xref: /linux/arch/arm64/Kconfig (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_HAS_DEBUG_VIRTUAL
15	select ARCH_HAS_DEBUG_VM_PGTABLE
16	select ARCH_HAS_DEVMEM_IS_ALLOWED
17	select ARCH_HAS_DMA_PREP_COHERENT
18	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19	select ARCH_HAS_FAST_MULTIPLIER
20	select ARCH_HAS_FORTIFY_SOURCE
21	select ARCH_HAS_GCOV_PROFILE_ALL
22	select ARCH_HAS_GIGANTIC_PAGE
23	select ARCH_HAS_KCOV
24	select ARCH_HAS_KEEPINITRD
25	select ARCH_HAS_MEMBARRIER_SYNC_CORE
26	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
27	select ARCH_HAS_PTE_DEVMAP
28	select ARCH_HAS_PTE_SPECIAL
29	select ARCH_HAS_SETUP_DMA_OPS
30	select ARCH_HAS_SET_DIRECT_MAP
31	select ARCH_HAS_SET_MEMORY
32	select ARCH_STACKWALK
33	select ARCH_HAS_STRICT_KERNEL_RWX
34	select ARCH_HAS_STRICT_MODULE_RWX
35	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
36	select ARCH_HAS_SYNC_DMA_FOR_CPU
37	select ARCH_HAS_SYSCALL_WRAPPER
38	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
39	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
40	select ARCH_HAVE_ELF_PROT
41	select ARCH_HAVE_NMI_SAFE_CMPXCHG
42	select ARCH_INLINE_READ_LOCK if !PREEMPTION
43	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
44	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
45	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
46	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
47	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
48	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
49	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
50	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
51	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
52	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
53	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
54	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
55	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
56	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
58	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
59	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
61	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_KEEP_MEMBLOCK
69	select ARCH_USE_CMPXCHG_LOCKREF
70	select ARCH_USE_GNU_PROPERTY
71	select ARCH_USE_QUEUED_RWLOCKS
72	select ARCH_USE_QUEUED_SPINLOCKS
73	select ARCH_USE_SYM_ANNOTATIONS
74	select ARCH_SUPPORTS_MEMORY_FAILURE
75	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
76	select ARCH_SUPPORTS_ATOMIC_RMW
77	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
78	select ARCH_SUPPORTS_NUMA_BALANCING
79	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
80	select ARCH_WANT_DEFAULT_BPF_JIT
81	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
82	select ARCH_WANT_FRAME_POINTERS
83	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
84	select ARCH_HAS_UBSAN_SANITIZE_ALL
85	select ARM_AMBA
86	select ARM_ARCH_TIMER
87	select ARM_GIC
88	select AUDIT_ARCH_COMPAT_GENERIC
89	select ARM_GIC_V2M if PCI
90	select ARM_GIC_V3
91	select ARM_GIC_V3_ITS if PCI
92	select ARM_PSCI_FW
93	select BUILDTIME_TABLE_SORT
94	select CLONE_BACKWARDS
95	select COMMON_CLK
96	select CPU_PM if (SUSPEND || CPU_IDLE)
97	select CRC32
98	select DCACHE_WORD_ACCESS
99	select DMA_DIRECT_REMAP
100	select EDAC_SUPPORT
101	select FRAME_POINTER
102	select GENERIC_ALLOCATOR
103	select GENERIC_ARCH_TOPOLOGY
104	select GENERIC_CLOCKEVENTS
105	select GENERIC_CLOCKEVENTS_BROADCAST
106	select GENERIC_CPU_AUTOPROBE
107	select GENERIC_CPU_VULNERABILITIES
108	select GENERIC_EARLY_IOREMAP
109	select GENERIC_IDLE_POLL_SETUP
110	select GENERIC_IRQ_IPI
111	select GENERIC_IRQ_MULTI_HANDLER
112	select GENERIC_IRQ_PROBE
113	select GENERIC_IRQ_SHOW
114	select GENERIC_IRQ_SHOW_LEVEL
115	select GENERIC_PCI_IOMAP
116	select GENERIC_PTDUMP
117	select GENERIC_SCHED_CLOCK
118	select GENERIC_SMP_IDLE_THREAD
119	select GENERIC_STRNCPY_FROM_USER
120	select GENERIC_STRNLEN_USER
121	select GENERIC_TIME_VSYSCALL
122	select GENERIC_GETTIMEOFDAY
123	select GENERIC_VDSO_TIME_NS
124	select HANDLE_DOMAIN_IRQ
125	select HARDIRQS_SW_RESEND
126	select HAVE_PCI
127	select HAVE_ACPI_APEI if (ACPI && EFI)
128	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
129	select HAVE_ARCH_AUDITSYSCALL
130	select HAVE_ARCH_BITREVERSE
131	select HAVE_ARCH_COMPILER_H
132	select HAVE_ARCH_HUGE_VMAP
133	select HAVE_ARCH_JUMP_LABEL
134	select HAVE_ARCH_JUMP_LABEL_RELATIVE
135	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
136	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
137	select HAVE_ARCH_KGDB
138	select HAVE_ARCH_MMAP_RND_BITS
139	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
140	select HAVE_ARCH_PREL32_RELOCATIONS
141	select HAVE_ARCH_SECCOMP_FILTER
142	select HAVE_ARCH_STACKLEAK
143	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
144	select HAVE_ARCH_TRACEHOOK
145	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
146	select HAVE_ARCH_VMAP_STACK
147	select HAVE_ARM_SMCCC
148	select HAVE_ASM_MODVERSIONS
149	select HAVE_EBPF_JIT
150	select HAVE_C_RECORDMCOUNT
151	select HAVE_CMPXCHG_DOUBLE
152	select HAVE_CMPXCHG_LOCAL
153	select HAVE_CONTEXT_TRACKING
154	select HAVE_DEBUG_BUGVERBOSE
155	select HAVE_DEBUG_KMEMLEAK
156	select HAVE_DMA_CONTIGUOUS
157	select HAVE_DYNAMIC_FTRACE
158	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
159		if $(cc-option,-fpatchable-function-entry=2)
160	select HAVE_EFFICIENT_UNALIGNED_ACCESS
161	select HAVE_FAST_GUP
162	select HAVE_FTRACE_MCOUNT_RECORD
163	select HAVE_FUNCTION_TRACER
164	select HAVE_FUNCTION_ERROR_INJECTION
165	select HAVE_FUNCTION_GRAPH_TRACER
166	select HAVE_GCC_PLUGINS
167	select HAVE_HW_BREAKPOINT if PERF_EVENTS
168	select HAVE_IRQ_TIME_ACCOUNTING
169	select HAVE_NMI
170	select HAVE_PATA_PLATFORM
171	select HAVE_PERF_EVENTS
172	select HAVE_PERF_REGS
173	select HAVE_PERF_USER_STACK_DUMP
174	select HAVE_REGS_AND_STACK_ACCESS_API
175	select HAVE_FUNCTION_ARG_ACCESS_API
176	select HAVE_FUTEX_CMPXCHG if FUTEX
177	select MMU_GATHER_RCU_TABLE_FREE
178	select HAVE_RSEQ
179	select HAVE_STACKPROTECTOR
180	select HAVE_SYSCALL_TRACEPOINTS
181	select HAVE_KPROBES
182	select HAVE_KRETPROBES
183	select HAVE_GENERIC_VDSO
184	select IOMMU_DMA if IOMMU_SUPPORT
185	select IRQ_DOMAIN
186	select IRQ_FORCED_THREADING
187	select MODULES_USE_ELF_RELA
188	select NEED_DMA_MAP_STATE
189	select NEED_SG_DMA_LENGTH
190	select OF
191	select OF_EARLY_FLATTREE
192	select PCI_DOMAINS_GENERIC if PCI
193	select PCI_ECAM if (ACPI && PCI)
