1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_HAS_DEBUG_VIRTUAL 15 select ARCH_HAS_DEBUG_VM_PGTABLE 16 select ARCH_HAS_DMA_PREP_COHERENT 17 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 18 select ARCH_HAS_FAST_MULTIPLIER 19 select ARCH_HAS_FORTIFY_SOURCE 20 select ARCH_HAS_GCOV_PROFILE_ALL 21 select ARCH_HAS_GIGANTIC_PAGE 22 select ARCH_HAS_KCOV 23 select ARCH_HAS_KEEPINITRD 24 select ARCH_HAS_MEMBARRIER_SYNC_CORE 25 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 26 select ARCH_HAS_PTE_DEVMAP 27 select ARCH_HAS_PTE_SPECIAL 28 select ARCH_HAS_SETUP_DMA_OPS 29 select ARCH_HAS_SET_DIRECT_MAP 30 select ARCH_HAS_SET_MEMORY 31 select ARCH_STACKWALK 32 select ARCH_HAS_STRICT_KERNEL_RWX 33 select ARCH_HAS_STRICT_MODULE_RWX 34 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 35 select ARCH_HAS_SYNC_DMA_FOR_CPU 36 select ARCH_HAS_SYSCALL_WRAPPER 37 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 38 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 39 select ARCH_HAVE_ELF_PROT 40 select ARCH_HAVE_NMI_SAFE_CMPXCHG 41 select ARCH_INLINE_READ_LOCK if !PREEMPTION 42 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 43 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 44 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 45 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 46 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 47 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 48 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 49 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 50 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 51 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 52 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 53 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 54 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 55 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 56 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 57 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 58 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 59 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 60 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 61 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 62 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 63 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 64 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 65 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 66 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 67 select ARCH_KEEP_MEMBLOCK 68 select ARCH_USE_CMPXCHG_LOCKREF 69 select ARCH_USE_GNU_PROPERTY 70 select ARCH_USE_QUEUED_RWLOCKS 71 select ARCH_USE_QUEUED_SPINLOCKS 72 select ARCH_USE_SYM_ANNOTATIONS 73 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 74 select ARCH_SUPPORTS_MEMORY_FAILURE 75 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 76 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 77 select ARCH_SUPPORTS_LTO_CLANG_THIN 78 select ARCH_SUPPORTS_CFI_CLANG 79 select ARCH_SUPPORTS_ATOMIC_RMW 80 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 81 select ARCH_SUPPORTS_NUMA_BALANCING 82 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 83 select ARCH_WANT_DEFAULT_BPF_JIT 84 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 85 select ARCH_WANT_FRAME_POINTERS 86 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 87 select ARCH_WANT_LD_ORPHAN_WARN 88 select ARCH_HAS_UBSAN_SANITIZE_ALL 89 select ARM_AMBA 90 select ARM_ARCH_TIMER 91 select ARM_GIC 92 select AUDIT_ARCH_COMPAT_GENERIC 93 select ARM_GIC_V2M if PCI 94 select ARM_GIC_V3 95 select ARM_GIC_V3_ITS if PCI 96 select ARM_PSCI_FW 97 select BUILDTIME_TABLE_SORT 98 select CLONE_BACKWARDS 99 select COMMON_CLK 100 select CPU_PM if (SUSPEND || CPU_IDLE) 101 select CRC32 102 select DCACHE_WORD_ACCESS 103 select DMA_DIRECT_REMAP 104 select EDAC_SUPPORT 105 select FRAME_POINTER 106 select GENERIC_ALLOCATOR 107 select GENERIC_ARCH_TOPOLOGY 108 select GENERIC_CLOCKEVENTS_BROADCAST 109 select GENERIC_CPU_AUTOPROBE 110 select GENERIC_CPU_VULNERABILITIES 111 select GENERIC_EARLY_IOREMAP 112 select GENERIC_FIND_FIRST_BIT 113 select GENERIC_IDLE_POLL_SETUP 114 select GENERIC_IRQ_IPI 115 select GENERIC_IRQ_PROBE 116 select GENERIC_IRQ_SHOW 117 select GENERIC_IRQ_SHOW_LEVEL 118 select GENERIC_LIB_DEVMEM_IS_ALLOWED 119 select GENERIC_PCI_IOMAP 120 select GENERIC_PTDUMP 121 select GENERIC_SCHED_CLOCK 122 select GENERIC_SMP_IDLE_THREAD 123 select GENERIC_STRNCPY_FROM_USER 124 select GENERIC_STRNLEN_USER 125 select GENERIC_TIME_VSYSCALL 126 select GENERIC_GETTIMEOFDAY 127 select GENERIC_VDSO_TIME_NS 128 select HANDLE_DOMAIN_IRQ 129 select HARDIRQS_SW_RESEND 130 select HAVE_MOVE_PMD 131 select HAVE_MOVE_PUD 132 select HAVE_PCI 133 select HAVE_ACPI_APEI if (ACPI && EFI) 134 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 135 select HAVE_ARCH_AUDITSYSCALL 136 select HAVE_ARCH_BITREVERSE 137 select HAVE_ARCH_COMPILER_H 138 select HAVE_ARCH_HUGE_VMAP 139 select HAVE_ARCH_JUMP_LABEL 140 select HAVE_ARCH_JUMP_LABEL_RELATIVE 141 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 142 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 143 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 144 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 145 select HAVE_ARCH_KFENCE 146 select HAVE_ARCH_KGDB 147 select HAVE_ARCH_MMAP_RND_BITS 148 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 149 select HAVE_ARCH_PFN_VALID 150 select HAVE_ARCH_PREL32_RELOCATIONS 151 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 152 select HAVE_ARCH_SECCOMP_FILTER 153 select HAVE_ARCH_STACKLEAK 154 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 155 select HAVE_ARCH_TRACEHOOK 156 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 157 select HAVE_ARCH_VMAP_STACK 158 select HAVE_ARM_SMCCC 159 select HAVE_ASM_MODVERSIONS 160 select HAVE_EBPF_JIT 161 select HAVE_C_RECORDMCOUNT 162 select HAVE_CMPXCHG_DOUBLE 163 select HAVE_CMPXCHG_LOCAL 164 select HAVE_CONTEXT_TRACKING 165 select HAVE_DEBUG_BUGVERBOSE 166 select HAVE_DEBUG_KMEMLEAK 167 select HAVE_DMA_CONTIGUOUS 168 select HAVE_DYNAMIC_FTRACE 169 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 170 if $(cc-option,-fpatchable-function-entry=2) 171 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 172 if DYNAMIC_FTRACE_WITH_REGS 173 select HAVE_EFFICIENT_UNALIGNED_ACCESS 174 select HAVE_FAST_GUP 175 select HAVE_FTRACE_MCOUNT_RECORD 176 select HAVE_FUNCTION_TRACER 177 select HAVE_FUNCTION_ERROR_INJECTION 178 select HAVE_FUNCTION_GRAPH_TRACER 179 select HAVE_GCC_PLUGINS 180 select HAVE_HW_BREAKPOINT if PERF_EVENTS 181 select HAVE_IRQ_TIME_ACCOUNTING 182 select HAVE_NMI 183 select HAVE_PATA_PLATFORM 184 select HAVE_PERF_EVENTS 185 select HAVE_PERF_REGS 186 select HAVE_PERF_USER_STACK_DUMP 187 select HAVE_REGS_AND_STACK_ACCESS_API 188 select HAVE_FUNCTION_ARG_ACCESS_API 189 select HAVE_FUTEX_CMPXCHG if FUTEX 190 select MMU_GATHER_RCU_TABLE_FREE 191 select HAVE_RSEQ 192 select HAVE_STACKPROTECTOR 193 select HAVE_SYSCALL_TRACEPOINTS 194 select HAVE_KPROBES 195 select HAVE_KRETPROBES 196 select HAVE_GENERIC_VDSO 197 select IOMMU_DMA if IOMMU_SUPPORT 198 select IRQ_DOMAIN 199 select IRQ_FORCED_THREADING 200 select KASAN_VMALLOC if KASAN_GENERIC 201 select MODULES_USE_ELF_RELA 202 select NEED_DMA_MAP_STATE 203 select NEED_SG_DMA_LENGTH 204 select OF 205 select OF_EARLY_FLATTREE 206 select PCI_DOMAINS_GENERIC if PCI 207 select PCI_ECAM if (ACPI && PCI) 208 select PCI_SYSCALL if PCI 209 select POWER_RESET 210 select POWER_SUPPLY 211 select SPARSE_IRQ 212 select SWIOTLB 213 select SYSCTL_EXCEPTION_TRACE 214 select THREAD_INFO_IN_TASK 215 help 216 ARM 64-bit (AArch64) Linux support. 