xref: /linux/arch/arm64/Kconfig (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_HAS_DEBUG_VIRTUAL
15	select ARCH_HAS_DEBUG_VM_PGTABLE
16	select ARCH_HAS_DMA_PREP_COHERENT
17	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
18	select ARCH_HAS_FAST_MULTIPLIER
19	select ARCH_HAS_FORTIFY_SOURCE
20	select ARCH_HAS_GCOV_PROFILE_ALL
21	select ARCH_HAS_GIGANTIC_PAGE
22	select ARCH_HAS_KCOV
23	select ARCH_HAS_KEEPINITRD
24	select ARCH_HAS_MEMBARRIER_SYNC_CORE
25	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
26	select ARCH_HAS_PTE_DEVMAP
27	select ARCH_HAS_PTE_SPECIAL
28	select ARCH_HAS_SETUP_DMA_OPS
29	select ARCH_HAS_SET_DIRECT_MAP
30	select ARCH_HAS_SET_MEMORY
31	select ARCH_STACKWALK
32	select ARCH_HAS_STRICT_KERNEL_RWX
33	select ARCH_HAS_STRICT_MODULE_RWX
34	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
35	select ARCH_HAS_SYNC_DMA_FOR_CPU
36	select ARCH_HAS_SYSCALL_WRAPPER
37	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
38	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
39	select ARCH_HAVE_ELF_PROT
40	select ARCH_HAVE_NMI_SAFE_CMPXCHG
41	select ARCH_INLINE_READ_LOCK if !PREEMPTION
42	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
43	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
44	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
45	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
46	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
47	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
48	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
49	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
50	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
51	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
52	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
53	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
54	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
55	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
56	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
57	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
58	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
59	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
60	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
61	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
63	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
64	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
65	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
67	select ARCH_KEEP_MEMBLOCK
68	select ARCH_USE_CMPXCHG_LOCKREF
69	select ARCH_USE_GNU_PROPERTY
70	select ARCH_USE_QUEUED_RWLOCKS
71	select ARCH_USE_QUEUED_SPINLOCKS
72	select ARCH_USE_SYM_ANNOTATIONS
73	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
74	select ARCH_SUPPORTS_MEMORY_FAILURE
75	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
76	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
77	select ARCH_SUPPORTS_LTO_CLANG_THIN
78	select ARCH_SUPPORTS_ATOMIC_RMW
79	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
80	select ARCH_SUPPORTS_NUMA_BALANCING
81	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
82	select ARCH_WANT_DEFAULT_BPF_JIT
83	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
84	select ARCH_WANT_FRAME_POINTERS
85	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
86	select ARCH_WANT_LD_ORPHAN_WARN
87	select ARCH_HAS_UBSAN_SANITIZE_ALL
88	select ARM_AMBA
89	select ARM_ARCH_TIMER
90	select ARM_GIC
91	select AUDIT_ARCH_COMPAT_GENERIC
92	select ARM_GIC_V2M if PCI
93	select ARM_GIC_V3
94	select ARM_GIC_V3_ITS if PCI
95	select ARM_PSCI_FW
96	select BUILDTIME_TABLE_SORT
97	select CLONE_BACKWARDS
98	select COMMON_CLK
99	select CPU_PM if (SUSPEND || CPU_IDLE)
100	select CRC32
101	select DCACHE_WORD_ACCESS
102	select DMA_DIRECT_REMAP
103	select EDAC_SUPPORT
104	select FRAME_POINTER
105	select GENERIC_ALLOCATOR
106	select GENERIC_ARCH_TOPOLOGY
107	select GENERIC_CLOCKEVENTS_BROADCAST
108	select GENERIC_CPU_AUTOPROBE
109	select GENERIC_CPU_VULNERABILITIES
110	select GENERIC_EARLY_IOREMAP
111	select GENERIC_IDLE_POLL_SETUP
112	select GENERIC_IRQ_IPI
113	select GENERIC_IRQ_MULTI_HANDLER
114	select GENERIC_IRQ_PROBE
115	select GENERIC_IRQ_SHOW
116	select GENERIC_IRQ_SHOW_LEVEL
117	select GENERIC_LIB_DEVMEM_IS_ALLOWED
118	select GENERIC_PCI_IOMAP
119	select GENERIC_PTDUMP
120	select GENERIC_SCHED_CLOCK
121	select GENERIC_SMP_IDLE_THREAD
122	select GENERIC_STRNCPY_FROM_USER
123	select GENERIC_STRNLEN_USER
124	select GENERIC_TIME_VSYSCALL
125	select GENERIC_GETTIMEOFDAY
126	select GENERIC_VDSO_TIME_NS
127	select HANDLE_DOMAIN_IRQ
128	select HARDIRQS_SW_RESEND
129	select HAVE_MOVE_PMD
130	select HAVE_MOVE_PUD
131	select HAVE_PCI
132	select HAVE_ACPI_APEI if (ACPI && EFI)
133	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
134	select HAVE_ARCH_AUDITSYSCALL
135	select HAVE_ARCH_BITREVERSE
136	select HAVE_ARCH_COMPILER_H
137	select HAVE_ARCH_HUGE_VMAP
138	select HAVE_ARCH_JUMP_LABEL
139	select HAVE_ARCH_JUMP_LABEL_RELATIVE
140	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
141	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
142	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
143	select HAVE_ARCH_KFENCE
144	select HAVE_ARCH_KGDB
145	select HAVE_ARCH_MMAP_RND_BITS
146	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
147	select HAVE_ARCH_PFN_VALID
148	select HAVE_ARCH_PREL32_RELOCATIONS
149	select HAVE_ARCH_SECCOMP_FILTER
150	select HAVE_ARCH_STACKLEAK
151	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
152	select HAVE_ARCH_TRACEHOOK
153	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
154	select HAVE_ARCH_VMAP_STACK
155	select HAVE_ARM_SMCCC
156	select HAVE_ASM_MODVERSIONS
157	select HAVE_EBPF_JIT
158	select HAVE_C_RECORDMCOUNT
159	select HAVE_CMPXCHG_DOUBLE
160	select HAVE_CMPXCHG_LOCAL
161	select HAVE_CONTEXT_TRACKING
162	select HAVE_DEBUG_BUGVERBOSE
163	select HAVE_DEBUG_KMEMLEAK
164	select HAVE_DMA_CONTIGUOUS
165	select HAVE_DYNAMIC_FTRACE
166	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
167		if $(cc-option,-fpatchable-function-entry=2)
168	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
169		if DYNAMIC_FTRACE_WITH_REGS
170	select HAVE_EFFICIENT_UNALIGNED_ACCESS
171	select HAVE_FAST_GUP
172	select HAVE_FTRACE_MCOUNT_RECORD
173	select HAVE_FUNCTION_TRACER
174	select HAVE_FUNCTION_ERROR_INJECTION
175	select HAVE_FUNCTION_GRAPH_TRACER
176	select HAVE_GCC_PLUGINS
177	select HAVE_HW_BREAKPOINT if PERF_EVENTS
178	select HAVE_IRQ_TIME_ACCOUNTING
179	select HAVE_NMI
180	select HAVE_PATA_PLATFORM
181	select HAVE_PERF_EVENTS
182	select HAVE_PERF_REGS
183	select HAVE_PERF_USER_STACK_DUMP
184	select HAVE_REGS_AND_STACK_ACCESS_API
185	select HAVE_FUNCTION_ARG_ACCESS_API
186	select HAVE_FUTEX_CMPXCHG if FUTEX
187	select MMU_GATHER_RCU_TABLE_FREE
188	select HAVE_RSEQ
189	select HAVE_STACKPROTECTOR
190	select HAVE_SYSCALL_TRACEPOINTS
191	select HAVE_KPROBES
192	select HAVE_KRETPROBES
193	select HAVE_GENERIC_VDSO
194	select IOMMU_DMA if IOMMU_SUPPORT
195	select IRQ_DOMAIN
196	select IRQ_FORCED_THREADING
197	select MODULES_USE_ELF_RELA
198	select NEED_DMA_MAP_STATE
199	select NEED_SG_DMA_LENGTH
200	select OF
201	select OF_EARLY_FLATTREE
202	select PCI_DOMAINS_GENERIC if PCI
203	select PCI_ECAM if (ACPI && PCI)
