xref: /linux/arch/arm64/Kconfig (revision b30d7a77c53ec04a6d94683d7680ec406b7f3ac8)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KEEPINITRD
34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37	select ARCH_HAS_PTE_DEVMAP
38	select ARCH_HAS_PTE_SPECIAL
39	select ARCH_HAS_SETUP_DMA_OPS
40	select ARCH_HAS_SET_DIRECT_MAP
41	select ARCH_HAS_SET_MEMORY
42	select ARCH_STACKWALK
43	select ARCH_HAS_STRICT_KERNEL_RWX
44	select ARCH_HAS_STRICT_MODULE_RWX
45	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
46	select ARCH_HAS_SYNC_DMA_FOR_CPU
47	select ARCH_HAS_SYSCALL_WRAPPER
48	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
49	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
50	select ARCH_HAS_ZONE_DMA_SET if EXPERT
51	select ARCH_HAVE_ELF_PROT
52	select ARCH_HAVE_NMI_SAFE_CMPXCHG
53	select ARCH_HAVE_TRACE_MMIO_ACCESS
54	select ARCH_INLINE_READ_LOCK if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
70	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
80	select ARCH_KEEP_MEMBLOCK
81	select ARCH_USE_CMPXCHG_LOCKREF
82	select ARCH_USE_GNU_PROPERTY
83	select ARCH_USE_MEMTEST
84	select ARCH_USE_QUEUED_RWLOCKS
85	select ARCH_USE_QUEUED_SPINLOCKS
86	select ARCH_USE_SYM_ANNOTATIONS
87	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
88	select ARCH_SUPPORTS_HUGETLBFS
89	select ARCH_SUPPORTS_MEMORY_FAILURE
90	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
91	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
92	select ARCH_SUPPORTS_LTO_CLANG_THIN
93	select ARCH_SUPPORTS_CFI_CLANG
94	select ARCH_SUPPORTS_ATOMIC_RMW
95	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
96	select ARCH_SUPPORTS_NUMA_BALANCING
97	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
98	select ARCH_SUPPORTS_PER_VMA_LOCK
99	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
100	select ARCH_WANT_DEFAULT_BPF_JIT
101	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
102	select ARCH_WANT_FRAME_POINTERS
103	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
104	select ARCH_WANT_LD_ORPHAN_WARN
105	select ARCH_WANTS_NO_INSTR
106	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
107	select ARCH_HAS_UBSAN_SANITIZE_ALL
108	select ARM_AMBA
109	select ARM_ARCH_TIMER
110	select ARM_GIC
111	select AUDIT_ARCH_COMPAT_GENERIC
112	select ARM_GIC_V2M if PCI
113	select ARM_GIC_V3
114	select ARM_GIC_V3_ITS if PCI
115	select ARM_PSCI_FW
116	select BUILDTIME_TABLE_SORT
117	select CLONE_BACKWARDS
118	select COMMON_CLK
119	select CPU_PM if (SUSPEND || CPU_IDLE)
120	select CRC32
121	select DCACHE_WORD_ACCESS
122	select DYNAMIC_FTRACE if FUNCTION_TRACER
123	select DMA_BOUNCE_UNALIGNED_KMALLOC
124	select DMA_DIRECT_REMAP
125	select EDAC_SUPPORT
126	select FRAME_POINTER
127	select FUNCTION_ALIGNMENT_4B
128	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
129	select GENERIC_ALLOCATOR
130	select GENERIC_ARCH_TOPOLOGY
131	select GENERIC_CLOCKEVENTS_BROADCAST
132	select GENERIC_CPU_AUTOPROBE
133	select GENERIC_CPU_VULNERABILITIES
134	select GENERIC_EARLY_IOREMAP
135	select GENERIC_IDLE_POLL_SETUP
136	select GENERIC_IOREMAP
137	select GENERIC_IRQ_IPI
138	select GENERIC_IRQ_PROBE
139	select GENERIC_IRQ_SHOW
140	select GENERIC_IRQ_SHOW_LEVEL
141	select GENERIC_LIB_DEVMEM_IS_ALLOWED
142	select GENERIC_PCI_IOMAP
143	select GENERIC_PTDUMP
144	select GENERIC_SCHED_CLOCK
145	select GENERIC_SMP_IDLE_THREAD
146	select GENERIC_TIME_VSYSCALL
147	select GENERIC_GETTIMEOFDAY
148	select GENERIC_VDSO_TIME_NS
149	select HARDIRQS_SW_RESEND
150	select HAS_IOPORT
151	select HAVE_MOVE_PMD
152	select HAVE_MOVE_PUD
153	select HAVE_PCI
154	select HAVE_ACPI_APEI if (ACPI && EFI)
155	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
156	select HAVE_ARCH_AUDITSYSCALL
157	select HAVE_ARCH_BITREVERSE
158	select HAVE_ARCH_COMPILER_H
159	select HAVE_ARCH_HUGE_VMALLOC
160	select HAVE_ARCH_HUGE_VMAP
161	select HAVE_ARCH_JUMP_LABEL
162	select HAVE_ARCH_JUMP_LABEL_RELATIVE
163	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
164	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
165	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
166	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
167	# Some instrumentation may be unsound, hence EXPERT
168	select HAVE_ARCH_KCSAN if EXPERT
169	select HAVE_ARCH_KFENCE
170	select HAVE_ARCH_KGDB
171	select HAVE_ARCH_MMAP_RND_BITS
172	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
173	select HAVE_ARCH_PREL32_RELOCATIONS
174	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
175	select HAVE_ARCH_SECCOMP_FILTER
176	select HAVE_ARCH_STACKLEAK
177	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
178	select HAVE_ARCH_TRACEHOOK
179	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
180	select HAVE_ARCH_VMAP_STACK
181	select HAVE_ARM_SMCCC
182	select HAVE_ASM_MODVERSIONS
183	select HAVE_EBPF_JIT
184	select HAVE_C_RECORDMCOUNT
185	select HAVE_CMPXCHG_DOUBLE
186	select HAVE_CMPXCHG_LOCAL
187	select HAVE_CONTEXT_TRACKING_USER
188	select HAVE_DEBUG_KMEMLEAK
189	select HAVE_DMA_CONTIGUOUS
190	select HAVE_DYNAMIC_FTRACE
191	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
192		if $(cc-option,-fpatchable-function-entry=2)
193	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
194		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
195	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
196		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
197		    !CC_OPTIMIZE_FOR_SIZE)
198	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
199		if DYNAMIC_FTRACE_WITH_ARGS
200	select HAVE_EFFICIENT_UNALIGNED_ACCESS
201	select HAVE_FAST_GUP
202	select HAVE_FTRACE_MCOUNT_RECORD
203	select HAVE_FUNCTION_TRACER
204	select HAVE_FUNCTION_ERROR_INJECTION
205	select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
206	select HAVE_FUNCTION_GRAPH_TRACER
207	select HAVE_GCC_PLUGINS
208	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
209		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
210	select HAVE_HW_BREAKPOINT if PERF_EVENTS
211	select HAVE_IOREMAP_PROT
212	select HAVE_IRQ_TIME_ACCOUNTING
213	select HAVE_KVM
214	select HAVE_MOD_ARCH_SPECIFIC
215	select HAVE_NMI
216	select HAVE_PERF_EVENTS
217	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
218	select HAVE_PERF_REGS
219	select HAVE_PERF_USER_STACK_DUMP
220	select HAVE_PREEMPT_DYNAMIC_KEY
221	select HAVE_REGS_AND_STACK_ACCESS_API
222	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
223	select HAVE_FUNCTION_ARG_ACCESS_API
224	select MMU_GATHER_RCU_TABLE_FREE
225	select HAVE_RSEQ
226	select HAVE_STACKPROTECTOR
227	select HAVE_SYSCALL_TRACEPOINTS
228	select HAVE_KPROBES
229	select HAVE_KRETPROBES
230	select HAVE_GENERIC_VDSO
231	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
232	select IRQ_DOMAIN
233	select IRQ_FORCED_THREADING
234	select KASAN_VMALLOC if KASAN
235	select LOCK_MM_AND_FIND_VMA
236	select MODULES_USE_ELF_RELA
237	select NEED_DMA_MAP_STATE
238	select NEED_SG_DMA_LENGTH
239	select OF
240	select OF_EARLY_FLATTREE
241	select PCI_DOMAINS_GENERIC if PCI
242	select PCI_ECAM if (ACPI && PCI)
