1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_IORT if ACPI 9 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 10 select ACPI_MCFG if (ACPI && PCI) 11 select ACPI_SPCR_TABLE if ACPI 12 select ACPI_PPTT if ACPI 13 select ARCH_HAS_DEBUG_WX 14 select ARCH_BINFMT_ELF_EXTRA_PHDRS 15 select ARCH_BINFMT_ELF_STATE 16 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 18 select ARCH_ENABLE_MEMORY_HOTPLUG 19 select ARCH_ENABLE_MEMORY_HOTREMOVE 20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 22 select ARCH_HAS_CACHE_LINE_SIZE 23 select ARCH_HAS_CURRENT_STACK_POINTER 24 select ARCH_HAS_DEBUG_VIRTUAL 25 select ARCH_HAS_DEBUG_VM_PGTABLE 26 select ARCH_HAS_DMA_PREP_COHERENT 27 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 28 select ARCH_HAS_FAST_MULTIPLIER 29 select ARCH_HAS_FORTIFY_SOURCE 30 select ARCH_HAS_GCOV_PROFILE_ALL 31 select ARCH_HAS_GIGANTIC_PAGE 32 select ARCH_HAS_KCOV 33 select ARCH_HAS_KEEPINITRD 34 select ARCH_HAS_MEMBARRIER_SYNC_CORE 35 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 36 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 37 select ARCH_HAS_PTE_DEVMAP 38 select ARCH_HAS_PTE_SPECIAL 39 select ARCH_HAS_HW_PTE_YOUNG 40 select ARCH_HAS_SETUP_DMA_OPS 41 select ARCH_HAS_SET_DIRECT_MAP 42 select ARCH_HAS_SET_MEMORY 43 select ARCH_STACKWALK 44 select ARCH_HAS_STRICT_KERNEL_RWX 45 select ARCH_HAS_STRICT_MODULE_RWX 46 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 47 select ARCH_HAS_SYNC_DMA_FOR_CPU 48 select ARCH_HAS_SYSCALL_WRAPPER 49 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 50 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 51 select ARCH_HAS_ZONE_DMA_SET if EXPERT 52 select ARCH_HAVE_ELF_PROT 53 select ARCH_HAVE_NMI_SAFE_CMPXCHG 54 select ARCH_HAVE_TRACE_MMIO_ACCESS 55 select ARCH_INLINE_READ_LOCK if !PREEMPTION 56 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 57 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 58 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 59 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 60 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 62 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 63 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 64 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 66 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 67 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 68 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 70 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 71 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 72 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 73 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 74 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 76 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 77 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 78 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 80 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 81 select ARCH_KEEP_MEMBLOCK 82 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 83 select ARCH_USE_CMPXCHG_LOCKREF 84 select ARCH_USE_GNU_PROPERTY 85 select ARCH_USE_MEMTEST 86 select ARCH_USE_QUEUED_RWLOCKS 87 select ARCH_USE_QUEUED_SPINLOCKS 88 select ARCH_USE_SYM_ANNOTATIONS 89 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 90 select ARCH_SUPPORTS_HUGETLBFS 91 select ARCH_SUPPORTS_MEMORY_FAILURE 92 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 93 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 94 select ARCH_SUPPORTS_LTO_CLANG_THIN 95 select ARCH_SUPPORTS_CFI_CLANG 96 select ARCH_SUPPORTS_ATOMIC_RMW 97 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 98 select ARCH_SUPPORTS_NUMA_BALANCING 99 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 100 select ARCH_SUPPORTS_PER_VMA_LOCK 101 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 102 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 103 select ARCH_WANT_DEFAULT_BPF_JIT 104 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 105 select ARCH_WANT_FRAME_POINTERS 106 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 107 select ARCH_WANT_LD_ORPHAN_WARN 108 select ARCH_WANTS_NO_INSTR 109 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 110 select ARCH_HAS_UBSAN 111 select ARM_AMBA 112 select ARM_ARCH_TIMER 113 select ARM_GIC 114 select AUDIT_ARCH_COMPAT_GENERIC 115 select ARM_GIC_V2M if PCI 116 select ARM_GIC_V3 117 select ARM_GIC_V3_ITS if PCI 118 select ARM_PSCI_FW 119 select BUILDTIME_TABLE_SORT 120 select CLONE_BACKWARDS 121 select COMMON_CLK 122 select CPU_PM if (SUSPEND || CPU_IDLE) 123 select CRC32 124 select DCACHE_WORD_ACCESS 125 select DYNAMIC_FTRACE if FUNCTION_TRACER 126 select DMA_BOUNCE_UNALIGNED_KMALLOC 127 select DMA_DIRECT_REMAP 128 select EDAC_SUPPORT 129 select FRAME_POINTER 130 select FUNCTION_ALIGNMENT_4B 131 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 132 select GENERIC_ALLOCATOR 133 select GENERIC_ARCH_TOPOLOGY 134 select GENERIC_CLOCKEVENTS_BROADCAST 135 select GENERIC_CPU_AUTOPROBE 136 select GENERIC_CPU_DEVICES 137 select GENERIC_CPU_VULNERABILITIES 138 select GENERIC_EARLY_IOREMAP 139 select GENERIC_IDLE_POLL_SETUP 140 select GENERIC_IOREMAP 141 select GENERIC_IRQ_IPI 142 select GENERIC_IRQ_PROBE 143 select GENERIC_IRQ_SHOW 144 select GENERIC_IRQ_SHOW_LEVEL 145 select GENERIC_LIB_DEVMEM_IS_ALLOWED 146 select GENERIC_PCI_IOMAP 147 select GENERIC_PTDUMP 148 select GENERIC_SCHED_CLOCK 149 select GENERIC_SMP_IDLE_THREAD 150 select GENERIC_TIME_VSYSCALL 151 select GENERIC_GETTIMEOFDAY 152 select GENERIC_VDSO_TIME_NS 153 select HARDIRQS_SW_RESEND 154 select HAS_IOPORT 155 select HAVE_MOVE_PMD 156 select HAVE_MOVE_PUD 157 select HAVE_PCI 158 select HAVE_ACPI_APEI if (ACPI && EFI) 159 select HAVE_ALIGNED_STRUCT_PAGE 160 select HAVE_ARCH_AUDITSYSCALL 161 select HAVE_ARCH_BITREVERSE 162 select HAVE_ARCH_COMPILER_H 163 select HAVE_ARCH_HUGE_VMALLOC 164 select HAVE_ARCH_HUGE_VMAP 165 select HAVE_ARCH_JUMP_LABEL 166 select HAVE_ARCH_JUMP_LABEL_RELATIVE 167 select HAVE_ARCH_KASAN 168 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 169 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 170 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 171 # Some instrumentation may be unsound, hence EXPERT 172 select HAVE_ARCH_KCSAN if EXPERT 173 select HAVE_ARCH_KFENCE 174 select HAVE_ARCH_KGDB 175 select HAVE_ARCH_MMAP_RND_BITS 176 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 177 select HAVE_ARCH_PREL32_RELOCATIONS 178 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 179 select HAVE_ARCH_SECCOMP_FILTER 180 select HAVE_ARCH_STACKLEAK 181 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 182 select HAVE_ARCH_TRACEHOOK 183 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 184 select HAVE_ARCH_VMAP_STACK 185 select HAVE_ARM_SMCCC 186 select HAVE_ASM_MODVERSIONS 187 select HAVE_EBPF_JIT 188 select HAVE_C_RECORDMCOUNT 189 select HAVE_CMPXCHG_DOUBLE 190 select HAVE_CMPXCHG_LOCAL 191 select HAVE_CONTEXT_TRACKING_USER 192 select HAVE_DEBUG_KMEMLEAK 193 select HAVE_DMA_CONTIGUOUS 194 select HAVE_DYNAMIC_FTRACE 195 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 196 if $(cc-option,-fpatchable-function-entry=2) 197 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 198 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 199 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 200 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 201 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE)) 202 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 203 if DYNAMIC_FTRACE_WITH_ARGS 204 select HAVE_SAMPLE_FTRACE_DIRECT 205 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 206 select HAVE_EFFICIENT_UNALIGNED_ACCESS 207 select HAVE_FAST_GUP 208 select HAVE_FTRACE_MCOUNT_RECORD 209 select HAVE_FUNCTION_TRACER 210 select HAVE_FUNCTION_ERROR_INJECTION 211 select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER 212 select HAVE_FUNCTION_GRAPH_TRACER 213 select HAVE_GCC_PLUGINS 214 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 215 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 216 select HAVE_HW_BREAKPOINT if PERF_EVENTS 217 select HAVE_IOREMAP_PROT 218 select HAVE_IRQ_TIME_ACCOUNTING 219 select HAVE_MOD_ARCH_SPECIFIC 220 select HAVE_NMI 221 select HAVE_PERF_EVENTS 222 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 223 select HAVE_PERF_REGS 224 select HAVE_PERF_USER_STACK_DUMP 225 select HAVE_PREEMPT_DYNAMIC_KEY 226 select HAVE_REGS_AND_STACK_ACCESS_API 227 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 228 select HAVE_FUNCTION_ARG_ACCESS_API 229 select MMU_GATHER_RCU_TABLE_FREE 230 select HAVE_RSEQ 231 select HAVE_RUST if CPU_LITTLE_ENDIAN 232 select HAVE_STACKPROTECTOR 233 select HAVE_SYSCALL_TRACEPOINTS 234 select HAVE_KPROBES 235 select HAVE_KRETPROBES 236 select HAVE_GENERIC_VDSO 237 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 238 select IRQ_DOMAIN 239 select IRQ_FORCED_THREADING 240 select KASAN_VMALLOC if KASAN 241 select LOCK_MM_AND_FIND_VMA 242 select MODULES_USE_ELF_RELA 243 select NEED_DMA_MAP_STATE 244 select NEED_SG_DMA_LENGTH 245 select OF 246 select OF_EARLY_FLATTREE 247 select PCI_DOMAINS_GENERIC if PCI 248 select PCI_ECAM if (ACPI && PCI) 249 select PCI_SYSCALL if PCI 250 select POWER_RESET 251 select POWER_SUPPLY 252 select SPARSE_IRQ 253 select SWIOTLB 254 select SYSCTL_EXCEPTION_TRACE 255 select THREAD_INFO_IN_TASK 256 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 257 select TRACE_IRQFLAGS_SUPPORT 258 select TRACE_IRQFLAGS_NMI_SUPPORT 259 select HAVE_SOFTIRQ_ON_OWN_STACK 260 help 261 ARM 64-bit (AArch64) Linux support. 