204	select PCI_SYSCALL if PCI
205	select POWER_RESET
206	select POWER_SUPPLY
207	select SPARSE_IRQ
208	select SWIOTLB
209	select SYSCTL_EXCEPTION_TRACE
210	select THREAD_INFO_IN_TASK
211	help
212	  ARM 64-bit (AArch64) Linux support.
213
214config 64BIT
215	def_bool y
216
217config MMU
218	def_bool y
219
220config ARM64_PAGE_SHIFT
221	int
222	default 16 if ARM64_64K_PAGES
223	default 14 if ARM64_16K_PAGES
224	default 12
225
226config ARM64_CONT_PTE_SHIFT
227	int
228	default 5 if ARM64_64K_PAGES
229	default 7 if ARM64_16K_PAGES
230	default 4
231
232config ARM64_CONT_PMD_SHIFT
233	int
234	default 5 if ARM64_64K_PAGES
235	default 5 if ARM64_16K_PAGES
236	default 4
237
238config ARCH_MMAP_RND_BITS_MIN
239       default 14 if ARM64_64K_PAGES
240       default 16 if ARM64_16K_PAGES
241       default 18
242
243# max bits determined by the following formula:
244#  VA_BITS - PAGE_SHIFT - 3
245config ARCH_MMAP_RND_BITS_MAX
246       default 19 if ARM64_VA_BITS=36
247       default 24 if ARM64_VA_BITS=39
248       default 27 if ARM64_VA_BITS=42
249       default 30 if ARM64_VA_BITS=47
250       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
251       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
252       default 33 if ARM64_VA_BITS=48
253       default 14 if ARM64_64K_PAGES
254       default 16 if ARM64_16K_PAGES
255       default 18
256
257config ARCH_MMAP_RND_COMPAT_BITS_MIN
258       default 7 if ARM64_64K_PAGES
259       default 9 if ARM64_16K_PAGES
260       default 11
261
262config ARCH_MMAP_RND_COMPAT_BITS_MAX
263       default 16
264
265config NO_IOPORT_MAP
266	def_bool y if !PCI
267
268config STACKTRACE_SUPPORT
269	def_bool y
270
271config ILLEGAL_POINTER_VALUE
272	hex
273	default 0xdead000000000000
274
275config LOCKDEP_SUPPORT
276	def_bool y
277
278config TRACE_IRQFLAGS_SUPPORT
279	def_bool y
280
281config GENERIC_BUG
282	def_bool y
283	depends on BUG
284
285config GENERIC_BUG_RELATIVE_POINTERS
286	def_bool y
287	depends on GENERIC_BUG
288
289config GENERIC_HWEIGHT
290	def_bool y
291
292config GENERIC_CSUM
293        def_bool y
294
295config GENERIC_CALIBRATE_DELAY
296	def_bool y
297
298config ZONE_DMA
299	bool "Support DMA zone" if EXPERT
300	default y
301
302config ZONE_DMA32
303	bool "Support DMA32 zone" if EXPERT
304	default y
305
306config ARCH_ENABLE_MEMORY_HOTPLUG
307	def_bool y
308
309config ARCH_ENABLE_MEMORY_HOTREMOVE
310	def_bool y
311
312config SMP
313	def_bool y
314
315config KERNEL_MODE_NEON
316	def_bool y
317
318config FIX_EARLYCON_MEM
319	def_bool y
320
321config PGTABLE_LEVELS
322	int
323	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
324	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
325	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
326	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
327	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
328	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
329
330config ARCH_SUPPORTS_UPROBES
331	def_bool y
332
333config ARCH_PROC_KCORE_TEXT
334	def_bool y
335
336config BROKEN_GAS_INST
337	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
338
339config KASAN_SHADOW_OFFSET
340	hex
341	depends on KASAN_GENERIC || KASAN_SW_TAGS
342	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
343	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
344	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
345	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
346	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
347	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
348	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
349	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
350	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
351	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
352	default 0xffffffffffffffff
353
354source "arch/arm64/Kconfig.platforms"
355
356menu "Kernel Features"
357
358menu "ARM errata workarounds via the alternatives framework"
359
360config ARM64_WORKAROUND_CLEAN_CACHE
361	bool
362
363config ARM64_ERRATUM_826319
364	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
365	default y
366	select ARM64_WORKAROUND_CLEAN_CACHE
367	help
368	  This option adds an alternative code sequence to work around ARM
369	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
370	  AXI master interface and an L2 cache.
371
372	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
373	  and is unable to accept a certain write via this interface, it will
374	  not progress on read data presented on the read data channel and the
375	  system can deadlock.
376
377	  The workaround promotes data cache clean instructions to
378	  data cache clean-and-invalidate.
379	  Please note that this does not necessarily enable the workaround,
380	  as it depends on the alternative framework, which will only patch
381	  the kernel if an affected CPU is detected.
382
383	  If unsure, say Y.
384
385config ARM64_ERRATUM_827319
386	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
387	default y
388	select ARM64_WORKAROUND_CLEAN_CACHE
389	help
390	  This option adds an alternative code sequence to work around ARM
391	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
392	  master interface and an L2 cache.
393
394	  Under certain conditions this erratum can cause a clean line eviction
395	  to occur at the same time as another transaction to the same address
396	  on the AMBA 5 CHI interface, which can cause data corruption if the
397	  interconnect reorders the two transactions.
398
399	  The workaround promotes data cache clean instructions to
400	  data cache clean-and-invalidate.
401	  Please note that this does not necessarily enable the workaround,
402	  as it depends on the alternative framework, which will only patch
403	  the kernel if an affected CPU is detected.
404
405	  If unsure, say Y.
406
407config ARM64_ERRATUM_824069
408	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
409	default y
410	select ARM64_WORKAROUND_CLEAN_CACHE
411	help
412	  This option adds an alternative code sequence to work around ARM
413	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
414	  to a coherent interconnect.
415
416	  If a Cortex-A53 processor is executing a store or prefetch for
417	  write instruction at the same time as a processor in another
418	  cluster is executing a cache maintenance operation to the same
419	  address, then this erratum might cause a clean cache line to be
420	  incorrectly marked as dirty.
421
422	  The workaround promotes data cache clean instructions to
423	  data cache clean-and-invalidate.
424	  Please note that this option does not necessarily enable the
425	  workaround, as it depends on the alternative framework, which will
426	  only patch the kernel if an affected CPU is detected.
427
428	  If unsure, say Y.
429
430config ARM64_ERRATUM_819472
431	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
432	default y
433	select ARM64_WORKAROUND_CLEAN_CACHE
434	help
435	  This option adds an alternative code sequence to work around ARM
436	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
437	  present when it is connected to a coherent interconnect.
438
439	  If the processor is executing a load and store exclusive sequence at
440	  the same time as a processor in another cluster is executing a cache
441	  maintenance operation to the same address, then this erratum might
442	  cause data corruption.
443
444	  The workaround promotes data cache clean instructions to
445	  data cache clean-and-invalidate.
446	  Please note that this does not necessarily enable the workaround,
447	  as it depends on the alternative framework, which will only patch
448	  the kernel if an affected CPU is detected.
449
450	  If unsure, say Y.
451
452config ARM64_ERRATUM_832075
453	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
454	default y
455	help
456	  This option adds an alternative code sequence to work around ARM
457	  erratum 832075 on Cortex-A57 parts up to r1p2.
458
459	  Affected Cortex-A57 parts might deadlock when exclusive load/store
460	  instructions to Write-Back memory are mixed with Device loads.
461
462	  The workaround is to promote device loads to use Load-Acquire
463	  semantics.
464	  Please note that this does not necessarily enable the workaround,
465	  as it depends on the alternative framework, which will only patch
466	  the kernel if an affected CPU is detected.
467
468	  If unsure, say Y.
469
470config ARM64_ERRATUM_834220
471	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
472	depends on KVM
473	default y
474	help
475	  This option adds an alternative code sequence to work around ARM
476	  erratum 834220 on Cortex-A57 parts up to r1p2.
477
478	  Affected Cortex-A57 parts might report a Stage 2 translation
479	  fault as the result of a Stage 1 fault for load crossing a
480	  page boundary when there is a permission or device memory
481	  alignment fault at Stage 1 and a translation fault at Stage 2.
482
483	  The workaround is to verify that the Stage 1 translation
484	  doesn't generate a fault before handling the Stage 2 fault.
