1787	  application.
1788
1789	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1790	  on an external transaction monitoring block called a global
1791	  monitor to maintain update atomicity. If your system does not
1792	  implement a global monitor, this option can cause programs that
1793	  perform SWP operations to uncached memory to deadlock.
1794
1795	  If unsure, say Y
1796
1797config CP15_BARRIER_EMULATION
1798	bool "Emulate CP15 Barrier instructions"
1799	help
1800	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1801	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1802	  strongly recommended to use the ISB, DSB, and DMB
1803	  instructions instead.
1804
1805	  Say Y here to enable software emulation of these
1806	  instructions for AArch32 userspace code. When this option is
1807	  enabled, CP15 barrier usage is traced which can help
1808	  identify software that needs updating. This feature can be
1809	  controlled at runtime with the abi.cp15_barrier sysctl.
1810
1811	  If unsure, say Y
1812
1813config SETEND_EMULATION
1814	bool "Emulate SETEND instruction"
1815	help
1816	  The SETEND instruction alters the data-endianness of the
1817	  AArch32 EL0, and is deprecated in ARMv8.
1818
1819	  Say Y here to enable software emulation of the instruction
1820	  for AArch32 userspace code. This feature can be controlled
1821	  at runtime with the abi.setend sysctl.
1822
1823	  Note: All the cpus on the system must have mixed endian support at EL0
1824	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1825	  endian - is hotplugged in after this feature has been enabled, there could
1826	  be unexpected results in the applications.
1827
1828	  If unsure, say Y
1829endif # ARMV8_DEPRECATED
1830
1831endif # COMPAT
1832
1833menu "ARMv8.1 architectural features"
1834
1835config ARM64_HW_AFDBM
1836	bool "Support for hardware updates of the Access and Dirty page flags"
1837	default y
1838	help
1839	  The ARMv8.1 architecture extensions introduce support for
1840	  hardware updates of the access and dirty information in page
1841	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1842	  capable processors, accesses to pages with PTE_AF cleared will
1843	  set this bit instead of raising an access flag fault.
1844	  Similarly, writes to read-only pages with the DBM bit set will
1845	  clear the read-only bit (AP[2]) instead of raising a
1846	  permission fault.
1847
1848	  Kernels built with this configuration option enabled continue
1849	  to work on pre-ARMv8.1 hardware and the performance impact is
1850	  minimal. If unsure, say Y.
1851
1852config ARM64_PAN
1853	bool "Enable support for Privileged Access Never (PAN)"
1854	default y
1855	help
1856	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1857	  prevents the kernel or hypervisor from accessing user-space (EL0)
1858	  memory directly.
1859
1860	  Choosing this option will cause any unprotected (not using
1861	  copy_to_user et al) memory access to fail with a permission fault.
1862
1863	  The feature is detected at runtime, and will remain as a 'nop'
1864	  instruction if the cpu does not implement the feature.
1865
1866config AS_HAS_LSE_ATOMICS
1867	def_bool $(as-instr,.arch_extension lse)
1868
1869config ARM64_LSE_ATOMICS
1870	bool
1871	default ARM64_USE_LSE_ATOMICS
1872	depends on AS_HAS_LSE_ATOMICS
1873
1874config ARM64_USE_LSE_ATOMICS
1875	bool "Atomic instructions"
1876	default y
1877	help
1878	  As part of the Large System Extensions, ARMv8.1 introduces new
1879	  atomic instructions that are designed specifically to scale in
1880	  very large systems.
1881
1882	  Say Y here to make use of these instructions for the in-kernel
1883	  atomic routines. This incurs a small overhead on CPUs that do
1884	  not support these instructions and requires the kernel to be
1885	  built with binutils >= 2.25 in order for the new instructions
1886	  to be used.
1887
1888endmenu # "ARMv8.1 architectural features"
1889
1890menu "ARMv8.2 architectural features"
1891
1892config AS_HAS_ARMV8_2
1893	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1894
1895config AS_HAS_SHA3
1896	def_bool $(as-instr,.arch armv8.2-a+sha3)
1897
1898config ARM64_PMEM
1899	bool "Enable support for persistent memory"
1900	select ARCH_HAS_PMEM_API
1901	select ARCH_HAS_UACCESS_FLUSHCACHE
1902	help
1903	  Say Y to enable support for the persistent memory API based on the
1904	  ARMv8.2 DCPoP feature.
1905
1906	  The feature is detected at runtime, and the kernel will use DC CVAC
1907	  operations if DC CVAP is not supported (following the behaviour of
1908	  DC CVAP itself if the system does not define a point of persistence).
1909
1910config ARM64_RAS_EXTN
1911	bool "Enable support for RAS CPU Extensions"
1912	default y
1913	help
1914	  CPUs that support the Reliability, Availability and Serviceability
1915	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1916	  errors, classify them and report them to software.