217 218config 64BIT 219 def_bool y 220 221config MMU 222 def_bool y 223 224config ARM64_PAGE_SHIFT 225 int 226 default 16 if ARM64_64K_PAGES 227 default 14 if ARM64_16K_PAGES 228 default 12 229 230config ARM64_CONT_PTE_SHIFT 231 int 232 default 5 if ARM64_64K_PAGES 233 default 7 if ARM64_16K_PAGES 234 default 4 235 236config ARM64_CONT_PMD_SHIFT 237 int 238 default 5 if ARM64_64K_PAGES 239 default 5 if ARM64_16K_PAGES 240 default 4 241 242config ARCH_MMAP_RND_BITS_MIN 243 default 14 if ARM64_64K_PAGES 244 default 16 if ARM64_16K_PAGES 245 default 18 246 247# max bits determined by the following formula: 248# VA_BITS - PAGE_SHIFT - 3 249config ARCH_MMAP_RND_BITS_MAX 250 default 19 if ARM64_VA_BITS=36 251 default 24 if ARM64_VA_BITS=39 252 default 27 if ARM64_VA_BITS=42 253 default 30 if ARM64_VA_BITS=47 254 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 255 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 256 default 33 if ARM64_VA_BITS=48 257 default 14 if ARM64_64K_PAGES 258 default 16 if ARM64_16K_PAGES 259 default 18 260 261config ARCH_MMAP_RND_COMPAT_BITS_MIN 262 default 7 if ARM64_64K_PAGES 263 default 9 if ARM64_16K_PAGES 264 default 11 265 266config ARCH_MMAP_RND_COMPAT_BITS_MAX 267 default 16 268 269config NO_IOPORT_MAP 270 def_bool y if !PCI 271 272config STACKTRACE_SUPPORT 273 def_bool y 274 275config ILLEGAL_POINTER_VALUE 276 hex 277 default 0xdead000000000000 278 279config LOCKDEP_SUPPORT 280 def_bool y 281 282config TRACE_IRQFLAGS_SUPPORT 283 def_bool y 284 285config GENERIC_BUG 286 def_bool y 287 depends on BUG 288 289config GENERIC_BUG_RELATIVE_POINTERS 290 def_bool y 291 depends on GENERIC_BUG 292 293config GENERIC_HWEIGHT 294 def_bool y 295 296config GENERIC_CSUM 297 def_bool y 298 299config GENERIC_CALIBRATE_DELAY 300 def_bool y 301 302config ZONE_DMA 303 bool "Support DMA zone" if EXPERT 304 default y 305 306config ZONE_DMA32 307 bool "Support DMA32 zone" if EXPERT 308 default y 309 310config ARCH_ENABLE_MEMORY_HOTPLUG 311 def_bool y 312 313config ARCH_ENABLE_MEMORY_HOTREMOVE 314 def_bool y 315 316config SMP 317 def_bool y 318 319config KERNEL_MODE_NEON 320 def_bool y 321 322config FIX_EARLYCON_MEM 323 def_bool y 324 325config PGTABLE_LEVELS 326 int 327 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 328 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 329 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 330 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 331 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 332 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 333 334config ARCH_SUPPORTS_UPROBES 335 def_bool y 336 337config ARCH_PROC_KCORE_TEXT 338 def_bool y 339 340config BROKEN_GAS_INST 341 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 342 343config KASAN_SHADOW_OFFSET 344 hex 345 depends on KASAN_GENERIC || KASAN_SW_TAGS 346 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 347 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 348 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 349 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 350 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 351 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 352 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 353 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 354 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 355 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 356 default 0xffffffffffffffff 357 358source "arch/arm64/Kconfig.platforms" 359 360menu "Kernel Features" 361 362menu "ARM errata workarounds via the alternatives framework" 363 364config ARM64_WORKAROUND_CLEAN_CACHE 365 bool 366 367config ARM64_ERRATUM_826319 368 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 369 default y 370 select ARM64_WORKAROUND_CLEAN_CACHE 371 help 372 This option adds an alternative code sequence to work around ARM 373 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 374 AXI master interface and an L2 cache. 375 376 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 377 and is unable to accept a certain write via this interface, it will 378 not progress on read data presented on the read data channel and the 379 system can deadlock. 380 381 The workaround promotes data cache clean instructions to 382 data cache clean-and-invalidate. 383 Please note that this does not necessarily enable the workaround, 384 as it depends on the alternative framework, which will only patch 385 the kernel if an affected CPU is detected. 386 387 If unsure, say Y. 388 389config ARM64_ERRATUM_827319 390 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 391 default y 392 select ARM64_WORKAROUND_CLEAN_CACHE 393 help 394 This option adds an alternative code sequence to work around ARM 395 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 396 master interface and an L2 cache. 397 398 Under certain conditions this erratum can cause a clean line eviction 399 to occur at the same time as another transaction to the same address 400 on the AMBA 5 CHI interface, which can cause data corruption if the 401 interconnect reorders the two transactions. 402 403 The workaround promotes data cache clean instructions to 404 data cache clean-and-invalidate. 405 Please note that this does not necessarily enable the workaround, 406 as it depends on the alternative framework, which will only patch 407 the kernel if an affected CPU is detected. 408 409 If unsure, say Y. 410 411config ARM64_ERRATUM_824069 412 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 413 default y 414 select ARM64_WORKAROUND_CLEAN_CACHE 415 help 416 This option adds an alternative code sequence to work around ARM 417 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 418 to a coherent interconnect. 419 420 If a Cortex-A53 processor is executing a store or prefetch for 421 write instruction at the same time as a processor in another 422 cluster is executing a cache maintenance operation to the same 423 address, then this erratum might cause a clean cache line to be 424 incorrectly marked as dirty. 425 426 The workaround promotes data cache clean instructions to 427 data cache clean-and-invalidate. 428 Please note that this option does not necessarily enable the 429 workaround, as it depends on the alternative framework, which will 430 only patch the kernel if an affected CPU is detected. 431 432 If unsure, say Y. 433 434config ARM64_ERRATUM_819472 435 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 436 default y 437 select ARM64_WORKAROUND_CLEAN_CACHE 438 help 439 This option adds an alternative code sequence to work around ARM 440 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 441 present when it is connected to a coherent interconnect. 442 443 If the processor is executing a load and store exclusive sequence at 444 the same time as a processor in another cluster is executing a cache 445 maintenance operation to the same address, then this erratum might 446 cause data corruption. 447 448 The workaround promotes data cache clean instructions to 449 data cache clean-and-invalidate. 450 Please note that this does not necessarily enable the workaround, 451 as it depends on the alternative framework, which will only patch 452 the kernel if an affected CPU is detected. 453 454 If unsure, say Y. 455 456config ARM64_ERRATUM_832075 457 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 458 default y 459 help 460 This option adds an alternative code sequence to work around ARM 461 erratum 832075 on Cortex-A57 parts up to r1p2. 462 463 Affected Cortex-A57 parts might deadlock when exclusive load/store 464 instructions to Write-Back memory are mixed with Device loads. 465 466 The workaround is to promote device loads to use Load-Acquire 467 semantics. 468 Please note that this does not necessarily enable the workaround, 469 as it depends on the alternative framework, which will only patch 470 the kernel if an affected CPU is detected. 471 472 If unsure, say Y. 473 474config ARM64_ERRATUM_834220 475 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 476 depends on KVM 477 default y 478 help 479 This option adds an alternative code sequence to work around ARM 480 erratum 834220 on Cortex-A57 parts up to r1p2. 481 482 Affected Cortex-A57 parts might report a Stage 2 translation 483 fault as the result of a Stage 1 fault for load crossing a 484 page boundary when there is a permission or device memory 485 alignment fault at Stage 1 and a translation fault at Stage 2. 486 487 The workaround is to verify that the Stage 1 translation 488 doesn't generate a fault before handling the Stage 2 fault. 489 Please note that this does not necessarily enable the workaround, 490 as it depends on the alternative framework, which will only patch 491 the kernel if an affected CPU is detected. 492 493 If unsure, say Y. 494 495config ARM64_ERRATUM_845719 496 bool "Cortex-A53: 845719: a load might read incorrect data" 497 depends on COMPAT 498 default y 499 help 500 This option adds an alternative code sequence to work around ARM 501 erratum 845719 on Cortex-A53 parts up to r0p4. 502 503 When running a compat (AArch32) userspace on an affected Cortex-A53 504 part, a load at EL0 from a virtual address that matches the bottom 32 505 bits of the virtual address used by a recent load at (AArch64) EL1 506 might return incorrect data. 507 508 The workaround is to write the contextidr_el1 register on exception 509 return to a 32-bit task. 510 Please note that this does not necessarily enable the workaround, 511 as it depends on the alternative framework, which will only patch 512 the kernel if an affected CPU is detected. 