485	  Please note that this does not necessarily enable the workaround,
486	  as it depends on the alternative framework, which will only patch
487	  the kernel if an affected CPU is detected.
488
489	  If unsure, say Y.
490
491config ARM64_ERRATUM_845719
492	bool "Cortex-A53: 845719: a load might read incorrect data"
493	depends on COMPAT
494	default y
495	help
496	  This option adds an alternative code sequence to work around ARM
497	  erratum 845719 on Cortex-A53 parts up to r0p4.
498
499	  When running a compat (AArch32) userspace on an affected Cortex-A53
500	  part, a load at EL0 from a virtual address that matches the bottom 32
501	  bits of the virtual address used by a recent load at (AArch64) EL1
502	  might return incorrect data.
503
504	  The workaround is to write the contextidr_el1 register on exception
505	  return to a 32-bit task.
506	  Please note that this does not necessarily enable the workaround,
507	  as it depends on the alternative framework, which will only patch
508	  the kernel if an affected CPU is detected.
509
510	  If unsure, say Y.
511
512config ARM64_ERRATUM_843419
513	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
514	default y
515	select ARM64_MODULE_PLTS if MODULES
516	help
517	  This option links the kernel with '--fix-cortex-a53-843419' and
518	  enables PLT support to replace certain ADRP instructions, which can
519	  cause subsequent memory accesses to use an incorrect address on
520	  Cortex-A53 parts up to r0p4.
521
522	  If unsure, say Y.
523
524config ARM64_ERRATUM_1024718
525	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
526	default y
527	help
528	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
529
530	  Affected Cortex-A55 cores (all revisions) could cause incorrect
531	  update of the hardware dirty bit when the DBM/AP bits are updated
532	  without a break-before-make. The workaround is to disable the usage
533	  of hardware DBM locally on the affected cores. CPUs not affected by
534	  this erratum will continue to use the feature.
535
536	  If unsure, say Y.
537
538config ARM64_ERRATUM_1418040
539	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
540	default y
541	depends on COMPAT
542	help
543	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
544	  errata 1188873 and 1418040.
545
546	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
547	  cause register corruption when accessing the timer registers
548	  from AArch32 userspace.
549
550	  If unsure, say Y.
551
552config ARM64_WORKAROUND_SPECULATIVE_AT
553	bool
554
555config ARM64_ERRATUM_1165522
556	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
557	default y
558	select ARM64_WORKAROUND_SPECULATIVE_AT
559	help
560	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
561
562	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
563	  corrupted TLBs by speculating an AT instruction during a guest
564	  context switch.
565
566	  If unsure, say Y.
567
568config ARM64_ERRATUM_1319367
569	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
570	default y
571	select ARM64_WORKAROUND_SPECULATIVE_AT
572	help
573	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
574	  and A72 erratum 1319367
575
576	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
577	  speculating an AT instruction during a guest context switch.
578
579	  If unsure, say Y.
580
581config ARM64_ERRATUM_1530923
582	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
583	default y
584	select ARM64_WORKAROUND_SPECULATIVE_AT
585	help
586	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
587
588	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
589	  corrupted TLBs by speculating an AT instruction during a guest
590	  context switch.
591
592	  If unsure, say Y.
593
594config ARM64_WORKAROUND_REPEAT_TLBI
595	bool
596
597config ARM64_ERRATUM_1286807
598	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
599	default y
600	select ARM64_WORKAROUND_REPEAT_TLBI
601	help
602	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
603
604	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
605	  address for a cacheable mapping of a location is being
606	  accessed by a core while another core is remapping the virtual
607	  address to a new physical page using the recommended
608	  break-before-make sequence, then under very rare circumstances
609	  TLBI+DSB completes before a read using the translation being
610	  invalidated has been observed by other observers. The
611	  workaround repeats the TLBI+DSB operation.
612
613config ARM64_ERRATUM_1463225
614	bool "Cortex-A76: Software Step might prevent interrupt recognition"
615	default y
616	help
617	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
618
619	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
620	  of a system call instruction (SVC) can prevent recognition of
621	  subsequent interrupts when software stepping is disabled in the
622	  exception handler of the system call and either kernel debugging
623	  is enabled or VHE is in use.
624
625	  Work around the erratum by triggering a dummy step exception
626	  when handling a system call from a task that is being stepped
627	  in a VHE configuration of the kernel.
628
629	  If unsure, say Y.
630
631config ARM64_ERRATUM_1542419
632	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
633	default y
634	help
635	  This option adds a workaround for ARM Neoverse-N1 erratum
636	  1542419.
637
638	  Affected Neoverse-N1 cores could execute a stale instruction when
639	  modified by another CPU. The workaround depends on a firmware
640	  counterpart.
641
642	  Workaround the issue by hiding the DIC feature from EL0. This
643	  forces user-space to perform cache maintenance.
644
645	  If unsure, say Y.
646
647config ARM64_ERRATUM_1508412
648	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
649	default y
650	help
651	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
652
653	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
654	  of a store-exclusive or read of PAR_EL1 and a load with device or
655	  non-cacheable memory attributes. The workaround depends on a firmware
656	  counterpart.
657
658	  KVM guests must also have the workaround implemented or they can
659	  deadlock the system.
660
661	  Work around the issue by inserting DMB SY barriers around PAR_EL1
662	  register reads and warning KVM users. The DMB barrier is sufficient
663	  to prevent a speculative PAR_EL1 read.
664
665	  If unsure, say Y.
666
667config CAVIUM_ERRATUM_22375
668	bool "Cavium erratum 22375, 24313"
669	default y
670	help
671	  Enable workaround for errata 22375 and 24313.
672
673	  This implements two gicv3-its errata workarounds for ThunderX. Both
674	  with a small impact affecting only ITS table allocation.
675
676	    erratum 22375: only alloc 8MB table size
677	    erratum 24313: ignore memory access type
678
679	  The fixes are in ITS initialization and basically ignore memory access
680	  type and table size provided by the TYPER and BASER registers.
681
682	  If unsure, say Y.
683
684config CAVIUM_ERRATUM_23144
685	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
686	depends on NUMA
687	default y
688	help
689	  ITS SYNC command hang for cross node io and collections/cpu mapping.
690
691	  If unsure, say Y.
692
693config CAVIUM_ERRATUM_23154
694	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
695	default y
696	help
697	  The gicv3 of ThunderX requires a modified version for
698	  reading the IAR status to ensure data synchronization
699	  (access to icc_iar1_el1 is not sync'ed before and after).
700
701	  If unsure, say Y.
702
703config CAVIUM_ERRATUM_27456
704	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
705	default y
706	help
707	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
708	  instructions may cause the icache to become corrupted if it
709	  contains data for a non-current ASID.  The fix is to
710	  invalidate the icache when changing the mm context.
711
712	  If unsure, say Y.
713
714config CAVIUM_ERRATUM_30115
715	bool "Cavium erratum 30115: Guest may disable interrupts in host"
716	default y
717	help
718	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
719	  1.2, and T83 Pass 1.0, KVM guest execution may disable
720	  interrupts in host. Trapping both GICv3 group-0 and group-1
721	  accesses sidesteps the issue.
722
723	  If unsure, say Y.
724
725config CAVIUM_TX2_ERRATUM_219
726	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
727	default y
728	help
729	  On Cavium ThunderX2, a load, store or prefetch instruction between a
730	  TTBR update and the corresponding context synchronizing operation can
731	  cause a spurious Data Abort to be delivered to any hardware thread in
732	  the CPU core.
733
734	  Work around the issue by avoiding the problematic code sequence and
735	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
736	  trap handler performs the corresponding register access, skips the
737	  instruction and ensures context synchronization by virtue of the
738	  exception return.
739
740	  If unsure, say Y.
741
742config FUJITSU_ERRATUM_010001
743	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
744	default y
745	help
746	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
747	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
748	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
749	  This fault occurs under a specific hardware condition when a
750	  load/store instruction performs an address translation using:
751	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
752	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
753	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
754	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
755
756	  The workaround is to ensure these bits are clear in TCR_ELx.
757	  The workaround only affects the Fujitsu-A64FX.
758
759	  If unsure, say Y.
760
761config HISILICON_ERRATUM_161600802
762	bool "Hip07 161600802: Erroneous redistributor VLPI base"
763	default y
764	help
765	  The HiSilicon Hip07 SoC uses the wrong redistributor base
766	  when issued ITS commands such as VMOVP and VMAPP, and requires
767	  a 128kB offset to be applied to the target address in this commands.