262 263config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 264 def_bool CC_IS_CLANG 265 # https://github.com/ClangBuiltLinux/linux/issues/1507 266 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 267 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 268 269config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 270 def_bool CC_IS_GCC 271 depends on $(cc-option,-fpatchable-function-entry=2) 272 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 273 274config 64BIT 275 def_bool y 276 277config MMU 278 def_bool y 279 280config ARM64_CONT_PTE_SHIFT 281 int 282 default 5 if PAGE_SIZE_64KB 283 default 7 if PAGE_SIZE_16KB 284 default 4 285 286config ARM64_CONT_PMD_SHIFT 287 int 288 default 5 if PAGE_SIZE_64KB 289 default 5 if PAGE_SIZE_16KB 290 default 4 291 292config ARCH_MMAP_RND_BITS_MIN 293 default 14 if PAGE_SIZE_64KB 294 default 16 if PAGE_SIZE_16KB 295 default 18 296 297# max bits determined by the following formula: 298# VA_BITS - PAGE_SHIFT - 3 299config ARCH_MMAP_RND_BITS_MAX 300 default 19 if ARM64_VA_BITS=36 301 default 24 if ARM64_VA_BITS=39 302 default 27 if ARM64_VA_BITS=42 303 default 30 if ARM64_VA_BITS=47 304 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 305 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 306 default 33 if ARM64_VA_BITS=48 307 default 14 if ARM64_64K_PAGES 308 default 16 if ARM64_16K_PAGES 309 default 18 310 311config ARCH_MMAP_RND_COMPAT_BITS_MIN 312 default 7 if ARM64_64K_PAGES 313 default 9 if ARM64_16K_PAGES 314 default 11 315 316config ARCH_MMAP_RND_COMPAT_BITS_MAX 317 default 16 318 319config NO_IOPORT_MAP 320 def_bool y if !PCI 321 322config STACKTRACE_SUPPORT 323 def_bool y 324 325config ILLEGAL_POINTER_VALUE 326 hex 327 default 0xdead000000000000 328 329config LOCKDEP_SUPPORT 330 def_bool y 331 332config GENERIC_BUG 333 def_bool y 334 depends on BUG 335 336config GENERIC_BUG_RELATIVE_POINTERS 337 def_bool y 338 depends on GENERIC_BUG 339 340config GENERIC_HWEIGHT 341 def_bool y 342 343config GENERIC_CSUM 344 def_bool y 345 346config GENERIC_CALIBRATE_DELAY 347 def_bool y 348 349config SMP 350 def_bool y 351 352config KERNEL_MODE_NEON 353 def_bool y 354 355config FIX_EARLYCON_MEM 356 def_bool y 357 358config PGTABLE_LEVELS 359 int 360 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 361 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 362 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 363 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 364 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 365 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 366 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 367 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52 368 369config ARCH_SUPPORTS_UPROBES 370 def_bool y 371 372config ARCH_PROC_KCORE_TEXT 373 def_bool y 374 375config BROKEN_GAS_INST 376 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 377 378config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 379 bool 380 # Clang's __builtin_return_adddress() strips the PAC since 12.0.0 381 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2 382 default y if CC_IS_CLANG 383 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 384 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 385 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 386 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 387 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 388 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 389 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 390 default n 391 392config KASAN_SHADOW_OFFSET 393 hex 394 depends on KASAN_GENERIC || KASAN_SW_TAGS 395 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS 396 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS 397 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 398 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 399 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 400 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS 401 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS 402 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 403 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 404 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 405 default 0xffffffffffffffff 406 407config UNWIND_TABLES 408 bool 409 410source "arch/arm64/Kconfig.platforms" 411 412menu "Kernel Features" 413 414menu "ARM errata workarounds via the alternatives framework" 415 416config AMPERE_ERRATUM_AC03_CPU_38 417 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 418 default y 419 help 420 This option adds an alternative code sequence to work around Ampere 421 erratum AC03_CPU_38 on AmpereOne. 422 423 The affected design reports FEAT_HAFDBS as not implemented in 424 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 425 as required by the architecture. The unadvertised HAFDBS 426 implementation suffers from an additional erratum where hardware 427 A/D updates can occur after a PTE has been marked invalid. 428 429 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 430 which avoids enabling unadvertised hardware Access Flag management 431 at stage-2. 432 433 If unsure, say Y. 434 435config ARM64_WORKAROUND_CLEAN_CACHE 436 bool 437 438config ARM64_ERRATUM_826319 439 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 440 default y 441 select ARM64_WORKAROUND_CLEAN_CACHE 442 help 443 This option adds an alternative code sequence to work around ARM 444 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 445 AXI master interface and an L2 cache. 446 447 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 448 and is unable to accept a certain write via this interface, it will 449 not progress on read data presented on the read data channel and the 450 system can deadlock. 451 452 The workaround promotes data cache clean instructions to 453 data cache clean-and-invalidate. 454 Please note that this does not necessarily enable the workaround, 455 as it depends on the alternative framework, which will only patch 456 the kernel if an affected CPU is detected. 457 458 If unsure, say Y. 459 460config ARM64_ERRATUM_827319 461 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 462 default y 463 select ARM64_WORKAROUND_CLEAN_CACHE 464 help 465 This option adds an alternative code sequence to work around ARM 466 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 467 master interface and an L2 cache. 468 469 Under certain conditions this erratum can cause a clean line eviction 470 to occur at the same time as another transaction to the same address 471 on the AMBA 5 CHI interface, which can cause data corruption if the 472 interconnect reorders the two transactions. 473 474 The workaround promotes data cache clean instructions to 475 data cache clean-and-invalidate. 476 Please note that this does not necessarily enable the workaround, 477 as it depends on the alternative framework, which will only patch 478 the kernel if an affected CPU is detected. 479 480 If unsure, say Y. 481 482config ARM64_ERRATUM_824069 483 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 484 default y 485 select ARM64_WORKAROUND_CLEAN_CACHE 486 help 487 This option adds an alternative code sequence to work around ARM 488 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 489 to a coherent interconnect. 490 491 If a Cortex-A53 processor is executing a store or prefetch for 492 write instruction at the same time as a processor in another 493 cluster is executing a cache maintenance operation to the same 494 address, then this erratum might cause a clean cache line to be 495 incorrectly marked as dirty. 496 497 The workaround promotes data cache clean instructions to 498 data cache clean-and-invalidate. 499 Please note that this option does not necessarily enable the 500 workaround, as it depends on the alternative framework, which will 501 only patch the kernel if an affected CPU is detected. 502 503 If unsure, say Y. 504 505config ARM64_ERRATUM_819472 506 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 507 default y 508 select ARM64_WORKAROUND_CLEAN_CACHE 509 help 510 This option adds an alternative code sequence to work around ARM 511 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 512 present when it is connected to a coherent interconnect. 513 514 If the processor is executing a load and store exclusive sequence at 515 the same time as a processor in another cluster is executing a cache 516 maintenance operation to the same address, then this erratum might 517 cause data corruption. 518 519 The workaround promotes data cache clean instructions to 520 data cache clean-and-invalidate. 521 Please note that this does not necessarily enable the workaround, 522 as it depends on the alternative framework, which will only patch 523 the kernel if an affected CPU is detected. 524 525 If unsure, say Y. 526 527config ARM64_ERRATUM_832075 528 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 529 default y 530 help 531 This option adds an alternative code sequence to work around ARM 532 erratum 832075 on Cortex-A57 parts up to r1p2. 533 534 Affected Cortex-A57 parts might deadlock when exclusive load/store 535 instructions to Write-Back memory are mixed with Device loads. 536 537 The workaround is to promote device loads to use Load-Acquire 538 semantics. 539 Please note that this does not necessarily enable the workaround, 540 as it depends on the alternative framework, which will only patch 541 the kernel if an affected CPU is detected. 542 543 If unsure, say Y. 544 545config ARM64_ERRATUM_834220 546 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)" 547 depends on KVM 548 help 549 This option adds an alternative code sequence to work around ARM 550 erratum 834220 on Cortex-A57 parts up to r1p2. 551 552 Affected Cortex-A57 parts might report a Stage 2 translation 553 fault as the result of a Stage 1 fault for load crossing a 554 page boundary when there is a permission or device memory 555 alignment fault at Stage 1 and a translation fault at Stage 2. 556 557 The workaround is to verify that the Stage 1 translation 558 doesn't generate a fault before handling the Stage 2 fault. 559 Please note that this does not necessarily enable the workaround, 560 as it depends on the alternative framework, which will only patch 561 the kernel if an affected CPU is detected. 562 563 If unsure, say N. 564 565config ARM64_ERRATUM_1742098 566 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 567 depends on COMPAT 568 default y 569 help 570 This option removes the AES hwcap for aarch32 user-space to 571 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 572 573 Affected parts may corrupt the AES state if an interrupt is 574 taken between a pair of AES instructions. These instructions 575 are only present if the cryptography extensions are present. 576 All software should have a fallback implementation for CPUs 577 that don't implement the cryptography extensions. 578 579 If unsure, say Y. 580 581config ARM64_ERRATUM_845719 582 bool "Cortex-A53: 845719: a load might read incorrect data" 583 depends on COMPAT 584 default y 585 help 586 This option adds an alternative code sequence to work around ARM 587 erratum 845719 on Cortex-A53 parts up to r0p4. 588 589 When running a compat (AArch32) userspace on an affected Cortex-A53 590 part, a load at EL0 from a virtual address that matches the bottom 32 591 bits of the virtual address used by a recent load at (AArch64) EL1 592 might return incorrect data. 593 594 The workaround is to write the contextidr_el1 register on exception 595 return to a 32-bit task. 596 Please note that this does not necessarily enable the workaround, 597 as it depends on the alternative framework, which will only patch 598 the kernel if an affected CPU is detected. 