1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 9 select ACPI_IORT if ACPI 10 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 11 select ACPI_MCFG if (ACPI && PCI) 12 select ACPI_SPCR_TABLE if ACPI 13 select ACPI_PPTT if ACPI 14 select ARCH_HAS_DEBUG_WX 15 select ARCH_BINFMT_ELF_EXTRA_PHDRS 16 select ARCH_BINFMT_ELF_STATE 17 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 18 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 19 select ARCH_ENABLE_MEMORY_HOTPLUG 20 select ARCH_ENABLE_MEMORY_HOTREMOVE 21 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 22 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 23 select ARCH_HAS_CACHE_LINE_SIZE 24 select ARCH_HAS_CURRENT_STACK_POINTER 25 select ARCH_HAS_DEBUG_VIRTUAL 26 select ARCH_HAS_DEBUG_VM_PGTABLE 27 select ARCH_HAS_DMA_PREP_COHERENT 28 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 29 select ARCH_HAS_FAST_MULTIPLIER 30 select ARCH_HAS_FORTIFY_SOURCE 31 select ARCH_HAS_GCOV_PROFILE_ALL 32 select ARCH_HAS_GIGANTIC_PAGE 33 select ARCH_HAS_KCOV 34 select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON 35 select ARCH_HAS_KEEPINITRD 36 select ARCH_HAS_MEMBARRIER_SYNC_CORE 37 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 38 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 39 select ARCH_HAS_PTE_DEVMAP 40 select ARCH_HAS_PTE_SPECIAL 41 select ARCH_HAS_HW_PTE_YOUNG 42 select ARCH_HAS_SETUP_DMA_OPS 43 select ARCH_HAS_SET_DIRECT_MAP 44 select ARCH_HAS_SET_MEMORY 45 select ARCH_STACKWALK 46 select ARCH_HAS_STRICT_KERNEL_RWX 47 select ARCH_HAS_STRICT_MODULE_RWX 48 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 49 select ARCH_HAS_SYNC_DMA_FOR_CPU 50 select ARCH_HAS_SYSCALL_WRAPPER 51 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 52 select ARCH_HAS_ZONE_DMA_SET if EXPERT 53 select ARCH_HAVE_ELF_PROT 54 select ARCH_HAVE_NMI_SAFE_CMPXCHG 55 select ARCH_HAVE_TRACE_MMIO_ACCESS 56 select ARCH_INLINE_READ_LOCK if !PREEMPTION 57 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 58 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 59 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 60 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 62 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 64 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 66 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 67 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 68 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 70 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 71 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 72 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 73 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 74 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 76 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 77 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 78 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 80 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 81 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 82 select ARCH_KEEP_MEMBLOCK 83 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 84 select ARCH_USE_CMPXCHG_LOCKREF 85 select ARCH_USE_GNU_PROPERTY 86 select ARCH_USE_MEMTEST 87 select ARCH_USE_QUEUED_RWLOCKS 88 select ARCH_USE_QUEUED_SPINLOCKS 89 select ARCH_USE_SYM_ANNOTATIONS 90 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 91 select ARCH_SUPPORTS_HUGETLBFS 92 select ARCH_SUPPORTS_MEMORY_FAILURE 93 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 94 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 95 select ARCH_SUPPORTS_LTO_CLANG_THIN 96 select ARCH_SUPPORTS_CFI_CLANG 97 select ARCH_SUPPORTS_ATOMIC_RMW 98 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 99 select ARCH_SUPPORTS_NUMA_BALANCING 100 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 101 select ARCH_SUPPORTS_PER_VMA_LOCK 102 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 103 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 104 select ARCH_WANT_DEFAULT_BPF_JIT 105 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 106 select ARCH_WANT_FRAME_POINTERS 107 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 108 select ARCH_WANT_LD_ORPHAN_WARN 109 select ARCH_WANTS_EXECMEM_LATE if EXECMEM 110 select ARCH_WANTS_NO_INSTR 111 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 112 select ARCH_HAS_UBSAN 113 select ARM_AMBA 114 select ARM_ARCH_TIMER 115 select ARM_GIC 116 select AUDIT_ARCH_COMPAT_GENERIC 117 select ARM_GIC_V2M if PCI 118 select ARM_GIC_V3 119 select ARM_GIC_V3_ITS if PCI 120 select ARM_PSCI_FW 121 select BUILDTIME_TABLE_SORT 122 select CLONE_BACKWARDS 123 select COMMON_CLK 124 select CPU_PM if (SUSPEND || CPU_IDLE) 125 select CPUMASK_OFFSTACK if NR_CPUS > 256 126 select CRC32 127 select DCACHE_WORD_ACCESS 128 select DYNAMIC_FTRACE if FUNCTION_TRACER 129 select DMA_BOUNCE_UNALIGNED_KMALLOC 130 select DMA_DIRECT_REMAP 131 select EDAC_SUPPORT 132 select FRAME_POINTER 133 select FUNCTION_ALIGNMENT_4B 134 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 135 select GENERIC_ALLOCATOR 136 select GENERIC_ARCH_TOPOLOGY 137 select GENERIC_CLOCKEVENTS_BROADCAST 138 select GENERIC_CPU_AUTOPROBE 139 select GENERIC_CPU_DEVICES 140 select GENERIC_CPU_VULNERABILITIES 141 select GENERIC_EARLY_IOREMAP 142 select GENERIC_IDLE_POLL_SETUP 143 select GENERIC_IOREMAP 144 select GENERIC_IRQ_IPI 145 select GENERIC_IRQ_PROBE 146 select GENERIC_IRQ_SHOW 147 select GENERIC_IRQ_SHOW_LEVEL 148 select GENERIC_LIB_DEVMEM_IS_ALLOWED 149 select GENERIC_PCI_IOMAP 150 select GENERIC_PTDUMP 151 select GENERIC_SCHED_CLOCK 152 select GENERIC_SMP_IDLE_THREAD 153 select GENERIC_TIME_VSYSCALL 154 select GENERIC_GETTIMEOFDAY 155 select GENERIC_VDSO_TIME_NS 156 select HARDIRQS_SW_RESEND 157 select HAS_IOPORT 158 select HAVE_MOVE_PMD 159 select HAVE_MOVE_PUD 160 select HAVE_PCI 161 select HAVE_ACPI_APEI if (ACPI && EFI) 162 select HAVE_ALIGNED_STRUCT_PAGE 163 select HAVE_ARCH_AUDITSYSCALL 164 select HAVE_ARCH_BITREVERSE 165 select HAVE_ARCH_COMPILER_H 166 select HAVE_ARCH_HUGE_VMALLOC 167 select HAVE_ARCH_HUGE_VMAP 168 select HAVE_ARCH_JUMP_LABEL 169 select HAVE_ARCH_JUMP_LABEL_RELATIVE 170 select HAVE_ARCH_KASAN 171 select HAVE_ARCH_KASAN_VMALLOC 172 select HAVE_ARCH_KASAN_SW_TAGS 173 select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE 174 # Some instrumentation may be unsound, hence EXPERT 175 select HAVE_ARCH_KCSAN if EXPERT 176 select HAVE_ARCH_KFENCE 177 select HAVE_ARCH_KGDB 178 select HAVE_ARCH_MMAP_RND_BITS 179 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 180 select HAVE_ARCH_PREL32_RELOCATIONS 181 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 182 select HAVE_ARCH_SECCOMP_FILTER 183 select HAVE_ARCH_STACKLEAK 184 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 185 select HAVE_ARCH_TRACEHOOK 186 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 187 select HAVE_ARCH_VMAP_STACK 188 select HAVE_ARM_SMCCC 189 select HAVE_ASM_MODVERSIONS 190 select HAVE_EBPF_JIT 191 select HAVE_C_RECORDMCOUNT 192 select HAVE_CMPXCHG_DOUBLE 193 select HAVE_CMPXCHG_LOCAL 194 select HAVE_CONTEXT_TRACKING_USER 195 select HAVE_DEBUG_KMEMLEAK 196 select HAVE_DMA_CONTIGUOUS 197 select HAVE_DYNAMIC_FTRACE 198 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 199 if $(cc-option,-fpatchable-function-entry=2) 200 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 201 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 202 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 203 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 204 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE)) 205 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 206 if DYNAMIC_FTRACE_WITH_ARGS 207 select HAVE_SAMPLE_FTRACE_DIRECT 208 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 209 select HAVE_EFFICIENT_UNALIGNED_ACCESS 210 select HAVE_GUP_FAST 211 select HAVE_FTRACE_MCOUNT_RECORD 212 select HAVE_FUNCTION_TRACER 213 select HAVE_FUNCTION_ERROR_INJECTION 214 select HAVE_FUNCTION_GRAPH_TRACER 215 select HAVE_FUNCTION_GRAPH_RETVAL 216 select HAVE_GCC_PLUGINS 217 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 218 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 219 select HAVE_HW_BREAKPOINT if PERF_EVENTS 220 select HAVE_IOREMAP_PROT 221 select HAVE_IRQ_TIME_ACCOUNTING 222 select HAVE_MOD_ARCH_SPECIFIC 223 select HAVE_NMI 224 select HAVE_PERF_EVENTS 225 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 226 select HAVE_PERF_REGS 227 select HAVE_PERF_USER_STACK_DUMP 228 select HAVE_PREEMPT_DYNAMIC_KEY 229 select HAVE_REGS_AND_STACK_ACCESS_API 230 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 231 select HAVE_FUNCTION_ARG_ACCESS_API 232 select MMU_GATHER_RCU_TABLE_FREE 233 select HAVE_RSEQ 234 select HAVE_RUST if RUSTC_SUPPORTS_ARM64 235 select HAVE_STACKPROTECTOR 236 select HAVE_SYSCALL_TRACEPOINTS 237 select HAVE_KPROBES 238 select HAVE_KRETPROBES 239 select HAVE_GENERIC_VDSO 240 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 241 select IRQ_DOMAIN 242 select IRQ_FORCED_THREADING 243 select KASAN_VMALLOC if KASAN 244 select LOCK_MM_AND_FIND_VMA 245 select MODULES_USE_ELF_RELA 246 select NEED_DMA_MAP_STATE 247 select NEED_SG_DMA_LENGTH 248 select OF 249 select OF_EARLY_FLATTREE 250 select PCI_DOMAINS_GENERIC if PCI 251 select PCI_ECAM if (ACPI && PCI) 252 select PCI_SYSCALL if PCI 253 select POWER_RESET 254 select POWER_SUPPLY 255 select SPARSE_IRQ 256 select SWIOTLB 257 select SYSCTL_EXCEPTION_TRACE 258 select THREAD_INFO_IN_TASK 259 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 260 select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD 261 select TRACE_IRQFLAGS_SUPPORT 262 select TRACE_IRQFLAGS_NMI_SUPPORT 263 select HAVE_SOFTIRQ_ON_OWN_STACK 264 select USER_STACKTRACE_SUPPORT 265 help 266 ARM 64-bit (AArch64) Linux support. 267 268config RUSTC_SUPPORTS_ARM64 269 def_bool y 270 depends on CPU_LITTLE_ENDIAN 271 # Shadow call stack is only supported on certain rustc versions. 