768
769	  If unsure, say Y.
770
771config QCOM_FALKOR_ERRATUM_1003
772	bool "Falkor E1003: Incorrect translation due to ASID change"
773	default y
774	help
775	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
776	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
777	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
778	  then only for entries in the walk cache, since the leaf translation
779	  is unchanged. Work around the erratum by invalidating the walk cache
780	  entries for the trampoline before entering the kernel proper.
781
782config QCOM_FALKOR_ERRATUM_1009
783	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
784	default y
785	select ARM64_WORKAROUND_REPEAT_TLBI
786	help
787	  On Falkor v1, the CPU may prematurely complete a DSB following a
788	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
789	  one more time to fix the issue.
790
791	  If unsure, say Y.
792
793config QCOM_QDF2400_ERRATUM_0065
794	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
795	default y
796	help
797	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
798	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
799	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
800
801	  If unsure, say Y.
802
803config QCOM_FALKOR_ERRATUM_E1041
804	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
805	default y
806	help
807	  Falkor CPU may speculatively fetch instructions from an improper
808	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
809	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
810
811	  If unsure, say Y.
812
813config SOCIONEXT_SYNQUACER_PREITS
814	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
815	default y
816	help
817	  Socionext Synquacer SoCs implement a separate h/w block to generate
818	  MSI doorbell writes with non-zero values for the device ID.
819
820	  If unsure, say Y.
821
822endmenu
823
824
825choice
826	prompt "Page size"
827	default ARM64_4K_PAGES
828	help
829	  Page size (translation granule) configuration.
830
831config ARM64_4K_PAGES
832	bool "4KB"
833	help
834	  This feature enables 4KB pages support.
835
836config ARM64_16K_PAGES
837	bool "16KB"
838	help
839	  The system will use 16KB pages support. AArch32 emulation
840	  requires applications compiled with 16K (or a multiple of 16K)
841	  aligned segments.
842
843config ARM64_64K_PAGES
844	bool "64KB"
845	help
846	  This feature enables 64KB pages support (4KB by default)
847	  allowing only two levels of page tables and faster TLB
848	  look-up. AArch32 emulation requires applications compiled
849	  with 64K aligned segments.
850
851endchoice
852
853choice
854	prompt "Virtual address space size"
855	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
856	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
857	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
858	help
859	  Allows choosing one of multiple possible virtual address
860	  space sizes. The level of translation table is determined by
861	  a combination of page size and virtual address space size.
862
863config ARM64_VA_BITS_36
864	bool "36-bit" if EXPERT
865	depends on ARM64_16K_PAGES
866
867config ARM64_VA_BITS_39
868	bool "39-bit"
869	depends on ARM64_4K_PAGES
870
871config ARM64_VA_BITS_42
872	bool "42-bit"
873	depends on ARM64_64K_PAGES
874
875config ARM64_VA_BITS_47
876	bool "47-bit"
877	depends on ARM64_16K_PAGES
878
879config ARM64_VA_BITS_48
880	bool "48-bit"
881
882config ARM64_VA_BITS_52
883	bool "52-bit"
884	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
885	help
886	  Enable 52-bit virtual addressing for userspace when explicitly
887	  requested via a hint to mmap(). The kernel will also use 52-bit
888	  virtual addresses for its own mappings (provided HW support for
889	  this feature is available, otherwise it reverts to 48-bit).
890
891	  NOTE: Enabling 52-bit virtual addressing in conjunction with
892	  ARMv8.3 Pointer Authentication will result in the PAC being
893	  reduced from 7 bits to 3 bits, which may have a significant
894	  impact on its susceptibility to brute-force attacks.
895
896	  If unsure, select 48-bit virtual addressing instead.
897
898endchoice
899
900config ARM64_FORCE_52BIT
901	bool "Force 52-bit virtual addresses for userspace"
902	depends on ARM64_VA_BITS_52 && EXPERT
903	help
904	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
905	  to maintain compatibility with older software by providing 48-bit VAs
906	  unless a hint is supplied to mmap.
907
908	  This configuration option disables the 48-bit compatibility logic, and
909	  forces all userspace addresses to be 52-bit on HW that supports it. One
910	  should only enable this configuration option for stress testing userspace
911	  memory management code. If unsure say N here.
912
913config ARM64_VA_BITS
914	int
915	default 36 if ARM64_VA_BITS_36
916	default 39 if ARM64_VA_BITS_39
917	default 42 if ARM64_VA_BITS_42
918	default 47 if ARM64_VA_BITS_47
919	default 48 if ARM64_VA_BITS_48
920	default 52 if ARM64_VA_BITS_52
921
922choice
923	prompt "Physical address space size"
924	default ARM64_PA_BITS_48
925	help
926	  Choose the maximum physical address range that the kernel will
927	  support.
928
929config ARM64_PA_BITS_48
930	bool "48-bit"
931
932config ARM64_PA_BITS_52
933	bool "52-bit (ARMv8.2)"
934	depends on ARM64_64K_PAGES
935	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
936	help
937	  Enable support for a 52-bit physical address space, introduced as
938	  part of the ARMv8.2-LPA extension.
939
940	  With this enabled, the kernel will also continue to work on CPUs that
941	  do not support ARMv8.2-LPA, but with some added memory overhead (and
942	  minor performance overhead).
943
944endchoice
945
946config ARM64_PA_BITS
947	int
948	default 48 if ARM64_PA_BITS_48
949	default 52 if ARM64_PA_BITS_52
950
951choice
952	prompt "Endianness"
953	default CPU_LITTLE_ENDIAN
954	help
955	  Select the endianness of data accesses performed by the CPU. Userspace
956	  applications will need to be compiled and linked for the endianness
957	  that is selected here.
958
959config CPU_BIG_ENDIAN
960	bool "Build big-endian kernel"
961	depends on !LD_IS_LLD || LLD_VERSION >= 130000
962	help
963	  Say Y if you plan on running a kernel with a big-endian userspace.
964
965config CPU_LITTLE_ENDIAN
966	bool "Build little-endian kernel"
967	help
968	  Say Y if you plan on running a kernel with a little-endian userspace.
969	  This is usually the case for distributions targeting arm64.
970
971endchoice
972
973config SCHED_MC
974	bool "Multi-core scheduler support"
975	help
976	  Multi-core scheduler support improves the CPU scheduler's decision
977	  making when dealing with multi-core CPU chips at a cost of slightly
978	  increased overhead in some places. If unsure say N here.
979
980config SCHED_SMT
981	bool "SMT scheduler support"
982	help
983	  Improves the CPU scheduler's decision making when dealing with
984	  MultiThreading at a cost of slightly increased overhead in some
985	  places. If unsure say N here.
986
987config NR_CPUS
988	int "Maximum number of CPUs (2-4096)"
989	range 2 4096
990	default "256"
991
992config HOTPLUG_CPU
993	bool "Support for hot-pluggable CPUs"
994	select GENERIC_IRQ_MIGRATION
995	help
996	  Say Y here to experiment with turning CPUs off and on.  CPUs
997	  can be controlled through /sys/devices/system/cpu.
998
999# Common NUMA Features
1000config NUMA
1001	bool "NUMA Memory Allocation and Scheduler Support"
1002	select GENERIC_ARCH_NUMA
1003	select ACPI_NUMA if ACPI
1004	select OF_NUMA
1005	help
1006	  Enable NUMA (Non-Uniform Memory Access) support.
1007
1008	  The kernel will try to allocate memory used by a CPU on the
1009	  local memory of the CPU and add some more
1010	  NUMA awareness to the kernel.
1011
1012config NODES_SHIFT
1013	int "Maximum NUMA Nodes (as a power of 2)"
1014	range 1 10
1015	default "4"
1016	depends on NEED_MULTIPLE_NODES
1017	help
1018	  Specify the maximum number of NUMA Nodes available on the target
1019	  system.  Increases memory reserved to accommodate various tables.