194	select PCI_SYSCALL if PCI
195	select POWER_RESET
196	select POWER_SUPPLY
197	select SPARSE_IRQ
198	select SWIOTLB
199	select SYSCTL_EXCEPTION_TRACE
200	select THREAD_INFO_IN_TASK
201	help
202	  ARM 64-bit (AArch64) Linux support.
203
204config 64BIT
205	def_bool y
206
207config MMU
208	def_bool y
209
210config ARM64_PAGE_SHIFT
211	int
212	default 16 if ARM64_64K_PAGES
213	default 14 if ARM64_16K_PAGES
214	default 12
215
216config ARM64_CONT_PTE_SHIFT
217	int
218	default 5 if ARM64_64K_PAGES
219	default 7 if ARM64_16K_PAGES
220	default 4
221
222config ARM64_CONT_PMD_SHIFT
223	int
224	default 5 if ARM64_64K_PAGES
225	default 5 if ARM64_16K_PAGES
226	default 4
227
228config ARCH_MMAP_RND_BITS_MIN
229       default 14 if ARM64_64K_PAGES
230       default 16 if ARM64_16K_PAGES
231       default 18
232
233# max bits determined by the following formula:
234#  VA_BITS - PAGE_SHIFT - 3
235config ARCH_MMAP_RND_BITS_MAX
236       default 19 if ARM64_VA_BITS=36
237       default 24 if ARM64_VA_BITS=39
238       default 27 if ARM64_VA_BITS=42
239       default 30 if ARM64_VA_BITS=47
240       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
241       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
242       default 33 if ARM64_VA_BITS=48
243       default 14 if ARM64_64K_PAGES
244       default 16 if ARM64_16K_PAGES
245       default 18
246
247config ARCH_MMAP_RND_COMPAT_BITS_MIN
248       default 7 if ARM64_64K_PAGES
249       default 9 if ARM64_16K_PAGES
250       default 11
251
252config ARCH_MMAP_RND_COMPAT_BITS_MAX
253       default 16
254
255config NO_IOPORT_MAP
256	def_bool y if !PCI
257
258config STACKTRACE_SUPPORT
259	def_bool y
260
261config ILLEGAL_POINTER_VALUE
262	hex
263	default 0xdead000000000000
264
265config LOCKDEP_SUPPORT
266	def_bool y
267
268config TRACE_IRQFLAGS_SUPPORT
269	def_bool y
270
271config GENERIC_BUG
272	def_bool y
273	depends on BUG
274
275config GENERIC_BUG_RELATIVE_POINTERS
276	def_bool y
277	depends on GENERIC_BUG
278
279config GENERIC_HWEIGHT
280	def_bool y
281
282config GENERIC_CSUM
283        def_bool y
284
285config GENERIC_CALIBRATE_DELAY
286	def_bool y
287
288config ZONE_DMA
289	bool "Support DMA zone" if EXPERT
290	default y
291
292config ZONE_DMA32
293	bool "Support DMA32 zone" if EXPERT
294	default y
295
296config ARCH_ENABLE_MEMORY_HOTPLUG
297	def_bool y
298
299config ARCH_ENABLE_MEMORY_HOTREMOVE
300	def_bool y
301
302config SMP
303	def_bool y
304
305config KERNEL_MODE_NEON
306	def_bool y
307
308config FIX_EARLYCON_MEM
309	def_bool y
310
311config PGTABLE_LEVELS
312	int
313	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
314	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
315	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
316	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
317	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
318	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
319
320config ARCH_SUPPORTS_UPROBES
321	def_bool y
322
323config ARCH_PROC_KCORE_TEXT
324	def_bool y
325
326config BROKEN_GAS_INST
327	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
328
329config KASAN_SHADOW_OFFSET
330	hex
331	depends on KASAN
332	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
333	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
334	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
335	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
336	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
337	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
338	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
339	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
340	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
341	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
342	default 0xffffffffffffffff
343
344source "arch/arm64/Kconfig.platforms"
345
346menu "Kernel Features"
347
348menu "ARM errata workarounds via the alternatives framework"
349
350config ARM64_WORKAROUND_CLEAN_CACHE
351	bool
352
353config ARM64_ERRATUM_826319
354	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
355	default y
356	select ARM64_WORKAROUND_CLEAN_CACHE
357	help
358	  This option adds an alternative code sequence to work around ARM
359	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
360	  AXI master interface and an L2 cache.
361
362	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
363	  and is unable to accept a certain write via this interface, it will
364	  not progress on read data presented on the read data channel and the
365	  system can deadlock.
366
367	  The workaround promotes data cache clean instructions to
368	  data cache clean-and-invalidate.
369	  Please note that this does not necessarily enable the workaround,
370	  as it depends on the alternative framework, which will only patch
371	  the kernel if an affected CPU is detected.
372
373	  If unsure, say Y.
374
375config ARM64_ERRATUM_827319
376	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
377	default y
378	select ARM64_WORKAROUND_CLEAN_CACHE
379	help
380	  This option adds an alternative code sequence to work around ARM
381	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
382	  master interface and an L2 cache.
383
384	  Under certain conditions this erratum can cause a clean line eviction
385	  to occur at the same time as another transaction to the same address
386	  on the AMBA 5 CHI interface, which can cause data corruption if the
387	  interconnect reorders the two transactions.
388
389	  The workaround promotes data cache clean instructions to
390	  data cache clean-and-invalidate.
391	  Please note that this does not necessarily enable the workaround,
392	  as it depends on the alternative framework, which will only patch
393	  the kernel if an affected CPU is detected.
394
395	  If unsure, say Y.
396
397config ARM64_ERRATUM_824069
398	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
399	default y
400	select ARM64_WORKAROUND_CLEAN_CACHE
401	help
402	  This option adds an alternative code sequence to work around ARM
403	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
404	  to a coherent interconnect.
405
406	  If a Cortex-A53 processor is executing a store or prefetch for
407	  write instruction at the same time as a processor in another
408	  cluster is executing a cache maintenance operation to the same
409	  address, then this erratum might cause a clean cache line to be
410	  incorrectly marked as dirty.
411
412	  The workaround promotes data cache clean instructions to
413	  data cache clean-and-invalidate.
414	  Please note that this option does not necessarily enable the
415	  workaround, as it depends on the alternative framework, which will
416	  only patch the kernel if an affected CPU is detected.
417
418	  If unsure, say Y.
419
420config ARM64_ERRATUM_819472
421	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
422	default y
423	select ARM64_WORKAROUND_CLEAN_CACHE
424	help
425	  This option adds an alternative code sequence to work around ARM
426	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
427	  present when it is connected to a coherent interconnect.
428
429	  If the processor is executing a load and store exclusive sequence at
430	  the same time as a processor in another cluster is executing a cache
431	  maintenance operation to the same address, then this erratum might
432	  cause data corruption.
433
434	  The workaround promotes data cache clean instructions to
435	  data cache clean-and-invalidate.
436	  Please note that this does not necessarily enable the workaround,
437	  as it depends on the alternative framework, which will only patch
438	  the kernel if an affected CPU is detected.
439
440	  If unsure, say Y.
441
442config ARM64_ERRATUM_832075
443	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
444	default y
445	help
446	  This option adds an alternative code sequence to work around ARM
447	  erratum 832075 on Cortex-A57 parts up to r1p2.
448
449	  Affected Cortex-A57 parts might deadlock when exclusive load/store
450	  instructions to Write-Back memory are mixed with Device loads.
451
452	  The workaround is to promote device loads to use Load-Acquire
453	  semantics.
454	  Please note that this does not necessarily enable the workaround,
455	  as it depends on the alternative framework, which will only patch
456	  the kernel if an affected CPU is detected.
457
458	  If unsure, say Y.
459
460config ARM64_ERRATUM_834220
461	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
462	depends on KVM
463	default y
464	help
465	  This option adds an alternative code sequence to work around ARM
466	  erratum 834220 on Cortex-A57 parts up to r1p2.
467
468	  Affected Cortex-A57 parts might report a Stage 2 translation
469	  fault as the result of a Stage 1 fault for load crossing a
470	  page boundary when there is a permission or device memory
471	  alignment fault at Stage 1 and a translation fault at Stage 2.
472
473	  The workaround is to verify that the Stage 1 translation
474	  doesn't generate a fault before handling the Stage 2 fault.
475	  Please note that this does not necessarily enable the workaround,
476	  as it depends on the alternative framework, which will only patch
477	  the kernel if an affected CPU is detected.
