xref: /linux/arch/arm64/Kconfig (revision ca627e636551e74b528f150d744f67d9a63f0ae7)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
18	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
19	select ARCH_ENABLE_MEMORY_HOTPLUG
20	select ARCH_ENABLE_MEMORY_HOTREMOVE
21	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
22	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
23	select ARCH_HAS_CACHE_LINE_SIZE
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_PREP_COHERENT
28	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
29	select ARCH_HAS_FAST_MULTIPLIER
30	select ARCH_HAS_FORTIFY_SOURCE
31	select ARCH_HAS_GCOV_PROFILE_ALL
32	select ARCH_HAS_GIGANTIC_PAGE
33	select ARCH_HAS_KCOV
34	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
35	select ARCH_HAS_KEEPINITRD
36	select ARCH_HAS_MEMBARRIER_SYNC_CORE
37	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
38	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
39	select ARCH_HAS_PTE_DEVMAP
40	select ARCH_HAS_PTE_SPECIAL
41	select ARCH_HAS_HW_PTE_YOUNG
42	select ARCH_HAS_SETUP_DMA_OPS
43	select ARCH_HAS_SET_DIRECT_MAP
44	select ARCH_HAS_SET_MEMORY
45	select ARCH_STACKWALK
46	select ARCH_HAS_STRICT_KERNEL_RWX
47	select ARCH_HAS_STRICT_MODULE_RWX
48	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
49	select ARCH_HAS_SYNC_DMA_FOR_CPU
50	select ARCH_HAS_SYSCALL_WRAPPER
51	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
52	select ARCH_HAS_ZONE_DMA_SET if EXPERT
53	select ARCH_HAVE_ELF_PROT
54	select ARCH_HAVE_NMI_SAFE_CMPXCHG
55	select ARCH_HAVE_TRACE_MMIO_ACCESS
56	select ARCH_INLINE_READ_LOCK if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
58	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
59	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
62	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
66	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
70	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
71	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
72	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
73	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
76	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
80	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
81	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
82	select ARCH_KEEP_MEMBLOCK
83	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
84	select ARCH_USE_CMPXCHG_LOCKREF
85	select ARCH_USE_GNU_PROPERTY
86	select ARCH_USE_MEMTEST
87	select ARCH_USE_QUEUED_RWLOCKS
88	select ARCH_USE_QUEUED_SPINLOCKS
89	select ARCH_USE_SYM_ANNOTATIONS
90	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
91	select ARCH_SUPPORTS_HUGETLBFS
92	select ARCH_SUPPORTS_MEMORY_FAILURE
93	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
94	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
95	select ARCH_SUPPORTS_LTO_CLANG_THIN
96	select ARCH_SUPPORTS_CFI_CLANG
97	select ARCH_SUPPORTS_ATOMIC_RMW
98	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
99	select ARCH_SUPPORTS_NUMA_BALANCING
100	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
101	select ARCH_SUPPORTS_PER_VMA_LOCK
102	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
103	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
104	select ARCH_WANT_DEFAULT_BPF_JIT
105	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
106	select ARCH_WANT_FRAME_POINTERS
107	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
108	select ARCH_WANT_LD_ORPHAN_WARN
109	select ARCH_WANTS_EXECMEM_LATE if EXECMEM
110	select ARCH_WANTS_NO_INSTR
111	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
112	select ARCH_HAS_UBSAN
113	select ARM_AMBA
114	select ARM_ARCH_TIMER
115	select ARM_GIC
116	select AUDIT_ARCH_COMPAT_GENERIC
117	select ARM_GIC_V2M if PCI
118	select ARM_GIC_V3
119	select ARM_GIC_V3_ITS if PCI
120	select ARM_PSCI_FW
121	select BUILDTIME_TABLE_SORT
122	select CLONE_BACKWARDS
123	select COMMON_CLK
124	select CPU_PM if (SUSPEND || CPU_IDLE)
125	select CPUMASK_OFFSTACK if NR_CPUS > 256
126	select CRC32
127	select DCACHE_WORD_ACCESS
128	select DYNAMIC_FTRACE if FUNCTION_TRACER
129	select DMA_BOUNCE_UNALIGNED_KMALLOC
130	select DMA_DIRECT_REMAP
131	select EDAC_SUPPORT
132	select FRAME_POINTER
133	select FUNCTION_ALIGNMENT_4B
134	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
135	select GENERIC_ALLOCATOR
136	select GENERIC_ARCH_TOPOLOGY
137	select GENERIC_CLOCKEVENTS_BROADCAST
138	select GENERIC_CPU_AUTOPROBE
139	select GENERIC_CPU_DEVICES
140	select GENERIC_CPU_VULNERABILITIES
141	select GENERIC_EARLY_IOREMAP
142	select GENERIC_IDLE_POLL_SETUP
143	select GENERIC_IOREMAP
144	select GENERIC_IRQ_IPI
145	select GENERIC_IRQ_PROBE
146	select GENERIC_IRQ_SHOW
147	select GENERIC_IRQ_SHOW_LEVEL
148	select GENERIC_LIB_DEVMEM_IS_ALLOWED
149	select GENERIC_PCI_IOMAP
150	select GENERIC_PTDUMP
151	select GENERIC_SCHED_CLOCK
152	select GENERIC_SMP_IDLE_THREAD
153	select GENERIC_TIME_VSYSCALL
154	select GENERIC_GETTIMEOFDAY
155	select GENERIC_VDSO_TIME_NS
156	select HARDIRQS_SW_RESEND
157	select HAS_IOPORT
158	select HAVE_MOVE_PMD
159	select HAVE_MOVE_PUD
160	select HAVE_PCI
161	select HAVE_ACPI_APEI if (ACPI && EFI)
162	select HAVE_ALIGNED_STRUCT_PAGE
163	select HAVE_ARCH_AUDITSYSCALL
164	select HAVE_ARCH_BITREVERSE
165	select HAVE_ARCH_COMPILER_H
166	select HAVE_ARCH_HUGE_VMALLOC
167	select HAVE_ARCH_HUGE_VMAP
168	select HAVE_ARCH_JUMP_LABEL
169	select HAVE_ARCH_JUMP_LABEL_RELATIVE
170	select HAVE_ARCH_KASAN
171	select HAVE_ARCH_KASAN_VMALLOC
172	select HAVE_ARCH_KASAN_SW_TAGS
173	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
174	# Some instrumentation may be unsound, hence EXPERT
175	select HAVE_ARCH_KCSAN if EXPERT
176	select HAVE_ARCH_KFENCE
177	select HAVE_ARCH_KGDB
178	select HAVE_ARCH_MMAP_RND_BITS
179	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
180	select HAVE_ARCH_PREL32_RELOCATIONS
181	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
182	select HAVE_ARCH_SECCOMP_FILTER
183	select HAVE_ARCH_STACKLEAK
184	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
185	select HAVE_ARCH_TRACEHOOK
186	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
187	select HAVE_ARCH_VMAP_STACK
188	select HAVE_ARM_SMCCC
189	select HAVE_ASM_MODVERSIONS
190	select HAVE_EBPF_JIT
191	select HAVE_C_RECORDMCOUNT
192	select HAVE_CMPXCHG_DOUBLE
193	select HAVE_CMPXCHG_LOCAL
194	select HAVE_CONTEXT_TRACKING_USER
195	select HAVE_DEBUG_KMEMLEAK
196	select HAVE_DMA_CONTIGUOUS
197	select HAVE_DYNAMIC_FTRACE
198	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
199		if $(cc-option,-fpatchable-function-entry=2)
200	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
201		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
202	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
203		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
204		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
205	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
206		if DYNAMIC_FTRACE_WITH_ARGS
207	select HAVE_SAMPLE_FTRACE_DIRECT
208	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
209	select HAVE_EFFICIENT_UNALIGNED_ACCESS
210	select HAVE_GUP_FAST
211	select HAVE_FTRACE_MCOUNT_RECORD
212	select HAVE_FUNCTION_TRACER
213	select HAVE_FUNCTION_ERROR_INJECTION
214	select HAVE_FUNCTION_GRAPH_TRACER
215	select HAVE_FUNCTION_GRAPH_RETVAL
216	select HAVE_GCC_PLUGINS
217	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
218		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
219	select HAVE_HW_BREAKPOINT if PERF_EVENTS
220	select HAVE_IOREMAP_PROT
221	select HAVE_IRQ_TIME_ACCOUNTING
222	select HAVE_MOD_ARCH_SPECIFIC
223	select HAVE_NMI
224	select HAVE_PERF_EVENTS
225	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
226	select HAVE_PERF_REGS
227	select HAVE_PERF_USER_STACK_DUMP
228	select HAVE_PREEMPT_DYNAMIC_KEY
229	select HAVE_REGS_AND_STACK_ACCESS_API
230	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
231	select HAVE_FUNCTION_ARG_ACCESS_API
232	select MMU_GATHER_RCU_TABLE_FREE
233	select HAVE_RSEQ
234	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
235	select HAVE_STACKPROTECTOR
236	select HAVE_SYSCALL_TRACEPOINTS
237	select HAVE_KPROBES
238	select HAVE_KRETPROBES
239	select HAVE_GENERIC_VDSO
240	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
241	select IRQ_DOMAIN
242	select IRQ_FORCED_THREADING
243	select KASAN_VMALLOC if KASAN
244	select LOCK_MM_AND_FIND_VMA
245	select MODULES_USE_ELF_RELA
246	select NEED_DMA_MAP_STATE
247	select NEED_SG_DMA_LENGTH
248	select OF
249	select OF_EARLY_FLATTREE
250	select PCI_DOMAINS_GENERIC if PCI
251	select PCI_ECAM if (ACPI && PCI)
252	select PCI_SYSCALL if PCI
253	select POWER_RESET
254	select POWER_SUPPLY
255	select SPARSE_IRQ
256	select SWIOTLB
257	select SYSCTL_EXCEPTION_TRACE
258	select THREAD_INFO_IN_TASK
259	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
260	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
261	select TRACE_IRQFLAGS_SUPPORT
262	select TRACE_IRQFLAGS_NMI_SUPPORT
263	select HAVE_SOFTIRQ_ON_OWN_STACK
264	select USER_STACKTRACE_SUPPORT
265	help
266	  ARM 64-bit (AArch64) Linux support.
267
268config RUSTC_SUPPORTS_ARM64
269	def_bool y
270	depends on CPU_LITTLE_ENDIAN
271	# Shadow call stack is only supported on certain rustc versions.