272 # 273 # When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is 274 # required due to use of the -Zfixed-x18 flag. 275 # 276 # Otherwise, rustc version 1.82+ is required due to use of the 277 # -Zsanitizer=shadow-call-stack flag. 278 depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS 279 280config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 281 def_bool CC_IS_CLANG 282 # https://github.com/ClangBuiltLinux/linux/issues/1507 283 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 284 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 285 286config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 287 def_bool CC_IS_GCC 288 depends on $(cc-option,-fpatchable-function-entry=2) 289 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 290 291config 64BIT 292 def_bool y 293 294config MMU 295 def_bool y 296 297config ARM64_CONT_PTE_SHIFT 298 int 299 default 5 if PAGE_SIZE_64KB 300 default 7 if PAGE_SIZE_16KB 301 default 4 302 303config ARM64_CONT_PMD_SHIFT 304 int 305 default 5 if PAGE_SIZE_64KB 306 default 5 if PAGE_SIZE_16KB 307 default 4 308 309config ARCH_MMAP_RND_BITS_MIN 310 default 14 if PAGE_SIZE_64KB 311 default 16 if PAGE_SIZE_16KB 312 default 18 313 314# max bits determined by the following formula: 315# VA_BITS - PAGE_SHIFT - 3 316config ARCH_MMAP_RND_BITS_MAX 317 default 19 if ARM64_VA_BITS=36 318 default 24 if ARM64_VA_BITS=39 319 default 27 if ARM64_VA_BITS=42 320 default 30 if ARM64_VA_BITS=47 321 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 322 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 323 default 33 if ARM64_VA_BITS=48 324 default 14 if ARM64_64K_PAGES 325 default 16 if ARM64_16K_PAGES 326 default 18 327 328config ARCH_MMAP_RND_COMPAT_BITS_MIN 329 default 7 if ARM64_64K_PAGES 330 default 9 if ARM64_16K_PAGES 331 default 11 332 333config ARCH_MMAP_RND_COMPAT_BITS_MAX 334 default 16 335 336config NO_IOPORT_MAP 337 def_bool y if !PCI 338 339config STACKTRACE_SUPPORT 340 def_bool y 341 342config ILLEGAL_POINTER_VALUE 343 hex 344 default 0xdead000000000000 345 346config LOCKDEP_SUPPORT 347 def_bool y 348 349config GENERIC_BUG 350 def_bool y 351 depends on BUG 352 353config GENERIC_BUG_RELATIVE_POINTERS 354 def_bool y 355 depends on GENERIC_BUG 356 357config GENERIC_HWEIGHT 358 def_bool y 359 360config GENERIC_CSUM 361 def_bool y 362 363config GENERIC_CALIBRATE_DELAY 364 def_bool y 365 366config SMP 367 def_bool y 368 369config KERNEL_MODE_NEON 370 def_bool y 371 372config FIX_EARLYCON_MEM 373 def_bool y 374 375config PGTABLE_LEVELS 376 int 377 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 378 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 379 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 380 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 381 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 382 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 383 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 384 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52 385 386config ARCH_SUPPORTS_UPROBES 387 def_bool y 388 389config ARCH_PROC_KCORE_TEXT 390 def_bool y 391 392config BROKEN_GAS_INST 393 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 394 395config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 396 bool 397 # Clang's __builtin_return_address() strips the PAC since 12.0.0 398 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2 399 default y if CC_IS_CLANG 400 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 401 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 402 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 403 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 404 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 405 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 406 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 407 default n 408 409config KASAN_SHADOW_OFFSET 410 hex 411 depends on KASAN_GENERIC || KASAN_SW_TAGS 412 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS 413 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS 414 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 415 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 416 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 417 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS 418 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS 419 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 420 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 421 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 422 default 0xffffffffffffffff 423 424config UNWIND_TABLES 425 bool 426 427source "arch/arm64/Kconfig.platforms" 428 429menu "Kernel Features" 430 431menu "ARM errata workarounds via the alternatives framework" 432 433config AMPERE_ERRATUM_AC03_CPU_38 434 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 435 default y 436 help 437 This option adds an alternative code sequence to work around Ampere 438 erratum AC03_CPU_38 on AmpereOne. 439 440 The affected design reports FEAT_HAFDBS as not implemented in 441 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 442 as required by the architecture. The unadvertised HAFDBS 443 implementation suffers from an additional erratum where hardware 444 A/D updates can occur after a PTE has been marked invalid. 445 446 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 447 which avoids enabling unadvertised hardware Access Flag management 448 at stage-2. 449 450 If unsure, say Y. 451 452config ARM64_WORKAROUND_CLEAN_CACHE 453 bool 454 455config ARM64_ERRATUM_826319 456 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 457 default y 458 select ARM64_WORKAROUND_CLEAN_CACHE 459 help 460 This option adds an alternative code sequence to work around ARM 461 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 462 AXI master interface and an L2 cache. 463 464 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 465 and is unable to accept a certain write via this interface, it will 466 not progress on read data presented on the read data channel and the 467 system can deadlock. 468 469 The workaround promotes data cache clean instructions to 470 data cache clean-and-invalidate. 471 Please note that this does not necessarily enable the workaround, 472 as it depends on the alternative framework, which will only patch 473 the kernel if an affected CPU is detected. 474 475 If unsure, say Y. 476 477config ARM64_ERRATUM_827319 478 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 479 default y 480 select ARM64_WORKAROUND_CLEAN_CACHE 481 help 482 This option adds an alternative code sequence to work around ARM 483 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 484 master interface and an L2 cache. 485 486 Under certain conditions this erratum can cause a clean line eviction 487 to occur at the same time as another transaction to the same address 488 on the AMBA 5 CHI interface, which can cause data corruption if the 489 interconnect reorders the two transactions. 490 491 The workaround promotes data cache clean instructions to 492 data cache clean-and-invalidate. 493 Please note that this does not necessarily enable the workaround, 494 as it depends on the alternative framework, which will only patch 495 the kernel if an affected CPU is detected. 496 497 If unsure, say Y. 498 499config ARM64_ERRATUM_824069 500 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 501 default y 502 select ARM64_WORKAROUND_CLEAN_CACHE 503 help 504 This option adds an alternative code sequence to work around ARM 505 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 506 to a coherent interconnect. 507 508 If a Cortex-A53 processor is executing a store or prefetch for 509 write instruction at the same time as a processor in another 510 cluster is executing a cache maintenance operation to the same 511 address, then this erratum might cause a clean cache line to be 512 incorrectly marked as dirty. 513 514 The workaround promotes data cache clean instructions to 515 data cache clean-and-invalidate. 516 Please note that this option does not necessarily enable the 517 workaround, as it depends on the alternative framework, which will 518 only patch the kernel if an affected CPU is detected. 519 520 If unsure, say Y. 521 522config ARM64_ERRATUM_819472 523 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 524 default y 525 select ARM64_WORKAROUND_CLEAN_CACHE 526 help 527 This option adds an alternative code sequence to work around ARM 528 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 529 present when it is connected to a coherent interconnect. 530 531 If the processor is executing a load and store exclusive sequence at 532 the same time as a processor in another cluster is executing a cache 533 maintenance operation to the same address, then this erratum might 534 cause data corruption. 535 536 The workaround promotes data cache clean instructions to 537 data cache clean-and-invalidate. 538 Please note that this does not necessarily enable the workaround, 539 as it depends on the alternative framework, which will only patch 540 the kernel if an affected CPU is detected. 541 542 If unsure, say Y. 543 544config ARM64_ERRATUM_832075 545 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 546 default y 547 help 548 This option adds an alternative code sequence to work around ARM 549 erratum 832075 on Cortex-A57 parts up to r1p2. 550 551 Affected Cortex-A57 parts might deadlock when exclusive load/store 552 instructions to Write-Back memory are mixed with Device loads. 553 554 The workaround is to promote device loads to use Load-Acquire 555 semantics. 556 Please note that this does not necessarily enable the workaround, 557 as it depends on the alternative framework, which will only patch 558 the kernel if an affected CPU is detected. 559 560 If unsure, say Y. 561 562config ARM64_ERRATUM_834220 563 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)" 564 depends on KVM 565 help 566 This option adds an alternative code sequence to work around ARM 567 erratum 834220 on Cortex-A57 parts up to r1p2. 568 569 Affected Cortex-A57 parts might report a Stage 2 translation 570 fault as the result of a Stage 1 fault for load crossing a 571 page boundary when there is a permission or device memory 572 alignment fault at Stage 1 and a translation fault at Stage 2. 573 574 The workaround is to verify that the Stage 1 translation 575 doesn't generate a fault before handling the Stage 2 fault. 576 Please note that this does not necessarily enable the workaround, 577 as it depends on the alternative framework, which will only patch 578 the kernel if an affected CPU is detected. 579 580 If unsure, say N. 581 582config ARM64_ERRATUM_1742098 583 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 584 depends on COMPAT 585 default y 586 help 587 This option removes the AES hwcap for aarch32 user-space to 588 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 589 590 Affected parts may corrupt the AES state if an interrupt is 591 taken between a pair of AES instructions. These instructions 592 are only present if the cryptography extensions are present. 593 All software should have a fallback implementation for CPUs 594 that don't implement the cryptography extensions. 595 596 If unsure, say Y. 597 598config ARM64_ERRATUM_845719 599 bool "Cortex-A53: 845719: a load might read incorrect data" 600 depends on COMPAT 601 default y 602 help 603 This option adds an alternative code sequence to work around ARM 604 erratum 845719 on Cortex-A53 parts up to r0p4. 605 606 When running a compat (AArch32) userspace on an affected Cortex-A53 607 part, a load at EL0 from a virtual address that matches the bottom 32 608 bits of the virtual address used by a recent load at (AArch64) EL1 609 might return incorrect data. 610 611 The workaround is to write the contextidr_el1 register on exception 612 return to a 32-bit task. 613 Please note that this does not necessarily enable the workaround, 614 as it depends on the alternative framework, which will only patch 615 the kernel if an affected CPU is detected. 