478
479	  If unsure, say Y.
480
481config ARM64_ERRATUM_845719
482	bool "Cortex-A53: 845719: a load might read incorrect data"
483	depends on COMPAT
484	default y
485	help
486	  This option adds an alternative code sequence to work around ARM
487	  erratum 845719 on Cortex-A53 parts up to r0p4.
488
489	  When running a compat (AArch32) userspace on an affected Cortex-A53
490	  part, a load at EL0 from a virtual address that matches the bottom 32
491	  bits of the virtual address used by a recent load at (AArch64) EL1
492	  might return incorrect data.
493
494	  The workaround is to write the contextidr_el1 register on exception
495	  return to a 32-bit task.
496	  Please note that this does not necessarily enable the workaround,
497	  as it depends on the alternative framework, which will only patch
498	  the kernel if an affected CPU is detected.
499
500	  If unsure, say Y.
501
502config ARM64_ERRATUM_843419
503	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
504	default y
505	select ARM64_MODULE_PLTS if MODULES
506	help
507	  This option links the kernel with '--fix-cortex-a53-843419' and
508	  enables PLT support to replace certain ADRP instructions, which can
509	  cause subsequent memory accesses to use an incorrect address on
510	  Cortex-A53 parts up to r0p4.
511
512	  If unsure, say Y.
513
514config ARM64_ERRATUM_1024718
515	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
516	default y
517	help
518	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
519
520	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
521	  update of the hardware dirty bit when the DBM/AP bits are updated
522	  without a break-before-make. The workaround is to disable the usage
523	  of hardware DBM locally on the affected cores. CPUs not affected by
524	  this erratum will continue to use the feature.
525
526	  If unsure, say Y.
527
528config ARM64_ERRATUM_1418040
529	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
530	default y
531	depends on COMPAT
532	help
533	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
534	  errata 1188873 and 1418040.
535
536	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
537	  cause register corruption when accessing the timer registers
538	  from AArch32 userspace.
539
540	  If unsure, say Y.
541
542config ARM64_WORKAROUND_SPECULATIVE_AT
543	bool
544
545config ARM64_ERRATUM_1165522
546	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
547	default y
548	select ARM64_WORKAROUND_SPECULATIVE_AT
549	help
550	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
551
552	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
553	  corrupted TLBs by speculating an AT instruction during a guest
554	  context switch.
555
556	  If unsure, say Y.
557
558config ARM64_ERRATUM_1319367
559	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
560	default y
561	select ARM64_WORKAROUND_SPECULATIVE_AT
562	help
563	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
564	  and A72 erratum 1319367
565
566	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
567	  speculating an AT instruction during a guest context switch.
568
569	  If unsure, say Y.
570
571config ARM64_ERRATUM_1530923
572	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
573	default y
574	select ARM64_WORKAROUND_SPECULATIVE_AT
575	help
576	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
577
578	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
579	  corrupted TLBs by speculating an AT instruction during a guest
580	  context switch.
581
582	  If unsure, say Y.
583
584config ARM64_WORKAROUND_REPEAT_TLBI
585	bool
586
587config ARM64_ERRATUM_1286807
588	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
589	default y
590	select ARM64_WORKAROUND_REPEAT_TLBI
591	help
592	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
593
594	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
595	  address for a cacheable mapping of a location is being
596	  accessed by a core while another core is remapping the virtual
597	  address to a new physical page using the recommended
598	  break-before-make sequence, then under very rare circumstances
599	  TLBI+DSB completes before a read using the translation being
600	  invalidated has been observed by other observers. The
601	  workaround repeats the TLBI+DSB operation.
602
603config ARM64_ERRATUM_1463225
604	bool "Cortex-A76: Software Step might prevent interrupt recognition"
605	default y
606	help
607	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
608
609	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
610	  of a system call instruction (SVC) can prevent recognition of
611	  subsequent interrupts when software stepping is disabled in the
612	  exception handler of the system call and either kernel debugging
613	  is enabled or VHE is in use.
614
615	  Work around the erratum by triggering a dummy step exception
616	  when handling a system call from a task that is being stepped
617	  in a VHE configuration of the kernel.
618
619	  If unsure, say Y.
620
621config ARM64_ERRATUM_1542419
622	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
623	default y
624	help
625	  This option adds a workaround for ARM Neoverse-N1 erratum
626	  1542419.
627
628	  Affected Neoverse-N1 cores could execute a stale instruction when
629	  modified by another CPU. The workaround depends on a firmware
630	  counterpart.
631
632	  Workaround the issue by hiding the DIC feature from EL0. This
633	  forces user-space to perform cache maintenance.
634
635	  If unsure, say Y.
636
637config CAVIUM_ERRATUM_22375
638	bool "Cavium erratum 22375, 24313"
639	default y
640	help
641	  Enable workaround for errata 22375 and 24313.
642
643	  This implements two gicv3-its errata workarounds for ThunderX. Both
644	  with a small impact affecting only ITS table allocation.
645
646	    erratum 22375: only alloc 8MB table size
647	    erratum 24313: ignore memory access type
648
649	  The fixes are in ITS initialization and basically ignore memory access
650	  type and table size provided by the TYPER and BASER registers.
651
652	  If unsure, say Y.
653
654config CAVIUM_ERRATUM_23144
655	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
656	depends on NUMA
657	default y
658	help
659	  ITS SYNC command hang for cross node io and collections/cpu mapping.
660
661	  If unsure, say Y.
662
663config CAVIUM_ERRATUM_23154
664	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
665	default y
666	help
667	  The gicv3 of ThunderX requires a modified version for
668	  reading the IAR status to ensure data synchronization
669	  (access to icc_iar1_el1 is not sync'ed before and after).
670
671	  If unsure, say Y.
672
673config CAVIUM_ERRATUM_27456
674	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
675	default y
676	help
677	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
678	  instructions may cause the icache to become corrupted if it
679	  contains data for a non-current ASID.  The fix is to
680	  invalidate the icache when changing the mm context.
681
682	  If unsure, say Y.
683
684config CAVIUM_ERRATUM_30115
685	bool "Cavium erratum 30115: Guest may disable interrupts in host"
686	default y
687	help
688	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
689	  1.2, and T83 Pass 1.0, KVM guest execution may disable
690	  interrupts in host. Trapping both GICv3 group-0 and group-1
691	  accesses sidesteps the issue.
692
693	  If unsure, say Y.
694
695config CAVIUM_TX2_ERRATUM_219
696	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
697	default y
698	help
699	  On Cavium ThunderX2, a load, store or prefetch instruction between a
700	  TTBR update and the corresponding context synchronizing operation can
701	  cause a spurious Data Abort to be delivered to any hardware thread in
702	  the CPU core.
703
704	  Work around the issue by avoiding the problematic code sequence and
705	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
706	  trap handler performs the corresponding register access, skips the
707	  instruction and ensures context synchronization by virtue of the
708	  exception return.
709
710	  If unsure, say Y.
711
712config FUJITSU_ERRATUM_010001
713	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
714	default y
715	help
716	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
717	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
718	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
719	  This fault occurs under a specific hardware condition when a
720	  load/store instruction performs an address translation using:
721	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
722	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
723	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
724	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
725
726	  The workaround is to ensure these bits are clear in TCR_ELx.
727	  The workaround only affects the Fujitsu-A64FX.
728
729	  If unsure, say Y.
730
731config HISILICON_ERRATUM_161600802
732	bool "Hip07 161600802: Erroneous redistributor VLPI base"
733	default y
734	help
735	  The HiSilicon Hip07 SoC uses the wrong redistributor base
736	  when issued ITS commands such as VMOVP and VMAPP, and requires
737	  a 128kB offset to be applied to the target address in this commands.
738
739	  If unsure, say Y.
740
741config QCOM_FALKOR_ERRATUM_1003
742	bool "Falkor E1003: Incorrect translation due to ASID change"
743	default y
744	help
745	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
746	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
747	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
748	  then only for entries in the walk cache, since the leaf translation
749	  is unchanged. Work around the erratum by invalidating the walk cache
750	  entries for the trampoline before entering the kernel proper.
751
752config QCOM_FALKOR_ERRATUM_1009
753	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
754	default y
755	select ARM64_WORKAROUND_REPEAT_TLBI
756	help
757	  On Falkor v1, the CPU may prematurely complete a DSB following a
758	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
759	  one more time to fix the issue.