513 514 If unsure, say Y. 515 516config ARM64_ERRATUM_843419 517 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 518 default y 519 select ARM64_MODULE_PLTS if MODULES 520 help 521 This option links the kernel with '--fix-cortex-a53-843419' and 522 enables PLT support to replace certain ADRP instructions, which can 523 cause subsequent memory accesses to use an incorrect address on 524 Cortex-A53 parts up to r0p4. 525 526 If unsure, say Y. 527 528config ARM64_LD_HAS_FIX_ERRATUM_843419 529 def_bool $(ld-option,--fix-cortex-a53-843419) 530 531config ARM64_ERRATUM_1024718 532 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 533 default y 534 help 535 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 536 537 Affected Cortex-A55 cores (all revisions) could cause incorrect 538 update of the hardware dirty bit when the DBM/AP bits are updated 539 without a break-before-make. The workaround is to disable the usage 540 of hardware DBM locally on the affected cores. CPUs not affected by 541 this erratum will continue to use the feature. 542 543 If unsure, say Y. 544 545config ARM64_ERRATUM_1418040 546 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 547 default y 548 depends on COMPAT 549 help 550 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 551 errata 1188873 and 1418040. 552 553 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 554 cause register corruption when accessing the timer registers 555 from AArch32 userspace. 556 557 If unsure, say Y. 558 559config ARM64_WORKAROUND_SPECULATIVE_AT 560 bool 561 562config ARM64_ERRATUM_1165522 563 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 564 default y 565 select ARM64_WORKAROUND_SPECULATIVE_AT 566 help 567 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 568 569 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 570 corrupted TLBs by speculating an AT instruction during a guest 571 context switch. 572 573 If unsure, say Y. 574 575config ARM64_ERRATUM_1319367 576 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 577 default y 578 select ARM64_WORKAROUND_SPECULATIVE_AT 579 help 580 This option adds work arounds for ARM Cortex-A57 erratum 1319537 581 and A72 erratum 1319367 582 583 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 584 speculating an AT instruction during a guest context switch. 585 586 If unsure, say Y. 587 588config ARM64_ERRATUM_1530923 589 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 590 default y 591 select ARM64_WORKAROUND_SPECULATIVE_AT 592 help 593 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 594 595 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 596 corrupted TLBs by speculating an AT instruction during a guest 597 context switch. 598 599 If unsure, say Y. 600 601config ARM64_WORKAROUND_REPEAT_TLBI 602 bool 603 604config ARM64_ERRATUM_1286807 605 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 606 default y 607 select ARM64_WORKAROUND_REPEAT_TLBI 608 help 609 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 610 611 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 612 address for a cacheable mapping of a location is being 613 accessed by a core while another core is remapping the virtual 614 address to a new physical page using the recommended 615 break-before-make sequence, then under very rare circumstances 616 TLBI+DSB completes before a read using the translation being 617 invalidated has been observed by other observers. The 618 workaround repeats the TLBI+DSB operation. 619 620config ARM64_ERRATUM_1463225 621 bool "Cortex-A76: Software Step might prevent interrupt recognition" 622 default y 623 help 624 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 625 626 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 627 of a system call instruction (SVC) can prevent recognition of 628 subsequent interrupts when software stepping is disabled in the 629 exception handler of the system call and either kernel debugging 630 is enabled or VHE is in use. 631 632 Work around the erratum by triggering a dummy step exception 633 when handling a system call from a task that is being stepped 634 in a VHE configuration of the kernel. 635 636 If unsure, say Y. 637 638config ARM64_ERRATUM_1542419 639 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 640 default y 641 help 642 This option adds a workaround for ARM Neoverse-N1 erratum 643 1542419. 644 645 Affected Neoverse-N1 cores could execute a stale instruction when 646 modified by another CPU. The workaround depends on a firmware 647 counterpart. 648 649 Workaround the issue by hiding the DIC feature from EL0. This 650 forces user-space to perform cache maintenance. 651 652 If unsure, say Y. 653 654config ARM64_ERRATUM_1508412 655 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 656 default y 657 help 658 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 659 660 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 661 of a store-exclusive or read of PAR_EL1 and a load with device or 662 non-cacheable memory attributes. The workaround depends on a firmware 663 counterpart. 664 665 KVM guests must also have the workaround implemented or they can 666 deadlock the system. 667 668 Work around the issue by inserting DMB SY barriers around PAR_EL1 669 register reads and warning KVM users. The DMB barrier is sufficient 670 to prevent a speculative PAR_EL1 read. 671 672 If unsure, say Y. 673 674config CAVIUM_ERRATUM_22375 675 bool "Cavium erratum 22375, 24313" 676 default y 677 help 678 Enable workaround for errata 22375 and 24313. 679 680 This implements two gicv3-its errata workarounds for ThunderX. Both 681 with a small impact affecting only ITS table allocation. 682 683 erratum 22375: only alloc 8MB table size 684 erratum 24313: ignore memory access type 685 686 The fixes are in ITS initialization and basically ignore memory access 687 type and table size provided by the TYPER and BASER registers. 688 689 If unsure, say Y. 690 691config CAVIUM_ERRATUM_23144 692 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 693 depends on NUMA 694 default y 695 help 696 ITS SYNC command hang for cross node io and collections/cpu mapping. 697 698 If unsure, say Y. 699 700config CAVIUM_ERRATUM_23154 701 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 702 default y 703 help 704 The gicv3 of ThunderX requires a modified version for 705 reading the IAR status to ensure data synchronization 706 (access to icc_iar1_el1 is not sync'ed before and after). 707 708 If unsure, say Y. 709 710config CAVIUM_ERRATUM_27456 711 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 712 default y 713 help 714 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 715 instructions may cause the icache to become corrupted if it 716 contains data for a non-current ASID. The fix is to 717 invalidate the icache when changing the mm context. 718 719 If unsure, say Y. 720 721config CAVIUM_ERRATUM_30115 722 bool "Cavium erratum 30115: Guest may disable interrupts in host" 723 default y 724 help 725 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 726 1.2, and T83 Pass 1.0, KVM guest execution may disable 727 interrupts in host. Trapping both GICv3 group-0 and group-1 728 accesses sidesteps the issue. 729 730 If unsure, say Y. 731 732config CAVIUM_TX2_ERRATUM_219 733 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 734 default y 735 help 736 On Cavium ThunderX2, a load, store or prefetch instruction between a 737 TTBR update and the corresponding context synchronizing operation can 738 cause a spurious Data Abort to be delivered to any hardware thread in 739 the CPU core. 740 741 Work around the issue by avoiding the problematic code sequence and 742 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 743 trap handler performs the corresponding register access, skips the 744 instruction and ensures context synchronization by virtue of the 745 exception return. 746 747 If unsure, say Y. 748 749config FUJITSU_ERRATUM_010001 750 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 751 default y 752 help 753 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 754 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 755 accesses may cause undefined fault (Data abort, DFSC=0b111111). 