243	select PCI_SYSCALL if PCI
244	select POWER_RESET
245	select POWER_SUPPLY
246	select SPARSE_IRQ
247	select SWIOTLB
248	select SYSCTL_EXCEPTION_TRACE
249	select THREAD_INFO_IN_TASK
250	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
251	select TRACE_IRQFLAGS_SUPPORT
252	select TRACE_IRQFLAGS_NMI_SUPPORT
253	select HAVE_SOFTIRQ_ON_OWN_STACK
254	help
255	  ARM 64-bit (AArch64) Linux support.
256
257config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
258	def_bool CC_IS_CLANG
259	# https://github.com/ClangBuiltLinux/linux/issues/1507
260	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
261	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
262
263config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
264	def_bool CC_IS_GCC
265	depends on $(cc-option,-fpatchable-function-entry=2)
266	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
267
268config 64BIT
269	def_bool y
270
271config MMU
272	def_bool y
273
274config ARM64_PAGE_SHIFT
275	int
276	default 16 if ARM64_64K_PAGES
277	default 14 if ARM64_16K_PAGES
278	default 12
279
280config ARM64_CONT_PTE_SHIFT
281	int
282	default 5 if ARM64_64K_PAGES
283	default 7 if ARM64_16K_PAGES
284	default 4
285
286config ARM64_CONT_PMD_SHIFT
287	int
288	default 5 if ARM64_64K_PAGES
289	default 5 if ARM64_16K_PAGES
290	default 4
291
292config ARCH_MMAP_RND_BITS_MIN
293	default 14 if ARM64_64K_PAGES
294	default 16 if ARM64_16K_PAGES
295	default 18
296
297# max bits determined by the following formula:
298#  VA_BITS - PAGE_SHIFT - 3
299config ARCH_MMAP_RND_BITS_MAX
300	default 19 if ARM64_VA_BITS=36
301	default 24 if ARM64_VA_BITS=39
302	default 27 if ARM64_VA_BITS=42
303	default 30 if ARM64_VA_BITS=47
304	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
305	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
306	default 33 if ARM64_VA_BITS=48
307	default 14 if ARM64_64K_PAGES
308	default 16 if ARM64_16K_PAGES
309	default 18
310
311config ARCH_MMAP_RND_COMPAT_BITS_MIN
312	default 7 if ARM64_64K_PAGES
313	default 9 if ARM64_16K_PAGES
314	default 11
315
316config ARCH_MMAP_RND_COMPAT_BITS_MAX
317	default 16
318
319config NO_IOPORT_MAP
320	def_bool y if !PCI
321
322config STACKTRACE_SUPPORT
323	def_bool y
324
325config ILLEGAL_POINTER_VALUE
326	hex
327	default 0xdead000000000000
328
329config LOCKDEP_SUPPORT
330	def_bool y
331
332config GENERIC_BUG
333	def_bool y
334	depends on BUG
335
336config GENERIC_BUG_RELATIVE_POINTERS
337	def_bool y
338	depends on GENERIC_BUG
339
340config GENERIC_HWEIGHT
341	def_bool y
342
343config GENERIC_CSUM
344	def_bool y
345
346config GENERIC_CALIBRATE_DELAY
347	def_bool y
348
349config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
350	def_bool y
351
352config SMP
353	def_bool y
354
355config KERNEL_MODE_NEON
356	def_bool y
357
358config FIX_EARLYCON_MEM
359	def_bool y
360
361config PGTABLE_LEVELS
362	int
363	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
364	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
365	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
366	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
367	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
368	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
369
370config ARCH_SUPPORTS_UPROBES
371	def_bool y
372
373config ARCH_PROC_KCORE_TEXT
374	def_bool y
375
376config BROKEN_GAS_INST
377	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
378
379config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
380	bool
381	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
382	# https://reviews.llvm.org/D75044
383	default y if CC_IS_CLANG && (CLANG_VERSION >= 120000)
384	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
385	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
386	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
387	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
388	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
389	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
390	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
391	default n
392
393config KASAN_SHADOW_OFFSET
394	hex
395	depends on KASAN_GENERIC || KASAN_SW_TAGS
396	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
397	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
398	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
399	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
400	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
401	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
402	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
403	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
404	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
405	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
406	default 0xffffffffffffffff
407
408config UNWIND_TABLES
409	bool
410
411source "arch/arm64/Kconfig.platforms"
412
413menu "Kernel Features"
414
415menu "ARM errata workarounds via the alternatives framework"
416
417config ARM64_WORKAROUND_CLEAN_CACHE
418	bool
419
420config ARM64_ERRATUM_826319
421	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
422	default y
423	select ARM64_WORKAROUND_CLEAN_CACHE
424	help
425	  This option adds an alternative code sequence to work around ARM
426	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
427	  AXI master interface and an L2 cache.
428
429	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
430	  and is unable to accept a certain write via this interface, it will
431	  not progress on read data presented on the read data channel and the
432	  system can deadlock.
433
434	  The workaround promotes data cache clean instructions to
435	  data cache clean-and-invalidate.
436	  Please note that this does not necessarily enable the workaround,
437	  as it depends on the alternative framework, which will only patch
438	  the kernel if an affected CPU is detected.
439
440	  If unsure, say Y.
441
442config ARM64_ERRATUM_827319
443	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
444	default y
445	select ARM64_WORKAROUND_CLEAN_CACHE
446	help
447	  This option adds an alternative code sequence to work around ARM
448	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
449	  master interface and an L2 cache.
450
451	  Under certain conditions this erratum can cause a clean line eviction
452	  to occur at the same time as another transaction to the same address
453	  on the AMBA 5 CHI interface, which can cause data corruption if the
454	  interconnect reorders the two transactions.
455
456	  The workaround promotes data cache clean instructions to
457	  data cache clean-and-invalidate.
458	  Please note that this does not necessarily enable the workaround,
459	  as it depends on the alternative framework, which will only patch
460	  the kernel if an affected CPU is detected.
461
462	  If unsure, say Y.
463
464config ARM64_ERRATUM_824069
465	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
466	default y
467	select ARM64_WORKAROUND_CLEAN_CACHE
468	help
469	  This option adds an alternative code sequence to work around ARM
470	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
471	  to a coherent interconnect.
472
473	  If a Cortex-A53 processor is executing a store or prefetch for
474	  write instruction at the same time as a processor in another
475	  cluster is executing a cache maintenance operation to the same
476	  address, then this erratum might cause a clean cache line to be
477	  incorrectly marked as dirty.
478
479	  The workaround promotes data cache clean instructions to
480	  data cache clean-and-invalidate.
481	  Please note that this option does not necessarily enable the
482	  workaround, as it depends on the alternative framework, which will
483	  only patch the kernel if an affected CPU is detected.
484
485	  If unsure, say Y.
486
487config ARM64_ERRATUM_819472
488	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
489	default y
490	select ARM64_WORKAROUND_CLEAN_CACHE
491	help
492	  This option adds an alternative code sequence to work around ARM
493	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
494	  present when it is connected to a coherent interconnect.
495
496	  If the processor is executing a load and store exclusive sequence at
497	  the same time as a processor in another cluster is executing a cache
498	  maintenance operation to the same address, then this erratum might
499	  cause data corruption.
500
501	  The workaround promotes data cache clean instructions to
502	  data cache clean-and-invalidate.
503	  Please note that this does not necessarily enable the workaround,
504	  as it depends on the alternative framework, which will only patch
505	  the kernel if an affected CPU is detected.
506
507	  If unsure, say Y.
508
509config ARM64_ERRATUM_832075
510	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
511	default y
512	help
513	  This option adds an alternative code sequence to work around ARM
514	  erratum 832075 on Cortex-A57 parts up to r1p2.
515
516	  Affected Cortex-A57 parts might deadlock when exclusive load/store
517	  instructions to Write-Back memory are mixed with Device loads.
518
519	  The workaround is to promote device loads to use Load-Acquire
520	  semantics.
521	  Please note that this does not necessarily enable the workaround,
522	  as it depends on the alternative framework, which will only patch
523	  the kernel if an affected CPU is detected.
524
525	  If unsure, say Y.
526
527config ARM64_ERRATUM_834220
528	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
529	depends on KVM
530	default y
531	help
532	  This option adds an alternative code sequence to work around ARM
533	  erratum 834220 on Cortex-A57 parts up to r1p2.
534
535	  Affected Cortex-A57 parts might report a Stage 2 translation
536	  fault as the result of a Stage 1 fault for load crossing a
537	  page boundary when there is a permission or device memory
538	  alignment fault at Stage 1 and a translation fault at Stage 2.
539
540	  The workaround is to verify that the Stage 1 translation
541	  doesn't generate a fault before handling the Stage 2 fault.
542	  Please note that this does not necessarily enable the workaround,
543	  as it depends on the alternative framework, which will only patch
544	  the kernel if an affected CPU is detected.
545
546	  If unsure, say Y.
547
548config ARM64_ERRATUM_1742098
549	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
550	depends on COMPAT
551	default y
552	help
553	  This option removes the AES hwcap for aarch32 user-space to
554	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
555
556	  Affected parts may corrupt the AES state if an interrupt is
557	  taken between a pair of AES instructions. These instructions
558	  are only present if the cryptography extensions are present.
559	  All software should have a fallback implementation for CPUs
560	  that don't implement the cryptography extensions.
561
562	  If unsure, say Y.
563
564config ARM64_ERRATUM_845719
565	bool "Cortex-A53: 845719: a load might read incorrect data"
566	depends on COMPAT
567	default y
568	help
569	  This option adds an alternative code sequence to work around ARM
570	  erratum 845719 on Cortex-A53 parts up to r0p4.
571
572	  When running a compat (AArch32) userspace on an affected Cortex-A53
573	  part, a load at EL0 from a virtual address that matches the bottom 32
574	  bits of the virtual address used by a recent load at (AArch64) EL1
575	  might return incorrect data.
576
577	  The workaround is to write the contextidr_el1 register on exception
578	  return to a 32-bit task.
579	  Please note that this does not necessarily enable the workaround,
580	  as it depends on the alternative framework, which will only patch
581	  the kernel if an affected CPU is detected.