1020
1021config USE_PERCPU_NUMA_NODE_ID
1022	def_bool y
1023	depends on NUMA
1024
1025config HAVE_SETUP_PER_CPU_AREA
1026	def_bool y
1027	depends on NUMA
1028
1029config NEED_PER_CPU_EMBED_FIRST_CHUNK
1030	def_bool y
1031	depends on NUMA
1032
1033config HOLES_IN_ZONE
1034	def_bool y
1035
1036source "kernel/Kconfig.hz"
1037
1038config ARCH_SPARSEMEM_ENABLE
1039	def_bool y
1040	select SPARSEMEM_VMEMMAP_ENABLE
1041
1042config ARCH_SPARSEMEM_DEFAULT
1043	def_bool ARCH_SPARSEMEM_ENABLE
1044
1045config ARCH_SELECT_MEMORY_MODEL
1046	def_bool ARCH_SPARSEMEM_ENABLE
1047
1048config ARCH_FLATMEM_ENABLE
1049	def_bool !NUMA
1050
1051config HW_PERF_EVENTS
1052	def_bool y
1053	depends on ARM_PMU
1054
1055config SYS_SUPPORTS_HUGETLBFS
1056	def_bool y
1057
1058config ARCH_WANT_HUGE_PMD_SHARE
1059
1060config ARCH_HAS_CACHE_LINE_SIZE
1061	def_bool y
1062
1063config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1064	def_bool y if PGTABLE_LEVELS > 2
1065
1066# Supported by clang >= 7.0
1067config CC_HAVE_SHADOW_CALL_STACK
1068	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1069
1070config PARAVIRT
1071	bool "Enable paravirtualization code"
1072	help
1073	  This changes the kernel so it can modify itself when it is run
1074	  under a hypervisor, potentially improving performance significantly
1075	  over full virtualization.
1076
1077config PARAVIRT_TIME_ACCOUNTING
1078	bool "Paravirtual steal time accounting"
1079	select PARAVIRT
1080	help
1081	  Select this option to enable fine granularity task steal time
1082	  accounting. Time spent executing other tasks in parallel with
1083	  the current vCPU is discounted from the vCPU power. To account for
1084	  that, there can be a small performance impact.
1085
1086	  If in doubt, say N here.
1087
1088config KEXEC
1089	depends on PM_SLEEP_SMP
1090	select KEXEC_CORE
1091	bool "kexec system call"
1092	help
1093	  kexec is a system call that implements the ability to shutdown your
1094	  current kernel, and to start another kernel.  It is like a reboot
1095	  but it is independent of the system firmware.   And like a reboot
1096	  you can start any kernel with it, not just Linux.
1097
1098config KEXEC_FILE
1099	bool "kexec file based system call"
1100	select KEXEC_CORE
1101	help
1102	  This is new version of kexec system call. This system call is
1103	  file based and takes file descriptors as system call argument
1104	  for kernel and initramfs as opposed to list of segments as
1105	  accepted by previous system call.
1106
1107config KEXEC_SIG
1108	bool "Verify kernel signature during kexec_file_load() syscall"
1109	depends on KEXEC_FILE
1110	help
1111	  Select this option to verify a signature with loaded kernel
1112	  image. If configured, any attempt of loading a image without
1113	  valid signature will fail.
1114
1115	  In addition to that option, you need to enable signature
1116	  verification for the corresponding kernel image type being
1117	  loaded in order for this to work.
1118
1119config KEXEC_IMAGE_VERIFY_SIG
1120	bool "Enable Image signature verification support"
1121	default y
1122	depends on KEXEC_SIG
1123	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1124	help
1125	  Enable Image signature verification support.
1126
1127comment "Support for PE file signature verification disabled"
1128	depends on KEXEC_SIG
1129	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1130
1131config CRASH_DUMP
1132	bool "Build kdump crash kernel"
1133	help
1134	  Generate crash dump after being started by kexec. This should
1135	  be normally only set in special crash dump kernels which are
1136	  loaded in the main kernel with kexec-tools into a specially
1137	  reserved region and then later executed after a crash by
1138	  kdump/kexec.
1139
1140	  For more details see Documentation/admin-guide/kdump/kdump.rst
1141
1142config TRANS_TABLE
1143	def_bool y
1144	depends on HIBERNATION
1145
1146config XEN_DOM0
1147	def_bool y
1148	depends on XEN
1149
1150config XEN
1151	bool "Xen guest support on ARM64"
1152	depends on ARM64 && OF
1153	select SWIOTLB_XEN
1154	select PARAVIRT
1155	help
1156	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1157
1158config FORCE_MAX_ZONEORDER
1159	int
1160	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1161	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1162	default "11"
1163	help
1164	  The kernel memory allocator divides physically contiguous memory
1165	  blocks into "zones", where each zone is a power of two number of
1166	  pages.  This option selects the largest power of two that the kernel
1167	  keeps in the memory allocator.  If you need to allocate very large
1168	  blocks of physically contiguous memory, then you may need to
1169	  increase this value.
1170
1171	  This config option is actually maximum order plus one. For example,
1172	  a value of 11 means that the largest free memory block is 2^10 pages.
1173
1174	  We make sure that we can allocate upto a HugePage size for each configuration.
1175	  Hence we have :
1176		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1177
1178	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1179	  4M allocations matching the default size used by generic code.
1180
1181config UNMAP_KERNEL_AT_EL0
1182	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1183	default y
1184	help
1185	  Speculation attacks against some high-performance processors can
1186	  be used to bypass MMU permission checks and leak kernel data to
1187	  userspace. This can be defended against by unmapping the kernel
1188	  when running in userspace, mapping it back in on exception entry
1189	  via a trampoline page in the vector table.
1190
1191	  If unsure, say Y.
1192
1193config RODATA_FULL_DEFAULT_ENABLED
1194	bool "Apply r/o permissions of VM areas also to their linear aliases"
1195	default y
1196	help
1197	  Apply read-only attributes of VM areas to the linear alias of
1198	  the backing pages as well. This prevents code or read-only data
1199	  from being modified (inadvertently or intentionally) via another
1200	  mapping of the same memory page. This additional enhancement can
1201	  be turned off at runtime by passing rodata=[off|on] (and turned on
1202	  with rodata=full if this option is set to 'n')
1203
1204	  This requires the linear region to be mapped down to pages,
1205	  which may adversely affect performance in some cases.
1206
1207config ARM64_SW_TTBR0_PAN
1208	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1209	help
1210	  Enabling this option prevents the kernel from accessing
1211	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1212	  zeroed area and reserved ASID. The user access routines
1213	  restore the valid TTBR0_EL1 temporarily.
1214
1215config ARM64_TAGGED_ADDR_ABI
1216	bool "Enable the tagged user addresses syscall ABI"
1217	default y
1218	help
1219	  When this option is enabled, user applications can opt in to a
1220	  relaxed ABI via prctl() allowing tagged addresses to be passed
1221	  to system calls as pointer arguments. For details, see
1222	  Documentation/arm64/tagged-address-abi.rst.
1223
1224menuconfig COMPAT
1225	bool "Kernel support for 32-bit EL0"
1226	depends on ARM64_4K_PAGES || EXPERT
1227	select HAVE_UID16
1228	select OLD_SIGSUSPEND3
1229	select COMPAT_OLD_SIGACTION
1230	help
1231	  This option enables support for a 32-bit EL0 running under a 64-bit
1232	  kernel at EL1. AArch32-specific components such as system calls,
1233	  the user helper functions, VFP support and the ptrace interface are
1234	  handled appropriately by the kernel.
1235
1236	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1237	  that you will only be able to execute AArch32 binaries that were compiled
1238	  with page size aligned segments.
1239
1240	  If you want to execute 32-bit userspace applications, say Y.
1241
1242if COMPAT
1243
1244config KUSER_HELPERS
1245	bool "Enable kuser helpers page for 32-bit applications"
1246	default y
1247	help
1248	  Warning: disabling this option may break 32-bit user programs.
1249
1250	  Provide kuser helpers to compat tasks. The kernel provides
1251	  helper code to userspace in read only form at a fixed location
1252	  to allow userspace to be independent of the CPU type fitted to
1253	  the system. This permits binaries to be run on ARMv4 through
1254	  to ARMv8 without modification.
1255
1256	  See Documentation/arm/kernel_user_helpers.rst for details.
1257
1258	  However, the fixed address nature of these helpers can be used
1259	  by ROP (return orientated programming) authors when creating
1260	  exploits.