616 617 If unsure, say Y. 618 619config ARM64_ERRATUM_843419 620 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 621 default y 622 help 623 This option links the kernel with '--fix-cortex-a53-843419' and 624 enables PLT support to replace certain ADRP instructions, which can 625 cause subsequent memory accesses to use an incorrect address on 626 Cortex-A53 parts up to r0p4. 627 628 If unsure, say Y. 629 630config ARM64_LD_HAS_FIX_ERRATUM_843419 631 def_bool $(ld-option,--fix-cortex-a53-843419) 632 633config ARM64_ERRATUM_1024718 634 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 635 default y 636 help 637 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 638 639 Affected Cortex-A55 cores (all revisions) could cause incorrect 640 update of the hardware dirty bit when the DBM/AP bits are updated 641 without a break-before-make. The workaround is to disable the usage 642 of hardware DBM locally on the affected cores. CPUs not affected by 643 this erratum will continue to use the feature. 644 645 If unsure, say Y. 646 647config ARM64_ERRATUM_1418040 648 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 649 default y 650 depends on COMPAT 651 help 652 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 653 errata 1188873 and 1418040. 654 655 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 656 cause register corruption when accessing the timer registers 657 from AArch32 userspace. 658 659 If unsure, say Y. 660 661config ARM64_WORKAROUND_SPECULATIVE_AT 662 bool 663 664config ARM64_ERRATUM_1165522 665 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 666 default y 667 select ARM64_WORKAROUND_SPECULATIVE_AT 668 help 669 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 670 671 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 672 corrupted TLBs by speculating an AT instruction during a guest 673 context switch. 674 675 If unsure, say Y. 676 677config ARM64_ERRATUM_1319367 678 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 679 default y 680 select ARM64_WORKAROUND_SPECULATIVE_AT 681 help 682 This option adds work arounds for ARM Cortex-A57 erratum 1319537 683 and A72 erratum 1319367 684 685 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 686 speculating an AT instruction during a guest context switch. 687 688 If unsure, say Y. 689 690config ARM64_ERRATUM_1530923 691 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 692 default y 693 select ARM64_WORKAROUND_SPECULATIVE_AT 694 help 695 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 696 697 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 698 corrupted TLBs by speculating an AT instruction during a guest 699 context switch. 700 701 If unsure, say Y. 702 703config ARM64_WORKAROUND_REPEAT_TLBI 704 bool 705 706config ARM64_ERRATUM_2441007 707 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 708 select ARM64_WORKAROUND_REPEAT_TLBI 709 help 710 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 711 712 Under very rare circumstances, affected Cortex-A55 CPUs 713 may not handle a race between a break-before-make sequence on one 714 CPU, and another CPU accessing the same page. This could allow a 715 store to a page that has been unmapped. 716 717 Work around this by adding the affected CPUs to the list that needs 718 TLB sequences to be done twice. 719 720 If unsure, say N. 721 722config ARM64_ERRATUM_1286807 723 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)" 724 select ARM64_WORKAROUND_REPEAT_TLBI 725 help 726 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 727 728 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 729 address for a cacheable mapping of a location is being 730 accessed by a core while another core is remapping the virtual 731 address to a new physical page using the recommended 732 break-before-make sequence, then under very rare circumstances 733 TLBI+DSB completes before a read using the translation being 734 invalidated has been observed by other observers. The 735 workaround repeats the TLBI+DSB operation. 736 737 If unsure, say N. 738 739config ARM64_ERRATUM_1463225 740 bool "Cortex-A76: Software Step might prevent interrupt recognition" 741 default y 742 help 743 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 744 745 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 746 of a system call instruction (SVC) can prevent recognition of 747 subsequent interrupts when software stepping is disabled in the 748 exception handler of the system call and either kernel debugging 749 is enabled or VHE is in use. 750 751 Work around the erratum by triggering a dummy step exception 752 when handling a system call from a task that is being stepped 753 in a VHE configuration of the kernel. 754 755 If unsure, say Y. 756 757config ARM64_ERRATUM_1542419 758 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)" 759 help 760 This option adds a workaround for ARM Neoverse-N1 erratum 761 1542419. 762 763 Affected Neoverse-N1 cores could execute a stale instruction when 764 modified by another CPU. The workaround depends on a firmware 765 counterpart. 766 767 Workaround the issue by hiding the DIC feature from EL0. This 768 forces user-space to perform cache maintenance. 769 770 If unsure, say N. 771 772config ARM64_ERRATUM_1508412 773 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 774 default y 775 help 776 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 777 778 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 779 of a store-exclusive or read of PAR_EL1 and a load with device or 780 non-cacheable memory attributes. The workaround depends on a firmware 781 counterpart. 782 783 KVM guests must also have the workaround implemented or they can 784 deadlock the system. 785 786 Work around the issue by inserting DMB SY barriers around PAR_EL1 787 register reads and warning KVM users. The DMB barrier is sufficient 788 to prevent a speculative PAR_EL1 read. 789 790 If unsure, say Y. 791 792config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 793 bool 794 795config ARM64_ERRATUM_2051678 796 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 797 default y 798 help 799 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 800 Affected Cortex-A510 might not respect the ordering rules for 801 hardware update of the page table's dirty bit. The workaround 802 is to not enable the feature on affected CPUs. 803 804 If unsure, say Y. 805 806config ARM64_ERRATUM_2077057 807 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 808 default y 809 help 810 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 811 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 812 expected, but a Pointer Authentication trap is taken instead. The 813 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 814 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 815 816 This can only happen when EL2 is stepping EL1. 817 818 When these conditions occur, the SPSR_EL2 value is unchanged from the 819 previous guest entry, and can be restored from the in-memory copy. 820 821 If unsure, say Y. 822 823config ARM64_ERRATUM_2658417 824 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 825 default y 826 help 827 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 828 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 829 BFMMLA or VMMLA instructions in rare circumstances when a pair of 830 A510 CPUs are using shared neon hardware. As the sharing is not 831 discoverable by the kernel, hide the BF16 HWCAP to indicate that 832 user-space should not be using these instructions. 833 834 If unsure, say Y. 835 836config ARM64_ERRATUM_2119858 837 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 838 default y 839 depends on CORESIGHT_TRBE 840 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 841 help 842 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 843 844 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 845 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 846 the event of a WRAP event. 847 848 Work around the issue by always making sure we move the TRBPTR_EL1 by 849 256 bytes before enabling the buffer and filling the first 256 bytes of 850 the buffer with ETM ignore packets upon disabling. 851 852 If unsure, say Y. 853 854config ARM64_ERRATUM_2139208 855 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 856 default y 857 depends on CORESIGHT_TRBE 858 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 859 help 860 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 861 862 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 863 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 864 the event of a WRAP event. 865 866 Work around the issue by always making sure we move the TRBPTR_EL1 by 867 256 bytes before enabling the buffer and filling the first 256 bytes of 868 the buffer with ETM ignore packets upon disabling. 869 870 If unsure, say Y. 871 872config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 873 bool 874 875config ARM64_ERRATUM_2054223 876 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 877 default y 878 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 879 help 880 Enable workaround for ARM Cortex-A710 erratum 2054223 881 882 Affected cores may fail to flush the trace data on a TSB instruction, when 883 the PE is in trace prohibited state. This will cause losing a few bytes 884 of the trace cached. 885 886 Workaround is to issue two TSB consecutively on affected cores. 887 888 If unsure, say Y. 889 890config ARM64_ERRATUM_2067961 891 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 892 default y 893 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 894 help 895 Enable workaround for ARM Neoverse-N2 erratum 2067961 896 897 Affected cores may fail to flush the trace data on a TSB instruction, when 898 the PE is in trace prohibited state. This will cause losing a few bytes 899 of the trace cached. 900 901 Workaround is to issue two TSB consecutively on affected cores. 