272	#
273	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
274	# required due to use of the -Zfixed-x18 flag.
275	#
276	# Otherwise, rustc version 1.82+ is required due to use of the
277	# -Zsanitizer=shadow-call-stack flag.
278	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
279
280config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
281	def_bool CC_IS_CLANG
282	# https://github.com/ClangBuiltLinux/linux/issues/1507
283	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
284	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
285
286config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
287	def_bool CC_IS_GCC
288	depends on $(cc-option,-fpatchable-function-entry=2)
289	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
290
291config 64BIT
292	def_bool y
293
294config MMU
295	def_bool y
296
297config ARM64_CONT_PTE_SHIFT
298	int
299	default 5 if PAGE_SIZE_64KB
300	default 7 if PAGE_SIZE_16KB
301	default 4
302
303config ARM64_CONT_PMD_SHIFT
304	int
305	default 5 if PAGE_SIZE_64KB
306	default 5 if PAGE_SIZE_16KB
307	default 4
308
309config ARCH_MMAP_RND_BITS_MIN
310	default 14 if PAGE_SIZE_64KB
311	default 16 if PAGE_SIZE_16KB
312	default 18
313
314# max bits determined by the following formula:
315#  VA_BITS - PAGE_SHIFT - 3
316config ARCH_MMAP_RND_BITS_MAX
317	default 19 if ARM64_VA_BITS=36
318	default 24 if ARM64_VA_BITS=39
319	default 27 if ARM64_VA_BITS=42
320	default 30 if ARM64_VA_BITS=47
321	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
322	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
323	default 33 if ARM64_VA_BITS=48
324	default 14 if ARM64_64K_PAGES
325	default 16 if ARM64_16K_PAGES
326	default 18
327
328config ARCH_MMAP_RND_COMPAT_BITS_MIN
329	default 7 if ARM64_64K_PAGES
330	default 9 if ARM64_16K_PAGES
331	default 11
332
333config ARCH_MMAP_RND_COMPAT_BITS_MAX
334	default 16
335
336config NO_IOPORT_MAP
337	def_bool y if !PCI
338
339config STACKTRACE_SUPPORT
340	def_bool y
341
342config ILLEGAL_POINTER_VALUE
343	hex
344	default 0xdead000000000000
345
346config LOCKDEP_SUPPORT
347	def_bool y
348
349config GENERIC_BUG
350	def_bool y
351	depends on BUG
352
353config GENERIC_BUG_RELATIVE_POINTERS
354	def_bool y
355	depends on GENERIC_BUG
356
357config GENERIC_HWEIGHT
358	def_bool y
359
360config GENERIC_CSUM
361	def_bool y
362
363config GENERIC_CALIBRATE_DELAY
364	def_bool y
365
366config SMP
367	def_bool y
368
369config KERNEL_MODE_NEON
370	def_bool y
371
372config FIX_EARLYCON_MEM
373	def_bool y
374
375config PGTABLE_LEVELS
376	int
377	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
378	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
379	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
380	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
381	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
382	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
383	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
384	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
385
386config ARCH_SUPPORTS_UPROBES
387	def_bool y
388
389config ARCH_PROC_KCORE_TEXT
390	def_bool y
391
392config BROKEN_GAS_INST
393	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
394
395config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
396	bool
397	# Clang's __builtin_return_address() strips the PAC since 12.0.0
398	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
399	default y if CC_IS_CLANG
400	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
401	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
402	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
403	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
404	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
405	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
406	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
407	default n
408
409config KASAN_SHADOW_OFFSET
410	hex
411	depends on KASAN_GENERIC || KASAN_SW_TAGS
412	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
413	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
414	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
415	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
416	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
417	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
418	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
419	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
420	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
421	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
422	default 0xffffffffffffffff
423
424config UNWIND_TABLES
425	bool
426
427source "arch/arm64/Kconfig.platforms"
428
429menu "Kernel Features"
430
431menu "ARM errata workarounds via the alternatives framework"
432
433config AMPERE_ERRATUM_AC03_CPU_38
434        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
435	default y
436	help
437	  This option adds an alternative code sequence to work around Ampere
438	  erratum AC03_CPU_38 on AmpereOne.
439
440	  The affected design reports FEAT_HAFDBS as not implemented in
441	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
442	  as required by the architecture. The unadvertised HAFDBS
443	  implementation suffers from an additional erratum where hardware
444	  A/D updates can occur after a PTE has been marked invalid.
445
446	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
447	  which avoids enabling unadvertised hardware Access Flag management
448	  at stage-2.
449
450	  If unsure, say Y.
451
452config ARM64_WORKAROUND_CLEAN_CACHE
453	bool
454
455config ARM64_ERRATUM_826319
456	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
457	default y
458	select ARM64_WORKAROUND_CLEAN_CACHE
459	help
460	  This option adds an alternative code sequence to work around ARM
461	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
462	  AXI master interface and an L2 cache.
463
464	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
465	  and is unable to accept a certain write via this interface, it will
466	  not progress on read data presented on the read data channel and the
467	  system can deadlock.
468
469	  The workaround promotes data cache clean instructions to
470	  data cache clean-and-invalidate.
471	  Please note that this does not necessarily enable the workaround,
472	  as it depends on the alternative framework, which will only patch
473	  the kernel if an affected CPU is detected.
474
475	  If unsure, say Y.
476
477config ARM64_ERRATUM_827319
478	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
479	default y
480	select ARM64_WORKAROUND_CLEAN_CACHE
481	help
482	  This option adds an alternative code sequence to work around ARM
483	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
484	  master interface and an L2 cache.
485
486	  Under certain conditions this erratum can cause a clean line eviction
487	  to occur at the same time as another transaction to the same address
488	  on the AMBA 5 CHI interface, which can cause data corruption if the
489	  interconnect reorders the two transactions.
490
491	  The workaround promotes data cache clean instructions to
492	  data cache clean-and-invalidate.
493	  Please note that this does not necessarily enable the workaround,
494	  as it depends on the alternative framework, which will only patch
495	  the kernel if an affected CPU is detected.
496
497	  If unsure, say Y.
498
499config ARM64_ERRATUM_824069
500	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
501	default y
502	select ARM64_WORKAROUND_CLEAN_CACHE
503	help
504	  This option adds an alternative code sequence to work around ARM
505	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
506	  to a coherent interconnect.
507
508	  If a Cortex-A53 processor is executing a store or prefetch for
509	  write instruction at the same time as a processor in another
510	  cluster is executing a cache maintenance operation to the same
511	  address, then this erratum might cause a clean cache line to be
512	  incorrectly marked as dirty.
513
514	  The workaround promotes data cache clean instructions to
515	  data cache clean-and-invalidate.
516	  Please note that this option does not necessarily enable the
517	  workaround, as it depends on the alternative framework, which will
518	  only patch the kernel if an affected CPU is detected.
519
520	  If unsure, say Y.
521
522config ARM64_ERRATUM_819472
523	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
524	default y
525	select ARM64_WORKAROUND_CLEAN_CACHE
526	help
527	  This option adds an alternative code sequence to work around ARM
528	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
529	  present when it is connected to a coherent interconnect.
530
531	  If the processor is executing a load and store exclusive sequence at
532	  the same time as a processor in another cluster is executing a cache
533	  maintenance operation to the same address, then this erratum might
534	  cause data corruption.
535
536	  The workaround promotes data cache clean instructions to
537	  data cache clean-and-invalidate.
538	  Please note that this does not necessarily enable the workaround,
539	  as it depends on the alternative framework, which will only patch
540	  the kernel if an affected CPU is detected.
541
542	  If unsure, say Y.
543
544config ARM64_ERRATUM_832075
545	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
546	default y
547	help
548	  This option adds an alternative code sequence to work around ARM
549	  erratum 832075 on Cortex-A57 parts up to r1p2.
550
551	  Affected Cortex-A57 parts might deadlock when exclusive load/store
552	  instructions to Write-Back memory are mixed with Device loads.
553
554	  The workaround is to promote device loads to use Load-Acquire
555	  semantics.
556	  Please note that this does not necessarily enable the workaround,
557	  as it depends on the alternative framework, which will only patch
558	  the kernel if an affected CPU is detected.
559
560	  If unsure, say Y.
561
562config ARM64_ERRATUM_834220
563	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
564	depends on KVM
565	help
566	  This option adds an alternative code sequence to work around ARM
567	  erratum 834220 on Cortex-A57 parts up to r1p2.
568
569	  Affected Cortex-A57 parts might report a Stage 2 translation
570	  fault as the result of a Stage 1 fault for load crossing a
571	  page boundary when there is a permission or device memory
572	  alignment fault at Stage 1 and a translation fault at Stage 2.
573
574	  The workaround is to verify that the Stage 1 translation
575	  doesn't generate a fault before handling the Stage 2 fault.
576	  Please note that this does not necessarily enable the workaround,
577	  as it depends on the alternative framework, which will only patch
578	  the kernel if an affected CPU is detected.
579
580	  If unsure, say N.
581
582config ARM64_ERRATUM_1742098
583	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
584	depends on COMPAT
585	default y
586	help
587	  This option removes the AES hwcap for aarch32 user-space to
588	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
589
590	  Affected parts may corrupt the AES state if an interrupt is
591	  taken between a pair of AES instructions. These instructions
592	  are only present if the cryptography extensions are present.