760
761	  If unsure, say Y.
762
763config QCOM_QDF2400_ERRATUM_0065
764	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
765	default y
766	help
767	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
768	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
769	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
770
771	  If unsure, say Y.
772
773config QCOM_FALKOR_ERRATUM_E1041
774	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
775	default y
776	help
777	  Falkor CPU may speculatively fetch instructions from an improper
778	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
779	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
780
781	  If unsure, say Y.
782
783config SOCIONEXT_SYNQUACER_PREITS
784	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
785	default y
786	help
787	  Socionext Synquacer SoCs implement a separate h/w block to generate
788	  MSI doorbell writes with non-zero values for the device ID.
789
790	  If unsure, say Y.
791
792endmenu
793
794
795choice
796	prompt "Page size"
797	default ARM64_4K_PAGES
798	help
799	  Page size (translation granule) configuration.
800
801config ARM64_4K_PAGES
802	bool "4KB"
803	help
804	  This feature enables 4KB pages support.
805
806config ARM64_16K_PAGES
807	bool "16KB"
808	help
809	  The system will use 16KB pages support. AArch32 emulation
810	  requires applications compiled with 16K (or a multiple of 16K)
811	  aligned segments.
812
813config ARM64_64K_PAGES
814	bool "64KB"
815	help
816	  This feature enables 64KB pages support (4KB by default)
817	  allowing only two levels of page tables and faster TLB
818	  look-up. AArch32 emulation requires applications compiled
819	  with 64K aligned segments.
820
821endchoice
822
823choice
824	prompt "Virtual address space size"
825	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
826	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
827	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
828	help
829	  Allows choosing one of multiple possible virtual address
830	  space sizes. The level of translation table is determined by
831	  a combination of page size and virtual address space size.
832
833config ARM64_VA_BITS_36
834	bool "36-bit" if EXPERT
835	depends on ARM64_16K_PAGES
836
837config ARM64_VA_BITS_39
838	bool "39-bit"
839	depends on ARM64_4K_PAGES
840
841config ARM64_VA_BITS_42
842	bool "42-bit"
843	depends on ARM64_64K_PAGES
844
845config ARM64_VA_BITS_47
846	bool "47-bit"
847	depends on ARM64_16K_PAGES
848
849config ARM64_VA_BITS_48
850	bool "48-bit"
851
852config ARM64_VA_BITS_52
853	bool "52-bit"
854	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
855	help
856	  Enable 52-bit virtual addressing for userspace when explicitly
857	  requested via a hint to mmap(). The kernel will also use 52-bit
858	  virtual addresses for its own mappings (provided HW support for
859	  this feature is available, otherwise it reverts to 48-bit).
860
861	  NOTE: Enabling 52-bit virtual addressing in conjunction with
862	  ARMv8.3 Pointer Authentication will result in the PAC being
863	  reduced from 7 bits to 3 bits, which may have a significant
864	  impact on its susceptibility to brute-force attacks.
865
866	  If unsure, select 48-bit virtual addressing instead.
867
868endchoice
869
870config ARM64_FORCE_52BIT
871	bool "Force 52-bit virtual addresses for userspace"
872	depends on ARM64_VA_BITS_52 && EXPERT
873	help
874	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
875	  to maintain compatibility with older software by providing 48-bit VAs
876	  unless a hint is supplied to mmap.
877
878	  This configuration option disables the 48-bit compatibility logic, and
879	  forces all userspace addresses to be 52-bit on HW that supports it. One
880	  should only enable this configuration option for stress testing userspace
881	  memory management code. If unsure say N here.
882
883config ARM64_VA_BITS
884	int
885	default 36 if ARM64_VA_BITS_36
886	default 39 if ARM64_VA_BITS_39
887	default 42 if ARM64_VA_BITS_42
888	default 47 if ARM64_VA_BITS_47
889	default 48 if ARM64_VA_BITS_48
890	default 52 if ARM64_VA_BITS_52
891
892choice
893	prompt "Physical address space size"
894	default ARM64_PA_BITS_48
895	help
896	  Choose the maximum physical address range that the kernel will
897	  support.
898
899config ARM64_PA_BITS_48
900	bool "48-bit"
901
902config ARM64_PA_BITS_52
903	bool "52-bit (ARMv8.2)"
904	depends on ARM64_64K_PAGES
905	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
906	help
907	  Enable support for a 52-bit physical address space, introduced as
908	  part of the ARMv8.2-LPA extension.
909
910	  With this enabled, the kernel will also continue to work on CPUs that
911	  do not support ARMv8.2-LPA, but with some added memory overhead (and
912	  minor performance overhead).
913
914endchoice
915
916config ARM64_PA_BITS
917	int
918	default 48 if ARM64_PA_BITS_48
919	default 52 if ARM64_PA_BITS_52
920
921choice
922	prompt "Endianness"
923	default CPU_LITTLE_ENDIAN
924	help
925	  Select the endianness of data accesses performed by the CPU. Userspace
926	  applications will need to be compiled and linked for the endianness
927	  that is selected here.
928
929config CPU_BIG_ENDIAN
930       bool "Build big-endian kernel"
931       help
932	  Say Y if you plan on running a kernel with a big-endian userspace.
933
934config CPU_LITTLE_ENDIAN
935	bool "Build little-endian kernel"
936	help
937	  Say Y if you plan on running a kernel with a little-endian userspace.
938	  This is usually the case for distributions targeting arm64.
939
940endchoice
941
942config SCHED_MC
943	bool "Multi-core scheduler support"
944	help
945	  Multi-core scheduler support improves the CPU scheduler's decision
946	  making when dealing with multi-core CPU chips at a cost of slightly
947	  increased overhead in some places. If unsure say N here.
948
949config SCHED_SMT
950	bool "SMT scheduler support"
951	help
952	  Improves the CPU scheduler's decision making when dealing with
953	  MultiThreading at a cost of slightly increased overhead in some
954	  places. If unsure say N here.
955
956config NR_CPUS
957	int "Maximum number of CPUs (2-4096)"
958	range 2 4096
959	default "256"
960
961config HOTPLUG_CPU
962	bool "Support for hot-pluggable CPUs"
963	select GENERIC_IRQ_MIGRATION
964	help
965	  Say Y here to experiment with turning CPUs off and on.  CPUs
966	  can be controlled through /sys/devices/system/cpu.
967
968# Common NUMA Features
969config NUMA
970	bool "NUMA Memory Allocation and Scheduler Support"
971	select ACPI_NUMA if ACPI
972	select OF_NUMA
973	help
974	  Enable NUMA (Non-Uniform Memory Access) support.
975
976	  The kernel will try to allocate memory used by a CPU on the
977	  local memory of the CPU and add some more
978	  NUMA awareness to the kernel.
979
980config NODES_SHIFT
981	int "Maximum NUMA Nodes (as a power of 2)"
982	range 1 10
983	default "2"
984	depends on NEED_MULTIPLE_NODES
985	help
986	  Specify the maximum number of NUMA Nodes available on the target
987	  system.  Increases memory reserved to accommodate various tables.