599 600 If unsure, say Y. 601 602config ARM64_ERRATUM_843419 603 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 604 default y 605 help 606 This option links the kernel with '--fix-cortex-a53-843419' and 607 enables PLT support to replace certain ADRP instructions, which can 608 cause subsequent memory accesses to use an incorrect address on 609 Cortex-A53 parts up to r0p4. 610 611 If unsure, say Y. 612 613config ARM64_LD_HAS_FIX_ERRATUM_843419 614 def_bool $(ld-option,--fix-cortex-a53-843419) 615 616config ARM64_ERRATUM_1024718 617 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 618 default y 619 help 620 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 621 622 Affected Cortex-A55 cores (all revisions) could cause incorrect 623 update of the hardware dirty bit when the DBM/AP bits are updated 624 without a break-before-make. The workaround is to disable the usage 625 of hardware DBM locally on the affected cores. CPUs not affected by 626 this erratum will continue to use the feature. 627 628 If unsure, say Y. 629 630config ARM64_ERRATUM_1418040 631 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 632 default y 633 depends on COMPAT 634 help 635 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 636 errata 1188873 and 1418040. 637 638 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 639 cause register corruption when accessing the timer registers 640 from AArch32 userspace. 641 642 If unsure, say Y. 643 644config ARM64_WORKAROUND_SPECULATIVE_AT 645 bool 646 647config ARM64_ERRATUM_1165522 648 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 649 default y 650 select ARM64_WORKAROUND_SPECULATIVE_AT 651 help 652 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 653 654 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 655 corrupted TLBs by speculating an AT instruction during a guest 656 context switch. 657 658 If unsure, say Y. 659 660config ARM64_ERRATUM_1319367 661 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 662 default y 663 select ARM64_WORKAROUND_SPECULATIVE_AT 664 help 665 This option adds work arounds for ARM Cortex-A57 erratum 1319537 666 and A72 erratum 1319367 667 668 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 669 speculating an AT instruction during a guest context switch. 670 671 If unsure, say Y. 672 673config ARM64_ERRATUM_1530923 674 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 675 default y 676 select ARM64_WORKAROUND_SPECULATIVE_AT 677 help 678 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 679 680 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 681 corrupted TLBs by speculating an AT instruction during a guest 682 context switch. 683 684 If unsure, say Y. 685 686config ARM64_WORKAROUND_REPEAT_TLBI 687 bool 688 689config ARM64_ERRATUM_2441007 690 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 691 select ARM64_WORKAROUND_REPEAT_TLBI 692 help 693 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 694 695 Under very rare circumstances, affected Cortex-A55 CPUs 696 may not handle a race between a break-before-make sequence on one 697 CPU, and another CPU accessing the same page. This could allow a 698 store to a page that has been unmapped. 699 700 Work around this by adding the affected CPUs to the list that needs 701 TLB sequences to be done twice. 702 703 If unsure, say N. 704 705config ARM64_ERRATUM_1286807 706 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)" 707 select ARM64_WORKAROUND_REPEAT_TLBI 708 help 709 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 710 711 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 712 address for a cacheable mapping of a location is being 713 accessed by a core while another core is remapping the virtual 714 address to a new physical page using the recommended 715 break-before-make sequence, then under very rare circumstances 716 TLBI+DSB completes before a read using the translation being 717 invalidated has been observed by other observers. The 718 workaround repeats the TLBI+DSB operation. 719 720 If unsure, say N. 721 722config ARM64_ERRATUM_1463225 723 bool "Cortex-A76: Software Step might prevent interrupt recognition" 724 default y 725 help 726 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 727 728 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 729 of a system call instruction (SVC) can prevent recognition of 730 subsequent interrupts when software stepping is disabled in the 731 exception handler of the system call and either kernel debugging 732 is enabled or VHE is in use. 733 734 Work around the erratum by triggering a dummy step exception 735 when handling a system call from a task that is being stepped 736 in a VHE configuration of the kernel. 737 738 If unsure, say Y. 739 740config ARM64_ERRATUM_1542419 741 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)" 742 help 743 This option adds a workaround for ARM Neoverse-N1 erratum 744 1542419. 745 746 Affected Neoverse-N1 cores could execute a stale instruction when 747 modified by another CPU. The workaround depends on a firmware 748 counterpart. 749 750 Workaround the issue by hiding the DIC feature from EL0. This 751 forces user-space to perform cache maintenance. 752 753 If unsure, say N. 754 755config ARM64_ERRATUM_1508412 756 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 757 default y 758 help 759 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 760 761 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 762 of a store-exclusive or read of PAR_EL1 and a load with device or 763 non-cacheable memory attributes. The workaround depends on a firmware 764 counterpart. 765 766 KVM guests must also have the workaround implemented or they can 767 deadlock the system. 768 769 Work around the issue by inserting DMB SY barriers around PAR_EL1 770 register reads and warning KVM users. The DMB barrier is sufficient 771 to prevent a speculative PAR_EL1 read. 772 773 If unsure, say Y. 774 775config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 776 bool 777 778config ARM64_ERRATUM_2051678 779 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 780 default y 781 help 782 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 783 Affected Cortex-A510 might not respect the ordering rules for 784 hardware update of the page table's dirty bit. The workaround 785 is to not enable the feature on affected CPUs. 786 787 If unsure, say Y. 788 789config ARM64_ERRATUM_2077057 790 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 791 default y 792 help 793 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 794 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 795 expected, but a Pointer Authentication trap is taken instead. The 796 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 797 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 798 799 This can only happen when EL2 is stepping EL1. 800 801 When these conditions occur, the SPSR_EL2 value is unchanged from the 802 previous guest entry, and can be restored from the in-memory copy. 803 804 If unsure, say Y. 805 806config ARM64_ERRATUM_2658417 807 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 808 default y 809 help 810 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 811 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 812 BFMMLA or VMMLA instructions in rare circumstances when a pair of 813 A510 CPUs are using shared neon hardware. As the sharing is not 814 discoverable by the kernel, hide the BF16 HWCAP to indicate that 815 user-space should not be using these instructions. 816 817 If unsure, say Y. 818 819config ARM64_ERRATUM_2119858 820 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 821 default y 822 depends on CORESIGHT_TRBE 823 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 824 help 825 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 826 827 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 828 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 829 the event of a WRAP event. 830 831 Work around the issue by always making sure we move the TRBPTR_EL1 by 832 256 bytes before enabling the buffer and filling the first 256 bytes of 833 the buffer with ETM ignore packets upon disabling. 834 835 If unsure, say Y. 836 837config ARM64_ERRATUM_2139208 838 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 839 default y 840 depends on CORESIGHT_TRBE 841 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 842 help 843 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 844 845 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 846 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 847 the event of a WRAP event. 848 849 Work around the issue by always making sure we move the TRBPTR_EL1 by 850 256 bytes before enabling the buffer and filling the first 256 bytes of 851 the buffer with ETM ignore packets upon disabling. 852 853 If unsure, say Y. 854 855config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 856 bool 857 858config ARM64_ERRATUM_2054223 859 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 860 default y 861 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 862 help 863 Enable workaround for ARM Cortex-A710 erratum 2054223 864 865 Affected cores may fail to flush the trace data on a TSB instruction, when 866 the PE is in trace prohibited state. This will cause losing a few bytes 867 of the trace cached. 868 869 Workaround is to issue two TSB consecutively on affected cores. 870 871 If unsure, say Y. 872 873config ARM64_ERRATUM_2067961 874 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 875 default y 876 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 877 help 878 Enable workaround for ARM Neoverse-N2 erratum 2067961 879 880 Affected cores may fail to flush the trace data on a TSB instruction, when 881 the PE is in trace prohibited state. This will cause losing a few bytes 882 of the trace cached. 883 884 Workaround is to issue two TSB consecutively on affected cores. 