593	  All software should have a fallback implementation for CPUs
594	  that don't implement the cryptography extensions.
595
596	  If unsure, say Y.
597
598config ARM64_ERRATUM_845719
599	bool "Cortex-A53: 845719: a load might read incorrect data"
600	depends on COMPAT
601	default y
602	help
603	  This option adds an alternative code sequence to work around ARM
604	  erratum 845719 on Cortex-A53 parts up to r0p4.
605
606	  When running a compat (AArch32) userspace on an affected Cortex-A53
607	  part, a load at EL0 from a virtual address that matches the bottom 32
608	  bits of the virtual address used by a recent load at (AArch64) EL1
609	  might return incorrect data.
610
611	  The workaround is to write the contextidr_el1 register on exception
612	  return to a 32-bit task.
613	  Please note that this does not necessarily enable the workaround,
614	  as it depends on the alternative framework, which will only patch
615	  the kernel if an affected CPU is detected.
616
617	  If unsure, say Y.
618
619config ARM64_ERRATUM_843419
620	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
621	default y
622	help
623	  This option links the kernel with '--fix-cortex-a53-843419' and
624	  enables PLT support to replace certain ADRP instructions, which can
625	  cause subsequent memory accesses to use an incorrect address on
626	  Cortex-A53 parts up to r0p4.
627
628	  If unsure, say Y.
629
630config ARM64_LD_HAS_FIX_ERRATUM_843419
631	def_bool $(ld-option,--fix-cortex-a53-843419)
632
633config ARM64_ERRATUM_1024718
634	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
635	default y
636	help
637	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
638
639	  Affected Cortex-A55 cores (all revisions) could cause incorrect
640	  update of the hardware dirty bit when the DBM/AP bits are updated
641	  without a break-before-make. The workaround is to disable the usage
642	  of hardware DBM locally on the affected cores. CPUs not affected by
643	  this erratum will continue to use the feature.
644
645	  If unsure, say Y.
646
647config ARM64_ERRATUM_1418040
648	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
649	default y
650	depends on COMPAT
651	help
652	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
653	  errata 1188873 and 1418040.
654
655	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
656	  cause register corruption when accessing the timer registers
657	  from AArch32 userspace.
658
659	  If unsure, say Y.
660
661config ARM64_WORKAROUND_SPECULATIVE_AT
662	bool
663
664config ARM64_ERRATUM_1165522
665	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
666	default y
667	select ARM64_WORKAROUND_SPECULATIVE_AT
668	help
669	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
670
671	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
672	  corrupted TLBs by speculating an AT instruction during a guest
673	  context switch.
674
675	  If unsure, say Y.
676
677config ARM64_ERRATUM_1319367
678	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
679	default y
680	select ARM64_WORKAROUND_SPECULATIVE_AT
681	help
682	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
683	  and A72 erratum 1319367
684
685	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
686	  speculating an AT instruction during a guest context switch.
687
688	  If unsure, say Y.
689
690config ARM64_ERRATUM_1530923
691	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
692	default y
693	select ARM64_WORKAROUND_SPECULATIVE_AT
694	help
695	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
696
697	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
698	  corrupted TLBs by speculating an AT instruction during a guest
699	  context switch.
700
701	  If unsure, say Y.
702
703config ARM64_WORKAROUND_REPEAT_TLBI
704	bool
705
706config ARM64_ERRATUM_2441007
707	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
708	select ARM64_WORKAROUND_REPEAT_TLBI
709	help
710	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
711
712	  Under very rare circumstances, affected Cortex-A55 CPUs
713	  may not handle a race between a break-before-make sequence on one
714	  CPU, and another CPU accessing the same page. This could allow a
715	  store to a page that has been unmapped.
716
717	  Work around this by adding the affected CPUs to the list that needs
718	  TLB sequences to be done twice.
719
720	  If unsure, say N.
721
722config ARM64_ERRATUM_1286807
723	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
724	select ARM64_WORKAROUND_REPEAT_TLBI
725	help
726	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
727
728	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
729	  address for a cacheable mapping of a location is being
730	  accessed by a core while another core is remapping the virtual
731	  address to a new physical page using the recommended
732	  break-before-make sequence, then under very rare circumstances
733	  TLBI+DSB completes before a read using the translation being
734	  invalidated has been observed by other observers. The
735	  workaround repeats the TLBI+DSB operation.
736
737	  If unsure, say N.
738
739config ARM64_ERRATUM_1463225
740	bool "Cortex-A76: Software Step might prevent interrupt recognition"
741	default y
742	help
743	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
744
745	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
746	  of a system call instruction (SVC) can prevent recognition of
747	  subsequent interrupts when software stepping is disabled in the
748	  exception handler of the system call and either kernel debugging
749	  is enabled or VHE is in use.
750
751	  Work around the erratum by triggering a dummy step exception
752	  when handling a system call from a task that is being stepped
753	  in a VHE configuration of the kernel.
754
755	  If unsure, say Y.
756
757config ARM64_ERRATUM_1542419
758	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
759	help
760	  This option adds a workaround for ARM Neoverse-N1 erratum
761	  1542419.
762
763	  Affected Neoverse-N1 cores could execute a stale instruction when
764	  modified by another CPU. The workaround depends on a firmware
765	  counterpart.
766
767	  Workaround the issue by hiding the DIC feature from EL0. This
768	  forces user-space to perform cache maintenance.
769
770	  If unsure, say N.
771
772config ARM64_ERRATUM_1508412
773	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
774	default y
775	help
776	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
777
778	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
779	  of a store-exclusive or read of PAR_EL1 and a load with device or
780	  non-cacheable memory attributes. The workaround depends on a firmware
781	  counterpart.
782
783	  KVM guests must also have the workaround implemented or they can
784	  deadlock the system.
785
786	  Work around the issue by inserting DMB SY barriers around PAR_EL1
787	  register reads and warning KVM users. The DMB barrier is sufficient
788	  to prevent a speculative PAR_EL1 read.
789
790	  If unsure, say Y.
791
792config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
793	bool
794
795config ARM64_ERRATUM_2051678
796	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
797	default y
798	help
799	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
800	  Affected Cortex-A510 might not respect the ordering rules for
801	  hardware update of the page table's dirty bit. The workaround
802	  is to not enable the feature on affected CPUs.
803
804	  If unsure, say Y.
805
806config ARM64_ERRATUM_2077057
807	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
808	default y
809	help
810	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
811	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
812	  expected, but a Pointer Authentication trap is taken instead. The
813	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
814	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
815
816	  This can only happen when EL2 is stepping EL1.
817
818	  When these conditions occur, the SPSR_EL2 value is unchanged from the
819	  previous guest entry, and can be restored from the in-memory copy.
820
821	  If unsure, say Y.
822
823config ARM64_ERRATUM_2658417
824	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
825	default y
826	help
827	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
828	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
829	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
830	  A510 CPUs are using shared neon hardware. As the sharing is not
831	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
832	  user-space should not be using these instructions.
833
834	  If unsure, say Y.
835
836config ARM64_ERRATUM_2119858
837	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
838	default y
839	depends on CORESIGHT_TRBE
840	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
841	help
842	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
843
844	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
845	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
846	  the event of a WRAP event.
847
848	  Work around the issue by always making sure we move the TRBPTR_EL1 by
849	  256 bytes before enabling the buffer and filling the first 256 bytes of
850	  the buffer with ETM ignore packets upon disabling.
851
852	  If unsure, say Y.
853
854config ARM64_ERRATUM_2139208
855	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
856	default y
857	depends on CORESIGHT_TRBE
858	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
859	help
860	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
861
862	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
863	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
864	  the event of a WRAP event.
865
866	  Work around the issue by always making sure we move the TRBPTR_EL1 by
867	  256 bytes before enabling the buffer and filling the first 256 bytes of
868	  the buffer with ETM ignore packets upon disabling.
869
870	  If unsure, say Y.
871
872config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
873	bool
874
875config ARM64_ERRATUM_2054223
876	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
877	default y
878	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
879	help
880	  Enable workaround for ARM Cortex-A710 erratum 2054223
881
882	  Affected cores may fail to flush the trace data on a TSB instruction, when
883	  the PE is in trace prohibited state. This will cause losing a few bytes
884	  of the trace cached.
885
886	  Workaround is to issue two TSB consecutively on affected cores.
887
888	  If unsure, say Y.
889
890config ARM64_ERRATUM_2067961
891	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
892	default y
893	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
894	help
895	  Enable workaround for ARM Neoverse-N2 erratum 2067961
896
897	  Affected cores may fail to flush the trace data on a TSB instruction, when
898	  the PE is in trace prohibited state. This will cause losing a few bytes
899	  of the trace cached.
900
901	  Workaround is to issue two TSB consecutively on affected cores.
902
903	  If unsure, say Y.
904
905config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
906	bool
907
908config ARM64_ERRATUM_2253138
909	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
910	depends on CORESIGHT_TRBE
911	default y
912	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
913	help
914	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
915
916	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
917	  for TRBE. Under some conditions, the TRBE might generate a write to the next
918	  virtually addressed page following the last page of the TRBE address space
919	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
920
921	  Work around this in the driver by always making sure that there is a
922	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
923
924	  If unsure, say Y.
925
926config ARM64_ERRATUM_2224489
927	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
928	depends on CORESIGHT_TRBE
929	default y
930	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
931	help
932	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
933
934	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
935	  for TRBE. Under some conditions, the TRBE might generate a write to the next
936	  virtually addressed page following the last page of the TRBE address space
937	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
938
939	  Work around this in the driver by always making sure that there is a
940	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
941
942	  If unsure, say Y.
943
944config ARM64_ERRATUM_2441009
945	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
946	select ARM64_WORKAROUND_REPEAT_TLBI
947	help
948	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
949
950	  Under very rare circumstances, affected Cortex-A510 CPUs
951	  may not handle a race between a break-before-make sequence on one
952	  CPU, and another CPU accessing the same page. This could allow a
953	  store to a page that has been unmapped.