902 903 If unsure, say Y. 904 905config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 906 bool 907 908config ARM64_ERRATUM_2253138 909 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 910 depends on CORESIGHT_TRBE 911 default y 912 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 913 help 914 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 915 916 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 917 for TRBE. Under some conditions, the TRBE might generate a write to the next 918 virtually addressed page following the last page of the TRBE address space 919 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 920 921 Work around this in the driver by always making sure that there is a 922 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 923 924 If unsure, say Y. 925 926config ARM64_ERRATUM_2224489 927 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 928 depends on CORESIGHT_TRBE 929 default y 930 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 931 help 932 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 933 934 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 935 for TRBE. Under some conditions, the TRBE might generate a write to the next 936 virtually addressed page following the last page of the TRBE address space 937 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 938 939 Work around this in the driver by always making sure that there is a 940 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 941 942 If unsure, say Y. 943 944config ARM64_ERRATUM_2441009 945 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 946 select ARM64_WORKAROUND_REPEAT_TLBI 947 help 948 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 949 950 Under very rare circumstances, affected Cortex-A510 CPUs 951 may not handle a race between a break-before-make sequence on one 952 CPU, and another CPU accessing the same page. This could allow a 953 store to a page that has been unmapped. 954 955 Work around this by adding the affected CPUs to the list that needs 956 TLB sequences to be done twice. 957 958 If unsure, say N. 959 960config ARM64_ERRATUM_2064142 961 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 962 depends on CORESIGHT_TRBE 963 default y 964 help 965 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 966 967 Affected Cortex-A510 core might fail to write into system registers after the 968 TRBE has been disabled. Under some conditions after the TRBE has been disabled 969 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 970 and TRBTRG_EL1 will be ignored and will not be effected. 971 972 Work around this in the driver by executing TSB CSYNC and DSB after collection 973 is stopped and before performing a system register write to one of the affected 974 registers. 975 976 If unsure, say Y. 977 978config ARM64_ERRATUM_2038923 979 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 980 depends on CORESIGHT_TRBE 981 default y 982 help 983 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 984 985 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 986 prohibited within the CPU. As a result, the trace buffer or trace buffer state 987 might be corrupted. This happens after TRBE buffer has been enabled by setting 988 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 989 execution changes from a context, in which trace is prohibited to one where it 990 isn't, or vice versa. In these mentioned conditions, the view of whether trace 991 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 992 the trace buffer state might be corrupted. 993 994 Work around this in the driver by preventing an inconsistent view of whether the 995 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 996 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 997 two ISB instructions if no ERET is to take place. 998 999 If unsure, say Y. 1000 1001config ARM64_ERRATUM_1902691 1002 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 1003 depends on CORESIGHT_TRBE 1004 default y 1005 help 1006 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 1007 1008 Affected Cortex-A510 core might cause trace data corruption, when being written 1009 into the memory. Effectively TRBE is broken and hence cannot be used to capture 1010 trace data. 1011 1012 Work around this problem in the driver by just preventing TRBE initialization on 1013 affected cpus. The firmware must have disabled the access to TRBE for the kernel 1014 on such implementations. This will cover the kernel for any firmware that doesn't 1015 do this already. 1016 1017 If unsure, say Y. 1018 1019config ARM64_ERRATUM_2457168 1020 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1021 depends on ARM64_AMU_EXTN 1022 default y 1023 help 1024 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1025 1026 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1027 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1028 incorrectly giving a significantly higher output value. 1029 1030 Work around this problem by returning 0 when reading the affected counter in 1031 key locations that results in disabling all users of this counter. This effect 1032 is the same to firmware disabling affected counters. 1033 1034 If unsure, say Y. 1035 1036config ARM64_ERRATUM_2645198 1037 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1038 default y 1039 help 1040 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1041 1042 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1043 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1044 next instruction abort caused by permission fault. 1045 1046 Only user-space does executable to non-executable permission transition via 1047 mprotect() system call. Workaround the problem by doing a break-before-make 1048 TLB invalidation, for all changes to executable user space mappings. 1049 1050 If unsure, say Y. 1051 1052config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1053 bool 1054 1055config ARM64_ERRATUM_2966298 1056 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1057 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1058 default y 1059 help 1060 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1061 1062 On an affected Cortex-A520 core, a speculatively executed unprivileged 1063 load might leak data from a privileged level via a cache side channel. 1064 1065 Work around this problem by executing a TLBI before returning to EL0. 1066 1067 If unsure, say Y. 1068 1069config ARM64_ERRATUM_3117295 1070 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1071 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1072 default y 1073 help 1074 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1075 1076 On an affected Cortex-A510 core, a speculatively executed unprivileged 1077 load might leak data from a privileged level via a cache side channel. 1078 1079 Work around this problem by executing a TLBI before returning to EL0. 1080 1081 If unsure, say Y. 1082 1083config ARM64_ERRATUM_3194386 1084 bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing" 1085 default y 1086 help 1087 This option adds the workaround for the following errata: 1088 1089 * ARM Cortex-A76 erratum 3324349 1090 * ARM Cortex-A77 erratum 3324348 1091 * ARM Cortex-A78 erratum 3324344 1092 * ARM Cortex-A78C erratum 3324346 1093 * ARM Cortex-A78C erratum 3324347 1094 * ARM Cortex-A710 erratam 3324338 1095 * ARM Cortex-A720 erratum 3456091 1096 * ARM Cortex-A725 erratum 3456106 1097 * ARM Cortex-X1 erratum 3324344 1098 * ARM Cortex-X1C erratum 3324346 1099 * ARM Cortex-X2 erratum 3324338 1100 * ARM Cortex-X3 erratum 3324335 1101 * ARM Cortex-X4 erratum 3194386 1102 * ARM Cortex-X925 erratum 3324334 1103 * ARM Neoverse-N1 erratum 3324349 1104 * ARM Neoverse N2 erratum 3324339 1105 * ARM Neoverse-V1 erratum 3324341 1106 * ARM Neoverse V2 erratum 3324336 1107 * ARM Neoverse-V3 erratum 3312417 1108 1109 On affected cores "MSR SSBS, #0" instructions may not affect 1110 subsequent speculative instructions, which may permit unexepected 1111 speculative store bypassing. 1112 1113 Work around this problem by placing a Speculation Barrier (SB) or 1114 Instruction Synchronization Barrier (ISB) after kernel changes to 1115 SSBS. The presence of the SSBS special-purpose register is hidden 1116 from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace 1117 will use the PR_SPEC_STORE_BYPASS prctl to change SSBS. 1118 1119 If unsure, say Y. 1120 1121config CAVIUM_ERRATUM_22375 1122 bool "Cavium erratum 22375, 24313" 1123 default y 1124 help 1125 Enable workaround for errata 22375 and 24313. 1126 1127 This implements two gicv3-its errata workarounds for ThunderX. Both 1128 with a small impact affecting only ITS table allocation. 1129 1130 erratum 22375: only alloc 8MB table size 1131 erratum 24313: ignore memory access type 1132 1133 The fixes are in ITS initialization and basically ignore memory access 1134 type and table size provided by the TYPER and BASER registers. 1135 1136 If unsure, say Y. 1137 1138config CAVIUM_ERRATUM_23144 1139 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1140 depends on NUMA 1141 default y 1142 help 1143 ITS SYNC command hang for cross node io and collections/cpu mapping. 1144 1145 If unsure, say Y. 1146 1147config CAVIUM_ERRATUM_23154 1148 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1149 default y 1150 help 1151 The ThunderX GICv3 implementation requires a modified version for 1152 reading the IAR status to ensure data synchronization 1153 (access to icc_iar1_el1 is not sync'ed before and after). 1154 1155 It also suffers from erratum 38545 (also present on Marvell's 1156 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1157 spuriously presented to the CPU interface. 1158 1159 If unsure, say Y. 1160 1161config CAVIUM_ERRATUM_27456 1162 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1163 default y 1164 help 1165 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1166 instructions may cause the icache to become corrupted if it 1167 contains data for a non-current ASID. The fix is to 1168 invalidate the icache when changing the mm context. 1169 1170 If unsure, say Y. 1171 1172config CAVIUM_ERRATUM_30115 1173 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1174 default y 1175 help 1176 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1177 1.2, and T83 Pass 1.0, KVM guest execution may disable 1178 interrupts in host. Trapping both GICv3 group-0 and group-1 1179 accesses sidesteps the issue. 1180 1181 If unsure, say Y. 1182 1183config CAVIUM_TX2_ERRATUM_219 1184 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1185 default y 1186 help 1187 On Cavium ThunderX2, a load, store or prefetch instruction between a 1188 TTBR update and the corresponding context synchronizing operation can 1189 cause a spurious Data Abort to be delivered to any hardware thread in 1190 the CPU core. 1191 1192 Work around the issue by avoiding the problematic code sequence and 1193 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1194 trap handler performs the corresponding register access, skips the 1195 instruction and ensures context synchronization by virtue of the 1196 exception return. 1197 1198 If unsure, say Y. 1199 1200config FUJITSU_ERRATUM_010001 1201 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1202 default y 1203 help 1204 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1205 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1206 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1207 This fault occurs under a specific hardware condition when a 1208 load/store instruction performs an address translation using: 1209 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1210 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1211 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1212 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1213 1214 The workaround is to ensure these bits are clear in TCR_ELx. 1215 The workaround only affects the Fujitsu-A64FX. 1216 1217 If unsure, say Y. 1218 1219config HISILICON_ERRATUM_161600802 1220 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1221 default y 1222 help 1223 The HiSilicon Hip07 SoC uses the wrong redistributor base 1224 when issued ITS commands such as VMOVP and VMAPP, and requires 1225 a 128kB offset to be applied to the target address in this commands. 