756 This fault occurs under a specific hardware condition when a 757 load/store instruction performs an address translation using: 758 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 759 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 760 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 761 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 762 763 The workaround is to ensure these bits are clear in TCR_ELx. 764 The workaround only affects the Fujitsu-A64FX. 765 766 If unsure, say Y. 767 768config HISILICON_ERRATUM_161600802 769 bool "Hip07 161600802: Erroneous redistributor VLPI base" 770 default y 771 help 772 The HiSilicon Hip07 SoC uses the wrong redistributor base 773 when issued ITS commands such as VMOVP and VMAPP, and requires 774 a 128kB offset to be applied to the target address in this commands. 775 776 If unsure, say Y. 777 778config QCOM_FALKOR_ERRATUM_1003 779 bool "Falkor E1003: Incorrect translation due to ASID change" 780 default y 781 help 782 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 783 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 784 in TTBR1_EL1, this situation only occurs in the entry trampoline and 785 then only for entries in the walk cache, since the leaf translation 786 is unchanged. Work around the erratum by invalidating the walk cache 787 entries for the trampoline before entering the kernel proper. 788 789config QCOM_FALKOR_ERRATUM_1009 790 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 791 default y 792 select ARM64_WORKAROUND_REPEAT_TLBI 793 help 794 On Falkor v1, the CPU may prematurely complete a DSB following a 795 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 796 one more time to fix the issue. 797 798 If unsure, say Y. 799 800config QCOM_QDF2400_ERRATUM_0065 801 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 802 default y 803 help 804 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 805 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 806 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 807 808 If unsure, say Y. 809 810config QCOM_FALKOR_ERRATUM_E1041 811 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 812 default y 813 help 814 Falkor CPU may speculatively fetch instructions from an improper 815 memory location when MMU translation is changed from SCTLR_ELn[M]=1 816 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 817 818 If unsure, say Y. 819 820config NVIDIA_CARMEL_CNP_ERRATUM 821 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 822 default y 823 help 824 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 825 invalidate shared TLB entries installed by a different core, as it would 826 on standard ARM cores. 827 828 If unsure, say Y. 829 830config SOCIONEXT_SYNQUACER_PREITS 831 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 832 default y 833 help 834 Socionext Synquacer SoCs implement a separate h/w block to generate 835 MSI doorbell writes with non-zero values for the device ID. 836 837 If unsure, say Y. 838 839endmenu 840 841 842choice 843 prompt "Page size" 844 default ARM64_4K_PAGES 845 help 846 Page size (translation granule) configuration. 847 848config ARM64_4K_PAGES 849 bool "4KB" 850 help 851 This feature enables 4KB pages support. 852 853config ARM64_16K_PAGES 854 bool "16KB" 855 help 856 The system will use 16KB pages support. AArch32 emulation 857 requires applications compiled with 16K (or a multiple of 16K) 858 aligned segments. 859 860config ARM64_64K_PAGES 861 bool "64KB" 862 help 863 This feature enables 64KB pages support (4KB by default) 864 allowing only two levels of page tables and faster TLB 865 look-up. AArch32 emulation requires applications compiled 866 with 64K aligned segments. 867 868endchoice 869 870choice 871 prompt "Virtual address space size" 872 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 873 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 874 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 875 help 876 Allows choosing one of multiple possible virtual address 877 space sizes. The level of translation table is determined by 878 a combination of page size and virtual address space size. 879 880config ARM64_VA_BITS_36 881 bool "36-bit" if EXPERT 882 depends on ARM64_16K_PAGES 883 884config ARM64_VA_BITS_39 885 bool "39-bit" 886 depends on ARM64_4K_PAGES 887 888config ARM64_VA_BITS_42 889 bool "42-bit" 890 depends on ARM64_64K_PAGES 891 892config ARM64_VA_BITS_47 893 bool "47-bit" 894 depends on ARM64_16K_PAGES 895 896config ARM64_VA_BITS_48 897 bool "48-bit" 898 899config ARM64_VA_BITS_52 900 bool "52-bit" 901 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 902 help 903 Enable 52-bit virtual addressing for userspace when explicitly 904 requested via a hint to mmap(). The kernel will also use 52-bit 905 virtual addresses for its own mappings (provided HW support for 906 this feature is available, otherwise it reverts to 48-bit). 907 908 NOTE: Enabling 52-bit virtual addressing in conjunction with 909 ARMv8.3 Pointer Authentication will result in the PAC being 910 reduced from 7 bits to 3 bits, which may have a significant 911 impact on its susceptibility to brute-force attacks. 912 913 If unsure, select 48-bit virtual addressing instead. 914 915endchoice 916 917config ARM64_FORCE_52BIT 918 bool "Force 52-bit virtual addresses for userspace" 919 depends on ARM64_VA_BITS_52 && EXPERT 920 help 921 For systems with 52-bit userspace VAs enabled, the kernel will attempt 922 to maintain compatibility with older software by providing 48-bit VAs 923 unless a hint is supplied to mmap. 924 925 This configuration option disables the 48-bit compatibility logic, and 926 forces all userspace addresses to be 52-bit on HW that supports it. One 927 should only enable this configuration option for stress testing userspace 928 memory management code. If unsure say N here. 929 930config ARM64_VA_BITS 931 int 932 default 36 if ARM64_VA_BITS_36 933 default 39 if ARM64_VA_BITS_39 934 default 42 if ARM64_VA_BITS_42 935 default 47 if ARM64_VA_BITS_47 936 default 48 if ARM64_VA_BITS_48 937 default 52 if ARM64_VA_BITS_52 938 939choice 940 prompt "Physical address space size" 941 default ARM64_PA_BITS_48 942 help 943 Choose the maximum physical address range that the kernel will 944 support. 945 946config ARM64_PA_BITS_48 947 bool "48-bit" 948 949config ARM64_PA_BITS_52 950 bool "52-bit (ARMv8.2)" 951 depends on ARM64_64K_PAGES 952 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 953 help 954 Enable support for a 52-bit physical address space, introduced as 955 part of the ARMv8.2-LPA extension. 956 957 With this enabled, the kernel will also continue to work on CPUs that 958 do not support ARMv8.2-LPA, but with some added memory overhead (and 959 minor performance overhead). 960 961endchoice 962 963config ARM64_PA_BITS 964 int 965 default 48 if ARM64_PA_BITS_48 966 default 52 if ARM64_PA_BITS_52 967 968choice 969 prompt "Endianness" 970 default CPU_LITTLE_ENDIAN 971 help 972 Select the endianness of data accesses performed by the CPU. Userspace 973 applications will need to be compiled and linked for the endianness 974 that is selected here. 975 976config CPU_BIG_ENDIAN 977 bool "Build big-endian kernel" 978 depends on !LD_IS_LLD || LLD_VERSION >= 130000 979 help 980 Say Y if you plan on running a kernel with a big-endian userspace. 981 982config CPU_LITTLE_ENDIAN 983 bool "Build little-endian kernel" 984 help 985 Say Y if you plan on running a kernel with a little-endian userspace. 986 This is usually the case for distributions targeting arm64. 987 988endchoice 989 990config SCHED_MC 991 bool "Multi-core scheduler support" 992 help 993 Multi-core scheduler support improves the CPU scheduler's decision 994 making when dealing with multi-core CPU chips at a cost of slightly 995 increased overhead in some places. If unsure say N here. 996 997config SCHED_SMT 998 bool "SMT scheduler support" 999 help 1000 Improves the CPU scheduler's decision making when dealing with 1001 MultiThreading at a cost of slightly increased overhead in some 1002 places. If unsure say N here. 1003 1004config NR_CPUS 1005 int "Maximum number of CPUs (2-4096)" 1006 range 2 4096 1007 default "256" 1008 1009config HOTPLUG_CPU 1010 bool "Support for hot-pluggable CPUs" 1011 select GENERIC_IRQ_MIGRATION 1012 help 1013 Say Y here to experiment with turning CPUs off and on. CPUs 1014 can be controlled through /sys/devices/system/cpu. 1015 1016# Common NUMA Features 1017config NUMA 1018 bool "NUMA Memory Allocation and Scheduler Support" 1019 select GENERIC_ARCH_NUMA 1020 select ACPI_NUMA if ACPI 1021 select OF_NUMA 1022 help 1023 Enable NUMA (Non-Uniform Memory Access) support. 1024 1025 The kernel will try to allocate memory used by a CPU on the 1026 local memory of the CPU and add some more 1027 NUMA awareness to the kernel. 