954
955	  Work around this by adding the affected CPUs to the list that needs
956	  TLB sequences to be done twice.
957
958	  If unsure, say N.
959
960config ARM64_ERRATUM_2064142
961	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
962	depends on CORESIGHT_TRBE
963	default y
964	help
965	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
966
967	  Affected Cortex-A510 core might fail to write into system registers after the
968	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
969	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
970	  and TRBTRG_EL1 will be ignored and will not be effected.
971
972	  Work around this in the driver by executing TSB CSYNC and DSB after collection
973	  is stopped and before performing a system register write to one of the affected
974	  registers.
975
976	  If unsure, say Y.
977
978config ARM64_ERRATUM_2038923
979	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
980	depends on CORESIGHT_TRBE
981	default y
982	help
983	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
984
985	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
986	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
987	  might be corrupted. This happens after TRBE buffer has been enabled by setting
988	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
989	  execution changes from a context, in which trace is prohibited to one where it
990	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
991	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
992	  the trace buffer state might be corrupted.
993
994	  Work around this in the driver by preventing an inconsistent view of whether the
995	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
996	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
997	  two ISB instructions if no ERET is to take place.
998
999	  If unsure, say Y.
1000
1001config ARM64_ERRATUM_1902691
1002	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1003	depends on CORESIGHT_TRBE
1004	default y
1005	help
1006	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1007
1008	  Affected Cortex-A510 core might cause trace data corruption, when being written
1009	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1010	  trace data.
1011
1012	  Work around this problem in the driver by just preventing TRBE initialization on
1013	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1014	  on such implementations. This will cover the kernel for any firmware that doesn't
1015	  do this already.
1016
1017	  If unsure, say Y.
1018
1019config ARM64_ERRATUM_2457168
1020	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1021	depends on ARM64_AMU_EXTN
1022	default y
1023	help
1024	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1025
1026	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1027	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1028	  incorrectly giving a significantly higher output value.
1029
1030	  Work around this problem by returning 0 when reading the affected counter in
1031	  key locations that results in disabling all users of this counter. This effect
1032	  is the same to firmware disabling affected counters.
1033
1034	  If unsure, say Y.
1035
1036config ARM64_ERRATUM_2645198
1037	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1038	default y
1039	help
1040	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1041
1042	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1043	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1044	  next instruction abort caused by permission fault.
1045
1046	  Only user-space does executable to non-executable permission transition via
1047	  mprotect() system call. Workaround the problem by doing a break-before-make
1048	  TLB invalidation, for all changes to executable user space mappings.
1049
1050	  If unsure, say Y.
1051
1052config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1053	bool
1054
1055config ARM64_ERRATUM_2966298
1056	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1057	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1058	default y
1059	help
1060	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1061
1062	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1063	  load might leak data from a privileged level via a cache side channel.
1064
1065	  Work around this problem by executing a TLBI before returning to EL0.
1066
1067	  If unsure, say Y.
1068
1069config ARM64_ERRATUM_3117295
1070	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1071	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1072	default y
1073	help
1074	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1075
1076	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1077	  load might leak data from a privileged level via a cache side channel.
1078
1079	  Work around this problem by executing a TLBI before returning to EL0.
1080
1081	  If unsure, say Y.
1082
1083config ARM64_ERRATUM_3194386
1084	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1085	default y
1086	help
1087	  This option adds the workaround for the following errata:
1088
1089	  * ARM Cortex-A76 erratum 3324349
1090	  * ARM Cortex-A77 erratum 3324348
1091	  * ARM Cortex-A78 erratum 3324344
1092	  * ARM Cortex-A78C erratum 3324346
1093	  * ARM Cortex-A78C erratum 3324347
1094	  * ARM Cortex-A710 erratam 3324338
1095	  * ARM Cortex-A720 erratum 3456091
1096	  * ARM Cortex-A725 erratum 3456106
1097	  * ARM Cortex-X1 erratum 3324344
1098	  * ARM Cortex-X1C erratum 3324346
1099	  * ARM Cortex-X2 erratum 3324338
1100	  * ARM Cortex-X3 erratum 3324335
1101	  * ARM Cortex-X4 erratum 3194386
1102	  * ARM Cortex-X925 erratum 3324334
1103	  * ARM Neoverse-N1 erratum 3324349
1104	  * ARM Neoverse N2 erratum 3324339
1105	  * ARM Neoverse-V1 erratum 3324341
1106	  * ARM Neoverse V2 erratum 3324336
1107	  * ARM Neoverse-V3 erratum 3312417
1108
1109	  On affected cores "MSR SSBS, #0" instructions may not affect
1110	  subsequent speculative instructions, which may permit unexepected
1111	  speculative store bypassing.
1112
1113	  Work around this problem by placing a Speculation Barrier (SB) or
1114	  Instruction Synchronization Barrier (ISB) after kernel changes to
1115	  SSBS. The presence of the SSBS special-purpose register is hidden
1116	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1117	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1118
1119	  If unsure, say Y.
1120
1121config CAVIUM_ERRATUM_22375
1122	bool "Cavium erratum 22375, 24313"
1123	default y
1124	help
1125	  Enable workaround for errata 22375 and 24313.
1126
1127	  This implements two gicv3-its errata workarounds for ThunderX. Both
1128	  with a small impact affecting only ITS table allocation.
1129
1130	    erratum 22375: only alloc 8MB table size
1131	    erratum 24313: ignore memory access type
1132
1133	  The fixes are in ITS initialization and basically ignore memory access
1134	  type and table size provided by the TYPER and BASER registers.
1135
1136	  If unsure, say Y.
1137
1138config CAVIUM_ERRATUM_23144
1139	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1140	depends on NUMA
1141	default y
1142	help
1143	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1144
1145	  If unsure, say Y.
1146
1147config CAVIUM_ERRATUM_23154
1148	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1149	default y
1150	help
1151	  The ThunderX GICv3 implementation requires a modified version for
1152	  reading the IAR status to ensure data synchronization
1153	  (access to icc_iar1_el1 is not sync'ed before and after).
1154
1155	  It also suffers from erratum 38545 (also present on Marvell's
1156	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1157	  spuriously presented to the CPU interface.
1158
1159	  If unsure, say Y.
1160
1161config CAVIUM_ERRATUM_27456
1162	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1163	default y
1164	help
1165	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1166	  instructions may cause the icache to become corrupted if it
1167	  contains data for a non-current ASID.  The fix is to
1168	  invalidate the icache when changing the mm context.
1169
1170	  If unsure, say Y.
1171
1172config CAVIUM_ERRATUM_30115
1173	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1174	default y
1175	help
1176	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1177	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1178	  interrupts in host. Trapping both GICv3 group-0 and group-1
1179	  accesses sidesteps the issue.
1180
1181	  If unsure, say Y.
1182
1183config CAVIUM_TX2_ERRATUM_219
1184	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1185	default y
1186	help
1187	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1188	  TTBR update and the corresponding context synchronizing operation can
1189	  cause a spurious Data Abort to be delivered to any hardware thread in
1190	  the CPU core.
1191
1192	  Work around the issue by avoiding the problematic code sequence and
1193	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1194	  trap handler performs the corresponding register access, skips the
1195	  instruction and ensures context synchronization by virtue of the
1196	  exception return.
1197
1198	  If unsure, say Y.
1199
1200config FUJITSU_ERRATUM_010001
1201	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1202	default y
1203	help
1204	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1205	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1206	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1207	  This fault occurs under a specific hardware condition when a
1208	  load/store instruction performs an address translation using:
1209	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1210	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1211	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1212	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1213
1214	  The workaround is to ensure these bits are clear in TCR_ELx.
1215	  The workaround only affects the Fujitsu-A64FX.
1216
1217	  If unsure, say Y.
1218
1219config HISILICON_ERRATUM_161600802
1220	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1221	default y
1222	help
1223	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1224	  when issued ITS commands such as VMOVP and VMAPP, and requires
1225	  a 128kB offset to be applied to the target address in this commands.
1226
1227	  If unsure, say Y.
1228
1229config QCOM_FALKOR_ERRATUM_1003
1230	bool "Falkor E1003: Incorrect translation due to ASID change"
1231	default y
1232	help
1233	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1234	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1235	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1236	  then only for entries in the walk cache, since the leaf translation
1237	  is unchanged. Work around the erratum by invalidating the walk cache
1238	  entries for the trampoline before entering the kernel proper.
1239
1240config QCOM_FALKOR_ERRATUM_1009
1241	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1242	default y
1243	select ARM64_WORKAROUND_REPEAT_TLBI
1244	help
1245	  On Falkor v1, the CPU may prematurely complete a DSB following a
1246	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1247	  one more time to fix the issue.
1248
1249	  If unsure, say Y.
1250
1251config QCOM_QDF2400_ERRATUM_0065
1252	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1253	default y
1254	help
1255	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1256	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1257	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1258
1259	  If unsure, say Y.
1260
1261config QCOM_FALKOR_ERRATUM_E1041
1262	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1263	default y
1264	help
1265	  Falkor CPU may speculatively fetch instructions from an improper
1266	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1267	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1268
1269	  If unsure, say Y.
1270
1271config NVIDIA_CARMEL_CNP_ERRATUM
1272	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1273	default y
1274	help
1275	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1276	  invalidate shared TLB entries installed by a different core, as it would
1277	  on standard ARM cores.
1278
1279	  If unsure, say Y.
1280
1281config ROCKCHIP_ERRATUM_3588001
1282	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1283	default y
1284	help
1285	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1286	  This means, that its sharability feature may not be used, even though it
1287	  is supported by the IP itself.