1226 1227 If unsure, say Y. 1228 1229config QCOM_FALKOR_ERRATUM_1003 1230 bool "Falkor E1003: Incorrect translation due to ASID change" 1231 default y 1232 help 1233 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1234 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1235 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1236 then only for entries in the walk cache, since the leaf translation 1237 is unchanged. Work around the erratum by invalidating the walk cache 1238 entries for the trampoline before entering the kernel proper. 1239 1240config QCOM_FALKOR_ERRATUM_1009 1241 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1242 default y 1243 select ARM64_WORKAROUND_REPEAT_TLBI 1244 help 1245 On Falkor v1, the CPU may prematurely complete a DSB following a 1246 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1247 one more time to fix the issue. 1248 1249 If unsure, say Y. 1250 1251config QCOM_QDF2400_ERRATUM_0065 1252 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1253 default y 1254 help 1255 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1256 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1257 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1258 1259 If unsure, say Y. 1260 1261config QCOM_FALKOR_ERRATUM_E1041 1262 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1263 default y 1264 help 1265 Falkor CPU may speculatively fetch instructions from an improper 1266 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1267 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1268 1269 If unsure, say Y. 1270 1271config NVIDIA_CARMEL_CNP_ERRATUM 1272 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1273 default y 1274 help 1275 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1276 invalidate shared TLB entries installed by a different core, as it would 1277 on standard ARM cores. 1278 1279 If unsure, say Y. 1280 1281config ROCKCHIP_ERRATUM_3588001 1282 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1283 default y 1284 help 1285 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1286 This means, that its sharability feature may not be used, even though it 1287 is supported by the IP itself. 1288 1289 If unsure, say Y. 1290 1291config SOCIONEXT_SYNQUACER_PREITS 1292 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1293 default y 1294 help 1295 Socionext Synquacer SoCs implement a separate h/w block to generate 1296 MSI doorbell writes with non-zero values for the device ID. 1297 1298 If unsure, say Y. 1299 1300endmenu # "ARM errata workarounds via the alternatives framework" 1301 1302choice 1303 prompt "Page size" 1304 default ARM64_4K_PAGES 1305 help 1306 Page size (translation granule) configuration. 1307 1308config ARM64_4K_PAGES 1309 bool "4KB" 1310 select HAVE_PAGE_SIZE_4KB 1311 help 1312 This feature enables 4KB pages support. 1313 1314config ARM64_16K_PAGES 1315 bool "16KB" 1316 select HAVE_PAGE_SIZE_16KB 1317 help 1318 The system will use 16KB pages support. AArch32 emulation 1319 requires applications compiled with 16K (or a multiple of 16K) 1320 aligned segments. 1321 1322config ARM64_64K_PAGES 1323 bool "64KB" 1324 select HAVE_PAGE_SIZE_64KB 1325 help 1326 This feature enables 64KB pages support (4KB by default) 1327 allowing only two levels of page tables and faster TLB 1328 look-up. AArch32 emulation requires applications compiled 1329 with 64K aligned segments. 1330 1331endchoice 1332 1333choice 1334 prompt "Virtual address space size" 1335 default ARM64_VA_BITS_52 1336 help 1337 Allows choosing one of multiple possible virtual address 1338 space sizes. The level of translation table is determined by 1339 a combination of page size and virtual address space size. 1340 1341config ARM64_VA_BITS_36 1342 bool "36-bit" if EXPERT 1343 depends on PAGE_SIZE_16KB 1344 1345config ARM64_VA_BITS_39 1346 bool "39-bit" 1347 depends on PAGE_SIZE_4KB 1348 1349config ARM64_VA_BITS_42 1350 bool "42-bit" 1351 depends on PAGE_SIZE_64KB 1352 1353config ARM64_VA_BITS_47 1354 bool "47-bit" 1355 depends on PAGE_SIZE_16KB 1356 1357config ARM64_VA_BITS_48 1358 bool "48-bit" 1359 1360config ARM64_VA_BITS_52 1361 bool "52-bit" 1362 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1363 help 1364 Enable 52-bit virtual addressing for userspace when explicitly 1365 requested via a hint to mmap(). The kernel will also use 52-bit 1366 virtual addresses for its own mappings (provided HW support for 1367 this feature is available, otherwise it reverts to 48-bit). 1368 1369 NOTE: Enabling 52-bit virtual addressing in conjunction with 1370 ARMv8.3 Pointer Authentication will result in the PAC being 1371 reduced from 7 bits to 3 bits, which may have a significant 1372 impact on its susceptibility to brute-force attacks. 1373 1374 If unsure, select 48-bit virtual addressing instead. 1375 1376endchoice 1377 1378config ARM64_FORCE_52BIT 1379 bool "Force 52-bit virtual addresses for userspace" 1380 depends on ARM64_VA_BITS_52 && EXPERT 1381 help 1382 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1383 to maintain compatibility with older software by providing 48-bit VAs 1384 unless a hint is supplied to mmap. 1385 1386 This configuration option disables the 48-bit compatibility logic, and 1387 forces all userspace addresses to be 52-bit on HW that supports it. One 1388 should only enable this configuration option for stress testing userspace 1389 memory management code. If unsure say N here. 1390 1391config ARM64_VA_BITS 1392 int 1393 default 36 if ARM64_VA_BITS_36 1394 default 39 if ARM64_VA_BITS_39 1395 default 42 if ARM64_VA_BITS_42 1396 default 47 if ARM64_VA_BITS_47 1397 default 48 if ARM64_VA_BITS_48 1398 default 52 if ARM64_VA_BITS_52 1399 1400choice 1401 prompt "Physical address space size" 1402 default ARM64_PA_BITS_48 1403 help 1404 Choose the maximum physical address range that the kernel will 1405 support. 1406 1407config ARM64_PA_BITS_48 1408 bool "48-bit" 1409 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52 1410 1411config ARM64_PA_BITS_52 1412 bool "52-bit" 1413 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52 1414 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1415 help 1416 Enable support for a 52-bit physical address space, introduced as 1417 part of the ARMv8.2-LPA extension. 1418 1419 With this enabled, the kernel will also continue to work on CPUs that 1420 do not support ARMv8.2-LPA, but with some added memory overhead (and 1421 minor performance overhead). 1422 1423endchoice 1424 1425config ARM64_PA_BITS 1426 int 1427 default 48 if ARM64_PA_BITS_48 1428 default 52 if ARM64_PA_BITS_52 1429 1430config ARM64_LPA2 1431 def_bool y 1432 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES 1433 1434choice 1435 prompt "Endianness" 1436 default CPU_LITTLE_ENDIAN 1437 help 1438 Select the endianness of data accesses performed by the CPU. Userspace 1439 applications will need to be compiled and linked for the endianness 1440 that is selected here. 1441 1442config CPU_BIG_ENDIAN 1443 bool "Build big-endian kernel" 1444 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c 1445 depends on AS_IS_GNU || AS_VERSION >= 150000 1446 help 1447 Say Y if you plan on running a kernel with a big-endian userspace. 1448 1449config CPU_LITTLE_ENDIAN 1450 bool "Build little-endian kernel" 1451 help 1452 Say Y if you plan on running a kernel with a little-endian userspace. 1453 This is usually the case for distributions targeting arm64. 1454 1455endchoice 1456 1457config SCHED_MC 1458 bool "Multi-core scheduler support" 1459 help 1460 Multi-core scheduler support improves the CPU scheduler's decision 1461 making when dealing with multi-core CPU chips at a cost of slightly 1462 increased overhead in some places. If unsure say N here. 1463 1464config SCHED_CLUSTER 1465 bool "Cluster scheduler support" 1466 help 1467 Cluster scheduler support improves the CPU scheduler's decision 1468 making when dealing with machines that have clusters of CPUs. 1469 Cluster usually means a couple of CPUs which are placed closely 1470 by sharing mid-level caches, last-level cache tags or internal 1471 busses. 1472 1473config SCHED_SMT 1474 bool "SMT scheduler support" 1475 help 1476 Improves the CPU scheduler's decision making when dealing with 1477 MultiThreading at a cost of slightly increased overhead in some 1478 places. If unsure say N here. 1479 1480config NR_CPUS 1481 int "Maximum number of CPUs (2-4096)" 1482 range 2 4096 1483 default "512" 1484 1485config HOTPLUG_CPU 1486 bool "Support for hot-pluggable CPUs" 1487 select GENERIC_IRQ_MIGRATION 1488 help 1489 Say Y here to experiment with turning CPUs off and on. CPUs 1490 can be controlled through /sys/devices/system/cpu. 1491 1492# Common NUMA Features 1493config NUMA 1494 bool "NUMA Memory Allocation and Scheduler Support" 1495 select GENERIC_ARCH_NUMA 1496 select OF_NUMA 1497 select HAVE_SETUP_PER_CPU_AREA 1498 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1499 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1500 select USE_PERCPU_NUMA_NODE_ID 1501 help 1502 Enable NUMA (Non-Uniform Memory Access) support. 1503 1504 The kernel will try to allocate memory used by a CPU on the 1505 local memory of the CPU and add some more 1506 NUMA awareness to the kernel. 1507 1508config NODES_SHIFT 1509 int "Maximum NUMA Nodes (as a power of 2)" 1510 range 1 10 1511 default "4" 1512 depends on NUMA 1513 help 1514 Specify the maximum number of NUMA Nodes available on the target 1515 system. Increases memory reserved to accommodate various tables. 1516 1517source "kernel/Kconfig.hz" 1518 1519config ARCH_SPARSEMEM_ENABLE 1520 def_bool y 1521 select SPARSEMEM_VMEMMAP_ENABLE 1522 select SPARSEMEM_VMEMMAP 1523 1524config HW_PERF_EVENTS 1525 def_bool y 1526 depends on ARM_PMU 1527 1528# Supported by clang >= 7.0 or GCC >= 12.0.0 1529config CC_HAVE_SHADOW_CALL_STACK 1530 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1531 1532config PARAVIRT 1533 bool "Enable paravirtualization code" 1534 help 1535 This changes the kernel so it can modify itself when it is run 1536 under a hypervisor, potentially improving performance significantly 1537 over full virtualization. 1538 1539config PARAVIRT_TIME_ACCOUNTING 1540 bool "Paravirtual steal time accounting" 1541 select PARAVIRT 1542 help 1543 Select this option to enable fine granularity task steal time 1544 accounting. Time spent executing other tasks in parallel with 1545 the current vCPU is discounted from the vCPU power. To account for 1546 that, there can be a small performance impact. 