885 886 If unsure, say Y. 887 888config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 889 bool 890 891config ARM64_ERRATUM_2253138 892 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 893 depends on CORESIGHT_TRBE 894 default y 895 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 896 help 897 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 898 899 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 900 for TRBE. Under some conditions, the TRBE might generate a write to the next 901 virtually addressed page following the last page of the TRBE address space 902 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 903 904 Work around this in the driver by always making sure that there is a 905 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 906 907 If unsure, say Y. 908 909config ARM64_ERRATUM_2224489 910 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 911 depends on CORESIGHT_TRBE 912 default y 913 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 914 help 915 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 916 917 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 918 for TRBE. Under some conditions, the TRBE might generate a write to the next 919 virtually addressed page following the last page of the TRBE address space 920 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 921 922 Work around this in the driver by always making sure that there is a 923 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 924 925 If unsure, say Y. 926 927config ARM64_ERRATUM_2441009 928 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 929 select ARM64_WORKAROUND_REPEAT_TLBI 930 help 931 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 932 933 Under very rare circumstances, affected Cortex-A510 CPUs 934 may not handle a race between a break-before-make sequence on one 935 CPU, and another CPU accessing the same page. This could allow a 936 store to a page that has been unmapped. 937 938 Work around this by adding the affected CPUs to the list that needs 939 TLB sequences to be done twice. 940 941 If unsure, say N. 942 943config ARM64_ERRATUM_2064142 944 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 945 depends on CORESIGHT_TRBE 946 default y 947 help 948 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 949 950 Affected Cortex-A510 core might fail to write into system registers after the 951 TRBE has been disabled. Under some conditions after the TRBE has been disabled 952 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 953 and TRBTRG_EL1 will be ignored and will not be effected. 954 955 Work around this in the driver by executing TSB CSYNC and DSB after collection 956 is stopped and before performing a system register write to one of the affected 957 registers. 958 959 If unsure, say Y. 960 961config ARM64_ERRATUM_2038923 962 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 963 depends on CORESIGHT_TRBE 964 default y 965 help 966 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 967 968 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 969 prohibited within the CPU. As a result, the trace buffer or trace buffer state 970 might be corrupted. This happens after TRBE buffer has been enabled by setting 971 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 972 execution changes from a context, in which trace is prohibited to one where it 973 isn't, or vice versa. In these mentioned conditions, the view of whether trace 974 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 975 the trace buffer state might be corrupted. 976 977 Work around this in the driver by preventing an inconsistent view of whether the 978 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 979 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 980 two ISB instructions if no ERET is to take place. 981 982 If unsure, say Y. 983 984config ARM64_ERRATUM_1902691 985 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 986 depends on CORESIGHT_TRBE 987 default y 988 help 989 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 990 991 Affected Cortex-A510 core might cause trace data corruption, when being written 992 into the memory. Effectively TRBE is broken and hence cannot be used to capture 993 trace data. 994 995 Work around this problem in the driver by just preventing TRBE initialization on 996 affected cpus. The firmware must have disabled the access to TRBE for the kernel 997 on such implementations. This will cover the kernel for any firmware that doesn't 998 do this already. 999 1000 If unsure, say Y. 1001 1002config ARM64_ERRATUM_2457168 1003 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1004 depends on ARM64_AMU_EXTN 1005 default y 1006 help 1007 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1008 1009 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1010 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1011 incorrectly giving a significantly higher output value. 1012 1013 Work around this problem by returning 0 when reading the affected counter in 1014 key locations that results in disabling all users of this counter. This effect 1015 is the same to firmware disabling affected counters. 1016 1017 If unsure, say Y. 1018 1019config ARM64_ERRATUM_2645198 1020 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1021 default y 1022 help 1023 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1024 1025 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1026 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1027 next instruction abort caused by permission fault. 1028 1029 Only user-space does executable to non-executable permission transition via 1030 mprotect() system call. Workaround the problem by doing a break-before-make 1031 TLB invalidation, for all changes to executable user space mappings. 1032 1033 If unsure, say Y. 1034 1035config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1036 bool 1037 1038config ARM64_ERRATUM_2966298 1039 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1040 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1041 default y 1042 help 1043 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1044 1045 On an affected Cortex-A520 core, a speculatively executed unprivileged 1046 load might leak data from a privileged level via a cache side channel. 1047 1048 Work around this problem by executing a TLBI before returning to EL0. 1049 1050 If unsure, say Y. 1051 1052config ARM64_ERRATUM_3117295 1053 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1054 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1055 default y 1056 help 1057 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1058 1059 On an affected Cortex-A510 core, a speculatively executed unprivileged 1060 load might leak data from a privileged level via a cache side channel. 1061 1062 Work around this problem by executing a TLBI before returning to EL0. 1063 1064 If unsure, say Y. 1065 1066config CAVIUM_ERRATUM_22375 1067 bool "Cavium erratum 22375, 24313" 1068 default y 1069 help 1070 Enable workaround for errata 22375 and 24313. 1071 1072 This implements two gicv3-its errata workarounds for ThunderX. Both 1073 with a small impact affecting only ITS table allocation. 1074 1075 erratum 22375: only alloc 8MB table size 1076 erratum 24313: ignore memory access type 1077 1078 The fixes are in ITS initialization and basically ignore memory access 1079 type and table size provided by the TYPER and BASER registers. 1080 1081 If unsure, say Y. 1082 1083config CAVIUM_ERRATUM_23144 1084 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1085 depends on NUMA 1086 default y 1087 help 1088 ITS SYNC command hang for cross node io and collections/cpu mapping. 1089 1090 If unsure, say Y. 1091 1092config CAVIUM_ERRATUM_23154 1093 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1094 default y 1095 help 1096 The ThunderX GICv3 implementation requires a modified version for 1097 reading the IAR status to ensure data synchronization 1098 (access to icc_iar1_el1 is not sync'ed before and after). 1099 1100 It also suffers from erratum 38545 (also present on Marvell's 1101 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1102 spuriously presented to the CPU interface. 1103 1104 If unsure, say Y. 1105 1106config CAVIUM_ERRATUM_27456 1107 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1108 default y 1109 help 1110 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1111 instructions may cause the icache to become corrupted if it 1112 contains data for a non-current ASID. The fix is to 1113 invalidate the icache when changing the mm context. 1114 1115 If unsure, say Y. 1116 1117config CAVIUM_ERRATUM_30115 1118 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1119 default y 1120 help 1121 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1122 1.2, and T83 Pass 1.0, KVM guest execution may disable 1123 interrupts in host. Trapping both GICv3 group-0 and group-1 1124 accesses sidesteps the issue. 1125 1126 If unsure, say Y. 1127 1128config CAVIUM_TX2_ERRATUM_219 1129 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1130 default y 1131 help 1132 On Cavium ThunderX2, a load, store or prefetch instruction between a 1133 TTBR update and the corresponding context synchronizing operation can 1134 cause a spurious Data Abort to be delivered to any hardware thread in 1135 the CPU core. 1136 1137 Work around the issue by avoiding the problematic code sequence and 1138 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1139 trap handler performs the corresponding register access, skips the 1140 instruction and ensures context synchronization by virtue of the 1141 exception return. 1142 1143 If unsure, say Y. 1144 1145config FUJITSU_ERRATUM_010001 1146 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1147 default y 1148 help 1149 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1150 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1151 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1152 This fault occurs under a specific hardware condition when a 1153 load/store instruction performs an address translation using: 1154 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1155 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1156 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1157 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1158 1159 The workaround is to ensure these bits are clear in TCR_ELx. 1160 The workaround only affects the Fujitsu-A64FX. 1161 1162 If unsure, say Y. 1163 1164config HISILICON_ERRATUM_161600802 1165 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1166 default y 1167 help 1168 The HiSilicon Hip07 SoC uses the wrong redistributor base 1169 when issued ITS commands such as VMOVP and VMAPP, and requires 1170 a 128kB offset to be applied to the target address in this commands. 1171 1172 If unsure, say Y. 1173 1174config QCOM_FALKOR_ERRATUM_1003 1175 bool "Falkor E1003: Incorrect translation due to ASID change" 1176 default y 1177 help 1178 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1179 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1180 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1181 then only for entries in the walk cache, since the leaf translation 1182 is unchanged. Work around the erratum by invalidating the walk cache 1183 entries for the trampoline before entering the kernel proper. 