1288
1289	  If unsure, say Y.
1290
1291config SOCIONEXT_SYNQUACER_PREITS
1292	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1293	default y
1294	help
1295	  Socionext Synquacer SoCs implement a separate h/w block to generate
1296	  MSI doorbell writes with non-zero values for the device ID.
1297
1298	  If unsure, say Y.
1299
1300endmenu # "ARM errata workarounds via the alternatives framework"
1301
1302choice
1303	prompt "Page size"
1304	default ARM64_4K_PAGES
1305	help
1306	  Page size (translation granule) configuration.
1307
1308config ARM64_4K_PAGES
1309	bool "4KB"
1310	select HAVE_PAGE_SIZE_4KB
1311	help
1312	  This feature enables 4KB pages support.
1313
1314config ARM64_16K_PAGES
1315	bool "16KB"
1316	select HAVE_PAGE_SIZE_16KB
1317	help
1318	  The system will use 16KB pages support. AArch32 emulation
1319	  requires applications compiled with 16K (or a multiple of 16K)
1320	  aligned segments.
1321
1322config ARM64_64K_PAGES
1323	bool "64KB"
1324	select HAVE_PAGE_SIZE_64KB
1325	help
1326	  This feature enables 64KB pages support (4KB by default)
1327	  allowing only two levels of page tables and faster TLB
1328	  look-up. AArch32 emulation requires applications compiled
1329	  with 64K aligned segments.
1330
1331endchoice
1332
1333choice
1334	prompt "Virtual address space size"
1335	default ARM64_VA_BITS_52
1336	help
1337	  Allows choosing one of multiple possible virtual address
1338	  space sizes. The level of translation table is determined by
1339	  a combination of page size and virtual address space size.
1340
1341config ARM64_VA_BITS_36
1342	bool "36-bit" if EXPERT
1343	depends on PAGE_SIZE_16KB
1344
1345config ARM64_VA_BITS_39
1346	bool "39-bit"
1347	depends on PAGE_SIZE_4KB
1348
1349config ARM64_VA_BITS_42
1350	bool "42-bit"
1351	depends on PAGE_SIZE_64KB
1352
1353config ARM64_VA_BITS_47
1354	bool "47-bit"
1355	depends on PAGE_SIZE_16KB
1356
1357config ARM64_VA_BITS_48
1358	bool "48-bit"
1359
1360config ARM64_VA_BITS_52
1361	bool "52-bit"
1362	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1363	help
1364	  Enable 52-bit virtual addressing for userspace when explicitly
1365	  requested via a hint to mmap(). The kernel will also use 52-bit
1366	  virtual addresses for its own mappings (provided HW support for
1367	  this feature is available, otherwise it reverts to 48-bit).
1368
1369	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1370	  ARMv8.3 Pointer Authentication will result in the PAC being
1371	  reduced from 7 bits to 3 bits, which may have a significant
1372	  impact on its susceptibility to brute-force attacks.
1373
1374	  If unsure, select 48-bit virtual addressing instead.
1375
1376endchoice
1377
1378config ARM64_FORCE_52BIT
1379	bool "Force 52-bit virtual addresses for userspace"
1380	depends on ARM64_VA_BITS_52 && EXPERT
1381	help
1382	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1383	  to maintain compatibility with older software by providing 48-bit VAs
1384	  unless a hint is supplied to mmap.
1385
1386	  This configuration option disables the 48-bit compatibility logic, and
1387	  forces all userspace addresses to be 52-bit on HW that supports it. One
1388	  should only enable this configuration option for stress testing userspace
1389	  memory management code. If unsure say N here.
1390
1391config ARM64_VA_BITS
1392	int
1393	default 36 if ARM64_VA_BITS_36
1394	default 39 if ARM64_VA_BITS_39
1395	default 42 if ARM64_VA_BITS_42
1396	default 47 if ARM64_VA_BITS_47
1397	default 48 if ARM64_VA_BITS_48
1398	default 52 if ARM64_VA_BITS_52
1399
1400choice
1401	prompt "Physical address space size"
1402	default ARM64_PA_BITS_48
1403	help
1404	  Choose the maximum physical address range that the kernel will
1405	  support.
1406
1407config ARM64_PA_BITS_48
1408	bool "48-bit"
1409	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1410
1411config ARM64_PA_BITS_52
1412	bool "52-bit"
1413	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1414	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1415	help
1416	  Enable support for a 52-bit physical address space, introduced as
1417	  part of the ARMv8.2-LPA extension.
1418
1419	  With this enabled, the kernel will also continue to work on CPUs that
1420	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1421	  minor performance overhead).
1422
1423endchoice
1424
1425config ARM64_PA_BITS
1426	int
1427	default 48 if ARM64_PA_BITS_48
1428	default 52 if ARM64_PA_BITS_52
1429
1430config ARM64_LPA2
1431	def_bool y
1432	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1433
1434choice
1435	prompt "Endianness"
1436	default CPU_LITTLE_ENDIAN
1437	help
1438	  Select the endianness of data accesses performed by the CPU. Userspace
1439	  applications will need to be compiled and linked for the endianness
1440	  that is selected here.
1441
1442config CPU_BIG_ENDIAN
1443	bool "Build big-endian kernel"
1444	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1445	depends on AS_IS_GNU || AS_VERSION >= 150000
1446	help
1447	  Say Y if you plan on running a kernel with a big-endian userspace.
1448
1449config CPU_LITTLE_ENDIAN
1450	bool "Build little-endian kernel"
1451	help
1452	  Say Y if you plan on running a kernel with a little-endian userspace.
1453	  This is usually the case for distributions targeting arm64.
1454
1455endchoice
1456
1457config SCHED_MC
1458	bool "Multi-core scheduler support"
1459	help
1460	  Multi-core scheduler support improves the CPU scheduler's decision
1461	  making when dealing with multi-core CPU chips at a cost of slightly
1462	  increased overhead in some places. If unsure say N here.
1463
1464config SCHED_CLUSTER
1465	bool "Cluster scheduler support"
1466	help
1467	  Cluster scheduler support improves the CPU scheduler's decision
1468	  making when dealing with machines that have clusters of CPUs.
1469	  Cluster usually means a couple of CPUs which are placed closely
1470	  by sharing mid-level caches, last-level cache tags or internal
1471	  busses.
1472
1473config SCHED_SMT
1474	bool "SMT scheduler support"
1475	help
1476	  Improves the CPU scheduler's decision making when dealing with
1477	  MultiThreading at a cost of slightly increased overhead in some
1478	  places. If unsure say N here.
1479
1480config NR_CPUS
1481	int "Maximum number of CPUs (2-4096)"
1482	range 2 4096
1483	default "512"
1484
1485config HOTPLUG_CPU
1486	bool "Support for hot-pluggable CPUs"
1487	select GENERIC_IRQ_MIGRATION
1488	help
1489	  Say Y here to experiment with turning CPUs off and on.  CPUs
1490	  can be controlled through /sys/devices/system/cpu.
1491
1492# Common NUMA Features
1493config NUMA
1494	bool "NUMA Memory Allocation and Scheduler Support"
1495	select GENERIC_ARCH_NUMA
1496	select OF_NUMA
1497	select HAVE_SETUP_PER_CPU_AREA
1498	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1499	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1500	select USE_PERCPU_NUMA_NODE_ID
1501	help
1502	  Enable NUMA (Non-Uniform Memory Access) support.
1503
1504	  The kernel will try to allocate memory used by a CPU on the
1505	  local memory of the CPU and add some more
1506	  NUMA awareness to the kernel.
1507
1508config NODES_SHIFT
1509	int "Maximum NUMA Nodes (as a power of 2)"
1510	range 1 10
1511	default "4"
1512	depends on NUMA
1513	help
1514	  Specify the maximum number of NUMA Nodes available on the target
1515	  system.  Increases memory reserved to accommodate various tables.
1516
1517source "kernel/Kconfig.hz"
1518
1519config ARCH_SPARSEMEM_ENABLE
1520	def_bool y
1521	select SPARSEMEM_VMEMMAP_ENABLE
1522	select SPARSEMEM_VMEMMAP
1523
1524config HW_PERF_EVENTS
1525	def_bool y
1526	depends on ARM_PMU
1527
1528# Supported by clang >= 7.0 or GCC >= 12.0.0
1529config CC_HAVE_SHADOW_CALL_STACK
1530	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1531
1532config PARAVIRT
1533	bool "Enable paravirtualization code"
1534	help
1535	  This changes the kernel so it can modify itself when it is run
1536	  under a hypervisor, potentially improving performance significantly
1537	  over full virtualization.
1538
1539config PARAVIRT_TIME_ACCOUNTING
1540	bool "Paravirtual steal time accounting"
1541	select PARAVIRT
1542	help
1543	  Select this option to enable fine granularity task steal time
1544	  accounting. Time spent executing other tasks in parallel with
1545	  the current vCPU is discounted from the vCPU power. To account for
1546	  that, there can be a small performance impact.
1547
1548	  If in doubt, say N here.
1549
1550config ARCH_SUPPORTS_KEXEC
1551	def_bool PM_SLEEP_SMP
1552
1553config ARCH_SUPPORTS_KEXEC_FILE
1554	def_bool y
1555
1556config ARCH_SELECTS_KEXEC_FILE
1557	def_bool y
1558	depends on KEXEC_FILE
1559	select HAVE_IMA_KEXEC if IMA
1560
1561config ARCH_SUPPORTS_KEXEC_SIG
1562	def_bool y
1563
1564config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1565	def_bool y
1566
1567config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1568	def_bool y
1569
1570config ARCH_SUPPORTS_CRASH_DUMP
1571	def_bool y
1572
1573config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1574	def_bool CRASH_RESERVE
1575
1576config TRANS_TABLE
1577	def_bool y
1578	depends on HIBERNATION || KEXEC_CORE
1579
1580config XEN_DOM0
1581	def_bool y
1582	depends on XEN
1583
1584config XEN
1585	bool "Xen guest support on ARM64"
1586	depends on ARM64 && OF
1587	select SWIOTLB_XEN
1588	select PARAVIRT
1589	help
1590	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1591
1592# include/linux/mmzone.h requires the following to be true:
1593#
1594#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1595#
1596# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1597#
1598#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1599# ----+-------------------+--------------+----------------------+-------------------------+
1600# 4K  |       27          |      12      |       15             |         10              |
1601# 16K |       27          |      14      |       13             |         11              |
1602# 64K |       29          |      16      |       13             |         13              |
1603config ARCH_FORCE_MAX_ORDER
1604	int
1605	default "13" if ARM64_64K_PAGES
1606	default "11" if ARM64_16K_PAGES
1607	default "10"
1608	help
1609	  The kernel page allocator limits the size of maximal physically
1610	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1611	  defines the maximal power of two of number of pages that can be
1612	  allocated as a single contiguous block. This option allows
1613	  overriding the default setting when ability to allocate very
1614	  large blocks of physically contiguous memory is required.