1917
1918	  On CPUs with these extensions system software can use additional
1919	  barriers to determine if faults are pending and read the
1920	  classification from a new set of registers.
1921
1922	  Selecting this feature will allow the kernel to use these barriers
1923	  and access the new registers if the system supports the extension.
1924	  Platform RAS features may additionally depend on firmware support.
1925
1926config ARM64_CNP
1927	bool "Enable support for Common Not Private (CNP) translations"
1928	default y
1929	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1930	help
1931	  Common Not Private (CNP) allows translation table entries to
1932	  be shared between different PEs in the same inner shareable
1933	  domain, so the hardware can use this fact to optimise the
1934	  caching of such entries in the TLB.
1935
1936	  Selecting this option allows the CNP feature to be detected
1937	  at runtime, and does not affect PEs that do not implement
1938	  this feature.
1939
1940endmenu # "ARMv8.2 architectural features"
1941
1942menu "ARMv8.3 architectural features"
1943
1944config ARM64_PTR_AUTH
1945	bool "Enable support for pointer authentication"
1946	default y
1947	help
1948	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1949	  instructions for signing and authenticating pointers against secret
1950	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1951	  and other attacks.
1952
1953	  This option enables these instructions at EL0 (i.e. for userspace).
1954	  Choosing this option will cause the kernel to initialise secret keys
1955	  for each process at exec() time, with these keys being
1956	  context-switched along with the process.
1957
1958	  The feature is detected at runtime. If the feature is not present in
1959	  hardware it will not be advertised to userspace/KVM guest nor will it
1960	  be enabled.
1961
1962	  If the feature is present on the boot CPU but not on a late CPU, then
1963	  the late CPU will be parked. Also, if the boot CPU does not have
1964	  address auth and the late CPU has then the late CPU will still boot
1965	  but with the feature disabled. On such a system, this option should
1966	  not be selected.
1967
1968config ARM64_PTR_AUTH_KERNEL
1969	bool "Use pointer authentication for kernel"
1970	default y
1971	depends on ARM64_PTR_AUTH
1972	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1973	# Modern compilers insert a .note.gnu.property section note for PAC
1974	# which is only understood by binutils starting with version 2.33.1.
1975	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1976	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1977	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1978	help
1979	  If the compiler supports the -mbranch-protection or
1980	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1981	  will cause the kernel itself to be compiled with return address
1982	  protection. In this case, and if the target hardware is known to
1983	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1984	  disabled with minimal loss of protection.
1985
1986	  This feature works with FUNCTION_GRAPH_TRACER option only if
1987	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1988
1989config CC_HAS_BRANCH_PROT_PAC_RET
1990	# GCC 9 or later, clang 8 or later
1991	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1992
1993config CC_HAS_SIGN_RETURN_ADDRESS
1994	# GCC 7, 8
1995	def_bool $(cc-option,-msign-return-address=all)
1996
1997config AS_HAS_ARMV8_3
1998	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1999
2000config AS_HAS_CFI_NEGATE_RA_STATE
2001	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2002
2003config AS_HAS_LDAPR
2004	def_bool $(as-instr,.arch_extension rcpc)
2005
2006endmenu # "ARMv8.3 architectural features"
2007
2008menu "ARMv8.4 architectural features"
2009
2010config ARM64_AMU_EXTN
2011	bool "Enable support for the Activity Monitors Unit CPU extension"
2012	default y
2013	help
2014	  The activity monitors extension is an optional extension introduced
2015	  by the ARMv8.4 CPU architecture. This enables support for version 1
2016	  of the activity monitors architecture, AMUv1.