582
583	  If unsure, say Y.
584
585config ARM64_ERRATUM_843419
586	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
587	default y
588	help
589	  This option links the kernel with '--fix-cortex-a53-843419' and
590	  enables PLT support to replace certain ADRP instructions, which can
591	  cause subsequent memory accesses to use an incorrect address on
592	  Cortex-A53 parts up to r0p4.
593
594	  If unsure, say Y.
595
596config ARM64_LD_HAS_FIX_ERRATUM_843419
597	def_bool $(ld-option,--fix-cortex-a53-843419)
598
599config ARM64_ERRATUM_1024718
600	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
601	default y
602	help
603	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
604
605	  Affected Cortex-A55 cores (all revisions) could cause incorrect
606	  update of the hardware dirty bit when the DBM/AP bits are updated
607	  without a break-before-make. The workaround is to disable the usage
608	  of hardware DBM locally on the affected cores. CPUs not affected by
609	  this erratum will continue to use the feature.
610
611	  If unsure, say Y.
612
613config ARM64_ERRATUM_1418040
614	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
615	default y
616	depends on COMPAT
617	help
618	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
619	  errata 1188873 and 1418040.
620
621	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
622	  cause register corruption when accessing the timer registers
623	  from AArch32 userspace.
624
625	  If unsure, say Y.
626
627config ARM64_WORKAROUND_SPECULATIVE_AT
628	bool
629
630config ARM64_ERRATUM_1165522
631	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
632	default y
633	select ARM64_WORKAROUND_SPECULATIVE_AT
634	help
635	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
636
637	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
638	  corrupted TLBs by speculating an AT instruction during a guest
639	  context switch.
640
641	  If unsure, say Y.
642
643config ARM64_ERRATUM_1319367
644	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
645	default y
646	select ARM64_WORKAROUND_SPECULATIVE_AT
647	help
648	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
649	  and A72 erratum 1319367
650
651	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
652	  speculating an AT instruction during a guest context switch.
653
654	  If unsure, say Y.
655
656config ARM64_ERRATUM_1530923
657	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
658	default y
659	select ARM64_WORKAROUND_SPECULATIVE_AT
660	help
661	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
662
663	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
664	  corrupted TLBs by speculating an AT instruction during a guest
665	  context switch.
666
667	  If unsure, say Y.
668
669config ARM64_WORKAROUND_REPEAT_TLBI
670	bool
671
672config ARM64_ERRATUM_2441007
673	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
674	default y
675	select ARM64_WORKAROUND_REPEAT_TLBI
676	help
677	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
678
679	  Under very rare circumstances, affected Cortex-A55 CPUs
680	  may not handle a race between a break-before-make sequence on one
681	  CPU, and another CPU accessing the same page. This could allow a
682	  store to a page that has been unmapped.
683
684	  Work around this by adding the affected CPUs to the list that needs
685	  TLB sequences to be done twice.
686
687	  If unsure, say Y.
688
689config ARM64_ERRATUM_1286807
690	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
691	default y
692	select ARM64_WORKAROUND_REPEAT_TLBI
693	help
694	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
695
696	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
697	  address for a cacheable mapping of a location is being
698	  accessed by a core while another core is remapping the virtual
699	  address to a new physical page using the recommended
700	  break-before-make sequence, then under very rare circumstances
701	  TLBI+DSB completes before a read using the translation being
702	  invalidated has been observed by other observers. The
703	  workaround repeats the TLBI+DSB operation.
704
705config ARM64_ERRATUM_1463225
706	bool "Cortex-A76: Software Step might prevent interrupt recognition"
707	default y
708	help
709	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
710
711	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
712	  of a system call instruction (SVC) can prevent recognition of
713	  subsequent interrupts when software stepping is disabled in the
714	  exception handler of the system call and either kernel debugging
715	  is enabled or VHE is in use.
716
717	  Work around the erratum by triggering a dummy step exception
718	  when handling a system call from a task that is being stepped
719	  in a VHE configuration of the kernel.
720
721	  If unsure, say Y.
722
723config ARM64_ERRATUM_1542419
724	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
725	default y
726	help
727	  This option adds a workaround for ARM Neoverse-N1 erratum
728	  1542419.
729
730	  Affected Neoverse-N1 cores could execute a stale instruction when
731	  modified by another CPU. The workaround depends on a firmware
732	  counterpart.
733
734	  Workaround the issue by hiding the DIC feature from EL0. This
735	  forces user-space to perform cache maintenance.
736
737	  If unsure, say Y.
738
739config ARM64_ERRATUM_1508412
740	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
741	default y
742	help
743	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
744
745	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
746	  of a store-exclusive or read of PAR_EL1 and a load with device or
747	  non-cacheable memory attributes. The workaround depends on a firmware
748	  counterpart.
749
750	  KVM guests must also have the workaround implemented or they can
751	  deadlock the system.
752
753	  Work around the issue by inserting DMB SY barriers around PAR_EL1
754	  register reads and warning KVM users. The DMB barrier is sufficient
755	  to prevent a speculative PAR_EL1 read.
756
757	  If unsure, say Y.
758
759config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
760	bool
761
762config ARM64_ERRATUM_2051678
763	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
764	default y
765	help
766	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
767	  Affected Cortex-A510 might not respect the ordering rules for
768	  hardware update of the page table's dirty bit. The workaround
769	  is to not enable the feature on affected CPUs.
770
771	  If unsure, say Y.
772
773config ARM64_ERRATUM_2077057
774	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
775	default y
776	help
777	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
778	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
779	  expected, but a Pointer Authentication trap is taken instead. The
780	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
781	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
782
783	  This can only happen when EL2 is stepping EL1.
784
785	  When these conditions occur, the SPSR_EL2 value is unchanged from the
786	  previous guest entry, and can be restored from the in-memory copy.
787
788	  If unsure, say Y.
789
790config ARM64_ERRATUM_2658417
791	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
792	default y
793	help
794	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
795	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
796	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
797	  A510 CPUs are using shared neon hardware. As the sharing is not
798	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
799	  user-space should not be using these instructions.
800
801	  If unsure, say Y.
802
803config ARM64_ERRATUM_2119858
804	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
805	default y
806	depends on CORESIGHT_TRBE
807	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
808	help
809	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
810
811	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
812	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
813	  the event of a WRAP event.
814
815	  Work around the issue by always making sure we move the TRBPTR_EL1 by
816	  256 bytes before enabling the buffer and filling the first 256 bytes of
817	  the buffer with ETM ignore packets upon disabling.
818
819	  If unsure, say Y.
820
821config ARM64_ERRATUM_2139208
822	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
823	default y
824	depends on CORESIGHT_TRBE
825	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
826	help
827	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
828
829	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
830	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
831	  the event of a WRAP event.
832
833	  Work around the issue by always making sure we move the TRBPTR_EL1 by
834	  256 bytes before enabling the buffer and filling the first 256 bytes of
835	  the buffer with ETM ignore packets upon disabling.
836
837	  If unsure, say Y.
838
839config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
840	bool
841
842config ARM64_ERRATUM_2054223
843	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
844	default y
845	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
846	help
847	  Enable workaround for ARM Cortex-A710 erratum 2054223
848
849	  Affected cores may fail to flush the trace data on a TSB instruction, when
850	  the PE is in trace prohibited state. This will cause losing a few bytes
851	  of the trace cached.
852
853	  Workaround is to issue two TSB consecutively on affected cores.
854
855	  If unsure, say Y.
856
857config ARM64_ERRATUM_2067961
858	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
859	default y
860	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
861	help
862	  Enable workaround for ARM Neoverse-N2 erratum 2067961
863
864	  Affected cores may fail to flush the trace data on a TSB instruction, when
865	  the PE is in trace prohibited state. This will cause losing a few bytes
866	  of the trace cached.
867
868	  Workaround is to issue two TSB consecutively on affected cores.
869
870	  If unsure, say Y.
871
872config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
873	bool
874
875config ARM64_ERRATUM_2253138
876	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
877	depends on CORESIGHT_TRBE
878	default y
879	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
880	help
881	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
882
883	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
884	  for TRBE. Under some conditions, the TRBE might generate a write to the next
885	  virtually addressed page following the last page of the TRBE address space
886	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
887
888	  Work around this in the driver by always making sure that there is a
889	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
890
891	  If unsure, say Y.
892
893config ARM64_ERRATUM_2224489
894	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
895	depends on CORESIGHT_TRBE
896	default y
897	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
898	help
899	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
900
901	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
902	  for TRBE. Under some conditions, the TRBE might generate a write to the next
903	  virtually addressed page following the last page of the TRBE address space
904	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
905
906	  Work around this in the driver by always making sure that there is a
907	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
908
909	  If unsure, say Y.
910
911config ARM64_ERRATUM_2441009
912	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
913	default y
914	select ARM64_WORKAROUND_REPEAT_TLBI
915	help
916	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
917
918	  Under very rare circumstances, affected Cortex-A510 CPUs
919	  may not handle a race between a break-before-make sequence on one
920	  CPU, and another CPU accessing the same page. This could allow a
921	  store to a page that has been unmapped.
922
923	  Work around this by adding the affected CPUs to the list that needs
924	  TLB sequences to be done twice.
925
926	  If unsure, say Y.
927
928config ARM64_ERRATUM_2064142
929	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
930	depends on CORESIGHT_TRBE
931	default y
932	help
933	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
934
935	  Affected Cortex-A510 core might fail to write into system registers after the
936	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
937	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
938	  and TRBTRG_EL1 will be ignored and will not be effected.
939
940	  Work around this in the driver by executing TSB CSYNC and DSB after collection
941	  is stopped and before performing a system register write to one of the affected
942	  registers.