1547 1548 If in doubt, say N here. 1549 1550config ARCH_SUPPORTS_KEXEC 1551 def_bool PM_SLEEP_SMP 1552 1553config ARCH_SUPPORTS_KEXEC_FILE 1554 def_bool y 1555 1556config ARCH_SELECTS_KEXEC_FILE 1557 def_bool y 1558 depends on KEXEC_FILE 1559 select HAVE_IMA_KEXEC if IMA 1560 1561config ARCH_SUPPORTS_KEXEC_SIG 1562 def_bool y 1563 1564config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1565 def_bool y 1566 1567config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1568 def_bool y 1569 1570config ARCH_SUPPORTS_CRASH_DUMP 1571 def_bool y 1572 1573config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1574 def_bool CRASH_RESERVE 1575 1576config TRANS_TABLE 1577 def_bool y 1578 depends on HIBERNATION || KEXEC_CORE 1579 1580config XEN_DOM0 1581 def_bool y 1582 depends on XEN 1583 1584config XEN 1585 bool "Xen guest support on ARM64" 1586 depends on ARM64 && OF 1587 select SWIOTLB_XEN 1588 select PARAVIRT 1589 help 1590 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1591 1592# include/linux/mmzone.h requires the following to be true: 1593# 1594# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1595# 1596# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1597# 1598# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1599# ----+-------------------+--------------+----------------------+-------------------------+ 1600# 4K | 27 | 12 | 15 | 10 | 1601# 16K | 27 | 14 | 13 | 11 | 1602# 64K | 29 | 16 | 13 | 13 | 1603config ARCH_FORCE_MAX_ORDER 1604 int 1605 default "13" if ARM64_64K_PAGES 1606 default "11" if ARM64_16K_PAGES 1607 default "10" 1608 help 1609 The kernel page allocator limits the size of maximal physically 1610 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1611 defines the maximal power of two of number of pages that can be 1612 allocated as a single contiguous block. This option allows 1613 overriding the default setting when ability to allocate very 1614 large blocks of physically contiguous memory is required. 1615 1616 The maximal size of allocation cannot exceed the size of the 1617 section, so the value of MAX_PAGE_ORDER should satisfy 1618 1619 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1620 1621 Don't change if unsure. 1622 1623config UNMAP_KERNEL_AT_EL0 1624 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1625 default y 1626 help 1627 Speculation attacks against some high-performance processors can 1628 be used to bypass MMU permission checks and leak kernel data to 1629 userspace. This can be defended against by unmapping the kernel 1630 when running in userspace, mapping it back in on exception entry 1631 via a trampoline page in the vector table. 1632 1633 If unsure, say Y. 1634 1635config MITIGATE_SPECTRE_BRANCH_HISTORY 1636 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1637 default y 1638 help 1639 Speculation attacks against some high-performance processors can 1640 make use of branch history to influence future speculation. 1641 When taking an exception from user-space, a sequence of branches 1642 or a firmware call overwrites the branch history. 1643 1644config RODATA_FULL_DEFAULT_ENABLED 1645 bool "Apply r/o permissions of VM areas also to their linear aliases" 1646 default y 1647 help 1648 Apply read-only attributes of VM areas to the linear alias of 1649 the backing pages as well. This prevents code or read-only data 1650 from being modified (inadvertently or intentionally) via another 1651 mapping of the same memory page. This additional enhancement can 1652 be turned off at runtime by passing rodata=[off|on] (and turned on 1653 with rodata=full if this option is set to 'n') 1654 1655 This requires the linear region to be mapped down to pages, 1656 which may adversely affect performance in some cases. 1657 1658config ARM64_SW_TTBR0_PAN 1659 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1660 depends on !KCSAN 1661 help 1662 Enabling this option prevents the kernel from accessing 1663 user-space memory directly by pointing TTBR0_EL1 to a reserved 1664 zeroed area and reserved ASID. The user access routines 1665 restore the valid TTBR0_EL1 temporarily. 1666 1667config ARM64_TAGGED_ADDR_ABI 1668 bool "Enable the tagged user addresses syscall ABI" 1669 default y 1670 help 1671 When this option is enabled, user applications can opt in to a 1672 relaxed ABI via prctl() allowing tagged addresses to be passed 1673 to system calls as pointer arguments. For details, see 1674 Documentation/arch/arm64/tagged-address-abi.rst. 1675 1676menuconfig COMPAT 1677 bool "Kernel support for 32-bit EL0" 1678 depends on ARM64_4K_PAGES || EXPERT 1679 select HAVE_UID16 1680 select OLD_SIGSUSPEND3 1681 select COMPAT_OLD_SIGACTION 1682 help 1683 This option enables support for a 32-bit EL0 running under a 64-bit 1684 kernel at EL1. AArch32-specific components such as system calls, 1685 the user helper functions, VFP support and the ptrace interface are 1686 handled appropriately by the kernel. 1687 1688 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1689 that you will only be able to execute AArch32 binaries that were compiled 1690 with page size aligned segments. 1691 1692 If you want to execute 32-bit userspace applications, say Y. 1693 1694if COMPAT 1695 1696config KUSER_HELPERS 1697 bool "Enable kuser helpers page for 32-bit applications" 1698 default y 1699 help 1700 Warning: disabling this option may break 32-bit user programs. 1701 1702 Provide kuser helpers to compat tasks. The kernel provides 1703 helper code to userspace in read only form at a fixed location 1704 to allow userspace to be independent of the CPU type fitted to 1705 the system. This permits binaries to be run on ARMv4 through 1706 to ARMv8 without modification. 1707 1708 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1709 1710 However, the fixed address nature of these helpers can be used 1711 by ROP (return orientated programming) authors when creating 1712 exploits. 1713 1714 If all of the binaries and libraries which run on your platform 1715 are built specifically for your platform, and make no use of 1716 these helpers, then you can turn this option off to hinder 1717 such exploits. However, in that case, if a binary or library 1718 relying on those helpers is run, it will not function correctly. 1719 1720 Say N here only if you are absolutely certain that you do not 1721 need these helpers; otherwise, the safe option is to say Y. 1722 1723config COMPAT_VDSO 1724 bool "Enable vDSO for 32-bit applications" 1725 depends on !CPU_BIG_ENDIAN 1726 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1727 select GENERIC_COMPAT_VDSO 1728 default y 1729 help 1730 Place in the process address space of 32-bit applications an 1731 ELF shared object providing fast implementations of gettimeofday 1732 and clock_gettime. 1733 1734 You must have a 32-bit build of glibc 2.22 or later for programs 1735 to seamlessly take advantage of this. 1736 1737config THUMB2_COMPAT_VDSO 1738 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1739 depends on COMPAT_VDSO 1740 default y 1741 help 1742 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1743 otherwise with '-marm'. 1744 1745config COMPAT_ALIGNMENT_FIXUPS 1746 bool "Fix up misaligned multi-word loads and stores in user space" 1747 1748menuconfig ARMV8_DEPRECATED 1749 bool "Emulate deprecated/obsolete ARMv8 instructions" 1750 depends on SYSCTL 1751 help 1752 Legacy software support may require certain instructions 1753 that have been deprecated or obsoleted in the architecture. 1754 1755 Enable this config to enable selective emulation of these 1756 features. 1757 1758 If unsure, say Y 1759 1760if ARMV8_DEPRECATED 1761 1762config SWP_EMULATION 1763 bool "Emulate SWP/SWPB instructions" 1764 help 1765 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1766 they are always undefined. Say Y here to enable software 1767 emulation of these instructions for userspace using LDXR/STXR. 1768 This feature can be controlled at runtime with the abi.swp 1769 sysctl which is disabled by default. 1770 1771 In some older versions of glibc [<=2.8] SWP is used during futex 1772 trylock() operations with the assumption that the code will not 1773 be preempted. This invalid assumption may be more likely to fail 1774 with SWP emulation enabled, leading to deadlock of the user 1775 application. 1776 1777 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1778 on an external transaction monitoring block called a global 1779 monitor to maintain update atomicity. If your system does not 1780 implement a global monitor, this option can cause programs that 1781 perform SWP operations to uncached memory to deadlock. 1782 1783 If unsure, say Y 1784 1785config CP15_BARRIER_EMULATION 1786 bool "Emulate CP15 Barrier instructions" 1787 help 1788 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1789 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1790 strongly recommended to use the ISB, DSB, and DMB 1791 instructions instead. 1792 1793 Say Y here to enable software emulation of these 1794 instructions for AArch32 userspace code. When this option is 1795 enabled, CP15 barrier usage is traced which can help 1796 identify software that needs updating. This feature can be 1797 controlled at runtime with the abi.cp15_barrier sysctl. 1798 1799 If unsure, say Y 1800 1801config SETEND_EMULATION 1802 bool "Emulate SETEND instruction" 1803 help 1804 The SETEND instruction alters the data-endianness of the 1805 AArch32 EL0, and is deprecated in ARMv8. 1806 1807 Say Y here to enable software emulation of the instruction 1808 for AArch32 userspace code. This feature can be controlled 1809 at runtime with the abi.setend sysctl. 1810 1811 Note: All the cpus on the system must have mixed endian support at EL0 1812 for this feature to be enabled. If a new CPU - which doesn't support mixed 1813 endian - is hotplugged in after this feature has been enabled, there could 1814 be unexpected results in the applications. 1815 1816 If unsure, say Y 1817endif # ARMV8_DEPRECATED 1818 1819endif # COMPAT 1820 1821menu "ARMv8.1 architectural features" 1822 1823config ARM64_HW_AFDBM 1824 bool "Support for hardware updates of the Access and Dirty page flags" 1825 default y 1826 help 1827 The ARMv8.1 architecture extensions introduce support for 1828 hardware updates of the access and dirty information in page 1829 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1830 capable processors, accesses to pages with PTE_AF cleared will 1831 set this bit instead of raising an access flag fault. 1832 Similarly, writes to read-only pages with the DBM bit set will 1833 clear the read-only bit (AP[2]) instead of raising a 1834 permission fault. 