1028 1029config NODES_SHIFT 1030 int "Maximum NUMA Nodes (as a power of 2)" 1031 range 1 10 1032 default "4" 1033 depends on NEED_MULTIPLE_NODES 1034 help 1035 Specify the maximum number of NUMA Nodes available on the target 1036 system. Increases memory reserved to accommodate various tables. 1037 1038config USE_PERCPU_NUMA_NODE_ID 1039 def_bool y 1040 depends on NUMA 1041 1042config HAVE_SETUP_PER_CPU_AREA 1043 def_bool y 1044 depends on NUMA 1045 1046config NEED_PER_CPU_EMBED_FIRST_CHUNK 1047 def_bool y 1048 depends on NUMA 1049 1050config HOLES_IN_ZONE 1051 def_bool y 1052 1053source "kernel/Kconfig.hz" 1054 1055config ARCH_SPARSEMEM_ENABLE 1056 def_bool y 1057 select SPARSEMEM_VMEMMAP_ENABLE 1058 1059config ARCH_SPARSEMEM_DEFAULT 1060 def_bool ARCH_SPARSEMEM_ENABLE 1061 1062config ARCH_SELECT_MEMORY_MODEL 1063 def_bool ARCH_SPARSEMEM_ENABLE 1064 1065config ARCH_FLATMEM_ENABLE 1066 def_bool !NUMA 1067 1068config HW_PERF_EVENTS 1069 def_bool y 1070 depends on ARM_PMU 1071 1072config SYS_SUPPORTS_HUGETLBFS 1073 def_bool y 1074 1075config ARCH_HAS_CACHE_LINE_SIZE 1076 def_bool y 1077 1078config ARCH_HAS_FILTER_PGPROT 1079 def_bool y 1080 1081config ARCH_ENABLE_SPLIT_PMD_PTLOCK 1082 def_bool y if PGTABLE_LEVELS > 2 1083 1084# Supported by clang >= 7.0 1085config CC_HAVE_SHADOW_CALL_STACK 1086 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1087 1088config PARAVIRT 1089 bool "Enable paravirtualization code" 1090 help 1091 This changes the kernel so it can modify itself when it is run 1092 under a hypervisor, potentially improving performance significantly 1093 over full virtualization. 1094 1095config PARAVIRT_TIME_ACCOUNTING 1096 bool "Paravirtual steal time accounting" 1097 select PARAVIRT 1098 help 1099 Select this option to enable fine granularity task steal time 1100 accounting. Time spent executing other tasks in parallel with 1101 the current vCPU is discounted from the vCPU power. To account for 1102 that, there can be a small performance impact. 1103 1104 If in doubt, say N here. 1105 1106config KEXEC 1107 depends on PM_SLEEP_SMP 1108 select KEXEC_CORE 1109 bool "kexec system call" 1110 help 1111 kexec is a system call that implements the ability to shutdown your 1112 current kernel, and to start another kernel. It is like a reboot 1113 but it is independent of the system firmware. And like a reboot 1114 you can start any kernel with it, not just Linux. 1115 1116config KEXEC_FILE 1117 bool "kexec file based system call" 1118 select KEXEC_CORE 1119 select HAVE_IMA_KEXEC if IMA 1120 help 1121 This is new version of kexec system call. This system call is 1122 file based and takes file descriptors as system call argument 1123 for kernel and initramfs as opposed to list of segments as 1124 accepted by previous system call. 1125 1126config KEXEC_SIG 1127 bool "Verify kernel signature during kexec_file_load() syscall" 1128 depends on KEXEC_FILE 1129 help 1130 Select this option to verify a signature with loaded kernel 1131 image. If configured, any attempt of loading a image without 1132 valid signature will fail. 1133 1134 In addition to that option, you need to enable signature 1135 verification for the corresponding kernel image type being 1136 loaded in order for this to work. 1137 1138config KEXEC_IMAGE_VERIFY_SIG 1139 bool "Enable Image signature verification support" 1140 default y 1141 depends on KEXEC_SIG 1142 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1143 help 1144 Enable Image signature verification support. 1145 1146comment "Support for PE file signature verification disabled" 1147 depends on KEXEC_SIG 1148 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1149 1150config CRASH_DUMP 1151 bool "Build kdump crash kernel" 1152 help 1153 Generate crash dump after being started by kexec. This should 1154 be normally only set in special crash dump kernels which are 1155 loaded in the main kernel with kexec-tools into a specially 1156 reserved region and then later executed after a crash by 1157 kdump/kexec. 1158 1159 For more details see Documentation/admin-guide/kdump/kdump.rst 1160 1161config TRANS_TABLE 1162 def_bool y 1163 depends on HIBERNATION 1164 1165config XEN_DOM0 1166 def_bool y 1167 depends on XEN 1168 1169config XEN 1170 bool "Xen guest support on ARM64" 1171 depends on ARM64 && OF 1172 select SWIOTLB_XEN 1173 select PARAVIRT 1174 help 1175 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1176 1177config FORCE_MAX_ZONEORDER 1178 int 1179 default "14" if ARM64_64K_PAGES 1180 default "12" if ARM64_16K_PAGES 1181 default "11" 1182 help 1183 The kernel memory allocator divides physically contiguous memory 1184 blocks into "zones", where each zone is a power of two number of 1185 pages. This option selects the largest power of two that the kernel 1186 keeps in the memory allocator. If you need to allocate very large 1187 blocks of physically contiguous memory, then you may need to 1188 increase this value. 1189 1190 This config option is actually maximum order plus one. For example, 1191 a value of 11 means that the largest free memory block is 2^10 pages. 1192 1193 We make sure that we can allocate upto a HugePage size for each configuration. 1194 Hence we have : 1195 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1196 1197 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1198 4M allocations matching the default size used by generic code. 1199 1200config UNMAP_KERNEL_AT_EL0 1201 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1202 default y 1203 help 1204 Speculation attacks against some high-performance processors can 1205 be used to bypass MMU permission checks and leak kernel data to 1206 userspace. This can be defended against by unmapping the kernel 1207 when running in userspace, mapping it back in on exception entry 1208 via a trampoline page in the vector table. 1209 1210 If unsure, say Y. 1211 1212config RODATA_FULL_DEFAULT_ENABLED 1213 bool "Apply r/o permissions of VM areas also to their linear aliases" 1214 default y 1215 help 1216 Apply read-only attributes of VM areas to the linear alias of 1217 the backing pages as well. This prevents code or read-only data 1218 from being modified (inadvertently or intentionally) via another 1219 mapping of the same memory page. This additional enhancement can 1220 be turned off at runtime by passing rodata=[off|on] (and turned on 1221 with rodata=full if this option is set to 'n') 1222 1223 This requires the linear region to be mapped down to pages, 1224 which may adversely affect performance in some cases. 1225 1226config ARM64_SW_TTBR0_PAN 1227 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1228 help 1229 Enabling this option prevents the kernel from accessing 1230 user-space memory directly by pointing TTBR0_EL1 to a reserved 1231 zeroed area and reserved ASID. The user access routines 1232 restore the valid TTBR0_EL1 temporarily. 1233 1234config ARM64_TAGGED_ADDR_ABI 1235 bool "Enable the tagged user addresses syscall ABI" 1236 default y 1237 help 1238 When this option is enabled, user applications can opt in to a 1239 relaxed ABI via prctl() allowing tagged addresses to be passed 1240 to system calls as pointer arguments. For details, see 1241 Documentation/arm64/tagged-address-abi.rst. 1242 1243menuconfig COMPAT 1244 bool "Kernel support for 32-bit EL0" 1245 depends on ARM64_4K_PAGES || EXPERT 1246 select HAVE_UID16 1247 select OLD_SIGSUSPEND3 1248 select COMPAT_OLD_SIGACTION 1249 help 1250 This option enables support for a 32-bit EL0 running under a 64-bit 1251 kernel at EL1. AArch32-specific components such as system calls, 1252 the user helper functions, VFP support and the ptrace interface are 1253 handled appropriately by the kernel. 1254 1255 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1256 that you will only be able to execute AArch32 binaries that were compiled 1257 with page size aligned segments. 1258 1259 If you want to execute 32-bit userspace applications, say Y. 1260 1261if COMPAT 1262 1263config KUSER_HELPERS 1264 bool "Enable kuser helpers page for 32-bit applications" 1265 default y 1266 help 1267 Warning: disabling this option may break 32-bit user programs. 1268 1269 Provide kuser helpers to compat tasks. The kernel provides 1270 helper code to userspace in read only form at a fixed location 1271 to allow userspace to be independent of the CPU type fitted to 1272 the system. This permits binaries to be run on ARMv4 through 1273 to ARMv8 without modification. 1274 1275 See Documentation/arm/kernel_user_helpers.rst for details. 