943
944	  If unsure, say Y.
945
946config ARM64_ERRATUM_2038923
947	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
948	depends on CORESIGHT_TRBE
949	default y
950	help
951	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
952
953	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
954	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
955	  might be corrupted. This happens after TRBE buffer has been enabled by setting
956	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
957	  execution changes from a context, in which trace is prohibited to one where it
958	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
959	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
960	  the trace buffer state might be corrupted.
961
962	  Work around this in the driver by preventing an inconsistent view of whether the
963	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
964	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
965	  two ISB instructions if no ERET is to take place.
966
967	  If unsure, say Y.
968
969config ARM64_ERRATUM_1902691
970	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
971	depends on CORESIGHT_TRBE
972	default y
973	help
974	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
975
976	  Affected Cortex-A510 core might cause trace data corruption, when being written
977	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
978	  trace data.
979
980	  Work around this problem in the driver by just preventing TRBE initialization on
981	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
982	  on such implementations. This will cover the kernel for any firmware that doesn't
983	  do this already.
984
985	  If unsure, say Y.
986
987config ARM64_ERRATUM_2457168
988	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
989	depends on ARM64_AMU_EXTN
990	default y
991	help
992	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
993
994	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
995	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
996	  incorrectly giving a significantly higher output value.
997
998	  Work around this problem by returning 0 when reading the affected counter in
999	  key locations that results in disabling all users of this counter. This effect
1000	  is the same to firmware disabling affected counters.
1001
1002	  If unsure, say Y.
1003
1004config ARM64_ERRATUM_2645198
1005	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1006	default y
1007	help
1008	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1009
1010	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1011	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1012	  next instruction abort caused by permission fault.
1013
1014	  Only user-space does executable to non-executable permission transition via
1015	  mprotect() system call. Workaround the problem by doing a break-before-make
1016	  TLB invalidation, for all changes to executable user space mappings.
1017
1018	  If unsure, say Y.
1019
1020config CAVIUM_ERRATUM_22375
1021	bool "Cavium erratum 22375, 24313"
1022	default y
1023	help
1024	  Enable workaround for errata 22375 and 24313.
1025
1026	  This implements two gicv3-its errata workarounds for ThunderX. Both
1027	  with a small impact affecting only ITS table allocation.
1028
1029	    erratum 22375: only alloc 8MB table size
1030	    erratum 24313: ignore memory access type
1031
1032	  The fixes are in ITS initialization and basically ignore memory access
1033	  type and table size provided by the TYPER and BASER registers.
1034
1035	  If unsure, say Y.
1036
1037config CAVIUM_ERRATUM_23144
1038	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1039	depends on NUMA
1040	default y
1041	help
1042	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1043
1044	  If unsure, say Y.
1045
1046config CAVIUM_ERRATUM_23154
1047	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1048	default y
1049	help
1050	  The ThunderX GICv3 implementation requires a modified version for
1051	  reading the IAR status to ensure data synchronization
1052	  (access to icc_iar1_el1 is not sync'ed before and after).
1053
1054	  It also suffers from erratum 38545 (also present on Marvell's
1055	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1056	  spuriously presented to the CPU interface.
1057
1058	  If unsure, say Y.
1059
1060config CAVIUM_ERRATUM_27456
1061	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1062	default y
1063	help
1064	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1065	  instructions may cause the icache to become corrupted if it
1066	  contains data for a non-current ASID.  The fix is to
1067	  invalidate the icache when changing the mm context.
1068
1069	  If unsure, say Y.
1070
1071config CAVIUM_ERRATUM_30115
1072	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1073	default y
1074	help
1075	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1076	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1077	  interrupts in host. Trapping both GICv3 group-0 and group-1
1078	  accesses sidesteps the issue.
1079
1080	  If unsure, say Y.
1081
1082config CAVIUM_TX2_ERRATUM_219
1083	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1084	default y
1085	help
1086	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1087	  TTBR update and the corresponding context synchronizing operation can
1088	  cause a spurious Data Abort to be delivered to any hardware thread in
1089	  the CPU core.
1090
1091	  Work around the issue by avoiding the problematic code sequence and
1092	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1093	  trap handler performs the corresponding register access, skips the
1094	  instruction and ensures context synchronization by virtue of the
1095	  exception return.
1096
1097	  If unsure, say Y.
1098
1099config FUJITSU_ERRATUM_010001
1100	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1101	default y
1102	help
1103	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1104	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1105	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1106	  This fault occurs under a specific hardware condition when a
1107	  load/store instruction performs an address translation using:
1108	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1109	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1110	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1111	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1112
1113	  The workaround is to ensure these bits are clear in TCR_ELx.
1114	  The workaround only affects the Fujitsu-A64FX.
1115
1116	  If unsure, say Y.
1117
1118config HISILICON_ERRATUM_161600802
1119	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1120	default y
1121	help
1122	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1123	  when issued ITS commands such as VMOVP and VMAPP, and requires
1124	  a 128kB offset to be applied to the target address in this commands.
1125
1126	  If unsure, say Y.
1127
1128config QCOM_FALKOR_ERRATUM_1003
1129	bool "Falkor E1003: Incorrect translation due to ASID change"
1130	default y
1131	help
1132	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1133	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1134	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1135	  then only for entries in the walk cache, since the leaf translation
1136	  is unchanged. Work around the erratum by invalidating the walk cache
1137	  entries for the trampoline before entering the kernel proper.
1138
1139config QCOM_FALKOR_ERRATUM_1009
1140	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1141	default y
1142	select ARM64_WORKAROUND_REPEAT_TLBI
1143	help
1144	  On Falkor v1, the CPU may prematurely complete a DSB following a
1145	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1146	  one more time to fix the issue.
1147
1148	  If unsure, say Y.
1149
1150config QCOM_QDF2400_ERRATUM_0065
1151	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1152	default y
1153	help
1154	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1155	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1156	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1157
1158	  If unsure, say Y.
1159
1160config QCOM_FALKOR_ERRATUM_E1041
1161	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1162	default y
1163	help
1164	  Falkor CPU may speculatively fetch instructions from an improper
1165	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1166	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1167
1168	  If unsure, say Y.
1169
1170config NVIDIA_CARMEL_CNP_ERRATUM
1171	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1172	default y
1173	help
1174	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1175	  invalidate shared TLB entries installed by a different core, as it would
1176	  on standard ARM cores.
1177
1178	  If unsure, say Y.
1179
1180config ROCKCHIP_ERRATUM_3588001
1181	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1182	default y
1183	help
1184	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1185	  This means, that its sharability feature may not be used, even though it
1186	  is supported by the IP itself.
1187
1188	  If unsure, say Y.
1189
1190config SOCIONEXT_SYNQUACER_PREITS
1191	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1192	default y
1193	help
1194	  Socionext Synquacer SoCs implement a separate h/w block to generate
1195	  MSI doorbell writes with non-zero values for the device ID.
1196
1197	  If unsure, say Y.
1198
1199endmenu # "ARM errata workarounds via the alternatives framework"
1200
1201choice
1202	prompt "Page size"
1203	default ARM64_4K_PAGES
1204	help
1205	  Page size (translation granule) configuration.
1206
1207config ARM64_4K_PAGES
1208	bool "4KB"
1209	help
1210	  This feature enables 4KB pages support.
1211
1212config ARM64_16K_PAGES
1213	bool "16KB"
1214	help
1215	  The system will use 16KB pages support. AArch32 emulation
1216	  requires applications compiled with 16K (or a multiple of 16K)
1217	  aligned segments.
1218
1219config ARM64_64K_PAGES
1220	bool "64KB"
1221	help
1222	  This feature enables 64KB pages support (4KB by default)
1223	  allowing only two levels of page tables and faster TLB
1224	  look-up. AArch32 emulation requires applications compiled
1225	  with 64K aligned segments.
1226
1227endchoice
1228
1229choice
1230	prompt "Virtual address space size"
1231	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1232	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1233	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1234	help
1235	  Allows choosing one of multiple possible virtual address
1236	  space sizes. The level of translation table is determined by
1237	  a combination of page size and virtual address space size.
1238
1239config ARM64_VA_BITS_36
1240	bool "36-bit" if EXPERT
1241	depends on ARM64_16K_PAGES
1242
1243config ARM64_VA_BITS_39
1244	bool "39-bit"
1245	depends on ARM64_4K_PAGES
1246
1247config ARM64_VA_BITS_42
1248	bool "42-bit"
1249	depends on ARM64_64K_PAGES
1250
1251config ARM64_VA_BITS_47
1252	bool "47-bit"
1253	depends on ARM64_16K_PAGES
1254
1255config ARM64_VA_BITS_48
1256	bool "48-bit"
1257
1258config ARM64_VA_BITS_52
1259	bool "52-bit"
1260	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1261	help
1262	  Enable 52-bit virtual addressing for userspace when explicitly
1263	  requested via a hint to mmap(). The kernel will also use 52-bit
1264	  virtual addresses for its own mappings (provided HW support for
1265	  this feature is available, otherwise it reverts to 48-bit).
1266
1267	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1268	  ARMv8.3 Pointer Authentication will result in the PAC being
1269	  reduced from 7 bits to 3 bits, which may have a significant
1270	  impact on its susceptibility to brute-force attacks.