2017
2018	  To enable the use of this extension on CPUs that implement it, say Y.
2019
2020	  Note that for architectural reasons, firmware _must_ implement AMU
2021	  support when running on CPUs that present the activity monitors
2022	  extension. The required support is present in:
2023	    * Version 1.5 and later of the ARM Trusted Firmware
2024
2025	  For kernels that have this configuration enabled but boot with broken
2026	  firmware, you may need to say N here until the firmware is fixed.
2027	  Otherwise you may experience firmware panics or lockups when
2028	  accessing the counter registers. Even if you are not observing these
2029	  symptoms, the values returned by the register reads might not
2030	  correctly reflect reality. Most commonly, the value read will be 0,
2031	  indicating that the counter is not enabled.
2032
2033config AS_HAS_ARMV8_4
2034	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2035
2036config ARM64_TLB_RANGE
2037	bool "Enable support for tlbi range feature"
2038	default y
2039	depends on AS_HAS_ARMV8_4
2040	help
2041	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2042	  range of input addresses.
2043
2044	  The feature introduces new assembly instructions, and they were
2045	  support when binutils >= 2.30.
2046
2047endmenu # "ARMv8.4 architectural features"
2048
2049menu "ARMv8.5 architectural features"
2050
2051config AS_HAS_ARMV8_5
2052	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2053
2054config ARM64_BTI
2055	bool "Branch Target Identification support"
2056	default y
2057	help
2058	  Branch Target Identification (part of the ARMv8.5 Extensions)
2059	  provides a mechanism to limit the set of locations to which computed
2060	  branch instructions such as BR or BLR can jump.
2061
2062	  To make use of BTI on CPUs that support it, say Y.
2063
2064	  BTI is intended to provide complementary protection to other control
2065	  flow integrity protection mechanisms, such as the Pointer
2066	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2067	  For this reason, it does not make sense to enable this option without
2068	  also enabling support for pointer authentication.  Thus, when
2069	  enabling this option you should also select ARM64_PTR_AUTH=y.
2070
2071	  Userspace binaries must also be specifically compiled to make use of
2072	  this mechanism.  If you say N here or the hardware does not support
2073	  BTI, such binaries can still run, but you get no additional
2074	  enforcement of branch destinations.
2075
2076config ARM64_BTI_KERNEL
2077	bool "Use Branch Target Identification for kernel"
2078	default y
2079	depends on ARM64_BTI
2080	depends on ARM64_PTR_AUTH_KERNEL
2081	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2082	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2083	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2084	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2085	depends on !CC_IS_GCC
2086	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2087	help
2088	  Build the kernel with Branch Target Identification annotations
2089	  and enable enforcement of this for kernel code. When this option
2090	  is enabled and the system supports BTI all kernel code including
2091	  modular code must have BTI enabled.
2092
2093config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2094	# GCC 9 or later, clang 8 or later
2095	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2096
2097config ARM64_E0PD
2098	bool "Enable support for E0PD"
2099	default y
2100	help
2101	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2102	  that EL0 accesses made via TTBR1 always fault in constant time,
2103	  providing similar benefits to KASLR as those provided by KPTI, but
2104	  with lower overhead and without disrupting legitimate access to
2105	  kernel memory such as SPE.
2106
2107	  This option enables E0PD for TTBR1 where available.
2108
2109config ARM64_AS_HAS_MTE
2110	# Initial support for MTE went in binutils 2.32.0, checked with
2111	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2112	# as a late addition to the final architecture spec (LDGM/STGM)
2113	# is only supported in the newer 2.32.x and 2.33 binutils
2114	# versions, hence the extra "stgm" instruction check below.
2115	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2116
2117config ARM64_MTE
2118	bool "Memory Tagging Extension support"
2119	default y
2120	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2121	depends on AS_HAS_ARMV8_5
2122	depends on AS_HAS_LSE_ATOMICS
2123	# Required for tag checking in the uaccess routines
2124	depends on ARM64_PAN
2125	select ARCH_HAS_SUBPAGE_FAULTS
2126	select ARCH_USES_HIGH_VMA_FLAGS
2127	select ARCH_USES_PG_ARCH_2
2128	select ARCH_USES_PG_ARCH_3
2129	help
2130	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2131	  architectural support for run-time, always-on detection of
2132	  various classes of memory error to aid with software debugging
2133	  to eliminate vulnerabilities arising from memory-unsafe
2134	  languages.