988
989config USE_PERCPU_NUMA_NODE_ID
990	def_bool y
991	depends on NUMA
992
993config HAVE_SETUP_PER_CPU_AREA
994	def_bool y
995	depends on NUMA
996
997config NEED_PER_CPU_EMBED_FIRST_CHUNK
998	def_bool y
999	depends on NUMA
1000
1001config HOLES_IN_ZONE
1002	def_bool y
1003
1004source "kernel/Kconfig.hz"
1005
1006config ARCH_SUPPORTS_DEBUG_PAGEALLOC
1007	def_bool y
1008
1009config ARCH_SPARSEMEM_ENABLE
1010	def_bool y
1011	select SPARSEMEM_VMEMMAP_ENABLE
1012
1013config ARCH_SPARSEMEM_DEFAULT
1014	def_bool ARCH_SPARSEMEM_ENABLE
1015
1016config ARCH_SELECT_MEMORY_MODEL
1017	def_bool ARCH_SPARSEMEM_ENABLE
1018
1019config ARCH_FLATMEM_ENABLE
1020	def_bool !NUMA
1021
1022config HAVE_ARCH_PFN_VALID
1023	def_bool y
1024
1025config HW_PERF_EVENTS
1026	def_bool y
1027	depends on ARM_PMU
1028
1029config SYS_SUPPORTS_HUGETLBFS
1030	def_bool y
1031
1032config ARCH_WANT_HUGE_PMD_SHARE
1033
1034config ARCH_HAS_CACHE_LINE_SIZE
1035	def_bool y
1036
1037config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1038	def_bool y if PGTABLE_LEVELS > 2
1039
1040# Supported by clang >= 7.0
1041config CC_HAVE_SHADOW_CALL_STACK
1042	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1043
1044config SECCOMP
1045	bool "Enable seccomp to safely compute untrusted bytecode"
1046	help
1047	  This kernel feature is useful for number crunching applications
1048	  that may need to compute untrusted bytecode during their
1049	  execution. By using pipes or other transports made available to
1050	  the process as file descriptors supporting the read/write
1051	  syscalls, it's possible to isolate those applications in
1052	  their own address space using seccomp. Once seccomp is
1053	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1054	  and the task is only allowed to execute a few safe syscalls
1055	  defined by each seccomp mode.
1056
1057config PARAVIRT
1058	bool "Enable paravirtualization code"
1059	help
1060	  This changes the kernel so it can modify itself when it is run
1061	  under a hypervisor, potentially improving performance significantly
1062	  over full virtualization.
1063
1064config PARAVIRT_TIME_ACCOUNTING
1065	bool "Paravirtual steal time accounting"
1066	select PARAVIRT
1067	help
1068	  Select this option to enable fine granularity task steal time
1069	  accounting. Time spent executing other tasks in parallel with
1070	  the current vCPU is discounted from the vCPU power. To account for
1071	  that, there can be a small performance impact.
1072
1073	  If in doubt, say N here.
1074
1075config KEXEC
1076	depends on PM_SLEEP_SMP
1077	select KEXEC_CORE
1078	bool "kexec system call"
1079	help
1080	  kexec is a system call that implements the ability to shutdown your
1081	  current kernel, and to start another kernel.  It is like a reboot
1082	  but it is independent of the system firmware.   And like a reboot
1083	  you can start any kernel with it, not just Linux.
1084
1085config KEXEC_FILE
1086	bool "kexec file based system call"
1087	select KEXEC_CORE
1088	help
1089	  This is new version of kexec system call. This system call is
1090	  file based and takes file descriptors as system call argument
1091	  for kernel and initramfs as opposed to list of segments as
1092	  accepted by previous system call.
1093
1094config KEXEC_SIG
1095	bool "Verify kernel signature during kexec_file_load() syscall"
1096	depends on KEXEC_FILE
1097	help
1098	  Select this option to verify a signature with loaded kernel
1099	  image. If configured, any attempt of loading a image without
1100	  valid signature will fail.
1101
1102	  In addition to that option, you need to enable signature
1103	  verification for the corresponding kernel image type being
1104	  loaded in order for this to work.
1105
1106config KEXEC_IMAGE_VERIFY_SIG
1107	bool "Enable Image signature verification support"
1108	default y
1109	depends on KEXEC_SIG
1110	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1111	help
1112	  Enable Image signature verification support.
1113
1114comment "Support for PE file signature verification disabled"
1115	depends on KEXEC_SIG
1116	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1117
1118config CRASH_DUMP
1119	bool "Build kdump crash kernel"
1120	help
1121	  Generate crash dump after being started by kexec. This should
1122	  be normally only set in special crash dump kernels which are
1123	  loaded in the main kernel with kexec-tools into a specially
1124	  reserved region and then later executed after a crash by
1125	  kdump/kexec.
1126
1127	  For more details see Documentation/admin-guide/kdump/kdump.rst
1128
1129config XEN_DOM0
1130	def_bool y
1131	depends on XEN
1132
1133config XEN
1134	bool "Xen guest support on ARM64"
1135	depends on ARM64 && OF
1136	select SWIOTLB_XEN
1137	select PARAVIRT
1138	help
1139	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1140
1141config FORCE_MAX_ZONEORDER
1142	int
1143	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1144	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1145	default "11"
1146	help
1147	  The kernel memory allocator divides physically contiguous memory
1148	  blocks into "zones", where each zone is a power of two number of
1149	  pages.  This option selects the largest power of two that the kernel
1150	  keeps in the memory allocator.  If you need to allocate very large
1151	  blocks of physically contiguous memory, then you may need to
1152	  increase this value.
1153
1154	  This config option is actually maximum order plus one. For example,
1155	  a value of 11 means that the largest free memory block is 2^10 pages.
1156
1157	  We make sure that we can allocate upto a HugePage size for each configuration.
1158	  Hence we have :
1159		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1160
1161	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1162	  4M allocations matching the default size used by generic code.
1163
1164config UNMAP_KERNEL_AT_EL0
1165	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1166	default y
1167	help
1168	  Speculation attacks against some high-performance processors can
1169	  be used to bypass MMU permission checks and leak kernel data to
1170	  userspace. This can be defended against by unmapping the kernel
1171	  when running in userspace, mapping it back in on exception entry
1172	  via a trampoline page in the vector table.
1173
1174	  If unsure, say Y.
1175
1176config RODATA_FULL_DEFAULT_ENABLED
1177	bool "Apply r/o permissions of VM areas also to their linear aliases"
1178	default y
1179	help
1180	  Apply read-only attributes of VM areas to the linear alias of
1181	  the backing pages as well. This prevents code or read-only data
1182	  from being modified (inadvertently or intentionally) via another
1183	  mapping of the same memory page. This additional enhancement can
1184	  be turned off at runtime by passing rodata=[off|on] (and turned on
1185	  with rodata=full if this option is set to 'n')
1186
1187	  This requires the linear region to be mapped down to pages,
1188	  which may adversely affect performance in some cases.
1189
1190config ARM64_SW_TTBR0_PAN
1191	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1192	help
1193	  Enabling this option prevents the kernel from accessing
1194	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1195	  zeroed area and reserved ASID. The user access routines
1196	  restore the valid TTBR0_EL1 temporarily.
1197
1198config ARM64_TAGGED_ADDR_ABI
1199	bool "Enable the tagged user addresses syscall ABI"
1200	default y
1201	help
1202	  When this option is enabled, user applications can opt in to a
1203	  relaxed ABI via prctl() allowing tagged addresses to be passed
1204	  to system calls as pointer arguments. For details, see
1205	  Documentation/arm64/tagged-address-abi.rst.
1206
1207menuconfig COMPAT
1208	bool "Kernel support for 32-bit EL0"
1209	depends on ARM64_4K_PAGES || EXPERT
1210	select COMPAT_BINFMT_ELF if BINFMT_ELF
1211	select HAVE_UID16
1212	select OLD_SIGSUSPEND3
1213	select COMPAT_OLD_SIGACTION
1214	help
1215	  This option enables support for a 32-bit EL0 running under a 64-bit
1216	  kernel at EL1. AArch32-specific components such as system calls,
1217	  the user helper functions, VFP support and the ptrace interface are
1218	  handled appropriately by the kernel.
1219
1220	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1221	  that you will only be able to execute AArch32 binaries that were compiled
1222	  with page size aligned segments.
1223
1224	  If you want to execute 32-bit userspace applications, say Y.
1225
1226if COMPAT
1227
1228config KUSER_HELPERS
1229	bool "Enable kuser helpers page for 32-bit applications"
1230	default y
1231	help
1232	  Warning: disabling this option may break 32-bit user programs.
1233
1234	  Provide kuser helpers to compat tasks. The kernel provides
1235	  helper code to userspace in read only form at a fixed location
1236	  to allow userspace to be independent of the CPU type fitted to
1237	  the system. This permits binaries to be run on ARMv4 through
1238	  to ARMv8 without modification.
1239
1240	  See Documentation/arm/kernel_user_helpers.rst for details.
1241
1242	  However, the fixed address nature of these helpers can be used
1243	  by ROP (return orientated programming) authors when creating
1244	  exploits.