1261
1262	  If all of the binaries and libraries which run on your platform
1263	  are built specifically for your platform, and make no use of
1264	  these helpers, then you can turn this option off to hinder
1265	  such exploits. However, in that case, if a binary or library
1266	  relying on those helpers is run, it will not function correctly.
1267
1268	  Say N here only if you are absolutely certain that you do not
1269	  need these helpers; otherwise, the safe option is to say Y.
1270
1271config COMPAT_VDSO
1272	bool "Enable vDSO for 32-bit applications"
1273	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1274	select GENERIC_COMPAT_VDSO
1275	default y
1276	help
1277	  Place in the process address space of 32-bit applications an
1278	  ELF shared object providing fast implementations of gettimeofday
1279	  and clock_gettime.
1280
1281	  You must have a 32-bit build of glibc 2.22 or later for programs
1282	  to seamlessly take advantage of this.
1283
1284config THUMB2_COMPAT_VDSO
1285	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1286	depends on COMPAT_VDSO
1287	default y
1288	help
1289	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1290	  otherwise with '-marm'.
1291
1292menuconfig ARMV8_DEPRECATED
1293	bool "Emulate deprecated/obsolete ARMv8 instructions"
1294	depends on SYSCTL
1295	help
1296	  Legacy software support may require certain instructions
1297	  that have been deprecated or obsoleted in the architecture.
1298
1299	  Enable this config to enable selective emulation of these
1300	  features.
1301
1302	  If unsure, say Y
1303
1304if ARMV8_DEPRECATED
1305
1306config SWP_EMULATION
1307	bool "Emulate SWP/SWPB instructions"
1308	help
1309	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1310	  they are always undefined. Say Y here to enable software
1311	  emulation of these instructions for userspace using LDXR/STXR.
1312	  This feature can be controlled at runtime with the abi.swp
1313	  sysctl which is disabled by default.
1314
1315	  In some older versions of glibc [<=2.8] SWP is used during futex
1316	  trylock() operations with the assumption that the code will not
1317	  be preempted. This invalid assumption may be more likely to fail
1318	  with SWP emulation enabled, leading to deadlock of the user
1319	  application.
1320
1321	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1322	  on an external transaction monitoring block called a global
1323	  monitor to maintain update atomicity. If your system does not
1324	  implement a global monitor, this option can cause programs that
1325	  perform SWP operations to uncached memory to deadlock.
1326
1327	  If unsure, say Y
1328
1329config CP15_BARRIER_EMULATION
1330	bool "Emulate CP15 Barrier instructions"
1331	help
1332	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1333	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1334	  strongly recommended to use the ISB, DSB, and DMB
1335	  instructions instead.
1336
1337	  Say Y here to enable software emulation of these
1338	  instructions for AArch32 userspace code. When this option is
1339	  enabled, CP15 barrier usage is traced which can help
1340	  identify software that needs updating. This feature can be
1341	  controlled at runtime with the abi.cp15_barrier sysctl.
1342
1343	  If unsure, say Y
1344
1345config SETEND_EMULATION
1346	bool "Emulate SETEND instruction"
1347	help
1348	  The SETEND instruction alters the data-endianness of the
1349	  AArch32 EL0, and is deprecated in ARMv8.
1350
1351	  Say Y here to enable software emulation of the instruction
1352	  for AArch32 userspace code. This feature can be controlled
1353	  at runtime with the abi.setend sysctl.
1354
1355	  Note: All the cpus on the system must have mixed endian support at EL0
1356	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1357	  endian - is hotplugged in after this feature has been enabled, there could
1358	  be unexpected results in the applications.
1359
1360	  If unsure, say Y
1361endif
1362
1363endif
1364
1365menu "ARMv8.1 architectural features"
1366
1367config ARM64_HW_AFDBM
1368	bool "Support for hardware updates of the Access and Dirty page flags"
1369	default y
1370	help
1371	  The ARMv8.1 architecture extensions introduce support for
1372	  hardware updates of the access and dirty information in page
1373	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1374	  capable processors, accesses to pages with PTE_AF cleared will
1375	  set this bit instead of raising an access flag fault.
1376	  Similarly, writes to read-only pages with the DBM bit set will
1377	  clear the read-only bit (AP[2]) instead of raising a
1378	  permission fault.
1379
1380	  Kernels built with this configuration option enabled continue
1381	  to work on pre-ARMv8.1 hardware and the performance impact is
1382	  minimal. If unsure, say Y.
1383
1384config ARM64_PAN
1385	bool "Enable support for Privileged Access Never (PAN)"
1386	default y
1387	help
1388	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1389	 prevents the kernel or hypervisor from accessing user-space (EL0)
1390	 memory directly.
1391
1392	 Choosing this option will cause any unprotected (not using
1393	 copy_to_user et al) memory access to fail with a permission fault.
1394
1395	 The feature is detected at runtime, and will remain as a 'nop'
1396	 instruction if the cpu does not implement the feature.
1397
1398config AS_HAS_LDAPR
1399	def_bool $(as-instr,.arch_extension rcpc)
1400
1401config ARM64_LSE_ATOMICS
1402	bool
1403	default ARM64_USE_LSE_ATOMICS
1404	depends on $(as-instr,.arch_extension lse)
1405
1406config ARM64_USE_LSE_ATOMICS
1407	bool "Atomic instructions"
1408	depends on JUMP_LABEL
1409	default y
1410	help
1411	  As part of the Large System Extensions, ARMv8.1 introduces new
1412	  atomic instructions that are designed specifically to scale in
1413	  very large systems.
1414
1415	  Say Y here to make use of these instructions for the in-kernel
1416	  atomic routines. This incurs a small overhead on CPUs that do
1417	  not support these instructions and requires the kernel to be
1418	  built with binutils >= 2.25 in order for the new instructions
1419	  to be used.
1420
1421config ARM64_VHE
1422	bool "Enable support for Virtualization Host Extensions (VHE)"
1423	default y
1424	help
1425	  Virtualization Host Extensions (VHE) allow the kernel to run
1426	  directly at EL2 (instead of EL1) on processors that support
1427	  it. This leads to better performance for KVM, as they reduce
1428	  the cost of the world switch.
1429
1430	  Selecting this option allows the VHE feature to be detected
1431	  at runtime, and does not affect processors that do not
1432	  implement this feature.
1433
1434endmenu
1435
1436menu "ARMv8.2 architectural features"
1437
1438config ARM64_PMEM
1439	bool "Enable support for persistent memory"
1440	select ARCH_HAS_PMEM_API
1441	select ARCH_HAS_UACCESS_FLUSHCACHE
1442	help
1443	  Say Y to enable support for the persistent memory API based on the
1444	  ARMv8.2 DCPoP feature.
1445
1446	  The feature is detected at runtime, and the kernel will use DC CVAC
1447	  operations if DC CVAP is not supported (following the behaviour of
1448	  DC CVAP itself if the system does not define a point of persistence).
1449
1450config ARM64_RAS_EXTN
1451	bool "Enable support for RAS CPU Extensions"
1452	default y
1453	help
1454	  CPUs that support the Reliability, Availability and Serviceability
1455	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1456	  errors, classify them and report them to software.
1457
1458	  On CPUs with these extensions system software can use additional
1459	  barriers to determine if faults are pending and read the
1460	  classification from a new set of registers.
1461
1462	  Selecting this feature will allow the kernel to use these barriers
1463	  and access the new registers if the system supports the extension.
1464	  Platform RAS features may additionally depend on firmware support.
1465
1466config ARM64_CNP
1467	bool "Enable support for Common Not Private (CNP) translations"
1468	default y
1469	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1470	help
1471	  Common Not Private (CNP) allows translation table entries to
1472	  be shared between different PEs in the same inner shareable
1473	  domain, so the hardware can use this fact to optimise the
1474	  caching of such entries in the TLB.
1475
1476	  Selecting this option allows the CNP feature to be detected
1477	  at runtime, and does not affect PEs that do not implement
1478	  this feature.
1479
1480endmenu
1481
1482menu "ARMv8.3 architectural features"
1483
1484config ARM64_PTR_AUTH
1485	bool "Enable support for pointer authentication"
1486	default y
1487	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1488	# Modern compilers insert a .note.gnu.property section note for PAC
1489	# which is only understood by binutils starting with version 2.33.1.