1276 1277 However, the fixed address nature of these helpers can be used 1278 by ROP (return orientated programming) authors when creating 1279 exploits. 1280 1281 If all of the binaries and libraries which run on your platform 1282 are built specifically for your platform, and make no use of 1283 these helpers, then you can turn this option off to hinder 1284 such exploits. However, in that case, if a binary or library 1285 relying on those helpers is run, it will not function correctly. 1286 1287 Say N here only if you are absolutely certain that you do not 1288 need these helpers; otherwise, the safe option is to say Y. 1289 1290config COMPAT_VDSO 1291 bool "Enable vDSO for 32-bit applications" 1292 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1293 select GENERIC_COMPAT_VDSO 1294 default y 1295 help 1296 Place in the process address space of 32-bit applications an 1297 ELF shared object providing fast implementations of gettimeofday 1298 and clock_gettime. 1299 1300 You must have a 32-bit build of glibc 2.22 or later for programs 1301 to seamlessly take advantage of this. 1302 1303config THUMB2_COMPAT_VDSO 1304 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1305 depends on COMPAT_VDSO 1306 default y 1307 help 1308 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1309 otherwise with '-marm'. 1310 1311menuconfig ARMV8_DEPRECATED 1312 bool "Emulate deprecated/obsolete ARMv8 instructions" 1313 depends on SYSCTL 1314 help 1315 Legacy software support may require certain instructions 1316 that have been deprecated or obsoleted in the architecture. 1317 1318 Enable this config to enable selective emulation of these 1319 features. 1320 1321 If unsure, say Y 1322 1323if ARMV8_DEPRECATED 1324 1325config SWP_EMULATION 1326 bool "Emulate SWP/SWPB instructions" 1327 help 1328 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1329 they are always undefined. Say Y here to enable software 1330 emulation of these instructions for userspace using LDXR/STXR. 1331 This feature can be controlled at runtime with the abi.swp 1332 sysctl which is disabled by default. 1333 1334 In some older versions of glibc [<=2.8] SWP is used during futex 1335 trylock() operations with the assumption that the code will not 1336 be preempted. This invalid assumption may be more likely to fail 1337 with SWP emulation enabled, leading to deadlock of the user 1338 application. 1339 1340 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1341 on an external transaction monitoring block called a global 1342 monitor to maintain update atomicity. If your system does not 1343 implement a global monitor, this option can cause programs that 1344 perform SWP operations to uncached memory to deadlock. 1345 1346 If unsure, say Y 1347 1348config CP15_BARRIER_EMULATION 1349 bool "Emulate CP15 Barrier instructions" 1350 help 1351 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1352 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1353 strongly recommended to use the ISB, DSB, and DMB 1354 instructions instead. 1355 1356 Say Y here to enable software emulation of these 1357 instructions for AArch32 userspace code. When this option is 1358 enabled, CP15 barrier usage is traced which can help 1359 identify software that needs updating. This feature can be 1360 controlled at runtime with the abi.cp15_barrier sysctl. 1361 1362 If unsure, say Y 1363 1364config SETEND_EMULATION 1365 bool "Emulate SETEND instruction" 1366 help 1367 The SETEND instruction alters the data-endianness of the 1368 AArch32 EL0, and is deprecated in ARMv8. 1369 1370 Say Y here to enable software emulation of the instruction 1371 for AArch32 userspace code. This feature can be controlled 1372 at runtime with the abi.setend sysctl. 1373 1374 Note: All the cpus on the system must have mixed endian support at EL0 1375 for this feature to be enabled. If a new CPU - which doesn't support mixed 1376 endian - is hotplugged in after this feature has been enabled, there could 1377 be unexpected results in the applications. 1378 1379 If unsure, say Y 1380endif 1381 1382endif 1383 1384menu "ARMv8.1 architectural features" 1385 1386config ARM64_HW_AFDBM 1387 bool "Support for hardware updates of the Access and Dirty page flags" 1388 default y 1389 help 1390 The ARMv8.1 architecture extensions introduce support for 1391 hardware updates of the access and dirty information in page 1392 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1393 capable processors, accesses to pages with PTE_AF cleared will 1394 set this bit instead of raising an access flag fault. 1395 Similarly, writes to read-only pages with the DBM bit set will 1396 clear the read-only bit (AP[2]) instead of raising a 1397 permission fault. 1398 1399 Kernels built with this configuration option enabled continue 1400 to work on pre-ARMv8.1 hardware and the performance impact is 1401 minimal. If unsure, say Y. 1402 1403config ARM64_PAN 1404 bool "Enable support for Privileged Access Never (PAN)" 1405 default y 1406 help 1407 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1408 prevents the kernel or hypervisor from accessing user-space (EL0) 1409 memory directly. 1410 1411 Choosing this option will cause any unprotected (not using 1412 copy_to_user et al) memory access to fail with a permission fault. 1413 1414 The feature is detected at runtime, and will remain as a 'nop' 1415 instruction if the cpu does not implement the feature. 1416 1417config AS_HAS_LDAPR 1418 def_bool $(as-instr,.arch_extension rcpc) 1419 1420config AS_HAS_LSE_ATOMICS 1421 def_bool $(as-instr,.arch_extension lse) 1422 1423config ARM64_LSE_ATOMICS 1424 bool 1425 default ARM64_USE_LSE_ATOMICS 1426 depends on AS_HAS_LSE_ATOMICS 1427 1428config ARM64_USE_LSE_ATOMICS 1429 bool "Atomic instructions" 1430 depends on JUMP_LABEL 1431 default y 1432 help 1433 As part of the Large System Extensions, ARMv8.1 introduces new 1434 atomic instructions that are designed specifically to scale in 1435 very large systems. 1436 1437 Say Y here to make use of these instructions for the in-kernel 1438 atomic routines. This incurs a small overhead on CPUs that do 1439 not support these instructions and requires the kernel to be 1440 built with binutils >= 2.25 in order for the new instructions 1441 to be used. 1442 1443endmenu 1444 1445menu "ARMv8.2 architectural features" 1446 1447config ARM64_PMEM 1448 bool "Enable support for persistent memory" 1449 select ARCH_HAS_PMEM_API 1450 select ARCH_HAS_UACCESS_FLUSHCACHE 1451 help 1452 Say Y to enable support for the persistent memory API based on the 1453 ARMv8.2 DCPoP feature. 1454 1455 The feature is detected at runtime, and the kernel will use DC CVAC 1456 operations if DC CVAP is not supported (following the behaviour of 1457 DC CVAP itself if the system does not define a point of persistence). 1458 1459config ARM64_RAS_EXTN 1460 bool "Enable support for RAS CPU Extensions" 1461 default y 1462 help 1463 CPUs that support the Reliability, Availability and Serviceability 1464 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1465 errors, classify them and report them to software. 1466 1467 On CPUs with these extensions system software can use additional 1468 barriers to determine if faults are pending and read the 1469 classification from a new set of registers. 1470 1471 Selecting this feature will allow the kernel to use these barriers 1472 and access the new registers if the system supports the extension. 1473 Platform RAS features may additionally depend on firmware support. 1474 1475config ARM64_CNP 1476 bool "Enable support for Common Not Private (CNP) translations" 1477 default y 1478 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1479 help 1480 Common Not Private (CNP) allows translation table entries to 1481 be shared between different PEs in the same inner shareable 1482 domain, so the hardware can use this fact to optimise the 1483 caching of such entries in the TLB. 1484 1485 Selecting this option allows the CNP feature to be detected 1486 at runtime, and does not affect PEs that do not implement 1487 this feature. 1488 1489endmenu 1490 1491menu "ARMv8.3 architectural features" 1492 1493config ARM64_PTR_AUTH 1494 bool "Enable support for pointer authentication" 1495 default y 1496 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1497 # Modern compilers insert a .note.gnu.property section note for PAC 1498 # which is only understood by binutils starting with version 2.33.1. 