2135
2136	  This option enables the support for the Memory Tagging
2137	  Extension at EL0 (i.e. for userspace).
2138
2139	  Selecting this option allows the feature to be detected at
2140	  runtime. Any secondary CPU not implementing this feature will
2141	  not be allowed a late bring-up.
2142
2143	  Userspace binaries that want to use this feature must
2144	  explicitly opt in. The mechanism for the userspace is
2145	  described in:
2146
2147	  Documentation/arch/arm64/memory-tagging-extension.rst.
2148
2149endmenu # "ARMv8.5 architectural features"
2150
2151menu "ARMv8.7 architectural features"
2152
2153config ARM64_EPAN
2154	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2155	default y
2156	depends on ARM64_PAN
2157	help
2158	  Enhanced Privileged Access Never (EPAN) allows Privileged
2159	  Access Never to be used with Execute-only mappings.
2160
2161	  The feature is detected at runtime, and will remain disabled
2162	  if the cpu does not implement the feature.
2163endmenu # "ARMv8.7 architectural features"
2164
2165config AS_HAS_MOPS
2166	def_bool $(as-instr,.arch_extension mops)
2167
2168menu "ARMv8.9 architectural features"
2169
2170config ARM64_POE
2171	prompt "Permission Overlay Extension"
2172	def_bool y
2173	select ARCH_USES_HIGH_VMA_FLAGS
2174	select ARCH_HAS_PKEYS
2175	help
2176	  The Permission Overlay Extension is used to implement Memory
2177	  Protection Keys. Memory Protection Keys provides a mechanism for
2178	  enforcing page-based protections, but without requiring modification
2179	  of the page tables when an application changes protection domains.
2180
2181	  For details, see Documentation/core-api/protection-keys.rst
2182
2183	  If unsure, say y.
2184
2185config ARCH_PKEY_BITS
2186	int
2187	default 3
2188
2189config ARM64_HAFT
2190	bool "Support for Hardware managed Access Flag for Table Descriptors"
2191	depends on ARM64_HW_AFDBM
2192	default y
2193	help
2194	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2195	  Flag for Table descriptors. When enabled an architectural executed
2196	  memory access will update the Access Flag in each Table descriptor
2197	  which is accessed during the translation table walk and for which
2198	  the Access Flag is 0. The Access Flag of the Table descriptor use
2199	  the same bit of PTE_AF.
2200
2201	  The feature will only be enabled if all the CPUs in the system
2202	  support this feature. If unsure, say Y.
2203
2204endmenu # "ARMv8.9 architectural features"
2205
2206menu "v9.4 architectural features"
2207
2208config ARM64_GCS
2209	bool "Enable support for Guarded Control Stack (GCS)"
2210	default y
2211	select ARCH_HAS_USER_SHADOW_STACK
2212	select ARCH_USES_HIGH_VMA_FLAGS
2213	depends on !UPROBES
2214	help
2215	  Guarded Control Stack (GCS) provides support for a separate
2216	  stack with restricted access which contains only return
2217	  addresses.  This can be used to harden against some attacks
2218	  by comparing return address used by the program with what is
2219	  stored in the GCS, and may also be used to efficiently obtain
2220	  the call stack for applications such as profiling.
2221
2222	  The feature is detected at runtime, and will remain disabled
2223	  if the system does not implement the feature.
2224
2225endmenu # "v9.4 architectural features"
2226
2227config ARM64_SVE
2228	bool "ARM Scalable Vector Extension support"
2229	default y
2230	help
2231	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2232	  execution state which complements and extends the SIMD functionality
2233	  of the base architecture to support much larger vectors and to enable
2234	  additional vectorisation opportunities.
2235
2236	  To enable use of this extension on CPUs that implement it, say Y.
2237
2238	  On CPUs that support the SVE2 extensions, this option will enable
2239	  those too.
2240
2241	  Note that for architectural reasons, firmware _must_ implement SVE
2242	  support when running on SVE capable hardware.  The required support
2243	  is present in:
2244
2245	    * version 1.5 and later of the ARM Trusted Firmware
2246	    * the AArch64 boot wrapper since commit 5e1261e08abf
2247	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2248
2249	  For other firmware implementations, consult the firmware documentation
2250	  or vendor.