1615
1616	  The maximal size of allocation cannot exceed the size of the
1617	  section, so the value of MAX_PAGE_ORDER should satisfy
1618
1619	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1620
1621	  Don't change if unsure.
1622
1623config UNMAP_KERNEL_AT_EL0
1624	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1625	default y
1626	help
1627	  Speculation attacks against some high-performance processors can
1628	  be used to bypass MMU permission checks and leak kernel data to
1629	  userspace. This can be defended against by unmapping the kernel
1630	  when running in userspace, mapping it back in on exception entry
1631	  via a trampoline page in the vector table.
1632
1633	  If unsure, say Y.
1634
1635config MITIGATE_SPECTRE_BRANCH_HISTORY
1636	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1637	default y
1638	help
1639	  Speculation attacks against some high-performance processors can
1640	  make use of branch history to influence future speculation.
1641	  When taking an exception from user-space, a sequence of branches
1642	  or a firmware call overwrites the branch history.
1643
1644config RODATA_FULL_DEFAULT_ENABLED
1645	bool "Apply r/o permissions of VM areas also to their linear aliases"
1646	default y
1647	help
1648	  Apply read-only attributes of VM areas to the linear alias of
1649	  the backing pages as well. This prevents code or read-only data
1650	  from being modified (inadvertently or intentionally) via another
1651	  mapping of the same memory page. This additional enhancement can
1652	  be turned off at runtime by passing rodata=[off|on] (and turned on
1653	  with rodata=full if this option is set to 'n')
1654
1655	  This requires the linear region to be mapped down to pages,
1656	  which may adversely affect performance in some cases.
1657
1658config ARM64_SW_TTBR0_PAN
1659	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1660	depends on !KCSAN
1661	help
1662	  Enabling this option prevents the kernel from accessing
1663	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1664	  zeroed area and reserved ASID. The user access routines
1665	  restore the valid TTBR0_EL1 temporarily.
1666
1667config ARM64_TAGGED_ADDR_ABI
1668	bool "Enable the tagged user addresses syscall ABI"
1669	default y
1670	help
1671	  When this option is enabled, user applications can opt in to a
1672	  relaxed ABI via prctl() allowing tagged addresses to be passed
1673	  to system calls as pointer arguments. For details, see
1674	  Documentation/arch/arm64/tagged-address-abi.rst.
1675
1676menuconfig COMPAT
1677	bool "Kernel support for 32-bit EL0"
1678	depends on ARM64_4K_PAGES || EXPERT
1679	select HAVE_UID16
1680	select OLD_SIGSUSPEND3
1681	select COMPAT_OLD_SIGACTION
1682	help
1683	  This option enables support for a 32-bit EL0 running under a 64-bit
1684	  kernel at EL1. AArch32-specific components such as system calls,
1685	  the user helper functions, VFP support and the ptrace interface are
1686	  handled appropriately by the kernel.
1687
1688	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1689	  that you will only be able to execute AArch32 binaries that were compiled
1690	  with page size aligned segments.
1691
1692	  If you want to execute 32-bit userspace applications, say Y.
1693
1694if COMPAT
1695
1696config KUSER_HELPERS
1697	bool "Enable kuser helpers page for 32-bit applications"
1698	default y
1699	help
1700	  Warning: disabling this option may break 32-bit user programs.
1701
1702	  Provide kuser helpers to compat tasks. The kernel provides
1703	  helper code to userspace in read only form at a fixed location
1704	  to allow userspace to be independent of the CPU type fitted to
1705	  the system. This permits binaries to be run on ARMv4 through
1706	  to ARMv8 without modification.
1707
1708	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1709
1710	  However, the fixed address nature of these helpers can be used
1711	  by ROP (return orientated programming) authors when creating
1712	  exploits.
1713
1714	  If all of the binaries and libraries which run on your platform
1715	  are built specifically for your platform, and make no use of
1716	  these helpers, then you can turn this option off to hinder
1717	  such exploits. However, in that case, if a binary or library
1718	  relying on those helpers is run, it will not function correctly.
1719
1720	  Say N here only if you are absolutely certain that you do not
1721	  need these helpers; otherwise, the safe option is to say Y.
1722
1723config COMPAT_VDSO
1724	bool "Enable vDSO for 32-bit applications"
1725	depends on !CPU_BIG_ENDIAN
1726	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1727	select GENERIC_COMPAT_VDSO
1728	default y
1729	help
1730	  Place in the process address space of 32-bit applications an
1731	  ELF shared object providing fast implementations of gettimeofday
1732	  and clock_gettime.
1733
1734	  You must have a 32-bit build of glibc 2.22 or later for programs
1735	  to seamlessly take advantage of this.
1736
1737config THUMB2_COMPAT_VDSO
1738	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1739	depends on COMPAT_VDSO
1740	default y
1741	help
1742	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1743	  otherwise with '-marm'.
1744
1745config COMPAT_ALIGNMENT_FIXUPS
1746	bool "Fix up misaligned multi-word loads and stores in user space"
1747
1748menuconfig ARMV8_DEPRECATED
1749	bool "Emulate deprecated/obsolete ARMv8 instructions"
1750	depends on SYSCTL
1751	help
1752	  Legacy software support may require certain instructions
1753	  that have been deprecated or obsoleted in the architecture.
1754
1755	  Enable this config to enable selective emulation of these
1756	  features.
1757
1758	  If unsure, say Y
1759
1760if ARMV8_DEPRECATED
1761
1762config SWP_EMULATION
1763	bool "Emulate SWP/SWPB instructions"
1764	help
1765	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1766	  they are always undefined. Say Y here to enable software
1767	  emulation of these instructions for userspace using LDXR/STXR.
1768	  This feature can be controlled at runtime with the abi.swp
1769	  sysctl which is disabled by default.
1770
1771	  In some older versions of glibc [<=2.8] SWP is used during futex
1772	  trylock() operations with the assumption that the code will not
1773	  be preempted. This invalid assumption may be more likely to fail
1774	  with SWP emulation enabled, leading to deadlock of the user
1775	  application.
1776
1777	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1778	  on an external transaction monitoring block called a global
1779	  monitor to maintain update atomicity. If your system does not
1780	  implement a global monitor, this option can cause programs that
1781	  perform SWP operations to uncached memory to deadlock.
1782
1783	  If unsure, say Y
1784
1785config CP15_BARRIER_EMULATION
1786	bool "Emulate CP15 Barrier instructions"
1787	help
1788	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1789	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1790	  strongly recommended to use the ISB, DSB, and DMB
1791	  instructions instead.
1792
1793	  Say Y here to enable software emulation of these
1794	  instructions for AArch32 userspace code. When this option is
1795	  enabled, CP15 barrier usage is traced which can help
1796	  identify software that needs updating. This feature can be
1797	  controlled at runtime with the abi.cp15_barrier sysctl.
1798
1799	  If unsure, say Y
1800
1801config SETEND_EMULATION
1802	bool "Emulate SETEND instruction"
1803	help
1804	  The SETEND instruction alters the data-endianness of the
1805	  AArch32 EL0, and is deprecated in ARMv8.
1806
1807	  Say Y here to enable software emulation of the instruction
1808	  for AArch32 userspace code. This feature can be controlled
1809	  at runtime with the abi.setend sysctl.
1810
1811	  Note: All the cpus on the system must have mixed endian support at EL0
1812	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1813	  endian - is hotplugged in after this feature has been enabled, there could
1814	  be unexpected results in the applications.
1815
1816	  If unsure, say Y
1817endif # ARMV8_DEPRECATED
1818
1819endif # COMPAT
1820
1821menu "ARMv8.1 architectural features"
1822
1823config ARM64_HW_AFDBM
1824	bool "Support for hardware updates of the Access and Dirty page flags"
1825	default y
1826	help
1827	  The ARMv8.1 architecture extensions introduce support for
1828	  hardware updates of the access and dirty information in page
1829	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1830	  capable processors, accesses to pages with PTE_AF cleared will
1831	  set this bit instead of raising an access flag fault.
1832	  Similarly, writes to read-only pages with the DBM bit set will
1833	  clear the read-only bit (AP[2]) instead of raising a
1834	  permission fault.
1835
1836	  Kernels built with this configuration option enabled continue
1837	  to work on pre-ARMv8.1 hardware and the performance impact is
1838	  minimal. If unsure, say Y.
1839
1840config ARM64_PAN
1841	bool "Enable support for Privileged Access Never (PAN)"
1842	default y
1843	help
1844	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1845	  prevents the kernel or hypervisor from accessing user-space (EL0)
1846	  memory directly.
1847
1848	  Choosing this option will cause any unprotected (not using
1849	  copy_to_user et al) memory access to fail with a permission fault.
1850
1851	  The feature is detected at runtime, and will remain as a 'nop'
1852	  instruction if the cpu does not implement the feature.
1853
1854config AS_HAS_LSE_ATOMICS
1855	def_bool $(as-instr,.arch_extension lse)
1856
1857config ARM64_LSE_ATOMICS
1858	bool
1859	default ARM64_USE_LSE_ATOMICS
1860	depends on AS_HAS_LSE_ATOMICS
1861
1862config ARM64_USE_LSE_ATOMICS
1863	bool "Atomic instructions"
1864	default y
1865	help
1866	  As part of the Large System Extensions, ARMv8.1 introduces new
1867	  atomic instructions that are designed specifically to scale in
1868	  very large systems.