1245
1246	  If all of the binaries and libraries which run on your platform
1247	  are built specifically for your platform, and make no use of
1248	  these helpers, then you can turn this option off to hinder
1249	  such exploits. However, in that case, if a binary or library
1250	  relying on those helpers is run, it will not function correctly.
1251
1252	  Say N here only if you are absolutely certain that you do not
1253	  need these helpers; otherwise, the safe option is to say Y.
1254
1255config COMPAT_VDSO
1256	bool "Enable vDSO for 32-bit applications"
1257	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1258	select GENERIC_COMPAT_VDSO
1259	default y
1260	help
1261	  Place in the process address space of 32-bit applications an
1262	  ELF shared object providing fast implementations of gettimeofday
1263	  and clock_gettime.
1264
1265	  You must have a 32-bit build of glibc 2.22 or later for programs
1266	  to seamlessly take advantage of this.
1267
1268config THUMB2_COMPAT_VDSO
1269	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1270	depends on COMPAT_VDSO
1271	default y
1272	help
1273	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1274	  otherwise with '-marm'.
1275
1276menuconfig ARMV8_DEPRECATED
1277	bool "Emulate deprecated/obsolete ARMv8 instructions"
1278	depends on SYSCTL
1279	help
1280	  Legacy software support may require certain instructions
1281	  that have been deprecated or obsoleted in the architecture.
1282
1283	  Enable this config to enable selective emulation of these
1284	  features.
1285
1286	  If unsure, say Y
1287
1288if ARMV8_DEPRECATED
1289
1290config SWP_EMULATION
1291	bool "Emulate SWP/SWPB instructions"
1292	help
1293	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1294	  they are always undefined. Say Y here to enable software
1295	  emulation of these instructions for userspace using LDXR/STXR.
1296	  This feature can be controlled at runtime with the abi.swp
1297	  sysctl which is disabled by default.
1298
1299	  In some older versions of glibc [<=2.8] SWP is used during futex
1300	  trylock() operations with the assumption that the code will not
1301	  be preempted. This invalid assumption may be more likely to fail
1302	  with SWP emulation enabled, leading to deadlock of the user
1303	  application.
1304
1305	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1306	  on an external transaction monitoring block called a global
1307	  monitor to maintain update atomicity. If your system does not
1308	  implement a global monitor, this option can cause programs that
1309	  perform SWP operations to uncached memory to deadlock.
1310
1311	  If unsure, say Y
1312
1313config CP15_BARRIER_EMULATION
1314	bool "Emulate CP15 Barrier instructions"
1315	help
1316	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1317	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1318	  strongly recommended to use the ISB, DSB, and DMB
1319	  instructions instead.
1320
1321	  Say Y here to enable software emulation of these
1322	  instructions for AArch32 userspace code. When this option is
1323	  enabled, CP15 barrier usage is traced which can help
1324	  identify software that needs updating. This feature can be
1325	  controlled at runtime with the abi.cp15_barrier sysctl.
1326
1327	  If unsure, say Y
1328
1329config SETEND_EMULATION
1330	bool "Emulate SETEND instruction"
1331	help
1332	  The SETEND instruction alters the data-endianness of the
1333	  AArch32 EL0, and is deprecated in ARMv8.
1334
1335	  Say Y here to enable software emulation of the instruction
1336	  for AArch32 userspace code. This feature can be controlled
1337	  at runtime with the abi.setend sysctl.
1338
1339	  Note: All the cpus on the system must have mixed endian support at EL0
1340	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1341	  endian - is hotplugged in after this feature has been enabled, there could
1342	  be unexpected results in the applications.
1343
1344	  If unsure, say Y
1345endif
1346
1347endif
1348
1349menu "ARMv8.1 architectural features"
1350
1351config ARM64_HW_AFDBM
1352	bool "Support for hardware updates of the Access and Dirty page flags"
1353	default y
1354	help
1355	  The ARMv8.1 architecture extensions introduce support for
1356	  hardware updates of the access and dirty information in page
1357	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1358	  capable processors, accesses to pages with PTE_AF cleared will
1359	  set this bit instead of raising an access flag fault.
1360	  Similarly, writes to read-only pages with the DBM bit set will
1361	  clear the read-only bit (AP[2]) instead of raising a
1362	  permission fault.
1363
1364	  Kernels built with this configuration option enabled continue
1365	  to work on pre-ARMv8.1 hardware and the performance impact is
1366	  minimal. If unsure, say Y.
1367
1368config ARM64_PAN
1369	bool "Enable support for Privileged Access Never (PAN)"
1370	default y
1371	help
1372	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1373	 prevents the kernel or hypervisor from accessing user-space (EL0)
1374	 memory directly.
1375
1376	 Choosing this option will cause any unprotected (not using
1377	 copy_to_user et al) memory access to fail with a permission fault.
1378
1379	 The feature is detected at runtime, and will remain as a 'nop'
1380	 instruction if the cpu does not implement the feature.
1381
1382config ARM64_LSE_ATOMICS
1383	bool
1384	default ARM64_USE_LSE_ATOMICS
1385	depends on $(as-instr,.arch_extension lse)
1386
1387config ARM64_USE_LSE_ATOMICS
1388	bool "Atomic instructions"
1389	depends on JUMP_LABEL
1390	default y
1391	help
1392	  As part of the Large System Extensions, ARMv8.1 introduces new
1393	  atomic instructions that are designed specifically to scale in
1394	  very large systems.
1395
1396	  Say Y here to make use of these instructions for the in-kernel
1397	  atomic routines. This incurs a small overhead on CPUs that do
1398	  not support these instructions and requires the kernel to be
1399	  built with binutils >= 2.25 in order for the new instructions
1400	  to be used.
1401
1402config ARM64_VHE
1403	bool "Enable support for Virtualization Host Extensions (VHE)"
1404	default y
1405	help
1406	  Virtualization Host Extensions (VHE) allow the kernel to run
1407	  directly at EL2 (instead of EL1) on processors that support
1408	  it. This leads to better performance for KVM, as they reduce
1409	  the cost of the world switch.
1410
1411	  Selecting this option allows the VHE feature to be detected
1412	  at runtime, and does not affect processors that do not
1413	  implement this feature.
1414
1415endmenu
1416
1417menu "ARMv8.2 architectural features"
1418
1419config ARM64_UAO
1420	bool "Enable support for User Access Override (UAO)"
1421	default y
1422	help
1423	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1424	  causes the 'unprivileged' variant of the load/store instructions to
1425	  be overridden to be privileged.
1426
1427	  This option changes get_user() and friends to use the 'unprivileged'
1428	  variant of the load/store instructions. This ensures that user-space
1429	  really did have access to the supplied memory. When addr_limit is
1430	  set to kernel memory the UAO bit will be set, allowing privileged
1431	  access to kernel memory.
1432
1433	  Choosing this option will cause copy_to_user() et al to use user-space
1434	  memory permissions.
1435
1436	  The feature is detected at runtime, the kernel will use the
1437	  regular load/store instructions if the cpu does not implement the
1438	  feature.
1439
1440config ARM64_PMEM
1441	bool "Enable support for persistent memory"
1442	select ARCH_HAS_PMEM_API
1443	select ARCH_HAS_UACCESS_FLUSHCACHE
1444	help
1445	  Say Y to enable support for the persistent memory API based on the
1446	  ARMv8.2 DCPoP feature.
1447
1448	  The feature is detected at runtime, and the kernel will use DC CVAC
1449	  operations if DC CVAP is not supported (following the behaviour of
1450	  DC CVAP itself if the system does not define a point of persistence).
1451
1452config ARM64_RAS_EXTN
1453	bool "Enable support for RAS CPU Extensions"
1454	default y
1455	help
1456	  CPUs that support the Reliability, Availability and Serviceability
1457	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1458	  errors, classify them and report them to software.
1459
1460	  On CPUs with these extensions system software can use additional
1461	  barriers to determine if faults are pending and read the
1462	  classification from a new set of registers.
1463
1464	  Selecting this feature will allow the kernel to use these barriers
1465	  and access the new registers if the system supports the extension.