1184 1185config QCOM_FALKOR_ERRATUM_1009 1186 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1187 default y 1188 select ARM64_WORKAROUND_REPEAT_TLBI 1189 help 1190 On Falkor v1, the CPU may prematurely complete a DSB following a 1191 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1192 one more time to fix the issue. 1193 1194 If unsure, say Y. 1195 1196config QCOM_QDF2400_ERRATUM_0065 1197 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1198 default y 1199 help 1200 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1201 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1202 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1203 1204 If unsure, say Y. 1205 1206config QCOM_FALKOR_ERRATUM_E1041 1207 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1208 default y 1209 help 1210 Falkor CPU may speculatively fetch instructions from an improper 1211 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1212 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1213 1214 If unsure, say Y. 1215 1216config NVIDIA_CARMEL_CNP_ERRATUM 1217 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1218 default y 1219 help 1220 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1221 invalidate shared TLB entries installed by a different core, as it would 1222 on standard ARM cores. 1223 1224 If unsure, say Y. 1225 1226config ROCKCHIP_ERRATUM_3588001 1227 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1228 default y 1229 help 1230 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1231 This means, that its sharability feature may not be used, even though it 1232 is supported by the IP itself. 1233 1234 If unsure, say Y. 1235 1236config SOCIONEXT_SYNQUACER_PREITS 1237 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1238 default y 1239 help 1240 Socionext Synquacer SoCs implement a separate h/w block to generate 1241 MSI doorbell writes with non-zero values for the device ID. 1242 1243 If unsure, say Y. 1244 1245endmenu # "ARM errata workarounds via the alternatives framework" 1246 1247choice 1248 prompt "Page size" 1249 default ARM64_4K_PAGES 1250 help 1251 Page size (translation granule) configuration. 1252 1253config ARM64_4K_PAGES 1254 bool "4KB" 1255 select HAVE_PAGE_SIZE_4KB 1256 help 1257 This feature enables 4KB pages support. 1258 1259config ARM64_16K_PAGES 1260 bool "16KB" 1261 select HAVE_PAGE_SIZE_16KB 1262 help 1263 The system will use 16KB pages support. AArch32 emulation 1264 requires applications compiled with 16K (or a multiple of 16K) 1265 aligned segments. 1266 1267config ARM64_64K_PAGES 1268 bool "64KB" 1269 select HAVE_PAGE_SIZE_64KB 1270 help 1271 This feature enables 64KB pages support (4KB by default) 1272 allowing only two levels of page tables and faster TLB 1273 look-up. AArch32 emulation requires applications compiled 1274 with 64K aligned segments. 1275 1276endchoice 1277 1278choice 1279 prompt "Virtual address space size" 1280 default ARM64_VA_BITS_52 1281 help 1282 Allows choosing one of multiple possible virtual address 1283 space sizes. The level of translation table is determined by 1284 a combination of page size and virtual address space size. 1285 1286config ARM64_VA_BITS_36 1287 bool "36-bit" if EXPERT 1288 depends on PAGE_SIZE_16KB 1289 1290config ARM64_VA_BITS_39 1291 bool "39-bit" 1292 depends on PAGE_SIZE_4KB 1293 1294config ARM64_VA_BITS_42 1295 bool "42-bit" 1296 depends on PAGE_SIZE_64KB 1297 1298config ARM64_VA_BITS_47 1299 bool "47-bit" 1300 depends on PAGE_SIZE_16KB 1301 1302config ARM64_VA_BITS_48 1303 bool "48-bit" 1304 1305config ARM64_VA_BITS_52 1306 bool "52-bit" 1307 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1308 help 1309 Enable 52-bit virtual addressing for userspace when explicitly 1310 requested via a hint to mmap(). The kernel will also use 52-bit 1311 virtual addresses for its own mappings (provided HW support for 1312 this feature is available, otherwise it reverts to 48-bit). 1313 1314 NOTE: Enabling 52-bit virtual addressing in conjunction with 1315 ARMv8.3 Pointer Authentication will result in the PAC being 1316 reduced from 7 bits to 3 bits, which may have a significant 1317 impact on its susceptibility to brute-force attacks. 1318 1319 If unsure, select 48-bit virtual addressing instead. 1320 1321endchoice 1322 1323config ARM64_FORCE_52BIT 1324 bool "Force 52-bit virtual addresses for userspace" 1325 depends on ARM64_VA_BITS_52 && EXPERT 1326 help 1327 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1328 to maintain compatibility with older software by providing 48-bit VAs 1329 unless a hint is supplied to mmap. 1330 1331 This configuration option disables the 48-bit compatibility logic, and 1332 forces all userspace addresses to be 52-bit on HW that supports it. One 1333 should only enable this configuration option for stress testing userspace 1334 memory management code. If unsure say N here. 1335 1336config ARM64_VA_BITS 1337 int 1338 default 36 if ARM64_VA_BITS_36 1339 default 39 if ARM64_VA_BITS_39 1340 default 42 if ARM64_VA_BITS_42 1341 default 47 if ARM64_VA_BITS_47 1342 default 48 if ARM64_VA_BITS_48 1343 default 52 if ARM64_VA_BITS_52 1344 1345choice 1346 prompt "Physical address space size" 1347 default ARM64_PA_BITS_48 1348 help 1349 Choose the maximum physical address range that the kernel will 1350 support. 1351 1352config ARM64_PA_BITS_48 1353 bool "48-bit" 1354 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52 1355 1356config ARM64_PA_BITS_52 1357 bool "52-bit" 1358 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52 1359 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1360 help 1361 Enable support for a 52-bit physical address space, introduced as 1362 part of the ARMv8.2-LPA extension. 1363 1364 With this enabled, the kernel will also continue to work on CPUs that 1365 do not support ARMv8.2-LPA, but with some added memory overhead (and 1366 minor performance overhead). 1367 1368endchoice 1369 1370config ARM64_PA_BITS 1371 int 1372 default 48 if ARM64_PA_BITS_48 1373 default 52 if ARM64_PA_BITS_52 1374 1375config ARM64_LPA2 1376 def_bool y 1377 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES 1378 1379choice 1380 prompt "Endianness" 1381 default CPU_LITTLE_ENDIAN 1382 help 1383 Select the endianness of data accesses performed by the CPU. Userspace 1384 applications will need to be compiled and linked for the endianness 1385 that is selected here. 1386 1387config CPU_BIG_ENDIAN 1388 bool "Build big-endian kernel" 1389 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c 1390 depends on AS_IS_GNU || AS_VERSION >= 150000 1391 help 1392 Say Y if you plan on running a kernel with a big-endian userspace. 1393 1394config CPU_LITTLE_ENDIAN 1395 bool "Build little-endian kernel" 1396 help 1397 Say Y if you plan on running a kernel with a little-endian userspace. 1398 This is usually the case for distributions targeting arm64. 1399 1400endchoice 1401 1402config SCHED_MC 1403 bool "Multi-core scheduler support" 1404 help 1405 Multi-core scheduler support improves the CPU scheduler's decision 1406 making when dealing with multi-core CPU chips at a cost of slightly 1407 increased overhead in some places. If unsure say N here. 1408 1409config SCHED_CLUSTER 1410 bool "Cluster scheduler support" 1411 help 1412 Cluster scheduler support improves the CPU scheduler's decision 1413 making when dealing with machines that have clusters of CPUs. 1414 Cluster usually means a couple of CPUs which are placed closely 1415 by sharing mid-level caches, last-level cache tags or internal 1416 busses. 1417 1418config SCHED_SMT 1419 bool "SMT scheduler support" 1420 help 1421 Improves the CPU scheduler's decision making when dealing with 1422 MultiThreading at a cost of slightly increased overhead in some 1423 places. If unsure say N here. 1424 1425config NR_CPUS 1426 int "Maximum number of CPUs (2-4096)" 1427 range 2 4096 1428 default "256" 1429 1430config HOTPLUG_CPU 1431 bool "Support for hot-pluggable CPUs" 1432 select GENERIC_IRQ_MIGRATION 1433 help 1434 Say Y here to experiment with turning CPUs off and on. CPUs 1435 can be controlled through /sys/devices/system/cpu. 1436 1437# Common NUMA Features 1438config NUMA 1439 bool "NUMA Memory Allocation and Scheduler Support" 1440 select GENERIC_ARCH_NUMA 1441 select ACPI_NUMA if ACPI 1442 select OF_NUMA 1443 select HAVE_SETUP_PER_CPU_AREA 1444 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1445 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1446 select USE_PERCPU_NUMA_NODE_ID 1447 help 1448 Enable NUMA (Non-Uniform Memory Access) support. 1449 1450 The kernel will try to allocate memory used by a CPU on the 1451 local memory of the CPU and add some more 1452 NUMA awareness to the kernel. 1453 1454config NODES_SHIFT 1455 int "Maximum NUMA Nodes (as a power of 2)" 1456 range 1 10 1457 default "4" 1458 depends on NUMA 1459 help 1460 Specify the maximum number of NUMA Nodes available on the target 1461 system. Increases memory reserved to accommodate various tables. 1462 1463source "kernel/Kconfig.hz" 1464 1465config ARCH_SPARSEMEM_ENABLE 1466 def_bool y 1467 select SPARSEMEM_VMEMMAP_ENABLE 1468 select SPARSEMEM_VMEMMAP 1469 1470config HW_PERF_EVENTS 1471 def_bool y 1472 depends on ARM_PMU 1473 1474# Supported by clang >= 7.0 or GCC >= 12.0.0 1475config CC_HAVE_SHADOW_CALL_STACK 1476 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1477 1478config PARAVIRT 1479 bool "Enable paravirtualization code" 1480 help 1481 This changes the kernel so it can modify itself when it is run 1482 under a hypervisor, potentially improving performance significantly 1483 over full virtualization. 1484 1485config PARAVIRT_TIME_ACCOUNTING 1486 bool "Paravirtual steal time accounting" 1487 select PARAVIRT 1488 help 1489 Select this option to enable fine granularity task steal time 1490 accounting. Time spent executing other tasks in parallel with 1491 the current vCPU is discounted from the vCPU power. To account for 1492 that, there can be a small performance impact. 