1499 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1500 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1501 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1502 help 1503 Pointer authentication (part of the ARMv8.3 Extensions) provides 1504 instructions for signing and authenticating pointers against secret 1505 keys, which can be used to mitigate Return Oriented Programming (ROP) 1506 and other attacks. 1507 1508 This option enables these instructions at EL0 (i.e. for userspace). 1509 Choosing this option will cause the kernel to initialise secret keys 1510 for each process at exec() time, with these keys being 1511 context-switched along with the process. 1512 1513 If the compiler supports the -mbranch-protection or 1514 -msign-return-address flag (e.g. GCC 7 or later), then this option 1515 will also cause the kernel itself to be compiled with return address 1516 protection. In this case, and if the target hardware is known to 1517 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1518 disabled with minimal loss of protection. 1519 1520 The feature is detected at runtime. If the feature is not present in 1521 hardware it will not be advertised to userspace/KVM guest nor will it 1522 be enabled. 1523 1524 If the feature is present on the boot CPU but not on a late CPU, then 1525 the late CPU will be parked. Also, if the boot CPU does not have 1526 address auth and the late CPU has then the late CPU will still boot 1527 but with the feature disabled. On such a system, this option should 1528 not be selected. 1529 1530 This feature works with FUNCTION_GRAPH_TRACER option only if 1531 DYNAMIC_FTRACE_WITH_REGS is enabled. 1532 1533config CC_HAS_BRANCH_PROT_PAC_RET 1534 # GCC 9 or later, clang 8 or later 1535 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1536 1537config CC_HAS_SIGN_RETURN_ADDRESS 1538 # GCC 7, 8 1539 def_bool $(cc-option,-msign-return-address=all) 1540 1541config AS_HAS_PAC 1542 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1543 1544config AS_HAS_CFI_NEGATE_RA_STATE 1545 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1546 1547endmenu 1548 1549menu "ARMv8.4 architectural features" 1550 1551config ARM64_AMU_EXTN 1552 bool "Enable support for the Activity Monitors Unit CPU extension" 1553 default y 1554 help 1555 The activity monitors extension is an optional extension introduced 1556 by the ARMv8.4 CPU architecture. This enables support for version 1 1557 of the activity monitors architecture, AMUv1. 1558 1559 To enable the use of this extension on CPUs that implement it, say Y. 1560 1561 Note that for architectural reasons, firmware _must_ implement AMU 1562 support when running on CPUs that present the activity monitors 1563 extension. The required support is present in: 1564 * Version 1.5 and later of the ARM Trusted Firmware 1565 1566 For kernels that have this configuration enabled but boot with broken 1567 firmware, you may need to say N here until the firmware is fixed. 1568 Otherwise you may experience firmware panics or lockups when 1569 accessing the counter registers. Even if you are not observing these 1570 symptoms, the values returned by the register reads might not 1571 correctly reflect reality. Most commonly, the value read will be 0, 1572 indicating that the counter is not enabled. 1573 1574config AS_HAS_ARMV8_4 1575 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1576 1577config ARM64_TLB_RANGE 1578 bool "Enable support for tlbi range feature" 1579 default y 1580 depends on AS_HAS_ARMV8_4 1581 help 1582 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1583 range of input addresses. 1584 1585 The feature introduces new assembly instructions, and they were 1586 support when binutils >= 2.30. 1587 1588endmenu 1589 1590menu "ARMv8.5 architectural features" 1591 1592config AS_HAS_ARMV8_5 1593 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1594 1595config ARM64_BTI 1596 bool "Branch Target Identification support" 1597 default y 1598 help 1599 Branch Target Identification (part of the ARMv8.5 Extensions) 1600 provides a mechanism to limit the set of locations to which computed 1601 branch instructions such as BR or BLR can jump. 1602 1603 To make use of BTI on CPUs that support it, say Y. 1604 1605 BTI is intended to provide complementary protection to other control 1606 flow integrity protection mechanisms, such as the Pointer 1607 authentication mechanism provided as part of the ARMv8.3 Extensions. 1608 For this reason, it does not make sense to enable this option without 1609 also enabling support for pointer authentication. Thus, when 1610 enabling this option you should also select ARM64_PTR_AUTH=y. 1611 1612 Userspace binaries must also be specifically compiled to make use of 1613 this mechanism. If you say N here or the hardware does not support 1614 BTI, such binaries can still run, but you get no additional 1615 enforcement of branch destinations. 1616 1617config ARM64_BTI_KERNEL 1618 bool "Use Branch Target Identification for kernel" 1619 default y 1620 depends on ARM64_BTI 1621 depends on ARM64_PTR_AUTH 1622 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1623 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1624 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1625 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1626 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1627 help 1628 Build the kernel with Branch Target Identification annotations 1629 and enable enforcement of this for kernel code. When this option 1630 is enabled and the system supports BTI all kernel code including 1631 modular code must have BTI enabled. 1632 1633config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1634 # GCC 9 or later, clang 8 or later 1635 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1636 1637config ARM64_E0PD 1638 bool "Enable support for E0PD" 1639 default y 1640 help 1641 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1642 that EL0 accesses made via TTBR1 always fault in constant time, 1643 providing similar benefits to KASLR as those provided by KPTI, but 1644 with lower overhead and without disrupting legitimate access to 1645 kernel memory such as SPE. 1646 1647 This option enables E0PD for TTBR1 where available. 1648 1649config ARCH_RANDOM 1650 bool "Enable support for random number generation" 1651 default y 1652 help 1653 Random number generation (part of the ARMv8.5 Extensions) 1654 provides a high bandwidth, cryptographically secure 1655 hardware random number generator. 1656 1657config ARM64_AS_HAS_MTE 1658 # Initial support for MTE went in binutils 2.32.0, checked with 1659 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1660 # as a late addition to the final architecture spec (LDGM/STGM) 1661 # is only supported in the newer 2.32.x and 2.33 binutils 1662 # versions, hence the extra "stgm" instruction check below. 1663 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1664 1665config ARM64_MTE 1666 bool "Memory Tagging Extension support" 1667 default y 1668 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1669 depends on AS_HAS_ARMV8_5 1670 depends on AS_HAS_LSE_ATOMICS 1671 # Required for tag checking in the uaccess routines 1672 depends on ARM64_PAN 1673 select ARCH_USES_HIGH_VMA_FLAGS 1674 help 1675 Memory Tagging (part of the ARMv8.5 Extensions) provides 1676 architectural support for run-time, always-on detection of 1677 various classes of memory error to aid with software debugging 1678 to eliminate vulnerabilities arising from memory-unsafe 1679 languages. 1680 1681 This option enables the support for the Memory Tagging 1682 Extension at EL0 (i.e. for userspace). 1683 1684 Selecting this option allows the feature to be detected at 1685 runtime. Any secondary CPU not implementing this feature will 1686 not be allowed a late bring-up. 1687 1688 Userspace binaries that want to use this feature must 1689 explicitly opt in. The mechanism for the userspace is 1690 described in: 1691 1692 Documentation/arm64/memory-tagging-extension.rst. 1693 1694endmenu 1695 1696menu "ARMv8.7 architectural features" 1697 1698config ARM64_EPAN 1699 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1700 default y 1701 depends on ARM64_PAN 1702 help 1703 Enhanced Privileged Access Never (EPAN) allows Privileged 1704 Access Never to be used with Execute-only mappings. 1705 1706 The feature is detected at runtime, and will remain disabled 1707 if the cpu does not implement the feature. 1708endmenu 1709 1710config ARM64_SVE 1711 bool "ARM Scalable Vector Extension support" 1712 default y 1713 help 1714 The Scalable Vector Extension (SVE) is an extension to the AArch64 1715 execution state which complements and extends the SIMD functionality 1716 of the base architecture to support much larger vectors and to enable 1717 additional vectorisation opportunities. 