1466	  Platform RAS features may additionally depend on firmware support.
1467
1468config ARM64_CNP
1469	bool "Enable support for Common Not Private (CNP) translations"
1470	default y
1471	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1472	help
1473	  Common Not Private (CNP) allows translation table entries to
1474	  be shared between different PEs in the same inner shareable
1475	  domain, so the hardware can use this fact to optimise the
1476	  caching of such entries in the TLB.
1477
1478	  Selecting this option allows the CNP feature to be detected
1479	  at runtime, and does not affect PEs that do not implement
1480	  this feature.
1481
1482endmenu
1483
1484menu "ARMv8.3 architectural features"
1485
1486config ARM64_PTR_AUTH
1487	bool "Enable support for pointer authentication"
1488	default y
1489	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1490	# Modern compilers insert a .note.gnu.property section note for PAC
1491	# which is only understood by binutils starting with version 2.33.1.
1492	depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100)
1493	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1494	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1495	help
1496	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1497	  instructions for signing and authenticating pointers against secret
1498	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1499	  and other attacks.
1500
1501	  This option enables these instructions at EL0 (i.e. for userspace).
1502	  Choosing this option will cause the kernel to initialise secret keys
1503	  for each process at exec() time, with these keys being
1504	  context-switched along with the process.
1505
1506	  If the compiler supports the -mbranch-protection or
1507	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1508	  will also cause the kernel itself to be compiled with return address
1509	  protection. In this case, and if the target hardware is known to
1510	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1511	  disabled with minimal loss of protection.
1512
1513	  The feature is detected at runtime. If the feature is not present in
1514	  hardware it will not be advertised to userspace/KVM guest nor will it
1515	  be enabled.
1516
1517	  If the feature is present on the boot CPU but not on a late CPU, then
1518	  the late CPU will be parked. Also, if the boot CPU does not have
1519	  address auth and the late CPU has then the late CPU will still boot
1520	  but with the feature disabled. On such a system, this option should
1521	  not be selected.
1522
1523	  This feature works with FUNCTION_GRAPH_TRACER option only if
1524	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1525
1526config CC_HAS_BRANCH_PROT_PAC_RET
1527	# GCC 9 or later, clang 8 or later
1528	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1529
1530config CC_HAS_SIGN_RETURN_ADDRESS
1531	# GCC 7, 8
1532	def_bool $(cc-option,-msign-return-address=all)
1533
1534config AS_HAS_PAC
1535	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1536
1537config AS_HAS_CFI_NEGATE_RA_STATE
1538	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1539
1540endmenu
1541
1542menu "ARMv8.4 architectural features"
1543
1544config ARM64_AMU_EXTN
1545	bool "Enable support for the Activity Monitors Unit CPU extension"
1546	default y
1547	help
1548	  The activity monitors extension is an optional extension introduced
1549	  by the ARMv8.4 CPU architecture. This enables support for version 1
1550	  of the activity monitors architecture, AMUv1.
1551
1552	  To enable the use of this extension on CPUs that implement it, say Y.
1553
1554	  Note that for architectural reasons, firmware _must_ implement AMU
1555	  support when running on CPUs that present the activity monitors
1556	  extension. The required support is present in:
1557	    * Version 1.5 and later of the ARM Trusted Firmware
1558
1559	  For kernels that have this configuration enabled but boot with broken
1560	  firmware, you may need to say N here until the firmware is fixed.
1561	  Otherwise you may experience firmware panics or lockups when
1562	  accessing the counter registers. Even if you are not observing these
1563	  symptoms, the values returned by the register reads might not
1564	  correctly reflect reality. Most commonly, the value read will be 0,
1565	  indicating that the counter is not enabled.
1566
1567config AS_HAS_ARMV8_4
1568	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1569
1570config ARM64_TLB_RANGE
1571	bool "Enable support for tlbi range feature"
1572	default y
1573	depends on AS_HAS_ARMV8_4
1574	help
1575	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1576	  range of input addresses.
1577
1578	  The feature introduces new assembly instructions, and they were
1579	  support when binutils >= 2.30.
1580
1581endmenu
1582
1583menu "ARMv8.5 architectural features"
1584
1585config ARM64_BTI
1586	bool "Branch Target Identification support"
1587	default y
1588	help
1589	  Branch Target Identification (part of the ARMv8.5 Extensions)
1590	  provides a mechanism to limit the set of locations to which computed
1591	  branch instructions such as BR or BLR can jump.
1592
1593	  To make use of BTI on CPUs that support it, say Y.
1594
1595	  BTI is intended to provide complementary protection to other control
1596	  flow integrity protection mechanisms, such as the Pointer
1597	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1598	  For this reason, it does not make sense to enable this option without
1599	  also enabling support for pointer authentication.  Thus, when
1600	  enabling this option you should also select ARM64_PTR_AUTH=y.
1601
1602	  Userspace binaries must also be specifically compiled to make use of
1603	  this mechanism.  If you say N here or the hardware does not support
1604	  BTI, such binaries can still run, but you get no additional
1605	  enforcement of branch destinations.
1606
1607config ARM64_BTI_KERNEL
1608	bool "Use Branch Target Identification for kernel"
1609	default y
1610	depends on ARM64_BTI
1611	depends on ARM64_PTR_AUTH
1612	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1613	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1614	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1615	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1616	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1617	help
1618	  Build the kernel with Branch Target Identification annotations
1619	  and enable enforcement of this for kernel code. When this option
1620	  is enabled and the system supports BTI all kernel code including
1621	  modular code must have BTI enabled.
1622
1623config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1624	# GCC 9 or later, clang 8 or later
1625	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1626
1627config ARM64_E0PD
1628	bool "Enable support for E0PD"
1629	default y
1630	help
1631	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1632	  that EL0 accesses made via TTBR1 always fault in constant time,
1633	  providing similar benefits to KASLR as those provided by KPTI, but
1634	  with lower overhead and without disrupting legitimate access to
1635	  kernel memory such as SPE.
1636
1637	  This option enables E0PD for TTBR1 where available.
1638
1639config ARCH_RANDOM
1640	bool "Enable support for random number generation"
1641	default y
1642	help
1643	  Random number generation (part of the ARMv8.5 Extensions)
1644	  provides a high bandwidth, cryptographically secure
1645	  hardware random number generator.
1646
1647config ARM64_AS_HAS_MTE
1648	# Initial support for MTE went in binutils 2.32.0, checked with
1649	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1650	# as a late addition to the final architecture spec (LDGM/STGM)
1651	# is only supported in the newer 2.32.x and 2.33 binutils
1652	# versions, hence the extra "stgm" instruction check below.
1653	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1654
1655config ARM64_MTE
1656	bool "Memory Tagging Extension support"
1657	default y
1658	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1659	select ARCH_USES_HIGH_VMA_FLAGS
1660	help
1661	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1662	  architectural support for run-time, always-on detection of
1663	  various classes of memory error to aid with software debugging
1664	  to eliminate vulnerabilities arising from memory-unsafe
1665	  languages.
1666
1667	  This option enables the support for the Memory Tagging
1668	  Extension at EL0 (i.e. for userspace).
1669
1670	  Selecting this option allows the feature to be detected at
1671	  runtime. Any secondary CPU not implementing this feature will
1672	  not be allowed a late bring-up.
1673
1674	  Userspace binaries that want to use this feature must
1675	  explicitly opt in. The mechanism for the userspace is
1676	  described in:
1677
1678	  Documentation/arm64/memory-tagging-extension.rst.
1679
1680endmenu
1681
1682config ARM64_SVE
1683	bool "ARM Scalable Vector Extension support"
1684	default y
1685	depends on !KVM || ARM64_VHE
1686	help
1687	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1688	  execution state which complements and extends the SIMD functionality
1689	  of the base architecture to support much larger vectors and to enable
1690	  additional vectorisation opportunities.
1691
1692	  To enable use of this extension on CPUs that implement it, say Y.
1693
1694	  On CPUs that support the SVE2 extensions, this option will enable
1695	  those too.
1696
1697	  Note that for architectural reasons, firmware _must_ implement SVE
1698	  support when running on SVE capable hardware.  The required support
1699	  is present in:
1700
1701	    * version 1.5 and later of the ARM Trusted Firmware
1702	    * the AArch64 boot wrapper since commit 5e1261e08abf
1703	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1704
1705	  For other firmware implementations, consult the firmware documentation
1706	  or vendor.