2251
2252	  If you need the kernel to boot on SVE-capable hardware with broken
2253	  firmware, you may need to say N here until you get your firmware
2254	  fixed.  Otherwise, you may experience firmware panics or lockups when
2255	  booting the kernel.  If unsure and you are not observing these
2256	  symptoms, you should assume that it is safe to say Y.
2257
2258config ARM64_SME
2259	bool "ARM Scalable Matrix Extension support"
2260	default y
2261	depends on ARM64_SVE
2262	depends on BROKEN
2263	help
2264	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2265	  execution state which utilises a substantial subset of the SVE
2266	  instruction set, together with the addition of new architectural
2267	  register state capable of holding two dimensional matrix tiles to
2268	  enable various matrix operations.
2269
2270config ARM64_PSEUDO_NMI
2271	bool "Support for NMI-like interrupts"
2272	select ARM_GIC_V3
2273	help
2274	  Adds support for mimicking Non-Maskable Interrupts through the use of
2275	  GIC interrupt priority. This support requires version 3 or later of
2276	  ARM GIC.
2277
2278	  This high priority configuration for interrupts needs to be
2279	  explicitly enabled by setting the kernel parameter
2280	  "irqchip.gicv3_pseudo_nmi" to 1.
2281
2282	  If unsure, say N
2283
2284if ARM64_PSEUDO_NMI
2285config ARM64_DEBUG_PRIORITY_MASKING
2286	bool "Debug interrupt priority masking"
2287	help
2288	  This adds runtime checks to functions enabling/disabling
2289	  interrupts when using priority masking. The additional checks verify
2290	  the validity of ICC_PMR_EL1 when calling concerned functions.
2291
2292	  If unsure, say N
2293endif # ARM64_PSEUDO_NMI
2294
2295config RELOCATABLE
2296	bool "Build a relocatable kernel image" if EXPERT
2297	select ARCH_HAS_RELR
2298	default y
2299	help
2300	  This builds the kernel as a Position Independent Executable (PIE),
2301	  which retains all relocation metadata required to relocate the
2302	  kernel binary at runtime to a different virtual address than the
2303	  address it was linked at.
2304	  Since AArch64 uses the RELA relocation format, this requires a
2305	  relocation pass at runtime even if the kernel is loaded at the
2306	  same address it was linked at.
2307
2308config RANDOMIZE_BASE
2309	bool "Randomize the address of the kernel image"
2310	select RELOCATABLE
2311	help
2312	  Randomizes the virtual address at which the kernel image is
2313	  loaded, as a security feature that deters exploit attempts
2314	  relying on knowledge of the location of kernel internals.
2315
2316	  It is the bootloader's job to provide entropy, by passing a
2317	  random u64 value in /chosen/kaslr-seed at kernel entry.
2318
2319	  When booting via the UEFI stub, it will invoke the firmware's
2320	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2321	  to the kernel proper. In addition, it will randomise the physical
2322	  location of the kernel Image as well.
2323
2324	  If unsure, say N.
2325
2326config RANDOMIZE_MODULE_REGION_FULL
2327	bool "Randomize the module region over a 2 GB range"
2328	depends on RANDOMIZE_BASE
2329	default y
2330	help
2331	  Randomizes the location of the module region inside a 2 GB window
2332	  covering the core kernel. This way, it is less likely for modules
2333	  to leak information about the location of core kernel data structures
2334	  but it does imply that function calls between modules and the core
2335	  kernel will need to be resolved via veneers in the module PLT.
2336
2337	  When this option is not set, the module region will be randomized over
2338	  a limited range that contains the [_stext, _etext] interval of the
2339	  core kernel, so branch relocations are almost always in range unless
2340	  the region is exhausted. In this particular case of region
2341	  exhaustion, modules might be able to fall back to a larger 2GB area.
2342
2343config CC_HAVE_STACKPROTECTOR_SYSREG
2344	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2345
2346config STACKPROTECTOR_PER_TASK
2347	def_bool y
2348	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2349
2350config UNWIND_PATCH_PAC_INTO_SCS
2351	bool "Enable shadow call stack dynamically using code patching"
2352	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2353	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2354	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2355	depends on SHADOW_CALL_STACK
2356	select UNWIND_TABLES
2357	select DYNAMIC_SCS
2358
2359config ARM64_CONTPTE
2360	bool "Contiguous PTE mappings for user memory" if EXPERT
2361	depends on TRANSPARENT_HUGEPAGE
2362	default y
2363	help
2364	  When enabled, user mappings are configured using the PTE contiguous
2365	  bit, for any mappings that meet the size and alignment requirements.