1718 1719 To enable use of this extension on CPUs that implement it, say Y. 1720 1721 On CPUs that support the SVE2 extensions, this option will enable 1722 those too. 1723 1724 Note that for architectural reasons, firmware _must_ implement SVE 1725 support when running on SVE capable hardware. The required support 1726 is present in: 1727 1728 * version 1.5 and later of the ARM Trusted Firmware 1729 * the AArch64 boot wrapper since commit 5e1261e08abf 1730 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1731 1732 For other firmware implementations, consult the firmware documentation 1733 or vendor. 1734 1735 If you need the kernel to boot on SVE-capable hardware with broken 1736 firmware, you may need to say N here until you get your firmware 1737 fixed. Otherwise, you may experience firmware panics or lockups when 1738 booting the kernel. If unsure and you are not observing these 1739 symptoms, you should assume that it is safe to say Y. 1740 1741config ARM64_MODULE_PLTS 1742 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1743 depends on MODULES 1744 select HAVE_MOD_ARCH_SPECIFIC 1745 help 1746 Allocate PLTs when loading modules so that jumps and calls whose 1747 targets are too far away for their relative offsets to be encoded 1748 in the instructions themselves can be bounced via veneers in the 1749 module's PLT. This allows modules to be allocated in the generic 1750 vmalloc area after the dedicated module memory area has been 1751 exhausted. 1752 1753 When running with address space randomization (KASLR), the module 1754 region itself may be too far away for ordinary relative jumps and 1755 calls, and so in that case, module PLTs are required and cannot be 1756 disabled. 1757 1758 Specific errata workaround(s) might also force module PLTs to be 1759 enabled (ARM64_ERRATUM_843419). 1760 1761config ARM64_PSEUDO_NMI 1762 bool "Support for NMI-like interrupts" 1763 select ARM_GIC_V3 1764 help 1765 Adds support for mimicking Non-Maskable Interrupts through the use of 1766 GIC interrupt priority. This support requires version 3 or later of 1767 ARM GIC. 1768 1769 This high priority configuration for interrupts needs to be 1770 explicitly enabled by setting the kernel parameter 1771 "irqchip.gicv3_pseudo_nmi" to 1. 1772 1773 If unsure, say N 1774 1775if ARM64_PSEUDO_NMI 1776config ARM64_DEBUG_PRIORITY_MASKING 1777 bool "Debug interrupt priority masking" 1778 help 1779 This adds runtime checks to functions enabling/disabling 1780 interrupts when using priority masking. The additional checks verify 1781 the validity of ICC_PMR_EL1 when calling concerned functions. 1782 1783 If unsure, say N 1784endif 1785 1786config RELOCATABLE 1787 bool "Build a relocatable kernel image" if EXPERT 1788 select ARCH_HAS_RELR 1789 default y 1790 help 1791 This builds the kernel as a Position Independent Executable (PIE), 1792 which retains all relocation metadata required to relocate the 1793 kernel binary at runtime to a different virtual address than the 1794 address it was linked at. 1795 Since AArch64 uses the RELA relocation format, this requires a 1796 relocation pass at runtime even if the kernel is loaded at the 1797 same address it was linked at. 1798 1799config RANDOMIZE_BASE 1800 bool "Randomize the address of the kernel image" 1801 select ARM64_MODULE_PLTS if MODULES 1802 select RELOCATABLE 1803 help 1804 Randomizes the virtual address at which the kernel image is 1805 loaded, as a security feature that deters exploit attempts 1806 relying on knowledge of the location of kernel internals. 1807 1808 It is the bootloader's job to provide entropy, by passing a 1809 random u64 value in /chosen/kaslr-seed at kernel entry. 1810 1811 When booting via the UEFI stub, it will invoke the firmware's 1812 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1813 to the kernel proper. In addition, it will randomise the physical 1814 location of the kernel Image as well. 1815 1816 If unsure, say N. 1817 1818config RANDOMIZE_MODULE_REGION_FULL 1819 bool "Randomize the module region over a 4 GB range" 1820 depends on RANDOMIZE_BASE 1821 default y 1822 help 1823 Randomizes the location of the module region inside a 4 GB window 1824 covering the core kernel. This way, it is less likely for modules 1825 to leak information about the location of core kernel data structures 1826 but it does imply that function calls between modules and the core 1827 kernel will need to be resolved via veneers in the module PLT. 1828 1829 When this option is not set, the module region will be randomized over 1830 a limited range that contains the [_stext, _etext] interval of the 1831 core kernel, so branch relocations are always in range. 1832 1833config CC_HAVE_STACKPROTECTOR_SYSREG 1834 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1835 1836config STACKPROTECTOR_PER_TASK 1837 def_bool y 1838 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1839 1840endmenu 1841 1842menu "Boot options" 1843 1844config ARM64_ACPI_PARKING_PROTOCOL 1845 bool "Enable support for the ARM64 ACPI parking protocol" 1846 depends on ACPI 1847 help 1848 Enable support for the ARM64 ACPI parking protocol. If disabled 1849 the kernel will not allow booting through the ARM64 ACPI parking 1850 protocol even if the corresponding data is present in the ACPI 1851 MADT table. 1852 1853config CMDLINE 1854 string "Default kernel command string" 1855 default "" 1856 help 1857 Provide a set of default command-line options at build time by 1858 entering them here. As a minimum, you should specify the the 1859 root device (e.g. root=/dev/nfs). 1860 1861choice 1862 prompt "Kernel command line type" if CMDLINE != "" 1863 default CMDLINE_FROM_BOOTLOADER 1864 help 1865 Choose how the kernel will handle the provided default kernel 1866 command line string. 1867 1868config CMDLINE_FROM_BOOTLOADER 1869 bool "Use bootloader kernel arguments if available" 1870 help 1871 Uses the command-line options passed by the boot loader. If 1872 the boot loader doesn't provide any, the default kernel command 1873 string provided in CMDLINE will be used. 1874 1875config CMDLINE_FORCE 1876 bool "Always use the default kernel command string" 1877 help 1878 Always use the default kernel command string, even if the boot 1879 loader passes other arguments to the kernel. 1880 This is useful if you cannot or don't want to change the 1881 command-line options your boot loader passes to the kernel. 1882 1883endchoice 1884 1885config EFI_STUB 1886 bool 1887 1888config EFI 1889 bool "UEFI runtime support" 1890 depends on OF && !CPU_BIG_ENDIAN 1891 depends on KERNEL_MODE_NEON 1892 select ARCH_SUPPORTS_ACPI 1893 select LIBFDT 1894 select UCS2_STRING 1895 select EFI_PARAMS_FROM_FDT 1896 select EFI_RUNTIME_WRAPPERS 1897 select EFI_STUB 1898 select EFI_GENERIC_STUB 1899 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 1900 default y 1901 help 1902 This option provides support for runtime services provided 1903 by UEFI firmware (such as non-volatile variables, realtime 1904 clock, and platform reset). A UEFI stub is also provided to 1905 allow the kernel to be booted as an EFI application. This 1906 is only useful on systems that have UEFI firmware. 1907 1908config DMI 1909 bool "Enable support for SMBIOS (DMI) tables" 1910 depends on EFI 1911 default y 1912 help 1913 This enables SMBIOS/DMI feature for systems. 1914 1915 This option is only useful on systems that have UEFI firmware. 1916 However, even with this option, the resultant kernel should 1917 continue to boot on existing non-UEFI platforms. 1918 1919endmenu 1920 1921config SYSVIPC_COMPAT 1922 def_bool y 1923 depends on COMPAT && SYSVIPC 1924 1925config ARCH_ENABLE_HUGEPAGE_MIGRATION 1926 def_bool y 1927 depends on HUGETLB_PAGE && MIGRATION 1928 1929config ARCH_ENABLE_THP_MIGRATION 1930 def_bool y 1931 depends on TRANSPARENT_HUGEPAGE 1932 1933menu "Power management options" 1934 1935source "kernel/power/Kconfig" 1936 1937config ARCH_HIBERNATION_POSSIBLE 1938 def_bool y 1939 depends on CPU_PM 1940 1941config ARCH_HIBERNATION_HEADER 1942 def_bool y 1943 depends on HIBERNATION 1944 1945config ARCH_SUSPEND_POSSIBLE 1946 def_bool y 1947 1948endmenu 1949 1950menu "CPU Power Management" 1951 1952source "drivers/cpuidle/Kconfig" 1953 1954source "drivers/cpufreq/Kconfig" 1955 1956endmenu 1957 1958source "drivers/firmware/Kconfig" 1959 1960source "drivers/acpi/Kconfig" 1961 1962source "arch/arm64/kvm/Kconfig" 1963 1964if CRYPTO 1965source "arch/arm64/crypto/Kconfig" 1966endif 1967