1869
1870	  Say Y here to make use of these instructions for the in-kernel
1871	  atomic routines. This incurs a small overhead on CPUs that do
1872	  not support these instructions and requires the kernel to be
1873	  built with binutils >= 2.25 in order for the new instructions
1874	  to be used.
1875
1876endmenu # "ARMv8.1 architectural features"
1877
1878menu "ARMv8.2 architectural features"
1879
1880config AS_HAS_ARMV8_2
1881	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1882
1883config AS_HAS_SHA3
1884	def_bool $(as-instr,.arch armv8.2-a+sha3)
1885
1886config ARM64_PMEM
1887	bool "Enable support for persistent memory"
1888	select ARCH_HAS_PMEM_API
1889	select ARCH_HAS_UACCESS_FLUSHCACHE
1890	help
1891	  Say Y to enable support for the persistent memory API based on the
1892	  ARMv8.2 DCPoP feature.
1893
1894	  The feature is detected at runtime, and the kernel will use DC CVAC
1895	  operations if DC CVAP is not supported (following the behaviour of
1896	  DC CVAP itself if the system does not define a point of persistence).
1897
1898config ARM64_RAS_EXTN
1899	bool "Enable support for RAS CPU Extensions"
1900	default y
1901	help
1902	  CPUs that support the Reliability, Availability and Serviceability
1903	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1904	  errors, classify them and report them to software.
1905
1906	  On CPUs with these extensions system software can use additional
1907	  barriers to determine if faults are pending and read the
1908	  classification from a new set of registers.
1909
1910	  Selecting this feature will allow the kernel to use these barriers
1911	  and access the new registers if the system supports the extension.
1912	  Platform RAS features may additionally depend on firmware support.
1913
1914config ARM64_CNP
1915	bool "Enable support for Common Not Private (CNP) translations"
1916	default y
1917	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1918	help
1919	  Common Not Private (CNP) allows translation table entries to
1920	  be shared between different PEs in the same inner shareable
1921	  domain, so the hardware can use this fact to optimise the
1922	  caching of such entries in the TLB.
1923
1924	  Selecting this option allows the CNP feature to be detected
1925	  at runtime, and does not affect PEs that do not implement
1926	  this feature.
1927
1928endmenu # "ARMv8.2 architectural features"
1929
1930menu "ARMv8.3 architectural features"
1931
1932config ARM64_PTR_AUTH
1933	bool "Enable support for pointer authentication"
1934	default y
1935	help
1936	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1937	  instructions for signing and authenticating pointers against secret
1938	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1939	  and other attacks.
1940
1941	  This option enables these instructions at EL0 (i.e. for userspace).
1942	  Choosing this option will cause the kernel to initialise secret keys
1943	  for each process at exec() time, with these keys being
1944	  context-switched along with the process.
1945
1946	  The feature is detected at runtime. If the feature is not present in
1947	  hardware it will not be advertised to userspace/KVM guest nor will it
1948	  be enabled.
1949
1950	  If the feature is present on the boot CPU but not on a late CPU, then
1951	  the late CPU will be parked. Also, if the boot CPU does not have
1952	  address auth and the late CPU has then the late CPU will still boot
1953	  but with the feature disabled. On such a system, this option should
1954	  not be selected.
1955
1956config ARM64_PTR_AUTH_KERNEL
1957	bool "Use pointer authentication for kernel"
1958	default y
1959	depends on ARM64_PTR_AUTH
1960	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1961	# Modern compilers insert a .note.gnu.property section note for PAC
1962	# which is only understood by binutils starting with version 2.33.1.
1963	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1964	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1965	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1966	help
1967	  If the compiler supports the -mbranch-protection or
1968	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1969	  will cause the kernel itself to be compiled with return address
1970	  protection. In this case, and if the target hardware is known to
1971	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1972	  disabled with minimal loss of protection.
1973
1974	  This feature works with FUNCTION_GRAPH_TRACER option only if
1975	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1976
1977config CC_HAS_BRANCH_PROT_PAC_RET
1978	# GCC 9 or later, clang 8 or later
1979	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1980
1981config CC_HAS_SIGN_RETURN_ADDRESS
1982	# GCC 7, 8
1983	def_bool $(cc-option,-msign-return-address=all)
1984
1985config AS_HAS_ARMV8_3
1986	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1987
1988config AS_HAS_CFI_NEGATE_RA_STATE
1989	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1990
1991config AS_HAS_LDAPR
1992	def_bool $(as-instr,.arch_extension rcpc)
1993
1994endmenu # "ARMv8.3 architectural features"
1995
1996menu "ARMv8.4 architectural features"
1997
1998config ARM64_AMU_EXTN
1999	bool "Enable support for the Activity Monitors Unit CPU extension"
2000	default y
2001	help
2002	  The activity monitors extension is an optional extension introduced
2003	  by the ARMv8.4 CPU architecture. This enables support for version 1
2004	  of the activity monitors architecture, AMUv1.
2005
2006	  To enable the use of this extension on CPUs that implement it, say Y.
2007
2008	  Note that for architectural reasons, firmware _must_ implement AMU
2009	  support when running on CPUs that present the activity monitors
2010	  extension. The required support is present in:
2011	    * Version 1.5 and later of the ARM Trusted Firmware
2012
2013	  For kernels that have this configuration enabled but boot with broken
2014	  firmware, you may need to say N here until the firmware is fixed.
2015	  Otherwise you may experience firmware panics or lockups when
2016	  accessing the counter registers. Even if you are not observing these
2017	  symptoms, the values returned by the register reads might not
2018	  correctly reflect reality. Most commonly, the value read will be 0,
2019	  indicating that the counter is not enabled.
2020
2021config AS_HAS_ARMV8_4
2022	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2023
2024config ARM64_TLB_RANGE
2025	bool "Enable support for tlbi range feature"
2026	default y
2027	depends on AS_HAS_ARMV8_4
2028	help
2029	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2030	  range of input addresses.
2031
2032	  The feature introduces new assembly instructions, and they were
2033	  support when binutils >= 2.30.
2034
2035endmenu # "ARMv8.4 architectural features"
2036
2037menu "ARMv8.5 architectural features"
2038
2039config AS_HAS_ARMV8_5
2040	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2041
2042config ARM64_BTI
2043	bool "Branch Target Identification support"
2044	default y
2045	help
2046	  Branch Target Identification (part of the ARMv8.5 Extensions)
2047	  provides a mechanism to limit the set of locations to which computed
2048	  branch instructions such as BR or BLR can jump.
2049
2050	  To make use of BTI on CPUs that support it, say Y.
2051
2052	  BTI is intended to provide complementary protection to other control
2053	  flow integrity protection mechanisms, such as the Pointer
2054	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2055	  For this reason, it does not make sense to enable this option without
2056	  also enabling support for pointer authentication.  Thus, when
2057	  enabling this option you should also select ARM64_PTR_AUTH=y.
2058
2059	  Userspace binaries must also be specifically compiled to make use of
2060	  this mechanism.  If you say N here or the hardware does not support
2061	  BTI, such binaries can still run, but you get no additional
2062	  enforcement of branch destinations.
2063
2064config ARM64_BTI_KERNEL
2065	bool "Use Branch Target Identification for kernel"
2066	default y
2067	depends on ARM64_BTI
2068	depends on ARM64_PTR_AUTH_KERNEL
2069	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2070	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2071	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2072	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2073	depends on !CC_IS_GCC
2074	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2075	help
2076	  Build the kernel with Branch Target Identification annotations
2077	  and enable enforcement of this for kernel code. When this option
2078	  is enabled and the system supports BTI all kernel code including
2079	  modular code must have BTI enabled.
2080
2081config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2082	# GCC 9 or later, clang 8 or later
2083	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2084
2085config ARM64_E0PD
2086	bool "Enable support for E0PD"
2087	default y
2088	help
2089	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2090	  that EL0 accesses made via TTBR1 always fault in constant time,
2091	  providing similar benefits to KASLR as those provided by KPTI, but
2092	  with lower overhead and without disrupting legitimate access to
2093	  kernel memory such as SPE.
2094
2095	  This option enables E0PD for TTBR1 where available.
2096
2097config ARM64_AS_HAS_MTE
2098	# Initial support for MTE went in binutils 2.32.0, checked with
2099	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2100	# as a late addition to the final architecture spec (LDGM/STGM)
2101	# is only supported in the newer 2.32.x and 2.33 binutils
2102	# versions, hence the extra "stgm" instruction check below.
2103	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2104
2105config ARM64_MTE
2106	bool "Memory Tagging Extension support"
2107	default y
2108	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2109	depends on AS_HAS_ARMV8_5
2110	depends on AS_HAS_LSE_ATOMICS
2111	# Required for tag checking in the uaccess routines
2112	depends on ARM64_PAN
2113	select ARCH_HAS_SUBPAGE_FAULTS
2114	select ARCH_USES_HIGH_VMA_FLAGS
2115	select ARCH_USES_PG_ARCH_X
2116	help
2117	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2118	  architectural support for run-time, always-on detection of
2119	  various classes of memory error to aid with software debugging
2120	  to eliminate vulnerabilities arising from memory-unsafe
2121	  languages.
2122
2123	  This option enables the support for the Memory Tagging
2124	  Extension at EL0 (i.e. for userspace).
2125
2126	  Selecting this option allows the feature to be detected at
2127	  runtime. Any secondary CPU not implementing this feature will
2128	  not be allowed a late bring-up.