2366	  This reduces TLB pressure and improves performance.
2367
2368endmenu # "Kernel Features"
2369
2370menu "Boot options"
2371
2372config ARM64_ACPI_PARKING_PROTOCOL
2373	bool "Enable support for the ARM64 ACPI parking protocol"
2374	depends on ACPI
2375	help
2376	  Enable support for the ARM64 ACPI parking protocol. If disabled
2377	  the kernel will not allow booting through the ARM64 ACPI parking
2378	  protocol even if the corresponding data is present in the ACPI
2379	  MADT table.
2380
2381config CMDLINE
2382	string "Default kernel command string"
2383	default ""
2384	help
2385	  Provide a set of default command-line options at build time by
2386	  entering them here. As a minimum, you should specify the the
2387	  root device (e.g. root=/dev/nfs).
2388
2389choice
2390	prompt "Kernel command line type"
2391	depends on CMDLINE != ""
2392	default CMDLINE_FROM_BOOTLOADER
2393	help
2394	  Choose how the kernel will handle the provided default kernel
2395	  command line string.
2396
2397config CMDLINE_FROM_BOOTLOADER
2398	bool "Use bootloader kernel arguments if available"
2399	help
2400	  Uses the command-line options passed by the boot loader. If
2401	  the boot loader doesn't provide any, the default kernel command
2402	  string provided in CMDLINE will be used.
2403
2404config CMDLINE_FORCE
2405	bool "Always use the default kernel command string"
2406	help
2407	  Always use the default kernel command string, even if the boot
2408	  loader passes other arguments to the kernel.
2409	  This is useful if you cannot or don't want to change the
2410	  command-line options your boot loader passes to the kernel.
2411
2412endchoice
2413
2414config EFI_STUB
2415	bool
2416
2417config EFI
2418	bool "UEFI runtime support"
2419	depends on OF && !CPU_BIG_ENDIAN
2420	depends on KERNEL_MODE_NEON
2421	select ARCH_SUPPORTS_ACPI
2422	select LIBFDT
2423	select UCS2_STRING
2424	select EFI_PARAMS_FROM_FDT
2425	select EFI_RUNTIME_WRAPPERS
2426	select EFI_STUB
2427	select EFI_GENERIC_STUB
2428	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2429	default y
2430	help
2431	  This option provides support for runtime services provided
2432	  by UEFI firmware (such as non-volatile variables, realtime
2433	  clock, and platform reset). A UEFI stub is also provided to
2434	  allow the kernel to be booted as an EFI application. This
2435	  is only useful on systems that have UEFI firmware.
2436
2437config COMPRESSED_INSTALL
2438	bool "Install compressed image by default"
2439	help
2440	  This makes the regular "make install" install the compressed
2441	  image we built, not the legacy uncompressed one.
2442
2443	  You can check that a compressed image works for you by doing
2444	  "make zinstall" first, and verifying that everything is fine
2445	  in your environment before making "make install" do this for
2446	  you.
2447
2448config DMI
2449	bool "Enable support for SMBIOS (DMI) tables"
2450	depends on EFI
2451	default y
2452	help
2453	  This enables SMBIOS/DMI feature for systems.
2454
2455	  This option is only useful on systems that have UEFI firmware.
2456	  However, even with this option, the resultant kernel should
2457	  continue to boot on existing non-UEFI platforms.
2458
2459endmenu # "Boot options"
2460
2461menu "Power management options"
2462
2463source "kernel/power/Kconfig"
2464
2465config ARCH_HIBERNATION_POSSIBLE
2466	def_bool y
2467	depends on CPU_PM
2468
2469config ARCH_HIBERNATION_HEADER
2470	def_bool y
2471	depends on HIBERNATION
2472
2473config ARCH_SUSPEND_POSSIBLE
2474	def_bool y
2475
2476endmenu # "Power management options"
2477
2478menu "CPU Power Management"
2479
2480source "drivers/cpuidle/Kconfig"
2481
2482source "drivers/cpufreq/Kconfig"
2483
2484endmenu # "CPU Power Management"
2485
2486source "drivers/acpi/Kconfig"
2487
2488source "arch/arm64/kvm/Kconfig"
2489
2490