1835 1836 Kernels built with this configuration option enabled continue 1837 to work on pre-ARMv8.1 hardware and the performance impact is 1838 minimal. If unsure, say Y. 1839 1840config ARM64_PAN 1841 bool "Enable support for Privileged Access Never (PAN)" 1842 default y 1843 help 1844 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1845 prevents the kernel or hypervisor from accessing user-space (EL0) 1846 memory directly. 1847 1848 Choosing this option will cause any unprotected (not using 1849 copy_to_user et al) memory access to fail with a permission fault. 1850 1851 The feature is detected at runtime, and will remain as a 'nop' 1852 instruction if the cpu does not implement the feature. 1853 1854config AS_HAS_LSE_ATOMICS 1855 def_bool $(as-instr,.arch_extension lse) 1856 1857config ARM64_LSE_ATOMICS 1858 bool 1859 default ARM64_USE_LSE_ATOMICS 1860 depends on AS_HAS_LSE_ATOMICS 1861 1862config ARM64_USE_LSE_ATOMICS 1863 bool "Atomic instructions" 1864 default y 1865 help 1866 As part of the Large System Extensions, ARMv8.1 introduces new 1867 atomic instructions that are designed specifically to scale in 1868 very large systems. 1869 1870 Say Y here to make use of these instructions for the in-kernel 1871 atomic routines. This incurs a small overhead on CPUs that do 1872 not support these instructions and requires the kernel to be 1873 built with binutils >= 2.25 in order for the new instructions 1874 to be used. 1875 1876endmenu # "ARMv8.1 architectural features" 1877 1878menu "ARMv8.2 architectural features" 1879 1880config AS_HAS_ARMV8_2 1881 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1882 1883config AS_HAS_SHA3 1884 def_bool $(as-instr,.arch armv8.2-a+sha3) 1885 1886config ARM64_PMEM 1887 bool "Enable support for persistent memory" 1888 select ARCH_HAS_PMEM_API 1889 select ARCH_HAS_UACCESS_FLUSHCACHE 1890 help 1891 Say Y to enable support for the persistent memory API based on the 1892 ARMv8.2 DCPoP feature. 1893 1894 The feature is detected at runtime, and the kernel will use DC CVAC 1895 operations if DC CVAP is not supported (following the behaviour of 1896 DC CVAP itself if the system does not define a point of persistence). 1897 1898config ARM64_RAS_EXTN 1899 bool "Enable support for RAS CPU Extensions" 1900 default y 1901 help 1902 CPUs that support the Reliability, Availability and Serviceability 1903 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1904 errors, classify them and report them to software. 1905 1906 On CPUs with these extensions system software can use additional 1907 barriers to determine if faults are pending and read the 1908 classification from a new set of registers. 1909 1910 Selecting this feature will allow the kernel to use these barriers 1911 and access the new registers if the system supports the extension. 1912 Platform RAS features may additionally depend on firmware support. 1913 1914config ARM64_CNP 1915 bool "Enable support for Common Not Private (CNP) translations" 1916 default y 1917 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1918 help 1919 Common Not Private (CNP) allows translation table entries to 1920 be shared between different PEs in the same inner shareable 1921 domain, so the hardware can use this fact to optimise the 1922 caching of such entries in the TLB. 1923 1924 Selecting this option allows the CNP feature to be detected 1925 at runtime, and does not affect PEs that do not implement 1926 this feature. 1927 1928endmenu # "ARMv8.2 architectural features" 1929 1930menu "ARMv8.3 architectural features" 1931 1932config ARM64_PTR_AUTH 1933 bool "Enable support for pointer authentication" 1934 default y 1935 help 1936 Pointer authentication (part of the ARMv8.3 Extensions) provides 1937 instructions for signing and authenticating pointers against secret 1938 keys, which can be used to mitigate Return Oriented Programming (ROP) 1939 and other attacks. 1940 1941 This option enables these instructions at EL0 (i.e. for userspace). 1942 Choosing this option will cause the kernel to initialise secret keys 1943 for each process at exec() time, with these keys being 1944 context-switched along with the process. 1945 1946 The feature is detected at runtime. If the feature is not present in 1947 hardware it will not be advertised to userspace/KVM guest nor will it 1948 be enabled. 1949 1950 If the feature is present on the boot CPU but not on a late CPU, then 1951 the late CPU will be parked. Also, if the boot CPU does not have 1952 address auth and the late CPU has then the late CPU will still boot 1953 but with the feature disabled. On such a system, this option should 1954 not be selected. 1955 1956config ARM64_PTR_AUTH_KERNEL 1957 bool "Use pointer authentication for kernel" 1958 default y 1959 depends on ARM64_PTR_AUTH 1960 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1961 # Modern compilers insert a .note.gnu.property section note for PAC 1962 # which is only understood by binutils starting with version 2.33.1. 1963 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1964 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1965 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1966 help 1967 If the compiler supports the -mbranch-protection or 1968 -msign-return-address flag (e.g. GCC 7 or later), then this option 1969 will cause the kernel itself to be compiled with return address 1970 protection. In this case, and if the target hardware is known to 1971 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1972 disabled with minimal loss of protection. 1973 1974 This feature works with FUNCTION_GRAPH_TRACER option only if 1975 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1976 1977config CC_HAS_BRANCH_PROT_PAC_RET 1978 # GCC 9 or later, clang 8 or later 1979 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1980 1981config CC_HAS_SIGN_RETURN_ADDRESS 1982 # GCC 7, 8 1983 def_bool $(cc-option,-msign-return-address=all) 1984 1985config AS_HAS_ARMV8_3 1986 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1987 1988config AS_HAS_CFI_NEGATE_RA_STATE 1989 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1990 1991config AS_HAS_LDAPR 1992 def_bool $(as-instr,.arch_extension rcpc) 1993 1994endmenu # "ARMv8.3 architectural features" 1995 1996menu "ARMv8.4 architectural features" 1997 1998config ARM64_AMU_EXTN 1999 bool "Enable support for the Activity Monitors Unit CPU extension" 2000 default y 2001 help 2002 The activity monitors extension is an optional extension introduced 2003 by the ARMv8.4 CPU architecture. This enables support for version 1 2004 of the activity monitors architecture, AMUv1. 2005 2006 To enable the use of this extension on CPUs that implement it, say Y. 2007 2008 Note that for architectural reasons, firmware _must_ implement AMU 2009 support when running on CPUs that present the activity monitors 2010 extension. The required support is present in: 2011 * Version 1.5 and later of the ARM Trusted Firmware 2012 2013 For kernels that have this configuration enabled but boot with broken 2014 firmware, you may need to say N here until the firmware is fixed. 2015 Otherwise you may experience firmware panics or lockups when 2016 accessing the counter registers. Even if you are not observing these 2017 symptoms, the values returned by the register reads might not 2018 correctly reflect reality. Most commonly, the value read will be 0, 2019 indicating that the counter is not enabled. 2020 2021config AS_HAS_ARMV8_4 2022 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 2023 2024config ARM64_TLB_RANGE 2025 bool "Enable support for tlbi range feature" 2026 default y 2027 depends on AS_HAS_ARMV8_4 2028 help 2029 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 2030 range of input addresses. 2031 2032 The feature introduces new assembly instructions, and they were 2033 support when binutils >= 2.30. 2034 2035endmenu # "ARMv8.4 architectural features" 2036 2037menu "ARMv8.5 architectural features" 2038 2039config AS_HAS_ARMV8_5 2040 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 2041 2042config ARM64_BTI 2043 bool "Branch Target Identification support" 2044 default y 2045 help 2046 Branch Target Identification (part of the ARMv8.5 Extensions) 2047 provides a mechanism to limit the set of locations to which computed 2048 branch instructions such as BR or BLR can jump. 2049 2050 To make use of BTI on CPUs that support it, say Y. 2051 2052 BTI is intended to provide complementary protection to other control 2053 flow integrity protection mechanisms, such as the Pointer 2054 authentication mechanism provided as part of the ARMv8.3 Extensions. 2055 For this reason, it does not make sense to enable this option without 2056 also enabling support for pointer authentication. Thus, when 2057 enabling this option you should also select ARM64_PTR_AUTH=y. 2058 2059 Userspace binaries must also be specifically compiled to make use of 2060 this mechanism. If you say N here or the hardware does not support 2061 BTI, such binaries can still run, but you get no additional 2062 enforcement of branch destinations. 2063 2064config ARM64_BTI_KERNEL 2065 bool "Use Branch Target Identification for kernel" 2066 default y 2067 depends on ARM64_BTI 2068 depends on ARM64_PTR_AUTH_KERNEL 2069 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2070 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2071 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2072 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2073 depends on !CC_IS_GCC 2074 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2075 help 2076 Build the kernel with Branch Target Identification annotations 2077 and enable enforcement of this for kernel code. When this option 2078 is enabled and the system supports BTI all kernel code including 2079 modular code must have BTI enabled. 2080 2081config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2082 # GCC 9 or later, clang 8 or later 2083 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2084 2085config ARM64_E0PD 2086 bool "Enable support for E0PD" 2087 default y 2088 help 2089 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2090 that EL0 accesses made via TTBR1 always fault in constant time, 2091 providing similar benefits to KASLR as those provided by KPTI, but 2092 with lower overhead and without disrupting legitimate access to 2093 kernel memory such as SPE. 2094 2095 This option enables E0PD for TTBR1 where available. 2096 2097config ARM64_AS_HAS_MTE 2098 # Initial support for MTE went in binutils 2.32.0, checked with 2099 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2100 # as a late addition to the final architecture spec (LDGM/STGM) 2101 # is only supported in the newer 2.32.x and 2.33 binutils 2102 # versions, hence the extra "stgm" instruction check below. 