2129
2130	  Userspace binaries that want to use this feature must
2131	  explicitly opt in. The mechanism for the userspace is
2132	  described in:
2133
2134	  Documentation/arch/arm64/memory-tagging-extension.rst.
2135
2136endmenu # "ARMv8.5 architectural features"
2137
2138menu "ARMv8.7 architectural features"
2139
2140config ARM64_EPAN
2141	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2142	default y
2143	depends on ARM64_PAN
2144	help
2145	  Enhanced Privileged Access Never (EPAN) allows Privileged
2146	  Access Never to be used with Execute-only mappings.
2147
2148	  The feature is detected at runtime, and will remain disabled
2149	  if the cpu does not implement the feature.
2150endmenu # "ARMv8.7 architectural features"
2151
2152config ARM64_SVE
2153	bool "ARM Scalable Vector Extension support"
2154	default y
2155	help
2156	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2157	  execution state which complements and extends the SIMD functionality
2158	  of the base architecture to support much larger vectors and to enable
2159	  additional vectorisation opportunities.
2160
2161	  To enable use of this extension on CPUs that implement it, say Y.
2162
2163	  On CPUs that support the SVE2 extensions, this option will enable
2164	  those too.
2165
2166	  Note that for architectural reasons, firmware _must_ implement SVE
2167	  support when running on SVE capable hardware.  The required support
2168	  is present in:
2169
2170	    * version 1.5 and later of the ARM Trusted Firmware
2171	    * the AArch64 boot wrapper since commit 5e1261e08abf
2172	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2173
2174	  For other firmware implementations, consult the firmware documentation
2175	  or vendor.
2176
2177	  If you need the kernel to boot on SVE-capable hardware with broken
2178	  firmware, you may need to say N here until you get your firmware
2179	  fixed.  Otherwise, you may experience firmware panics or lockups when
2180	  booting the kernel.  If unsure and you are not observing these
2181	  symptoms, you should assume that it is safe to say Y.
2182
2183config ARM64_SME
2184	bool "ARM Scalable Matrix Extension support"
2185	default y
2186	depends on ARM64_SVE
2187	help
2188	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2189	  execution state which utilises a substantial subset of the SVE
2190	  instruction set, together with the addition of new architectural
2191	  register state capable of holding two dimensional matrix tiles to
2192	  enable various matrix operations.
2193
2194config ARM64_PSEUDO_NMI
2195	bool "Support for NMI-like interrupts"
2196	select ARM_GIC_V3
2197	help
2198	  Adds support for mimicking Non-Maskable Interrupts through the use of
2199	  GIC interrupt priority. This support requires version 3 or later of
2200	  ARM GIC.
2201
2202	  This high priority configuration for interrupts needs to be
2203	  explicitly enabled by setting the kernel parameter
2204	  "irqchip.gicv3_pseudo_nmi" to 1.
2205
2206	  If unsure, say N
2207
2208if ARM64_PSEUDO_NMI
2209config ARM64_DEBUG_PRIORITY_MASKING
2210	bool "Debug interrupt priority masking"
2211	help
2212	  This adds runtime checks to functions enabling/disabling
2213	  interrupts when using priority masking. The additional checks verify
2214	  the validity of ICC_PMR_EL1 when calling concerned functions.
2215
2216	  If unsure, say N
2217endif # ARM64_PSEUDO_NMI
2218
2219config RELOCATABLE
2220	bool "Build a relocatable kernel image" if EXPERT
2221	select ARCH_HAS_RELR
2222	default y
2223	help
2224	  This builds the kernel as a Position Independent Executable (PIE),
2225	  which retains all relocation metadata required to relocate the
2226	  kernel binary at runtime to a different virtual address than the
2227	  address it was linked at.
2228	  Since AArch64 uses the RELA relocation format, this requires a
2229	  relocation pass at runtime even if the kernel is loaded at the
2230	  same address it was linked at.
2231
2232config RANDOMIZE_BASE
2233	bool "Randomize the address of the kernel image"
2234	select RELOCATABLE
2235	help
2236	  Randomizes the virtual address at which the kernel image is
2237	  loaded, as a security feature that deters exploit attempts
2238	  relying on knowledge of the location of kernel internals.
2239
2240	  It is the bootloader's job to provide entropy, by passing a
2241	  random u64 value in /chosen/kaslr-seed at kernel entry.
2242
2243	  When booting via the UEFI stub, it will invoke the firmware's
2244	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2245	  to the kernel proper. In addition, it will randomise the physical
2246	  location of the kernel Image as well.
2247
2248	  If unsure, say N.
2249
2250config RANDOMIZE_MODULE_REGION_FULL
2251	bool "Randomize the module region over a 2 GB range"
2252	depends on RANDOMIZE_BASE
2253	default y
2254	help
2255	  Randomizes the location of the module region inside a 2 GB window
2256	  covering the core kernel. This way, it is less likely for modules
2257	  to leak information about the location of core kernel data structures
2258	  but it does imply that function calls between modules and the core
2259	  kernel will need to be resolved via veneers in the module PLT.
2260
2261	  When this option is not set, the module region will be randomized over
2262	  a limited range that contains the [_stext, _etext] interval of the
2263	  core kernel, so branch relocations are almost always in range unless
2264	  the region is exhausted. In this particular case of region
2265	  exhaustion, modules might be able to fall back to a larger 2GB area.
2266
2267config CC_HAVE_STACKPROTECTOR_SYSREG
2268	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2269
2270config STACKPROTECTOR_PER_TASK
2271	def_bool y
2272	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2273
2274config UNWIND_PATCH_PAC_INTO_SCS
2275	bool "Enable shadow call stack dynamically using code patching"
2276	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2277	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2278	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2279	depends on SHADOW_CALL_STACK
2280	select UNWIND_TABLES
2281	select DYNAMIC_SCS
2282
2283config ARM64_CONTPTE
2284	bool "Contiguous PTE mappings for user memory" if EXPERT
2285	depends on TRANSPARENT_HUGEPAGE
2286	default y
2287	help
2288	  When enabled, user mappings are configured using the PTE contiguous
2289	  bit, for any mappings that meet the size and alignment requirements.
2290	  This reduces TLB pressure and improves performance.
2291
2292endmenu # "Kernel Features"
2293
2294menu "Boot options"
2295
2296config ARM64_ACPI_PARKING_PROTOCOL
2297	bool "Enable support for the ARM64 ACPI parking protocol"
2298	depends on ACPI
2299	help
2300	  Enable support for the ARM64 ACPI parking protocol. If disabled
2301	  the kernel will not allow booting through the ARM64 ACPI parking
2302	  protocol even if the corresponding data is present in the ACPI
2303	  MADT table.
2304
2305config CMDLINE
2306	string "Default kernel command string"
2307	default ""
2308	help
2309	  Provide a set of default command-line options at build time by
2310	  entering them here. As a minimum, you should specify the the
2311	  root device (e.g. root=/dev/nfs).
2312
2313choice
2314	prompt "Kernel command line type"
2315	depends on CMDLINE != ""
2316	default CMDLINE_FROM_BOOTLOADER
2317	help
2318	  Choose how the kernel will handle the provided default kernel
2319	  command line string.
2320
2321config CMDLINE_FROM_BOOTLOADER
2322	bool "Use bootloader kernel arguments if available"
2323	help
2324	  Uses the command-line options passed by the boot loader. If
2325	  the boot loader doesn't provide any, the default kernel command
2326	  string provided in CMDLINE will be used.
2327
2328config CMDLINE_FORCE
2329	bool "Always use the default kernel command string"
2330	help
2331	  Always use the default kernel command string, even if the boot
2332	  loader passes other arguments to the kernel.
2333	  This is useful if you cannot or don't want to change the
2334	  command-line options your boot loader passes to the kernel.
2335
2336endchoice
2337
2338config EFI_STUB
2339	bool
2340
2341config EFI
2342	bool "UEFI runtime support"
2343	depends on OF && !CPU_BIG_ENDIAN
2344	depends on KERNEL_MODE_NEON
2345	select ARCH_SUPPORTS_ACPI
2346	select LIBFDT
2347	select UCS2_STRING
2348	select EFI_PARAMS_FROM_FDT
2349	select EFI_RUNTIME_WRAPPERS
2350	select EFI_STUB
2351	select EFI_GENERIC_STUB
2352	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2353	default y
2354	help
2355	  This option provides support for runtime services provided
2356	  by UEFI firmware (such as non-volatile variables, realtime
2357	  clock, and platform reset). A UEFI stub is also provided to
2358	  allow the kernel to be booted as an EFI application. This
2359	  is only useful on systems that have UEFI firmware.
2360
2361config COMPRESSED_INSTALL
2362	bool "Install compressed image by default"
2363	help
2364	  This makes the regular "make install" install the compressed
2365	  image we built, not the legacy uncompressed one.
2366
2367	  You can check that a compressed image works for you by doing
2368	  "make zinstall" first, and verifying that everything is fine
2369	  in your environment before making "make install" do this for
2370	  you.
2371
2372config DMI
2373	bool "Enable support for SMBIOS (DMI) tables"
2374	depends on EFI
2375	default y
2376	help
2377	  This enables SMBIOS/DMI feature for systems.
2378
2379	  This option is only useful on systems that have UEFI firmware.
2380	  However, even with this option, the resultant kernel should
2381	  continue to boot on existing non-UEFI platforms.
2382
2383endmenu # "Boot options"
2384
2385menu "Power management options"
2386
2387source "kernel/power/Kconfig"
2388
2389config ARCH_HIBERNATION_POSSIBLE
2390	def_bool y
2391	depends on CPU_PM
2392
2393config ARCH_HIBERNATION_HEADER
2394	def_bool y
2395	depends on HIBERNATION
2396
2397config ARCH_SUSPEND_POSSIBLE
2398	def_bool y
2399
2400endmenu # "Power management options"
2401
2402menu "CPU Power Management"
2403
2404source "drivers/cpuidle/Kconfig"
2405
2406source "drivers/cpufreq/Kconfig"
2407
2408endmenu # "CPU Power Management"
2409
2410source "drivers/acpi/Kconfig"
2411
2412source "arch/arm64/kvm/Kconfig"
2413
2414