1271
1272	  If unsure, select 48-bit virtual addressing instead.
1273
1274endchoice
1275
1276config ARM64_FORCE_52BIT
1277	bool "Force 52-bit virtual addresses for userspace"
1278	depends on ARM64_VA_BITS_52 && EXPERT
1279	help
1280	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1281	  to maintain compatibility with older software by providing 48-bit VAs
1282	  unless a hint is supplied to mmap.
1283
1284	  This configuration option disables the 48-bit compatibility logic, and
1285	  forces all userspace addresses to be 52-bit on HW that supports it. One
1286	  should only enable this configuration option for stress testing userspace
1287	  memory management code. If unsure say N here.
1288
1289config ARM64_VA_BITS
1290	int
1291	default 36 if ARM64_VA_BITS_36
1292	default 39 if ARM64_VA_BITS_39
1293	default 42 if ARM64_VA_BITS_42
1294	default 47 if ARM64_VA_BITS_47
1295	default 48 if ARM64_VA_BITS_48
1296	default 52 if ARM64_VA_BITS_52
1297
1298choice
1299	prompt "Physical address space size"
1300	default ARM64_PA_BITS_48
1301	help
1302	  Choose the maximum physical address range that the kernel will
1303	  support.
1304
1305config ARM64_PA_BITS_48
1306	bool "48-bit"
1307
1308config ARM64_PA_BITS_52
1309	bool "52-bit (ARMv8.2)"
1310	depends on ARM64_64K_PAGES
1311	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1312	help
1313	  Enable support for a 52-bit physical address space, introduced as
1314	  part of the ARMv8.2-LPA extension.
1315
1316	  With this enabled, the kernel will also continue to work on CPUs that
1317	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1318	  minor performance overhead).
1319
1320endchoice
1321
1322config ARM64_PA_BITS
1323	int
1324	default 48 if ARM64_PA_BITS_48
1325	default 52 if ARM64_PA_BITS_52
1326
1327choice
1328	prompt "Endianness"
1329	default CPU_LITTLE_ENDIAN
1330	help
1331	  Select the endianness of data accesses performed by the CPU. Userspace
1332	  applications will need to be compiled and linked for the endianness
1333	  that is selected here.
1334
1335config CPU_BIG_ENDIAN
1336	bool "Build big-endian kernel"
1337	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1338	help
1339	  Say Y if you plan on running a kernel with a big-endian userspace.
1340
1341config CPU_LITTLE_ENDIAN
1342	bool "Build little-endian kernel"
1343	help
1344	  Say Y if you plan on running a kernel with a little-endian userspace.
1345	  This is usually the case for distributions targeting arm64.
1346
1347endchoice
1348
1349config SCHED_MC
1350	bool "Multi-core scheduler support"
1351	help
1352	  Multi-core scheduler support improves the CPU scheduler's decision
1353	  making when dealing with multi-core CPU chips at a cost of slightly
1354	  increased overhead in some places. If unsure say N here.
1355
1356config SCHED_CLUSTER
1357	bool "Cluster scheduler support"
1358	help
1359	  Cluster scheduler support improves the CPU scheduler's decision
1360	  making when dealing with machines that have clusters of CPUs.
1361	  Cluster usually means a couple of CPUs which are placed closely
1362	  by sharing mid-level caches, last-level cache tags or internal
1363	  busses.
1364
1365config SCHED_SMT
1366	bool "SMT scheduler support"
1367	help
1368	  Improves the CPU scheduler's decision making when dealing with
1369	  MultiThreading at a cost of slightly increased overhead in some
1370	  places. If unsure say N here.
1371
1372config NR_CPUS
1373	int "Maximum number of CPUs (2-4096)"
1374	range 2 4096
1375	default "256"
1376
1377config HOTPLUG_CPU
1378	bool "Support for hot-pluggable CPUs"
1379	select GENERIC_IRQ_MIGRATION
1380	help
1381	  Say Y here to experiment with turning CPUs off and on.  CPUs
1382	  can be controlled through /sys/devices/system/cpu.
1383
1384# Common NUMA Features
1385config NUMA
1386	bool "NUMA Memory Allocation and Scheduler Support"
1387	select GENERIC_ARCH_NUMA
1388	select ACPI_NUMA if ACPI
1389	select OF_NUMA
1390	select HAVE_SETUP_PER_CPU_AREA
1391	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1392	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1393	select USE_PERCPU_NUMA_NODE_ID
1394	help
1395	  Enable NUMA (Non-Uniform Memory Access) support.
1396
1397	  The kernel will try to allocate memory used by a CPU on the
1398	  local memory of the CPU and add some more
1399	  NUMA awareness to the kernel.
1400
1401config NODES_SHIFT
1402	int "Maximum NUMA Nodes (as a power of 2)"
1403	range 1 10
1404	default "4"
1405	depends on NUMA
1406	help
1407	  Specify the maximum number of NUMA Nodes available on the target
1408	  system.  Increases memory reserved to accommodate various tables.
1409
1410source "kernel/Kconfig.hz"
1411
1412config ARCH_SPARSEMEM_ENABLE
1413	def_bool y
1414	select SPARSEMEM_VMEMMAP_ENABLE
1415	select SPARSEMEM_VMEMMAP
1416
1417config HW_PERF_EVENTS
1418	def_bool y
1419	depends on ARM_PMU
1420
1421# Supported by clang >= 7.0 or GCC >= 12.0.0
1422config CC_HAVE_SHADOW_CALL_STACK
1423	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1424
1425config PARAVIRT
1426	bool "Enable paravirtualization code"
1427	help
1428	  This changes the kernel so it can modify itself when it is run
1429	  under a hypervisor, potentially improving performance significantly
1430	  over full virtualization.
1431
1432config PARAVIRT_TIME_ACCOUNTING
1433	bool "Paravirtual steal time accounting"
1434	select PARAVIRT
1435	help
1436	  Select this option to enable fine granularity task steal time
1437	  accounting. Time spent executing other tasks in parallel with
1438	  the current vCPU is discounted from the vCPU power. To account for
1439	  that, there can be a small performance impact.
1440
1441	  If in doubt, say N here.
1442
1443config KEXEC
1444	depends on PM_SLEEP_SMP
1445	select KEXEC_CORE
1446	bool "kexec system call"
1447	help
1448	  kexec is a system call that implements the ability to shutdown your
1449	  current kernel, and to start another kernel.  It is like a reboot
1450	  but it is independent of the system firmware.   And like a reboot
1451	  you can start any kernel with it, not just Linux.
1452
1453config KEXEC_FILE
1454	bool "kexec file based system call"
1455	select KEXEC_CORE
1456	select HAVE_IMA_KEXEC if IMA
1457	help
1458	  This is new version of kexec system call. This system call is
1459	  file based and takes file descriptors as system call argument
1460	  for kernel and initramfs as opposed to list of segments as
1461	  accepted by previous system call.
1462
1463config KEXEC_SIG
1464	bool "Verify kernel signature during kexec_file_load() syscall"
1465	depends on KEXEC_FILE
1466	help
1467	  Select this option to verify a signature with loaded kernel
1468	  image. If configured, any attempt of loading a image without
1469	  valid signature will fail.
1470
1471	  In addition to that option, you need to enable signature
1472	  verification for the corresponding kernel image type being
1473	  loaded in order for this to work.
1474
1475config KEXEC_IMAGE_VERIFY_SIG
1476	bool "Enable Image signature verification support"
1477	default y
1478	depends on KEXEC_SIG
1479	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1480	help
1481	  Enable Image signature verification support.
1482
1483comment "Support for PE file signature verification disabled"
1484	depends on KEXEC_SIG
1485	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1486
1487config CRASH_DUMP
1488	bool "Build kdump crash kernel"
1489	help
1490	  Generate crash dump after being started by kexec. This should
1491	  be normally only set in special crash dump kernels which are
1492	  loaded in the main kernel with kexec-tools into a specially
1493	  reserved region and then later executed after a crash by
1494	  kdump/kexec.
1495
1496	  For more details see Documentation/admin-guide/kdump/kdump.rst
1497
1498config TRANS_TABLE
1499	def_bool y
1500	depends on HIBERNATION || KEXEC_CORE
1501
1502config XEN_DOM0
1503	def_bool y
1504	depends on XEN
1505
1506config XEN
1507	bool "Xen guest support on ARM64"
1508	depends on ARM64 && OF
1509	select SWIOTLB_XEN
1510	select PARAVIRT
1511	help
1512	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1513
1514# include/linux/mmzone.h requires the following to be true:
1515#
1516#   MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1517#
1518# so the maximum value of MAX_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1519#
1520#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_ORDER  |  default MAX_ORDER |
1521# ----+-------------------+--------------+-----------------+--------------------+
1522# 4K  |       27          |      12      |       15        |         10         |
1523# 16K |       27          |      14      |       13        |         11         |
1524# 64K |       29          |      16      |       13        |         13         |
1525config ARCH_FORCE_MAX_ORDER
1526	int
1527	default "13" if ARM64_64K_PAGES
1528	default "11" if ARM64_16K_PAGES
1529	default "10"
1530	help
1531	  The kernel page allocator limits the size of maximal physically
1532	  contiguous allocations. The limit is called MAX_ORDER and it
1533	  defines the maximal power of two of number of pages that can be
1534	  allocated as a single contiguous block. This option allows
1535	  overriding the default setting when ability to allocate very
1536	  large blocks of physically contiguous memory is required.