1493 1494 If in doubt, say N here. 1495 1496config ARCH_SUPPORTS_KEXEC 1497 def_bool PM_SLEEP_SMP 1498 1499config ARCH_SUPPORTS_KEXEC_FILE 1500 def_bool y 1501 1502config ARCH_SELECTS_KEXEC_FILE 1503 def_bool y 1504 depends on KEXEC_FILE 1505 select HAVE_IMA_KEXEC if IMA 1506 1507config ARCH_SUPPORTS_KEXEC_SIG 1508 def_bool y 1509 1510config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1511 def_bool y 1512 1513config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1514 def_bool y 1515 1516config ARCH_SUPPORTS_CRASH_DUMP 1517 def_bool y 1518 1519config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1520 def_bool CRASH_RESERVE 1521 1522config TRANS_TABLE 1523 def_bool y 1524 depends on HIBERNATION || KEXEC_CORE 1525 1526config XEN_DOM0 1527 def_bool y 1528 depends on XEN 1529 1530config XEN 1531 bool "Xen guest support on ARM64" 1532 depends on ARM64 && OF 1533 select SWIOTLB_XEN 1534 select PARAVIRT 1535 help 1536 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1537 1538# include/linux/mmzone.h requires the following to be true: 1539# 1540# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1541# 1542# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1543# 1544# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1545# ----+-------------------+--------------+----------------------+-------------------------+ 1546# 4K | 27 | 12 | 15 | 10 | 1547# 16K | 27 | 14 | 13 | 11 | 1548# 64K | 29 | 16 | 13 | 13 | 1549config ARCH_FORCE_MAX_ORDER 1550 int 1551 default "13" if ARM64_64K_PAGES 1552 default "11" if ARM64_16K_PAGES 1553 default "10" 1554 help 1555 The kernel page allocator limits the size of maximal physically 1556 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1557 defines the maximal power of two of number of pages that can be 1558 allocated as a single contiguous block. This option allows 1559 overriding the default setting when ability to allocate very 1560 large blocks of physically contiguous memory is required. 1561 1562 The maximal size of allocation cannot exceed the size of the 1563 section, so the value of MAX_PAGE_ORDER should satisfy 1564 1565 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1566 1567 Don't change if unsure. 1568 1569config UNMAP_KERNEL_AT_EL0 1570 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1571 default y 1572 help 1573 Speculation attacks against some high-performance processors can 1574 be used to bypass MMU permission checks and leak kernel data to 1575 userspace. This can be defended against by unmapping the kernel 1576 when running in userspace, mapping it back in on exception entry 1577 via a trampoline page in the vector table. 1578 1579 If unsure, say Y. 1580 1581config MITIGATE_SPECTRE_BRANCH_HISTORY 1582 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1583 default y 1584 help 1585 Speculation attacks against some high-performance processors can 1586 make use of branch history to influence future speculation. 1587 When taking an exception from user-space, a sequence of branches 1588 or a firmware call overwrites the branch history. 1589 1590config RODATA_FULL_DEFAULT_ENABLED 1591 bool "Apply r/o permissions of VM areas also to their linear aliases" 1592 default y 1593 help 1594 Apply read-only attributes of VM areas to the linear alias of 1595 the backing pages as well. This prevents code or read-only data 1596 from being modified (inadvertently or intentionally) via another 1597 mapping of the same memory page. This additional enhancement can 1598 be turned off at runtime by passing rodata=[off|on] (and turned on 1599 with rodata=full if this option is set to 'n') 1600 1601 This requires the linear region to be mapped down to pages, 1602 which may adversely affect performance in some cases. 1603 1604config ARM64_SW_TTBR0_PAN 1605 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1606 help 1607 Enabling this option prevents the kernel from accessing 1608 user-space memory directly by pointing TTBR0_EL1 to a reserved 1609 zeroed area and reserved ASID. The user access routines 1610 restore the valid TTBR0_EL1 temporarily. 1611 1612config ARM64_TAGGED_ADDR_ABI 1613 bool "Enable the tagged user addresses syscall ABI" 1614 default y 1615 help 1616 When this option is enabled, user applications can opt in to a 1617 relaxed ABI via prctl() allowing tagged addresses to be passed 1618 to system calls as pointer arguments. For details, see 1619 Documentation/arch/arm64/tagged-address-abi.rst. 1620 1621menuconfig COMPAT 1622 bool "Kernel support for 32-bit EL0" 1623 depends on ARM64_4K_PAGES || EXPERT 1624 select HAVE_UID16 1625 select OLD_SIGSUSPEND3 1626 select COMPAT_OLD_SIGACTION 1627 help 1628 This option enables support for a 32-bit EL0 running under a 64-bit 1629 kernel at EL1. AArch32-specific components such as system calls, 1630 the user helper functions, VFP support and the ptrace interface are 1631 handled appropriately by the kernel. 1632 1633 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1634 that you will only be able to execute AArch32 binaries that were compiled 1635 with page size aligned segments. 1636 1637 If you want to execute 32-bit userspace applications, say Y. 1638 1639if COMPAT 1640 1641config KUSER_HELPERS 1642 bool "Enable kuser helpers page for 32-bit applications" 1643 default y 1644 help 1645 Warning: disabling this option may break 32-bit user programs. 1646 1647 Provide kuser helpers to compat tasks. The kernel provides 1648 helper code to userspace in read only form at a fixed location 1649 to allow userspace to be independent of the CPU type fitted to 1650 the system. This permits binaries to be run on ARMv4 through 1651 to ARMv8 without modification. 1652 1653 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1654 1655 However, the fixed address nature of these helpers can be used 1656 by ROP (return orientated programming) authors when creating 1657 exploits. 1658 1659 If all of the binaries and libraries which run on your platform 1660 are built specifically for your platform, and make no use of 1661 these helpers, then you can turn this option off to hinder 1662 such exploits. However, in that case, if a binary or library 1663 relying on those helpers is run, it will not function correctly. 1664 1665 Say N here only if you are absolutely certain that you do not 1666 need these helpers; otherwise, the safe option is to say Y. 1667 1668config COMPAT_VDSO 1669 bool "Enable vDSO for 32-bit applications" 1670 depends on !CPU_BIG_ENDIAN 1671 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1672 select GENERIC_COMPAT_VDSO 1673 default y 1674 help 1675 Place in the process address space of 32-bit applications an 1676 ELF shared object providing fast implementations of gettimeofday 1677 and clock_gettime. 1678 1679 You must have a 32-bit build of glibc 2.22 or later for programs 1680 to seamlessly take advantage of this. 1681 1682config THUMB2_COMPAT_VDSO 1683 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1684 depends on COMPAT_VDSO 1685 default y 1686 help 1687 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1688 otherwise with '-marm'. 1689 1690config COMPAT_ALIGNMENT_FIXUPS 1691 bool "Fix up misaligned multi-word loads and stores in user space" 1692 1693menuconfig ARMV8_DEPRECATED 1694 bool "Emulate deprecated/obsolete ARMv8 instructions" 1695 depends on SYSCTL 1696 help 1697 Legacy software support may require certain instructions 1698 that have been deprecated or obsoleted in the architecture. 1699 1700 Enable this config to enable selective emulation of these 1701 features. 1702 1703 If unsure, say Y 1704 1705if ARMV8_DEPRECATED 1706 1707config SWP_EMULATION 1708 bool "Emulate SWP/SWPB instructions" 1709 help 1710 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1711 they are always undefined. Say Y here to enable software 1712 emulation of these instructions for userspace using LDXR/STXR. 1713 This feature can be controlled at runtime with the abi.swp 1714 sysctl which is disabled by default. 1715 1716 In some older versions of glibc [<=2.8] SWP is used during futex 1717 trylock() operations with the assumption that the code will not 1718 be preempted. This invalid assumption may be more likely to fail 1719 with SWP emulation enabled, leading to deadlock of the user 1720 application. 1721 1722 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1723 on an external transaction monitoring block called a global 1724 monitor to maintain update atomicity. If your system does not 1725 implement a global monitor, this option can cause programs that 1726 perform SWP operations to uncached memory to deadlock. 1727 1728 If unsure, say Y 1729 1730config CP15_BARRIER_EMULATION 1731 bool "Emulate CP15 Barrier instructions" 1732 help 1733 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1734 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1735 strongly recommended to use the ISB, DSB, and DMB 1736 instructions instead. 1737 1738 Say Y here to enable software emulation of these 1739 instructions for AArch32 userspace code. When this option is 1740 enabled, CP15 barrier usage is traced which can help 1741 identify software that needs updating. This feature can be 1742 controlled at runtime with the abi.cp15_barrier sysctl. 1743 1744 If unsure, say Y 1745 1746config SETEND_EMULATION 1747 bool "Emulate SETEND instruction" 1748 help 1749 The SETEND instruction alters the data-endianness of the 1750 AArch32 EL0, and is deprecated in ARMv8. 1751 1752 Say Y here to enable software emulation of the instruction 1753 for AArch32 userspace code. This feature can be controlled 1754 at runtime with the abi.setend sysctl. 1755 1756 Note: All the cpus on the system must have mixed endian support at EL0 1757 for this feature to be enabled. If a new CPU - which doesn't support mixed 1758 endian - is hotplugged in after this feature has been enabled, there could 1759 be unexpected results in the applications. 1760 1761 If unsure, say Y 1762endif # ARMV8_DEPRECATED 1763 1764endif # COMPAT 1765 1766menu "ARMv8.1 architectural features" 1767 1768config ARM64_HW_AFDBM 1769 bool "Support for hardware updates of the Access and Dirty page flags" 1770 default y 1771 help 1772 The ARMv8.1 architecture extensions introduce support for 1773 hardware updates of the access and dirty information in page 1774 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1775 capable processors, accesses to pages with PTE_AF cleared will 1776 set this bit instead of raising an access flag fault. 1777 Similarly, writes to read-only pages with the DBM bit set will 1778 clear the read-only bit (AP[2]) instead of raising a 1779 permission fault. 1780 1781 Kernels built with this configuration option enabled continue 1782 to work on pre-ARMv8.1 hardware and the performance impact is 1783 minimal. If unsure, say Y. 1784 1785config ARM64_PAN 1786 bool "Enable support for Privileged Access Never (PAN)" 1787 default y 1788 help 1789 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1790 prevents the kernel or hypervisor from accessing user-space (EL0) 1791 memory directly. 