2103 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2104 2105config ARM64_MTE 2106 bool "Memory Tagging Extension support" 2107 default y 2108 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2109 depends on AS_HAS_ARMV8_5 2110 depends on AS_HAS_LSE_ATOMICS 2111 # Required for tag checking in the uaccess routines 2112 depends on ARM64_PAN 2113 select ARCH_HAS_SUBPAGE_FAULTS 2114 select ARCH_USES_HIGH_VMA_FLAGS 2115 select ARCH_USES_PG_ARCH_X 2116 help 2117 Memory Tagging (part of the ARMv8.5 Extensions) provides 2118 architectural support for run-time, always-on detection of 2119 various classes of memory error to aid with software debugging 2120 to eliminate vulnerabilities arising from memory-unsafe 2121 languages. 2122 2123 This option enables the support for the Memory Tagging 2124 Extension at EL0 (i.e. for userspace). 2125 2126 Selecting this option allows the feature to be detected at 2127 runtime. Any secondary CPU not implementing this feature will 2128 not be allowed a late bring-up. 2129 2130 Userspace binaries that want to use this feature must 2131 explicitly opt in. The mechanism for the userspace is 2132 described in: 2133 2134 Documentation/arch/arm64/memory-tagging-extension.rst. 2135 2136endmenu # "ARMv8.5 architectural features" 2137 2138menu "ARMv8.7 architectural features" 2139 2140config ARM64_EPAN 2141 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2142 default y 2143 depends on ARM64_PAN 2144 help 2145 Enhanced Privileged Access Never (EPAN) allows Privileged 2146 Access Never to be used with Execute-only mappings. 2147 2148 The feature is detected at runtime, and will remain disabled 2149 if the cpu does not implement the feature. 2150endmenu # "ARMv8.7 architectural features" 2151 2152config ARM64_SVE 2153 bool "ARM Scalable Vector Extension support" 2154 default y 2155 help 2156 The Scalable Vector Extension (SVE) is an extension to the AArch64 2157 execution state which complements and extends the SIMD functionality 2158 of the base architecture to support much larger vectors and to enable 2159 additional vectorisation opportunities. 2160 2161 To enable use of this extension on CPUs that implement it, say Y. 2162 2163 On CPUs that support the SVE2 extensions, this option will enable 2164 those too. 2165 2166 Note that for architectural reasons, firmware _must_ implement SVE 2167 support when running on SVE capable hardware. The required support 2168 is present in: 2169 2170 * version 1.5 and later of the ARM Trusted Firmware 2171 * the AArch64 boot wrapper since commit 5e1261e08abf 2172 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2173 2174 For other firmware implementations, consult the firmware documentation 2175 or vendor. 2176 2177 If you need the kernel to boot on SVE-capable hardware with broken 2178 firmware, you may need to say N here until you get your firmware 2179 fixed. Otherwise, you may experience firmware panics or lockups when 2180 booting the kernel. If unsure and you are not observing these 2181 symptoms, you should assume that it is safe to say Y. 2182 2183config ARM64_SME 2184 bool "ARM Scalable Matrix Extension support" 2185 default y 2186 depends on ARM64_SVE 2187 help 2188 The Scalable Matrix Extension (SME) is an extension to the AArch64 2189 execution state which utilises a substantial subset of the SVE 2190 instruction set, together with the addition of new architectural 2191 register state capable of holding two dimensional matrix tiles to 2192 enable various matrix operations. 2193 2194config ARM64_PSEUDO_NMI 2195 bool "Support for NMI-like interrupts" 2196 select ARM_GIC_V3 2197 help 2198 Adds support for mimicking Non-Maskable Interrupts through the use of 2199 GIC interrupt priority. This support requires version 3 or later of 2200 ARM GIC. 2201 2202 This high priority configuration for interrupts needs to be 2203 explicitly enabled by setting the kernel parameter 2204 "irqchip.gicv3_pseudo_nmi" to 1. 2205 2206 If unsure, say N 2207 2208if ARM64_PSEUDO_NMI 2209config ARM64_DEBUG_PRIORITY_MASKING 2210 bool "Debug interrupt priority masking" 2211 help 2212 This adds runtime checks to functions enabling/disabling 2213 interrupts when using priority masking. The additional checks verify 2214 the validity of ICC_PMR_EL1 when calling concerned functions. 2215 2216 If unsure, say N 2217endif # ARM64_PSEUDO_NMI 2218 2219config RELOCATABLE 2220 bool "Build a relocatable kernel image" if EXPERT 2221 select ARCH_HAS_RELR 2222 default y 2223 help 2224 This builds the kernel as a Position Independent Executable (PIE), 2225 which retains all relocation metadata required to relocate the 2226 kernel binary at runtime to a different virtual address than the 2227 address it was linked at. 2228 Since AArch64 uses the RELA relocation format, this requires a 2229 relocation pass at runtime even if the kernel is loaded at the 2230 same address it was linked at. 2231 2232config RANDOMIZE_BASE 2233 bool "Randomize the address of the kernel image" 2234 select RELOCATABLE 2235 help 2236 Randomizes the virtual address at which the kernel image is 2237 loaded, as a security feature that deters exploit attempts 2238 relying on knowledge of the location of kernel internals. 2239 2240 It is the bootloader's job to provide entropy, by passing a 2241 random u64 value in /chosen/kaslr-seed at kernel entry. 2242 2243 When booting via the UEFI stub, it will invoke the firmware's 2244 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2245 to the kernel proper. In addition, it will randomise the physical 2246 location of the kernel Image as well. 2247 2248 If unsure, say N. 2249 2250config RANDOMIZE_MODULE_REGION_FULL 2251 bool "Randomize the module region over a 2 GB range" 2252 depends on RANDOMIZE_BASE 2253 default y 2254 help 2255 Randomizes the location of the module region inside a 2 GB window 2256 covering the core kernel. This way, it is less likely for modules 2257 to leak information about the location of core kernel data structures 2258 but it does imply that function calls between modules and the core 2259 kernel will need to be resolved via veneers in the module PLT. 2260 2261 When this option is not set, the module region will be randomized over 2262 a limited range that contains the [_stext, _etext] interval of the 2263 core kernel, so branch relocations are almost always in range unless 2264 the region is exhausted. In this particular case of region 2265 exhaustion, modules might be able to fall back to a larger 2GB area. 2266 2267config CC_HAVE_STACKPROTECTOR_SYSREG 2268 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2269 2270config STACKPROTECTOR_PER_TASK 2271 def_bool y 2272 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2273 2274config UNWIND_PATCH_PAC_INTO_SCS 2275 bool "Enable shadow call stack dynamically using code patching" 2276 # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated 2277 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2278 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2279 depends on SHADOW_CALL_STACK 2280 select UNWIND_TABLES 2281 select DYNAMIC_SCS 2282 2283config ARM64_CONTPTE 2284 bool "Contiguous PTE mappings for user memory" if EXPERT 2285 depends on TRANSPARENT_HUGEPAGE 2286 default y 2287 help 2288 When enabled, user mappings are configured using the PTE contiguous 2289 bit, for any mappings that meet the size and alignment requirements. 2290 This reduces TLB pressure and improves performance. 2291 2292endmenu # "Kernel Features" 2293 2294menu "Boot options" 2295 2296config ARM64_ACPI_PARKING_PROTOCOL 2297 bool "Enable support for the ARM64 ACPI parking protocol" 2298 depends on ACPI 2299 help 2300 Enable support for the ARM64 ACPI parking protocol. If disabled 2301 the kernel will not allow booting through the ARM64 ACPI parking 2302 protocol even if the corresponding data is present in the ACPI 2303 MADT table. 2304 2305config CMDLINE 2306 string "Default kernel command string" 2307 default "" 2308 help 2309 Provide a set of default command-line options at build time by 2310 entering them here. As a minimum, you should specify the the 2311 root device (e.g. root=/dev/nfs). 2312 2313choice 2314 prompt "Kernel command line type" 2315 depends on CMDLINE != "" 2316 default CMDLINE_FROM_BOOTLOADER 2317 help 2318 Choose how the kernel will handle the provided default kernel 2319 command line string. 2320 2321config CMDLINE_FROM_BOOTLOADER 2322 bool "Use bootloader kernel arguments if available" 2323 help 2324 Uses the command-line options passed by the boot loader. If 2325 the boot loader doesn't provide any, the default kernel command 2326 string provided in CMDLINE will be used. 2327 2328config CMDLINE_FORCE 2329 bool "Always use the default kernel command string" 2330 help 2331 Always use the default kernel command string, even if the boot 2332 loader passes other arguments to the kernel. 2333 This is useful if you cannot or don't want to change the 2334 command-line options your boot loader passes to the kernel. 2335 2336endchoice 2337 2338config EFI_STUB 2339 bool 2340 2341config EFI 2342 bool "UEFI runtime support" 2343 depends on OF && !CPU_BIG_ENDIAN 2344 depends on KERNEL_MODE_NEON 2345 select ARCH_SUPPORTS_ACPI 2346 select LIBFDT 2347 select UCS2_STRING 2348 select EFI_PARAMS_FROM_FDT 2349 select EFI_RUNTIME_WRAPPERS 2350 select EFI_STUB 2351 select EFI_GENERIC_STUB 2352 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2353 default y 2354 help 2355 This option provides support for runtime services provided 2356 by UEFI firmware (such as non-volatile variables, realtime 2357 clock, and platform reset). A UEFI stub is also provided to 2358 allow the kernel to be booted as an EFI application. This 2359 is only useful on systems that have UEFI firmware. 2360 2361config COMPRESSED_INSTALL 2362 bool "Install compressed image by default" 2363 help 2364 This makes the regular "make install" install the compressed 2365 image we built, not the legacy uncompressed one. 2366 2367 You can check that a compressed image works for you by doing 2368 "make zinstall" first, and verifying that everything is fine 2369 in your environment before making "make install" do this for 2370 you. 2371 2372config DMI 2373 bool "Enable support for SMBIOS (DMI) tables" 2374 depends on EFI 2375 default y 2376 help 2377 This enables SMBIOS/DMI feature for systems. 2378 2379 This option is only useful on systems that have UEFI firmware. 2380 However, even with this option, the resultant kernel should 2381 continue to boot on existing non-UEFI platforms. 2382 2383endmenu # "Boot options" 2384 2385menu "Power management options" 2386 2387source "kernel/power/Kconfig" 2388 2389config ARCH_HIBERNATION_POSSIBLE 2390 def_bool y 2391 depends on CPU_PM 2392 2393config ARCH_HIBERNATION_HEADER 2394 def_bool y 2395 depends on HIBERNATION 2396 2397config ARCH_SUSPEND_POSSIBLE 2398 def_bool y 2399 2400endmenu # "Power management options" 2401 2402menu "CPU Power Management" 2403 2404source "drivers/cpuidle/Kconfig" 2405 2406source "drivers/cpufreq/Kconfig" 2407 2408endmenu # "CPU Power Management" 2409 2410source "drivers/acpi/Kconfig" 2411 2412source "arch/arm64/kvm/Kconfig" 2413 2414