1537
1538	  The maximal size of allocation cannot exceed the size of the
1539	  section, so the value of MAX_ORDER should satisfy
1540
1541	    MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1542
1543	  Don't change if unsure.
1544
1545config UNMAP_KERNEL_AT_EL0
1546	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1547	default y
1548	help
1549	  Speculation attacks against some high-performance processors can
1550	  be used to bypass MMU permission checks and leak kernel data to
1551	  userspace. This can be defended against by unmapping the kernel
1552	  when running in userspace, mapping it back in on exception entry
1553	  via a trampoline page in the vector table.
1554
1555	  If unsure, say Y.
1556
1557config MITIGATE_SPECTRE_BRANCH_HISTORY
1558	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1559	default y
1560	help
1561	  Speculation attacks against some high-performance processors can
1562	  make use of branch history to influence future speculation.
1563	  When taking an exception from user-space, a sequence of branches
1564	  or a firmware call overwrites the branch history.
1565
1566config RODATA_FULL_DEFAULT_ENABLED
1567	bool "Apply r/o permissions of VM areas also to their linear aliases"
1568	default y
1569	help
1570	  Apply read-only attributes of VM areas to the linear alias of
1571	  the backing pages as well. This prevents code or read-only data
1572	  from being modified (inadvertently or intentionally) via another
1573	  mapping of the same memory page. This additional enhancement can
1574	  be turned off at runtime by passing rodata=[off|on] (and turned on
1575	  with rodata=full if this option is set to 'n')
1576
1577	  This requires the linear region to be mapped down to pages,
1578	  which may adversely affect performance in some cases.
1579
1580config ARM64_SW_TTBR0_PAN
1581	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1582	help
1583	  Enabling this option prevents the kernel from accessing
1584	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1585	  zeroed area and reserved ASID. The user access routines
1586	  restore the valid TTBR0_EL1 temporarily.
1587
1588config ARM64_TAGGED_ADDR_ABI
1589	bool "Enable the tagged user addresses syscall ABI"
1590	default y
1591	help
1592	  When this option is enabled, user applications can opt in to a
1593	  relaxed ABI via prctl() allowing tagged addresses to be passed
1594	  to system calls as pointer arguments. For details, see
1595	  Documentation/arch/arm64/tagged-address-abi.rst.
1596
1597menuconfig COMPAT
1598	bool "Kernel support for 32-bit EL0"
1599	depends on ARM64_4K_PAGES || EXPERT
1600	select HAVE_UID16
1601	select OLD_SIGSUSPEND3
1602	select COMPAT_OLD_SIGACTION
1603	help
1604	  This option enables support for a 32-bit EL0 running under a 64-bit
1605	  kernel at EL1. AArch32-specific components such as system calls,
1606	  the user helper functions, VFP support and the ptrace interface are
1607	  handled appropriately by the kernel.
1608
1609	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1610	  that you will only be able to execute AArch32 binaries that were compiled
1611	  with page size aligned segments.
1612
1613	  If you want to execute 32-bit userspace applications, say Y.
1614
1615if COMPAT
1616
1617config KUSER_HELPERS
1618	bool "Enable kuser helpers page for 32-bit applications"
1619	default y
1620	help
1621	  Warning: disabling this option may break 32-bit user programs.
1622
1623	  Provide kuser helpers to compat tasks. The kernel provides
1624	  helper code to userspace in read only form at a fixed location
1625	  to allow userspace to be independent of the CPU type fitted to
1626	  the system. This permits binaries to be run on ARMv4 through
1627	  to ARMv8 without modification.
1628
1629	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1630
1631	  However, the fixed address nature of these helpers can be used
1632	  by ROP (return orientated programming) authors when creating
1633	  exploits.
1634
1635	  If all of the binaries and libraries which run on your platform
1636	  are built specifically for your platform, and make no use of
1637	  these helpers, then you can turn this option off to hinder
1638	  such exploits. However, in that case, if a binary or library
1639	  relying on those helpers is run, it will not function correctly.
1640
1641	  Say N here only if you are absolutely certain that you do not
1642	  need these helpers; otherwise, the safe option is to say Y.
1643
1644config COMPAT_VDSO
1645	bool "Enable vDSO for 32-bit applications"
1646	depends on !CPU_BIG_ENDIAN
1647	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1648	select GENERIC_COMPAT_VDSO
1649	default y
1650	help
1651	  Place in the process address space of 32-bit applications an
1652	  ELF shared object providing fast implementations of gettimeofday
1653	  and clock_gettime.
1654
1655	  You must have a 32-bit build of glibc 2.22 or later for programs
1656	  to seamlessly take advantage of this.
1657
1658config THUMB2_COMPAT_VDSO
1659	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1660	depends on COMPAT_VDSO
1661	default y
1662	help
1663	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1664	  otherwise with '-marm'.
1665
1666config COMPAT_ALIGNMENT_FIXUPS
1667	bool "Fix up misaligned multi-word loads and stores in user space"
1668
1669menuconfig ARMV8_DEPRECATED
1670	bool "Emulate deprecated/obsolete ARMv8 instructions"
1671	depends on SYSCTL
1672	help
1673	  Legacy software support may require certain instructions
1674	  that have been deprecated or obsoleted in the architecture.
1675
1676	  Enable this config to enable selective emulation of these
1677	  features.
1678
1679	  If unsure, say Y
1680
1681if ARMV8_DEPRECATED
1682
1683config SWP_EMULATION
1684	bool "Emulate SWP/SWPB instructions"
1685	help
1686	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1687	  they are always undefined. Say Y here to enable software
1688	  emulation of these instructions for userspace using LDXR/STXR.
1689	  This feature can be controlled at runtime with the abi.swp
1690	  sysctl which is disabled by default.
1691
1692	  In some older versions of glibc [<=2.8] SWP is used during futex
1693	  trylock() operations with the assumption that the code will not
1694	  be preempted. This invalid assumption may be more likely to fail
1695	  with SWP emulation enabled, leading to deadlock of the user
1696	  application.
1697
1698	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1699	  on an external transaction monitoring block called a global
1700	  monitor to maintain update atomicity. If your system does not
1701	  implement a global monitor, this option can cause programs that
1702	  perform SWP operations to uncached memory to deadlock.
1703
1704	  If unsure, say Y
1705
1706config CP15_BARRIER_EMULATION
1707	bool "Emulate CP15 Barrier instructions"
1708	help
1709	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1710	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1711	  strongly recommended to use the ISB, DSB, and DMB
1712	  instructions instead.
1713
1714	  Say Y here to enable software emulation of these
1715	  instructions for AArch32 userspace code. When this option is
1716	  enabled, CP15 barrier usage is traced which can help
1717	  identify software that needs updating. This feature can be
1718	  controlled at runtime with the abi.cp15_barrier sysctl.
1719
1720	  If unsure, say Y
1721
1722config SETEND_EMULATION
1723	bool "Emulate SETEND instruction"
1724	help
1725	  The SETEND instruction alters the data-endianness of the
1726	  AArch32 EL0, and is deprecated in ARMv8.
1727
1728	  Say Y here to enable software emulation of the instruction
1729	  for AArch32 userspace code. This feature can be controlled
1730	  at runtime with the abi.setend sysctl.
1731
1732	  Note: All the cpus on the system must have mixed endian support at EL0
1733	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1734	  endian - is hotplugged in after this feature has been enabled, there could
1735	  be unexpected results in the applications.
1736
1737	  If unsure, say Y
1738endif # ARMV8_DEPRECATED
1739
1740endif # COMPAT
1741
1742menu "ARMv8.1 architectural features"
1743
1744config ARM64_HW_AFDBM
1745	bool "Support for hardware updates of the Access and Dirty page flags"
1746	default y
1747	help
1748	  The ARMv8.1 architecture extensions introduce support for
1749	  hardware updates of the access and dirty information in page
1750	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1751	  capable processors, accesses to pages with PTE_AF cleared will
1752	  set this bit instead of raising an access flag fault.
1753	  Similarly, writes to read-only pages with the DBM bit set will
1754	  clear the read-only bit (AP[2]) instead of raising a
1755	  permission fault.
1756
1757	  Kernels built with this configuration option enabled continue
1758	  to work on pre-ARMv8.1 hardware and the performance impact is
1759	  minimal. If unsure, say Y.
1760
1761config ARM64_PAN
1762	bool "Enable support for Privileged Access Never (PAN)"
1763	default y
1764	help
1765	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1766	  prevents the kernel or hypervisor from accessing user-space (EL0)
1767	  memory directly.
1768
1769	  Choosing this option will cause any unprotected (not using
1770	  copy_to_user et al) memory access to fail with a permission fault.
1771
1772	  The feature is detected at runtime, and will remain as a 'nop'
1773	  instruction if the cpu does not implement the feature.
1774
1775config AS_HAS_LDAPR
1776	def_bool $(as-instr,.arch_extension rcpc)
1777
1778config AS_HAS_LSE_ATOMICS
1779	def_bool $(as-instr,.arch_extension lse)
1780
1781config ARM64_LSE_ATOMICS
1782	bool
1783	default ARM64_USE_LSE_ATOMICS
1784	depends on AS_HAS_LSE_ATOMICS
1785
1786config ARM64_USE_LSE_ATOMICS
1787	bool "Atomic instructions"
1788	default y
1789	help
1790	  As part of the Large System Extensions, ARMv8.1 introduces new
1791	  atomic instructions that are designed specifically to scale in
1792	  very large systems.