1792 1793 Choosing this option will cause any unprotected (not using 1794 copy_to_user et al) memory access to fail with a permission fault. 1795 1796 The feature is detected at runtime, and will remain as a 'nop' 1797 instruction if the cpu does not implement the feature. 1798 1799config AS_HAS_LSE_ATOMICS 1800 def_bool $(as-instr,.arch_extension lse) 1801 1802config ARM64_LSE_ATOMICS 1803 bool 1804 default ARM64_USE_LSE_ATOMICS 1805 depends on AS_HAS_LSE_ATOMICS 1806 1807config ARM64_USE_LSE_ATOMICS 1808 bool "Atomic instructions" 1809 default y 1810 help 1811 As part of the Large System Extensions, ARMv8.1 introduces new 1812 atomic instructions that are designed specifically to scale in 1813 very large systems. 1814 1815 Say Y here to make use of these instructions for the in-kernel 1816 atomic routines. This incurs a small overhead on CPUs that do 1817 not support these instructions and requires the kernel to be 1818 built with binutils >= 2.25 in order for the new instructions 1819 to be used. 1820 1821endmenu # "ARMv8.1 architectural features" 1822 1823menu "ARMv8.2 architectural features" 1824 1825config AS_HAS_ARMV8_2 1826 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1827 1828config AS_HAS_SHA3 1829 def_bool $(as-instr,.arch armv8.2-a+sha3) 1830 1831config ARM64_PMEM 1832 bool "Enable support for persistent memory" 1833 select ARCH_HAS_PMEM_API 1834 select ARCH_HAS_UACCESS_FLUSHCACHE 1835 help 1836 Say Y to enable support for the persistent memory API based on the 1837 ARMv8.2 DCPoP feature. 1838 1839 The feature is detected at runtime, and the kernel will use DC CVAC 1840 operations if DC CVAP is not supported (following the behaviour of 1841 DC CVAP itself if the system does not define a point of persistence). 1842 1843config ARM64_RAS_EXTN 1844 bool "Enable support for RAS CPU Extensions" 1845 default y 1846 help 1847 CPUs that support the Reliability, Availability and Serviceability 1848 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1849 errors, classify them and report them to software. 1850 1851 On CPUs with these extensions system software can use additional 1852 barriers to determine if faults are pending and read the 1853 classification from a new set of registers. 1854 1855 Selecting this feature will allow the kernel to use these barriers 1856 and access the new registers if the system supports the extension. 1857 Platform RAS features may additionally depend on firmware support. 1858 1859config ARM64_CNP 1860 bool "Enable support for Common Not Private (CNP) translations" 1861 default y 1862 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1863 help 1864 Common Not Private (CNP) allows translation table entries to 1865 be shared between different PEs in the same inner shareable 1866 domain, so the hardware can use this fact to optimise the 1867 caching of such entries in the TLB. 1868 1869 Selecting this option allows the CNP feature to be detected 1870 at runtime, and does not affect PEs that do not implement 1871 this feature. 1872 1873endmenu # "ARMv8.2 architectural features" 1874 1875menu "ARMv8.3 architectural features" 1876 1877config ARM64_PTR_AUTH 1878 bool "Enable support for pointer authentication" 1879 default y 1880 help 1881 Pointer authentication (part of the ARMv8.3 Extensions) provides 1882 instructions for signing and authenticating pointers against secret 1883 keys, which can be used to mitigate Return Oriented Programming (ROP) 1884 and other attacks. 1885 1886 This option enables these instructions at EL0 (i.e. for userspace). 1887 Choosing this option will cause the kernel to initialise secret keys 1888 for each process at exec() time, with these keys being 1889 context-switched along with the process. 1890 1891 The feature is detected at runtime. If the feature is not present in 1892 hardware it will not be advertised to userspace/KVM guest nor will it 1893 be enabled. 1894 1895 If the feature is present on the boot CPU but not on a late CPU, then 1896 the late CPU will be parked. Also, if the boot CPU does not have 1897 address auth and the late CPU has then the late CPU will still boot 1898 but with the feature disabled. On such a system, this option should 1899 not be selected. 1900 1901config ARM64_PTR_AUTH_KERNEL 1902 bool "Use pointer authentication for kernel" 1903 default y 1904 depends on ARM64_PTR_AUTH 1905 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1906 # Modern compilers insert a .note.gnu.property section note for PAC 1907 # which is only understood by binutils starting with version 2.33.1. 1908 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1909 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1910 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1911 help 1912 If the compiler supports the -mbranch-protection or 1913 -msign-return-address flag (e.g. GCC 7 or later), then this option 1914 will cause the kernel itself to be compiled with return address 1915 protection. In this case, and if the target hardware is known to 1916 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1917 disabled with minimal loss of protection. 1918 1919 This feature works with FUNCTION_GRAPH_TRACER option only if 1920 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1921 1922config CC_HAS_BRANCH_PROT_PAC_RET 1923 # GCC 9 or later, clang 8 or later 1924 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1925 1926config CC_HAS_SIGN_RETURN_ADDRESS 1927 # GCC 7, 8 1928 def_bool $(cc-option,-msign-return-address=all) 1929 1930config AS_HAS_ARMV8_3 1931 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1932 1933config AS_HAS_CFI_NEGATE_RA_STATE 1934 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1935 1936config AS_HAS_LDAPR 1937 def_bool $(as-instr,.arch_extension rcpc) 1938 1939endmenu # "ARMv8.3 architectural features" 1940 1941menu "ARMv8.4 architectural features" 1942 1943config ARM64_AMU_EXTN 1944 bool "Enable support for the Activity Monitors Unit CPU extension" 1945 default y 1946 help 1947 The activity monitors extension is an optional extension introduced 1948 by the ARMv8.4 CPU architecture. This enables support for version 1 1949 of the activity monitors architecture, AMUv1. 1950 1951 To enable the use of this extension on CPUs that implement it, say Y. 1952 1953 Note that for architectural reasons, firmware _must_ implement AMU 1954 support when running on CPUs that present the activity monitors 1955 extension. The required support is present in: 1956 * Version 1.5 and later of the ARM Trusted Firmware 1957 1958 For kernels that have this configuration enabled but boot with broken 1959 firmware, you may need to say N here until the firmware is fixed. 1960 Otherwise you may experience firmware panics or lockups when 1961 accessing the counter registers. Even if you are not observing these 1962 symptoms, the values returned by the register reads might not 1963 correctly reflect reality. Most commonly, the value read will be 0, 1964 indicating that the counter is not enabled. 1965 1966config AS_HAS_ARMV8_4 1967 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1968 1969config ARM64_TLB_RANGE 1970 bool "Enable support for tlbi range feature" 1971 default y 1972 depends on AS_HAS_ARMV8_4 1973 help 1974 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1975 range of input addresses. 1976 1977 The feature introduces new assembly instructions, and they were 1978 support when binutils >= 2.30. 1979 1980endmenu # "ARMv8.4 architectural features" 1981 1982menu "ARMv8.5 architectural features" 1983 1984config AS_HAS_ARMV8_5 1985 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1986 1987config ARM64_BTI 1988 bool "Branch Target Identification support" 1989 default y 1990 help 1991 Branch Target Identification (part of the ARMv8.5 Extensions) 1992 provides a mechanism to limit the set of locations to which computed 1993 branch instructions such as BR or BLR can jump. 1994 1995 To make use of BTI on CPUs that support it, say Y. 1996 1997 BTI is intended to provide complementary protection to other control 1998 flow integrity protection mechanisms, such as the Pointer 1999 authentication mechanism provided as part of the ARMv8.3 Extensions. 2000 For this reason, it does not make sense to enable this option without 2001 also enabling support for pointer authentication. Thus, when 2002 enabling this option you should also select ARM64_PTR_AUTH=y. 2003 2004 Userspace binaries must also be specifically compiled to make use of 2005 this mechanism. If you say N here or the hardware does not support 2006 BTI, such binaries can still run, but you get no additional 2007 enforcement of branch destinations. 2008 2009config ARM64_BTI_KERNEL 2010 bool "Use Branch Target Identification for kernel" 2011 default y 2012 depends on ARM64_BTI 2013 depends on ARM64_PTR_AUTH_KERNEL 2014 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2015 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2016 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2017 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2018 depends on !CC_IS_GCC 2019 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2020 help 2021 Build the kernel with Branch Target Identification annotations 2022 and enable enforcement of this for kernel code. When this option 2023 is enabled and the system supports BTI all kernel code including 2024 modular code must have BTI enabled. 2025 2026config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2027 # GCC 9 or later, clang 8 or later 2028 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2029 2030config ARM64_E0PD 2031 bool "Enable support for E0PD" 2032 default y 2033 help 2034 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2035 that EL0 accesses made via TTBR1 always fault in constant time, 2036 providing similar benefits to KASLR as those provided by KPTI, but 2037 with lower overhead and without disrupting legitimate access to 2038 kernel memory such as SPE. 2039 2040 This option enables E0PD for TTBR1 where available. 2041 2042config ARM64_AS_HAS_MTE 2043 # Initial support for MTE went in binutils 2.32.0, checked with 2044 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2045 # as a late addition to the final architecture spec (LDGM/STGM) 2046 # is only supported in the newer 2.32.x and 2.33 binutils 2047 # versions, hence the extra "stgm" instruction check below. 