1490	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1491	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1492	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1493	help
1494	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1495	  instructions for signing and authenticating pointers against secret
1496	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1497	  and other attacks.
1498
1499	  This option enables these instructions at EL0 (i.e. for userspace).
1500	  Choosing this option will cause the kernel to initialise secret keys
1501	  for each process at exec() time, with these keys being
1502	  context-switched along with the process.
1503
1504	  If the compiler supports the -mbranch-protection or
1505	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1506	  will also cause the kernel itself to be compiled with return address
1507	  protection. In this case, and if the target hardware is known to
1508	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1509	  disabled with minimal loss of protection.
1510
1511	  The feature is detected at runtime. If the feature is not present in
1512	  hardware it will not be advertised to userspace/KVM guest nor will it
1513	  be enabled.
1514
1515	  If the feature is present on the boot CPU but not on a late CPU, then
1516	  the late CPU will be parked. Also, if the boot CPU does not have
1517	  address auth and the late CPU has then the late CPU will still boot
1518	  but with the feature disabled. On such a system, this option should
1519	  not be selected.
1520
1521	  This feature works with FUNCTION_GRAPH_TRACER option only if
1522	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1523
1524config CC_HAS_BRANCH_PROT_PAC_RET
1525	# GCC 9 or later, clang 8 or later
1526	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1527
1528config CC_HAS_SIGN_RETURN_ADDRESS
1529	# GCC 7, 8
1530	def_bool $(cc-option,-msign-return-address=all)
1531
1532config AS_HAS_PAC
1533	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1534
1535config AS_HAS_CFI_NEGATE_RA_STATE
1536	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1537
1538endmenu
1539
1540menu "ARMv8.4 architectural features"
1541
1542config ARM64_AMU_EXTN
1543	bool "Enable support for the Activity Monitors Unit CPU extension"
1544	default y
1545	help
1546	  The activity monitors extension is an optional extension introduced
1547	  by the ARMv8.4 CPU architecture. This enables support for version 1
1548	  of the activity monitors architecture, AMUv1.
1549
1550	  To enable the use of this extension on CPUs that implement it, say Y.
1551
1552	  Note that for architectural reasons, firmware _must_ implement AMU
1553	  support when running on CPUs that present the activity monitors
1554	  extension. The required support is present in:
1555	    * Version 1.5 and later of the ARM Trusted Firmware
1556
1557	  For kernels that have this configuration enabled but boot with broken
1558	  firmware, you may need to say N here until the firmware is fixed.
1559	  Otherwise you may experience firmware panics or lockups when
1560	  accessing the counter registers. Even if you are not observing these
1561	  symptoms, the values returned by the register reads might not
1562	  correctly reflect reality. Most commonly, the value read will be 0,
1563	  indicating that the counter is not enabled.
1564
1565config AS_HAS_ARMV8_4
1566	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1567
1568config ARM64_TLB_RANGE
1569	bool "Enable support for tlbi range feature"
1570	default y
1571	depends on AS_HAS_ARMV8_4
1572	help
1573	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1574	  range of input addresses.
1575
1576	  The feature introduces new assembly instructions, and they were
1577	  support when binutils >= 2.30.
1578
1579endmenu
1580
1581menu "ARMv8.5 architectural features"
1582
1583config AS_HAS_ARMV8_5
1584	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1585
1586config ARM64_BTI
1587	bool "Branch Target Identification support"
1588	default y
1589	help
1590	  Branch Target Identification (part of the ARMv8.5 Extensions)
1591	  provides a mechanism to limit the set of locations to which computed
1592	  branch instructions such as BR or BLR can jump.
1593
1594	  To make use of BTI on CPUs that support it, say Y.
1595
1596	  BTI is intended to provide complementary protection to other control
1597	  flow integrity protection mechanisms, such as the Pointer
1598	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1599	  For this reason, it does not make sense to enable this option without
1600	  also enabling support for pointer authentication.  Thus, when
1601	  enabling this option you should also select ARM64_PTR_AUTH=y.
1602
1603	  Userspace binaries must also be specifically compiled to make use of
1604	  this mechanism.  If you say N here or the hardware does not support
1605	  BTI, such binaries can still run, but you get no additional
1606	  enforcement of branch destinations.
1607
1608config ARM64_BTI_KERNEL
1609	bool "Use Branch Target Identification for kernel"
1610	default y
1611	depends on ARM64_BTI
1612	depends on ARM64_PTR_AUTH
1613	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1614	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1615	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1616	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1617	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1618	help
1619	  Build the kernel with Branch Target Identification annotations
1620	  and enable enforcement of this for kernel code. When this option
1621	  is enabled and the system supports BTI all kernel code including
1622	  modular code must have BTI enabled.
1623
1624config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1625	# GCC 9 or later, clang 8 or later
1626	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1627
1628config ARM64_E0PD
1629	bool "Enable support for E0PD"
1630	default y
1631	help
1632	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1633	  that EL0 accesses made via TTBR1 always fault in constant time,
1634	  providing similar benefits to KASLR as those provided by KPTI, but
1635	  with lower overhead and without disrupting legitimate access to
1636	  kernel memory such as SPE.
1637
1638	  This option enables E0PD for TTBR1 where available.
1639
1640config ARCH_RANDOM
1641	bool "Enable support for random number generation"
1642	default y
1643	help
1644	  Random number generation (part of the ARMv8.5 Extensions)
1645	  provides a high bandwidth, cryptographically secure
1646	  hardware random number generator.
1647
1648config ARM64_AS_HAS_MTE
1649	# Initial support for MTE went in binutils 2.32.0, checked with
1650	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1651	# as a late addition to the final architecture spec (LDGM/STGM)
1652	# is only supported in the newer 2.32.x and 2.33 binutils
1653	# versions, hence the extra "stgm" instruction check below.
1654	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1655
1656config ARM64_MTE
1657	bool "Memory Tagging Extension support"
1658	default y
1659	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1660	depends on AS_HAS_ARMV8_5
1661	# Required for tag checking in the uaccess routines
1662	depends on ARM64_PAN
1663	select ARCH_USES_HIGH_VMA_FLAGS
1664	help
1665	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1666	  architectural support for run-time, always-on detection of
1667	  various classes of memory error to aid with software debugging
1668	  to eliminate vulnerabilities arising from memory-unsafe
1669	  languages.
1670
1671	  This option enables the support for the Memory Tagging
1672	  Extension at EL0 (i.e. for userspace).
1673
1674	  Selecting this option allows the feature to be detected at
1675	  runtime. Any secondary CPU not implementing this feature will
1676	  not be allowed a late bring-up.
1677
1678	  Userspace binaries that want to use this feature must
1679	  explicitly opt in. The mechanism for the userspace is
1680	  described in:
1681
1682	  Documentation/arm64/memory-tagging-extension.rst.
1683
1684endmenu
1685
1686config ARM64_SVE
1687	bool "ARM Scalable Vector Extension support"
1688	default y
1689	depends on !KVM || ARM64_VHE
1690	help
1691	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1692	  execution state which complements and extends the SIMD functionality
1693	  of the base architecture to support much larger vectors and to enable
1694	  additional vectorisation opportunities.
1695
1696	  To enable use of this extension on CPUs that implement it, say Y.
1697
1698	  On CPUs that support the SVE2 extensions, this option will enable
1699	  those too.
1700
1701	  Note that for architectural reasons, firmware _must_ implement SVE
1702	  support when running on SVE capable hardware.  The required support
1703	  is present in:
1704
1705	    * version 1.5 and later of the ARM Trusted Firmware
1706	    * the AArch64 boot wrapper since commit 5e1261e08abf
1707	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1708
1709	  For other firmware implementations, consult the firmware documentation
1710	  or vendor.
1711
1712	  If you need the kernel to boot on SVE-capable hardware with broken
1713	  firmware, you may need to say N here until you get your firmware
1714	  fixed.  Otherwise, you may experience firmware panics or lockups when
1715	  booting the kernel.  If unsure and you are not observing these
1716	  symptoms, you should assume that it is safe to say Y.
1717
1718	  CPUs that support SVE are architecturally required to support the
1719	  Virtualization Host Extensions (VHE), so the kernel makes no
1720	  provision for supporting SVE alongside KVM without VHE enabled.
1721	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1722	  KVM in the same kernel image.