1793
1794	  Say Y here to make use of these instructions for the in-kernel
1795	  atomic routines. This incurs a small overhead on CPUs that do
1796	  not support these instructions and requires the kernel to be
1797	  built with binutils >= 2.25 in order for the new instructions
1798	  to be used.
1799
1800endmenu # "ARMv8.1 architectural features"
1801
1802menu "ARMv8.2 architectural features"
1803
1804config AS_HAS_ARMV8_2
1805	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1806
1807config AS_HAS_SHA3
1808	def_bool $(as-instr,.arch armv8.2-a+sha3)
1809
1810config ARM64_PMEM
1811	bool "Enable support for persistent memory"
1812	select ARCH_HAS_PMEM_API
1813	select ARCH_HAS_UACCESS_FLUSHCACHE
1814	help
1815	  Say Y to enable support for the persistent memory API based on the
1816	  ARMv8.2 DCPoP feature.
1817
1818	  The feature is detected at runtime, and the kernel will use DC CVAC
1819	  operations if DC CVAP is not supported (following the behaviour of
1820	  DC CVAP itself if the system does not define a point of persistence).
1821
1822config ARM64_RAS_EXTN
1823	bool "Enable support for RAS CPU Extensions"
1824	default y
1825	help
1826	  CPUs that support the Reliability, Availability and Serviceability
1827	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1828	  errors, classify them and report them to software.
1829
1830	  On CPUs with these extensions system software can use additional
1831	  barriers to determine if faults are pending and read the
1832	  classification from a new set of registers.
1833
1834	  Selecting this feature will allow the kernel to use these barriers
1835	  and access the new registers if the system supports the extension.
1836	  Platform RAS features may additionally depend on firmware support.
1837
1838config ARM64_CNP
1839	bool "Enable support for Common Not Private (CNP) translations"
1840	default y
1841	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1842	help
1843	  Common Not Private (CNP) allows translation table entries to
1844	  be shared between different PEs in the same inner shareable
1845	  domain, so the hardware can use this fact to optimise the
1846	  caching of such entries in the TLB.
1847
1848	  Selecting this option allows the CNP feature to be detected
1849	  at runtime, and does not affect PEs that do not implement
1850	  this feature.
1851
1852endmenu # "ARMv8.2 architectural features"
1853
1854menu "ARMv8.3 architectural features"
1855
1856config ARM64_PTR_AUTH
1857	bool "Enable support for pointer authentication"
1858	default y
1859	help
1860	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1861	  instructions for signing and authenticating pointers against secret
1862	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1863	  and other attacks.
1864
1865	  This option enables these instructions at EL0 (i.e. for userspace).
1866	  Choosing this option will cause the kernel to initialise secret keys
1867	  for each process at exec() time, with these keys being
1868	  context-switched along with the process.
1869
1870	  The feature is detected at runtime. If the feature is not present in
1871	  hardware it will not be advertised to userspace/KVM guest nor will it
1872	  be enabled.
1873
1874	  If the feature is present on the boot CPU but not on a late CPU, then
1875	  the late CPU will be parked. Also, if the boot CPU does not have
1876	  address auth and the late CPU has then the late CPU will still boot
1877	  but with the feature disabled. On such a system, this option should
1878	  not be selected.
1879
1880config ARM64_PTR_AUTH_KERNEL
1881	bool "Use pointer authentication for kernel"
1882	default y
1883	depends on ARM64_PTR_AUTH
1884	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1885	# Modern compilers insert a .note.gnu.property section note for PAC
1886	# which is only understood by binutils starting with version 2.33.1.
1887	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1888	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1889	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1890	help
1891	  If the compiler supports the -mbranch-protection or
1892	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1893	  will cause the kernel itself to be compiled with return address
1894	  protection. In this case, and if the target hardware is known to
1895	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1896	  disabled with minimal loss of protection.
1897
1898	  This feature works with FUNCTION_GRAPH_TRACER option only if
1899	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1900
1901config CC_HAS_BRANCH_PROT_PAC_RET
1902	# GCC 9 or later, clang 8 or later
1903	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1904
1905config CC_HAS_SIGN_RETURN_ADDRESS
1906	# GCC 7, 8
1907	def_bool $(cc-option,-msign-return-address=all)
1908
1909config AS_HAS_ARMV8_3
1910	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1911
1912config AS_HAS_CFI_NEGATE_RA_STATE
1913	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1914
1915endmenu # "ARMv8.3 architectural features"
1916
1917menu "ARMv8.4 architectural features"
1918
1919config ARM64_AMU_EXTN
1920	bool "Enable support for the Activity Monitors Unit CPU extension"
1921	default y
1922	help
1923	  The activity monitors extension is an optional extension introduced
1924	  by the ARMv8.4 CPU architecture. This enables support for version 1
1925	  of the activity monitors architecture, AMUv1.
1926
1927	  To enable the use of this extension on CPUs that implement it, say Y.
1928
1929	  Note that for architectural reasons, firmware _must_ implement AMU
1930	  support when running on CPUs that present the activity monitors
1931	  extension. The required support is present in:
1932	    * Version 1.5 and later of the ARM Trusted Firmware
1933
1934	  For kernels that have this configuration enabled but boot with broken
1935	  firmware, you may need to say N here until the firmware is fixed.
1936	  Otherwise you may experience firmware panics or lockups when
1937	  accessing the counter registers. Even if you are not observing these
1938	  symptoms, the values returned by the register reads might not
1939	  correctly reflect reality. Most commonly, the value read will be 0,
1940	  indicating that the counter is not enabled.
1941
1942config AS_HAS_ARMV8_4
1943	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1944
1945config ARM64_TLB_RANGE
1946	bool "Enable support for tlbi range feature"
1947	default y
1948	depends on AS_HAS_ARMV8_4
1949	help
1950	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1951	  range of input addresses.
1952
1953	  The feature introduces new assembly instructions, and they were
1954	  support when binutils >= 2.30.
1955
1956endmenu # "ARMv8.4 architectural features"
1957
1958menu "ARMv8.5 architectural features"
1959
1960config AS_HAS_ARMV8_5
1961	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1962
1963config ARM64_BTI
1964	bool "Branch Target Identification support"
1965	default y
1966	help
1967	  Branch Target Identification (part of the ARMv8.5 Extensions)
1968	  provides a mechanism to limit the set of locations to which computed
1969	  branch instructions such as BR or BLR can jump.
1970
1971	  To make use of BTI on CPUs that support it, say Y.
1972
1973	  BTI is intended to provide complementary protection to other control
1974	  flow integrity protection mechanisms, such as the Pointer
1975	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1976	  For this reason, it does not make sense to enable this option without
1977	  also enabling support for pointer authentication.  Thus, when
1978	  enabling this option you should also select ARM64_PTR_AUTH=y.
1979
1980	  Userspace binaries must also be specifically compiled to make use of
1981	  this mechanism.  If you say N here or the hardware does not support
1982	  BTI, such binaries can still run, but you get no additional
1983	  enforcement of branch destinations.
1984
1985config ARM64_BTI_KERNEL
1986	bool "Use Branch Target Identification for kernel"
1987	default y
1988	depends on ARM64_BTI
1989	depends on ARM64_PTR_AUTH_KERNEL
1990	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1991	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1992	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1993	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1994	depends on !CC_IS_GCC
1995	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1996	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1997	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1998	help
1999	  Build the kernel with Branch Target Identification annotations
2000	  and enable enforcement of this for kernel code. When this option
2001	  is enabled and the system supports BTI all kernel code including
2002	  modular code must have BTI enabled.
2003
2004config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2005	# GCC 9 or later, clang 8 or later
2006	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2007
2008config ARM64_E0PD
2009	bool "Enable support for E0PD"
2010	default y
2011	help
2012	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2013	  that EL0 accesses made via TTBR1 always fault in constant time,
2014	  providing similar benefits to KASLR as those provided by KPTI, but
2015	  with lower overhead and without disrupting legitimate access to
2016	  kernel memory such as SPE.
2017
2018	  This option enables E0PD for TTBR1 where available.
2019
2020config ARM64_AS_HAS_MTE
2021	# Initial support for MTE went in binutils 2.32.0, checked with
2022	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2023	# as a late addition to the final architecture spec (LDGM/STGM)
2024	# is only supported in the newer 2.32.x and 2.33 binutils
2025	# versions, hence the extra "stgm" instruction check below.
2026	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2027
2028config ARM64_MTE
2029	bool "Memory Tagging Extension support"
2030	default y
2031	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2032	depends on AS_HAS_ARMV8_5
2033	depends on AS_HAS_LSE_ATOMICS
2034	# Required for tag checking in the uaccess routines
2035	depends on ARM64_PAN
2036	select ARCH_HAS_SUBPAGE_FAULTS
2037	select ARCH_USES_HIGH_VMA_FLAGS
2038	select ARCH_USES_PG_ARCH_X
2039	help
2040	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2041	  architectural support for run-time, always-on detection of
2042	  various classes of memory error to aid with software debugging
2043	  to eliminate vulnerabilities arising from memory-unsafe
2044	  languages.
2045
2046	  This option enables the support for the Memory Tagging
2047	  Extension at EL0 (i.e. for userspace).
2048
2049	  Selecting this option allows the feature to be detected at
2050	  runtime. Any secondary CPU not implementing this feature will
2051	  not be allowed a late bring-up.