2048 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2049 2050config ARM64_MTE 2051 bool "Memory Tagging Extension support" 2052 default y 2053 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2054 depends on AS_HAS_ARMV8_5 2055 depends on AS_HAS_LSE_ATOMICS 2056 # Required for tag checking in the uaccess routines 2057 depends on ARM64_PAN 2058 select ARCH_HAS_SUBPAGE_FAULTS 2059 select ARCH_USES_HIGH_VMA_FLAGS 2060 select ARCH_USES_PG_ARCH_X 2061 help 2062 Memory Tagging (part of the ARMv8.5 Extensions) provides 2063 architectural support for run-time, always-on detection of 2064 various classes of memory error to aid with software debugging 2065 to eliminate vulnerabilities arising from memory-unsafe 2066 languages. 2067 2068 This option enables the support for the Memory Tagging 2069 Extension at EL0 (i.e. for userspace). 2070 2071 Selecting this option allows the feature to be detected at 2072 runtime. Any secondary CPU not implementing this feature will 2073 not be allowed a late bring-up. 2074 2075 Userspace binaries that want to use this feature must 2076 explicitly opt in. The mechanism for the userspace is 2077 described in: 2078 2079 Documentation/arch/arm64/memory-tagging-extension.rst. 2080 2081endmenu # "ARMv8.5 architectural features" 2082 2083menu "ARMv8.7 architectural features" 2084 2085config ARM64_EPAN 2086 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2087 default y 2088 depends on ARM64_PAN 2089 help 2090 Enhanced Privileged Access Never (EPAN) allows Privileged 2091 Access Never to be used with Execute-only mappings. 2092 2093 The feature is detected at runtime, and will remain disabled 2094 if the cpu does not implement the feature. 2095endmenu # "ARMv8.7 architectural features" 2096 2097config ARM64_SVE 2098 bool "ARM Scalable Vector Extension support" 2099 default y 2100 help 2101 The Scalable Vector Extension (SVE) is an extension to the AArch64 2102 execution state which complements and extends the SIMD functionality 2103 of the base architecture to support much larger vectors and to enable 2104 additional vectorisation opportunities. 2105 2106 To enable use of this extension on CPUs that implement it, say Y. 2107 2108 On CPUs that support the SVE2 extensions, this option will enable 2109 those too. 2110 2111 Note that for architectural reasons, firmware _must_ implement SVE 2112 support when running on SVE capable hardware. The required support 2113 is present in: 2114 2115 * version 1.5 and later of the ARM Trusted Firmware 2116 * the AArch64 boot wrapper since commit 5e1261e08abf 2117 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2118 2119 For other firmware implementations, consult the firmware documentation 2120 or vendor. 2121 2122 If you need the kernel to boot on SVE-capable hardware with broken 2123 firmware, you may need to say N here until you get your firmware 2124 fixed. Otherwise, you may experience firmware panics or lockups when 2125 booting the kernel. If unsure and you are not observing these 2126 symptoms, you should assume that it is safe to say Y. 2127 2128config ARM64_SME 2129 bool "ARM Scalable Matrix Extension support" 2130 default y 2131 depends on ARM64_SVE 2132 help 2133 The Scalable Matrix Extension (SME) is an extension to the AArch64 2134 execution state which utilises a substantial subset of the SVE 2135 instruction set, together with the addition of new architectural 2136 register state capable of holding two dimensional matrix tiles to 2137 enable various matrix operations. 2138 2139config ARM64_PSEUDO_NMI 2140 bool "Support for NMI-like interrupts" 2141 select ARM_GIC_V3 2142 help 2143 Adds support for mimicking Non-Maskable Interrupts through the use of 2144 GIC interrupt priority. This support requires version 3 or later of 2145 ARM GIC. 2146 2147 This high priority configuration for interrupts needs to be 2148 explicitly enabled by setting the kernel parameter 2149 "irqchip.gicv3_pseudo_nmi" to 1. 2150 2151 If unsure, say N 2152 2153if ARM64_PSEUDO_NMI 2154config ARM64_DEBUG_PRIORITY_MASKING 2155 bool "Debug interrupt priority masking" 2156 help 2157 This adds runtime checks to functions enabling/disabling 2158 interrupts when using priority masking. The additional checks verify 2159 the validity of ICC_PMR_EL1 when calling concerned functions. 2160 2161 If unsure, say N 2162endif # ARM64_PSEUDO_NMI 2163 2164config RELOCATABLE 2165 bool "Build a relocatable kernel image" if EXPERT 2166 select ARCH_HAS_RELR 2167 default y 2168 help 2169 This builds the kernel as a Position Independent Executable (PIE), 2170 which retains all relocation metadata required to relocate the 2171 kernel binary at runtime to a different virtual address than the 2172 address it was linked at. 2173 Since AArch64 uses the RELA relocation format, this requires a 2174 relocation pass at runtime even if the kernel is loaded at the 2175 same address it was linked at. 2176 2177config RANDOMIZE_BASE 2178 bool "Randomize the address of the kernel image" 2179 select RELOCATABLE 2180 help 2181 Randomizes the virtual address at which the kernel image is 2182 loaded, as a security feature that deters exploit attempts 2183 relying on knowledge of the location of kernel internals. 2184 2185 It is the bootloader's job to provide entropy, by passing a 2186 random u64 value in /chosen/kaslr-seed at kernel entry. 2187 2188 When booting via the UEFI stub, it will invoke the firmware's 2189 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2190 to the kernel proper. In addition, it will randomise the physical 2191 location of the kernel Image as well. 2192 2193 If unsure, say N. 2194 2195config RANDOMIZE_MODULE_REGION_FULL 2196 bool "Randomize the module region over a 2 GB range" 2197 depends on RANDOMIZE_BASE 2198 default y 2199 help 2200 Randomizes the location of the module region inside a 2 GB window 2201 covering the core kernel. This way, it is less likely for modules 2202 to leak information about the location of core kernel data structures 2203 but it does imply that function calls between modules and the core 2204 kernel will need to be resolved via veneers in the module PLT. 2205 2206 When this option is not set, the module region will be randomized over 2207 a limited range that contains the [_stext, _etext] interval of the 2208 core kernel, so branch relocations are almost always in range unless 2209 the region is exhausted. In this particular case of region 2210 exhaustion, modules might be able to fall back to a larger 2GB area. 2211 2212config CC_HAVE_STACKPROTECTOR_SYSREG 2213 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2214 2215config STACKPROTECTOR_PER_TASK 2216 def_bool y 2217 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2218 2219config UNWIND_PATCH_PAC_INTO_SCS 2220 bool "Enable shadow call stack dynamically using code patching" 2221 # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated 2222 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2223 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2224 depends on SHADOW_CALL_STACK 2225 select UNWIND_TABLES 2226 select DYNAMIC_SCS 2227 2228config ARM64_CONTPTE 2229 bool "Contiguous PTE mappings for user memory" if EXPERT 2230 depends on TRANSPARENT_HUGEPAGE 2231 default y 2232 help 2233 When enabled, user mappings are configured using the PTE contiguous 2234 bit, for any mappings that meet the size and alignment requirements. 2235 This reduces TLB pressure and improves performance. 2236 2237endmenu # "Kernel Features" 2238 2239menu "Boot options" 2240 2241config ARM64_ACPI_PARKING_PROTOCOL 2242 bool "Enable support for the ARM64 ACPI parking protocol" 2243 depends on ACPI 2244 help 2245 Enable support for the ARM64 ACPI parking protocol. If disabled 2246 the kernel will not allow booting through the ARM64 ACPI parking 2247 protocol even if the corresponding data is present in the ACPI 2248 MADT table. 2249 2250config CMDLINE 2251 string "Default kernel command string" 2252 default "" 2253 help 2254 Provide a set of default command-line options at build time by 2255 entering them here. As a minimum, you should specify the the 2256 root device (e.g. root=/dev/nfs). 2257 2258choice 2259 prompt "Kernel command line type" if CMDLINE != "" 2260 default CMDLINE_FROM_BOOTLOADER 2261 help 2262 Choose how the kernel will handle the provided default kernel 2263 command line string. 2264 2265config CMDLINE_FROM_BOOTLOADER 2266 bool "Use bootloader kernel arguments if available" 2267 help 2268 Uses the command-line options passed by the boot loader. If 2269 the boot loader doesn't provide any, the default kernel command 2270 string provided in CMDLINE will be used. 2271 2272config CMDLINE_FORCE 2273 bool "Always use the default kernel command string" 2274 help 2275 Always use the default kernel command string, even if the boot 2276 loader passes other arguments to the kernel. 2277 This is useful if you cannot or don't want to change the 2278 command-line options your boot loader passes to the kernel. 2279 2280endchoice 2281 2282config EFI_STUB 2283 bool 2284 2285config EFI 2286 bool "UEFI runtime support" 2287 depends on OF && !CPU_BIG_ENDIAN 2288 depends on KERNEL_MODE_NEON 2289 select ARCH_SUPPORTS_ACPI 2290 select LIBFDT 2291 select UCS2_STRING 2292 select EFI_PARAMS_FROM_FDT 2293 select EFI_RUNTIME_WRAPPERS 2294 select EFI_STUB 2295 select EFI_GENERIC_STUB 2296 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2297 default y 2298 help 2299 This option provides support for runtime services provided 2300 by UEFI firmware (such as non-volatile variables, realtime 2301 clock, and platform reset). A UEFI stub is also provided to 2302 allow the kernel to be booted as an EFI application. This 2303 is only useful on systems that have UEFI firmware. 2304 2305config DMI 2306 bool "Enable support for SMBIOS (DMI) tables" 2307 depends on EFI 2308 default y 2309 help 2310 This enables SMBIOS/DMI feature for systems. 2311 2312 This option is only useful on systems that have UEFI firmware. 2313 However, even with this option, the resultant kernel should 2314 continue to boot on existing non-UEFI platforms. 2315 2316endmenu # "Boot options" 2317 2318menu "Power management options" 2319 2320source "kernel/power/Kconfig" 2321 2322config ARCH_HIBERNATION_POSSIBLE 2323 def_bool y 2324 depends on CPU_PM 2325 2326config ARCH_HIBERNATION_HEADER 2327 def_bool y 2328 depends on HIBERNATION 2329 2330config ARCH_SUSPEND_POSSIBLE 2331 def_bool y 2332 2333endmenu # "Power management options" 2334 2335menu "CPU Power Management" 2336 2337source "drivers/cpuidle/Kconfig" 2338 2339source "drivers/cpufreq/Kconfig" 2340 2341endmenu # "CPU Power Management" 2342 2343source "drivers/acpi/Kconfig" 2344 2345source "arch/arm64/kvm/Kconfig" 2346 2347