1723
1724config ARM64_MODULE_PLTS
1725	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1726	depends on MODULES
1727	select HAVE_MOD_ARCH_SPECIFIC
1728	help
1729	  Allocate PLTs when loading modules so that jumps and calls whose
1730	  targets are too far away for their relative offsets to be encoded
1731	  in the instructions themselves can be bounced via veneers in the
1732	  module's PLT. This allows modules to be allocated in the generic
1733	  vmalloc area after the dedicated module memory area has been
1734	  exhausted.
1735
1736	  When running with address space randomization (KASLR), the module
1737	  region itself may be too far away for ordinary relative jumps and
1738	  calls, and so in that case, module PLTs are required and cannot be
1739	  disabled.
1740
1741	  Specific errata workaround(s) might also force module PLTs to be
1742	  enabled (ARM64_ERRATUM_843419).
1743
1744config ARM64_PSEUDO_NMI
1745	bool "Support for NMI-like interrupts"
1746	select ARM_GIC_V3
1747	help
1748	  Adds support for mimicking Non-Maskable Interrupts through the use of
1749	  GIC interrupt priority. This support requires version 3 or later of
1750	  ARM GIC.
1751
1752	  This high priority configuration for interrupts needs to be
1753	  explicitly enabled by setting the kernel parameter
1754	  "irqchip.gicv3_pseudo_nmi" to 1.
1755
1756	  If unsure, say N
1757
1758if ARM64_PSEUDO_NMI
1759config ARM64_DEBUG_PRIORITY_MASKING
1760	bool "Debug interrupt priority masking"
1761	help
1762	  This adds runtime checks to functions enabling/disabling
1763	  interrupts when using priority masking. The additional checks verify
1764	  the validity of ICC_PMR_EL1 when calling concerned functions.
1765
1766	  If unsure, say N
1767endif
1768
1769config RELOCATABLE
1770	bool "Build a relocatable kernel image" if EXPERT
1771	select ARCH_HAS_RELR
1772	default y
1773	help
1774	  This builds the kernel as a Position Independent Executable (PIE),
1775	  which retains all relocation metadata required to relocate the
1776	  kernel binary at runtime to a different virtual address than the
1777	  address it was linked at.
1778	  Since AArch64 uses the RELA relocation format, this requires a
1779	  relocation pass at runtime even if the kernel is loaded at the
1780	  same address it was linked at.
1781
1782config RANDOMIZE_BASE
1783	bool "Randomize the address of the kernel image"
1784	select ARM64_MODULE_PLTS if MODULES
1785	select RELOCATABLE
1786	help
1787	  Randomizes the virtual address at which the kernel image is
1788	  loaded, as a security feature that deters exploit attempts
1789	  relying on knowledge of the location of kernel internals.
1790
1791	  It is the bootloader's job to provide entropy, by passing a
1792	  random u64 value in /chosen/kaslr-seed at kernel entry.
1793
1794	  When booting via the UEFI stub, it will invoke the firmware's
1795	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1796	  to the kernel proper. In addition, it will randomise the physical
1797	  location of the kernel Image as well.
1798
1799	  If unsure, say N.
1800
1801config RANDOMIZE_MODULE_REGION_FULL
1802	bool "Randomize the module region over a 4 GB range"
1803	depends on RANDOMIZE_BASE
1804	default y
1805	help
1806	  Randomizes the location of the module region inside a 4 GB window
1807	  covering the core kernel. This way, it is less likely for modules
1808	  to leak information about the location of core kernel data structures
1809	  but it does imply that function calls between modules and the core
1810	  kernel will need to be resolved via veneers in the module PLT.
1811
1812	  When this option is not set, the module region will be randomized over
1813	  a limited range that contains the [_stext, _etext] interval of the
1814	  core kernel, so branch relocations are always in range.
1815
1816config CC_HAVE_STACKPROTECTOR_SYSREG
1817	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1818
1819config STACKPROTECTOR_PER_TASK
1820	def_bool y
1821	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1822
1823endmenu
1824
1825menu "Boot options"
1826
1827config ARM64_ACPI_PARKING_PROTOCOL
1828	bool "Enable support for the ARM64 ACPI parking protocol"
1829	depends on ACPI
1830	help
1831	  Enable support for the ARM64 ACPI parking protocol. If disabled
1832	  the kernel will not allow booting through the ARM64 ACPI parking
1833	  protocol even if the corresponding data is present in the ACPI
1834	  MADT table.
1835
1836config CMDLINE
1837	string "Default kernel command string"
1838	default ""
1839	help
1840	  Provide a set of default command-line options at build time by
1841	  entering them here. As a minimum, you should specify the the
1842	  root device (e.g. root=/dev/nfs).
1843
1844choice
1845	prompt "Kernel command line type" if CMDLINE != ""
1846	default CMDLINE_FROM_BOOTLOADER
1847	help
1848	  Choose how the kernel will handle the provided default kernel
1849	  command line string.
1850
1851config CMDLINE_FROM_BOOTLOADER
1852	bool "Use bootloader kernel arguments if available"
1853	help
1854	  Uses the command-line options passed by the boot loader. If
1855	  the boot loader doesn't provide any, the default kernel command
1856	  string provided in CMDLINE will be used.
1857
1858config CMDLINE_EXTEND
1859	bool "Extend bootloader kernel arguments"
1860	help
1861	  The command-line arguments provided by the boot loader will be
1862	  appended to the default kernel command string.
1863
1864config CMDLINE_FORCE
1865	bool "Always use the default kernel command string"
1866	help
1867	  Always use the default kernel command string, even if the boot
1868	  loader passes other arguments to the kernel.
1869	  This is useful if you cannot or don't want to change the
1870	  command-line options your boot loader passes to the kernel.
1871
1872endchoice
1873
1874config EFI_STUB
1875	bool
1876
1877config EFI
1878	bool "UEFI runtime support"
1879	depends on OF && !CPU_BIG_ENDIAN
1880	depends on KERNEL_MODE_NEON
1881	select ARCH_SUPPORTS_ACPI
1882	select LIBFDT
1883	select UCS2_STRING
1884	select EFI_PARAMS_FROM_FDT
1885	select EFI_RUNTIME_WRAPPERS
1886	select EFI_STUB
1887	select EFI_GENERIC_STUB
1888	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
1889	default y
1890	help
1891	  This option provides support for runtime services provided
1892	  by UEFI firmware (such as non-volatile variables, realtime
1893          clock, and platform reset). A UEFI stub is also provided to
1894	  allow the kernel to be booted as an EFI application. This
1895	  is only useful on systems that have UEFI firmware.
1896
1897config DMI
1898	bool "Enable support for SMBIOS (DMI) tables"
1899	depends on EFI
1900	default y
1901	help
1902	  This enables SMBIOS/DMI feature for systems.
1903
1904	  This option is only useful on systems that have UEFI firmware.
1905	  However, even with this option, the resultant kernel should
1906	  continue to boot on existing non-UEFI platforms.
1907
1908endmenu
1909
1910config SYSVIPC_COMPAT
1911	def_bool y
1912	depends on COMPAT && SYSVIPC
1913
1914config ARCH_ENABLE_HUGEPAGE_MIGRATION
1915	def_bool y
1916	depends on HUGETLB_PAGE && MIGRATION
1917
1918config ARCH_ENABLE_THP_MIGRATION
1919	def_bool y
1920	depends on TRANSPARENT_HUGEPAGE
1921
1922menu "Power management options"
1923
1924source "kernel/power/Kconfig"
1925
1926config ARCH_HIBERNATION_POSSIBLE
1927	def_bool y
1928	depends on CPU_PM
1929
1930config ARCH_HIBERNATION_HEADER
1931	def_bool y
1932	depends on HIBERNATION
1933
1934config ARCH_SUSPEND_POSSIBLE
1935	def_bool y
1936
1937endmenu
1938
1939menu "CPU Power Management"
1940
1941source "drivers/cpuidle/Kconfig"
1942
1943source "drivers/cpufreq/Kconfig"
1944
1945endmenu
1946
1947source "drivers/firmware/Kconfig"
1948
1949source "drivers/acpi/Kconfig"
1950
1951source "arch/arm64/kvm/Kconfig"
1952
1953if CRYPTO
1954source "arch/arm64/crypto/Kconfig"
1955endif
1956