2052
2053	  Userspace binaries that want to use this feature must
2054	  explicitly opt in. The mechanism for the userspace is
2055	  described in:
2056
2057	  Documentation/arch/arm64/memory-tagging-extension.rst.
2058
2059endmenu # "ARMv8.5 architectural features"
2060
2061menu "ARMv8.7 architectural features"
2062
2063config ARM64_EPAN
2064	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2065	default y
2066	depends on ARM64_PAN
2067	help
2068	  Enhanced Privileged Access Never (EPAN) allows Privileged
2069	  Access Never to be used with Execute-only mappings.
2070
2071	  The feature is detected at runtime, and will remain disabled
2072	  if the cpu does not implement the feature.
2073endmenu # "ARMv8.7 architectural features"
2074
2075config ARM64_SVE
2076	bool "ARM Scalable Vector Extension support"
2077	default y
2078	help
2079	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2080	  execution state which complements and extends the SIMD functionality
2081	  of the base architecture to support much larger vectors and to enable
2082	  additional vectorisation opportunities.
2083
2084	  To enable use of this extension on CPUs that implement it, say Y.
2085
2086	  On CPUs that support the SVE2 extensions, this option will enable
2087	  those too.
2088
2089	  Note that for architectural reasons, firmware _must_ implement SVE
2090	  support when running on SVE capable hardware.  The required support
2091	  is present in:
2092
2093	    * version 1.5 and later of the ARM Trusted Firmware
2094	    * the AArch64 boot wrapper since commit 5e1261e08abf
2095	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2096
2097	  For other firmware implementations, consult the firmware documentation
2098	  or vendor.
2099
2100	  If you need the kernel to boot on SVE-capable hardware with broken
2101	  firmware, you may need to say N here until you get your firmware
2102	  fixed.  Otherwise, you may experience firmware panics or lockups when
2103	  booting the kernel.  If unsure and you are not observing these
2104	  symptoms, you should assume that it is safe to say Y.
2105
2106config ARM64_SME
2107	bool "ARM Scalable Matrix Extension support"
2108	default y
2109	depends on ARM64_SVE
2110	help
2111	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2112	  execution state which utilises a substantial subset of the SVE
2113	  instruction set, together with the addition of new architectural
2114	  register state capable of holding two dimensional matrix tiles to
2115	  enable various matrix operations.
2116
2117config ARM64_PSEUDO_NMI
2118	bool "Support for NMI-like interrupts"
2119	select ARM_GIC_V3
2120	help
2121	  Adds support for mimicking Non-Maskable Interrupts through the use of
2122	  GIC interrupt priority. This support requires version 3 or later of
2123	  ARM GIC.
2124
2125	  This high priority configuration for interrupts needs to be
2126	  explicitly enabled by setting the kernel parameter
2127	  "irqchip.gicv3_pseudo_nmi" to 1.
2128
2129	  If unsure, say N
2130
2131if ARM64_PSEUDO_NMI
2132config ARM64_DEBUG_PRIORITY_MASKING
2133	bool "Debug interrupt priority masking"
2134	help
2135	  This adds runtime checks to functions enabling/disabling
2136	  interrupts when using priority masking. The additional checks verify
2137	  the validity of ICC_PMR_EL1 when calling concerned functions.
2138
2139	  If unsure, say N
2140endif # ARM64_PSEUDO_NMI
2141
2142config RELOCATABLE
2143	bool "Build a relocatable kernel image" if EXPERT
2144	select ARCH_HAS_RELR
2145	default y
2146	help
2147	  This builds the kernel as a Position Independent Executable (PIE),
2148	  which retains all relocation metadata required to relocate the
2149	  kernel binary at runtime to a different virtual address than the
2150	  address it was linked at.
2151	  Since AArch64 uses the RELA relocation format, this requires a
2152	  relocation pass at runtime even if the kernel is loaded at the
2153	  same address it was linked at.
2154
2155config RANDOMIZE_BASE
2156	bool "Randomize the address of the kernel image"
2157	select RELOCATABLE
2158	help
2159	  Randomizes the virtual address at which the kernel image is
2160	  loaded, as a security feature that deters exploit attempts
2161	  relying on knowledge of the location of kernel internals.
2162
2163	  It is the bootloader's job to provide entropy, by passing a
2164	  random u64 value in /chosen/kaslr-seed at kernel entry.
2165
2166	  When booting via the UEFI stub, it will invoke the firmware's
2167	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2168	  to the kernel proper. In addition, it will randomise the physical
2169	  location of the kernel Image as well.
2170
2171	  If unsure, say N.
2172
2173config RANDOMIZE_MODULE_REGION_FULL
2174	bool "Randomize the module region over a 2 GB range"
2175	depends on RANDOMIZE_BASE
2176	default y
2177	help
2178	  Randomizes the location of the module region inside a 2 GB window
2179	  covering the core kernel. This way, it is less likely for modules
2180	  to leak information about the location of core kernel data structures
2181	  but it does imply that function calls between modules and the core
2182	  kernel will need to be resolved via veneers in the module PLT.
2183
2184	  When this option is not set, the module region will be randomized over
2185	  a limited range that contains the [_stext, _etext] interval of the
2186	  core kernel, so branch relocations are almost always in range unless
2187	  the region is exhausted. In this particular case of region
2188	  exhaustion, modules might be able to fall back to a larger 2GB area.
2189
2190config CC_HAVE_STACKPROTECTOR_SYSREG
2191	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2192
2193config STACKPROTECTOR_PER_TASK
2194	def_bool y
2195	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2196
2197config UNWIND_PATCH_PAC_INTO_SCS
2198	bool "Enable shadow call stack dynamically using code patching"
2199	# needs Clang with https://reviews.llvm.org/D111780 incorporated
2200	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2201	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2202	depends on SHADOW_CALL_STACK
2203	select UNWIND_TABLES
2204	select DYNAMIC_SCS
2205
2206endmenu # "Kernel Features"
2207
2208menu "Boot options"
2209
2210config ARM64_ACPI_PARKING_PROTOCOL
2211	bool "Enable support for the ARM64 ACPI parking protocol"
2212	depends on ACPI
2213	help
2214	  Enable support for the ARM64 ACPI parking protocol. If disabled
2215	  the kernel will not allow booting through the ARM64 ACPI parking
2216	  protocol even if the corresponding data is present in the ACPI
2217	  MADT table.
2218
2219config CMDLINE
2220	string "Default kernel command string"
2221	default ""
2222	help
2223	  Provide a set of default command-line options at build time by
2224	  entering them here. As a minimum, you should specify the the
2225	  root device (e.g. root=/dev/nfs).
2226
2227choice
2228	prompt "Kernel command line type" if CMDLINE != ""
2229	default CMDLINE_FROM_BOOTLOADER
2230	help
2231	  Choose how the kernel will handle the provided default kernel
2232	  command line string.
2233
2234config CMDLINE_FROM_BOOTLOADER
2235	bool "Use bootloader kernel arguments if available"
2236	help
2237	  Uses the command-line options passed by the boot loader. If
2238	  the boot loader doesn't provide any, the default kernel command
2239	  string provided in CMDLINE will be used.
2240
2241config CMDLINE_FORCE
2242	bool "Always use the default kernel command string"
2243	help
2244	  Always use the default kernel command string, even if the boot
2245	  loader passes other arguments to the kernel.
2246	  This is useful if you cannot or don't want to change the
2247	  command-line options your boot loader passes to the kernel.
2248
2249endchoice
2250
2251config EFI_STUB
2252	bool
2253
2254config EFI
2255	bool "UEFI runtime support"
2256	depends on OF && !CPU_BIG_ENDIAN
2257	depends on KERNEL_MODE_NEON
2258	select ARCH_SUPPORTS_ACPI
2259	select LIBFDT
2260	select UCS2_STRING
2261	select EFI_PARAMS_FROM_FDT
2262	select EFI_RUNTIME_WRAPPERS
2263	select EFI_STUB
2264	select EFI_GENERIC_STUB
2265	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2266	default y
2267	help
2268	  This option provides support for runtime services provided
2269	  by UEFI firmware (such as non-volatile variables, realtime
2270	  clock, and platform reset). A UEFI stub is also provided to
2271	  allow the kernel to be booted as an EFI application. This
2272	  is only useful on systems that have UEFI firmware.
2273
2274config DMI
2275	bool "Enable support for SMBIOS (DMI) tables"
2276	depends on EFI
2277	default y
2278	help
2279	  This enables SMBIOS/DMI feature for systems.
2280
2281	  This option is only useful on systems that have UEFI firmware.
2282	  However, even with this option, the resultant kernel should
2283	  continue to boot on existing non-UEFI platforms.
2284
2285endmenu # "Boot options"
2286
2287menu "Power management options"
2288
2289source "kernel/power/Kconfig"
2290
2291config ARCH_HIBERNATION_POSSIBLE
2292	def_bool y
2293	depends on CPU_PM
2294
2295config ARCH_HIBERNATION_HEADER
2296	def_bool y
2297	depends on HIBERNATION
2298
2299config ARCH_SUSPEND_POSSIBLE
2300	def_bool y
2301
2302endmenu # "Power management options"
2303
2304menu "CPU Power Management"
2305
2306source "drivers/cpuidle/Kconfig"
2307
2308source "drivers/cpufreq/Kconfig"
2309
2310endmenu # "CPU Power Management"
2311
2312source "drivers/acpi/Kconfig"
2313
2314source "arch/arm64/kvm/Kconfig"
2315
2316