1707
1708	  If you need the kernel to boot on SVE-capable hardware with broken
1709	  firmware, you may need to say N here until you get your firmware
1710	  fixed.  Otherwise, you may experience firmware panics or lockups when
1711	  booting the kernel.  If unsure and you are not observing these
1712	  symptoms, you should assume that it is safe to say Y.
1713
1714	  CPUs that support SVE are architecturally required to support the
1715	  Virtualization Host Extensions (VHE), so the kernel makes no
1716	  provision for supporting SVE alongside KVM without VHE enabled.
1717	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1718	  KVM in the same kernel image.
1719
1720config ARM64_MODULE_PLTS
1721	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1722	depends on MODULES
1723	select HAVE_MOD_ARCH_SPECIFIC
1724	help
1725	  Allocate PLTs when loading modules so that jumps and calls whose
1726	  targets are too far away for their relative offsets to be encoded
1727	  in the instructions themselves can be bounced via veneers in the
1728	  module's PLT. This allows modules to be allocated in the generic
1729	  vmalloc area after the dedicated module memory area has been
1730	  exhausted.
1731
1732	  When running with address space randomization (KASLR), the module
1733	  region itself may be too far away for ordinary relative jumps and
1734	  calls, and so in that case, module PLTs are required and cannot be
1735	  disabled.
1736
1737	  Specific errata workaround(s) might also force module PLTs to be
1738	  enabled (ARM64_ERRATUM_843419).
1739
1740config ARM64_PSEUDO_NMI
1741	bool "Support for NMI-like interrupts"
1742	select ARM_GIC_V3
1743	help
1744	  Adds support for mimicking Non-Maskable Interrupts through the use of
1745	  GIC interrupt priority. This support requires version 3 or later of
1746	  ARM GIC.
1747
1748	  This high priority configuration for interrupts needs to be
1749	  explicitly enabled by setting the kernel parameter
1750	  "irqchip.gicv3_pseudo_nmi" to 1.
1751
1752	  If unsure, say N
1753
1754if ARM64_PSEUDO_NMI
1755config ARM64_DEBUG_PRIORITY_MASKING
1756	bool "Debug interrupt priority masking"
1757	help
1758	  This adds runtime checks to functions enabling/disabling
1759	  interrupts when using priority masking. The additional checks verify
1760	  the validity of ICC_PMR_EL1 when calling concerned functions.
1761
1762	  If unsure, say N
1763endif
1764
1765config RELOCATABLE
1766	bool "Build a relocatable kernel image" if EXPERT
1767	select ARCH_HAS_RELR
1768	default y
1769	help
1770	  This builds the kernel as a Position Independent Executable (PIE),
1771	  which retains all relocation metadata required to relocate the
1772	  kernel binary at runtime to a different virtual address than the
1773	  address it was linked at.
1774	  Since AArch64 uses the RELA relocation format, this requires a
1775	  relocation pass at runtime even if the kernel is loaded at the
1776	  same address it was linked at.
1777
1778config RANDOMIZE_BASE
1779	bool "Randomize the address of the kernel image"
1780	select ARM64_MODULE_PLTS if MODULES
1781	select RELOCATABLE
1782	help
1783	  Randomizes the virtual address at which the kernel image is
1784	  loaded, as a security feature that deters exploit attempts
1785	  relying on knowledge of the location of kernel internals.
1786
1787	  It is the bootloader's job to provide entropy, by passing a
1788	  random u64 value in /chosen/kaslr-seed at kernel entry.
1789
1790	  When booting via the UEFI stub, it will invoke the firmware's
1791	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1792	  to the kernel proper. In addition, it will randomise the physical
1793	  location of the kernel Image as well.
1794
1795	  If unsure, say N.
1796
1797config RANDOMIZE_MODULE_REGION_FULL
1798	bool "Randomize the module region over a 4 GB range"
1799	depends on RANDOMIZE_BASE
1800	default y
1801	help
1802	  Randomizes the location of the module region inside a 4 GB window
1803	  covering the core kernel. This way, it is less likely for modules
1804	  to leak information about the location of core kernel data structures
1805	  but it does imply that function calls between modules and the core
1806	  kernel will need to be resolved via veneers in the module PLT.
1807
1808	  When this option is not set, the module region will be randomized over
1809	  a limited range that contains the [_stext, _etext] interval of the
1810	  core kernel, so branch relocations are always in range.
1811
1812config CC_HAVE_STACKPROTECTOR_SYSREG
1813	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1814
1815config STACKPROTECTOR_PER_TASK
1816	def_bool y
1817	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1818
1819endmenu
1820
1821menu "Boot options"
1822
1823config ARM64_ACPI_PARKING_PROTOCOL
1824	bool "Enable support for the ARM64 ACPI parking protocol"
1825	depends on ACPI
1826	help
1827	  Enable support for the ARM64 ACPI parking protocol. If disabled
1828	  the kernel will not allow booting through the ARM64 ACPI parking
1829	  protocol even if the corresponding data is present in the ACPI
1830	  MADT table.
1831
1832config CMDLINE
1833	string "Default kernel command string"
1834	default ""
1835	help
1836	  Provide a set of default command-line options at build time by
1837	  entering them here. As a minimum, you should specify the the
1838	  root device (e.g. root=/dev/nfs).
1839
1840config CMDLINE_FORCE
1841	bool "Always use the default kernel command string"
1842	depends on CMDLINE != ""
1843	help
1844	  Always use the default kernel command string, even if the boot
1845	  loader passes other arguments to the kernel.
1846	  This is useful if you cannot or don't want to change the
1847	  command-line options your boot loader passes to the kernel.
1848
1849config EFI_STUB
1850	bool
1851
1852config EFI
1853	bool "UEFI runtime support"
1854	depends on OF && !CPU_BIG_ENDIAN
1855	depends on KERNEL_MODE_NEON
1856	select ARCH_SUPPORTS_ACPI
1857	select LIBFDT
1858	select UCS2_STRING
1859	select EFI_PARAMS_FROM_FDT
1860	select EFI_RUNTIME_WRAPPERS
1861	select EFI_STUB
1862	select EFI_GENERIC_STUB
1863	default y
1864	help
1865	  This option provides support for runtime services provided
1866	  by UEFI firmware (such as non-volatile variables, realtime
1867          clock, and platform reset). A UEFI stub is also provided to
1868	  allow the kernel to be booted as an EFI application. This
1869	  is only useful on systems that have UEFI firmware.
1870
1871config DMI
1872	bool "Enable support for SMBIOS (DMI) tables"
1873	depends on EFI
1874	default y
1875	help
1876	  This enables SMBIOS/DMI feature for systems.
1877
1878	  This option is only useful on systems that have UEFI firmware.
1879	  However, even with this option, the resultant kernel should
1880	  continue to boot on existing non-UEFI platforms.
1881
1882endmenu
1883
1884config SYSVIPC_COMPAT
1885	def_bool y
1886	depends on COMPAT && SYSVIPC
1887
1888config ARCH_ENABLE_HUGEPAGE_MIGRATION
1889	def_bool y
1890	depends on HUGETLB_PAGE && MIGRATION
1891
1892config ARCH_ENABLE_THP_MIGRATION
1893	def_bool y
1894	depends on TRANSPARENT_HUGEPAGE
1895
1896menu "Power management options"
1897
1898source "kernel/power/Kconfig"
1899
1900config ARCH_HIBERNATION_POSSIBLE
1901	def_bool y
1902	depends on CPU_PM
1903
1904config ARCH_HIBERNATION_HEADER
1905	def_bool y
1906	depends on HIBERNATION
1907
1908config ARCH_SUSPEND_POSSIBLE
1909	def_bool y
1910
1911endmenu
1912
1913menu "CPU Power Management"
1914
1915source "drivers/cpuidle/Kconfig"
1916
1917source "drivers/cpufreq/Kconfig"
1918
1919endmenu
1920
1921source "drivers/firmware/Kconfig"
1922
1923source "drivers/acpi/Kconfig"
1924
1925source "arch/arm64/kvm/Kconfig"
1926
1927if CRYPTO
1928source "arch/arm64/crypto/Kconfig"
1929endif
1930