1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_IORT if ACPI 9 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 10 select ACPI_MCFG if (ACPI && PCI) 11 select ACPI_SPCR_TABLE if ACPI 12 select ACPI_PPTT if ACPI 13 select ARCH_HAS_DEBUG_WX 14 select ARCH_BINFMT_ELF_EXTRA_PHDRS 15 select ARCH_BINFMT_ELF_STATE 16 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 18 select ARCH_ENABLE_MEMORY_HOTPLUG 19 select ARCH_ENABLE_MEMORY_HOTREMOVE 20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 22 select ARCH_HAS_CACHE_LINE_SIZE 23 select ARCH_HAS_CURRENT_STACK_POINTER 24 select ARCH_HAS_DEBUG_VIRTUAL 25 select ARCH_HAS_DEBUG_VM_PGTABLE 26 select ARCH_HAS_DMA_PREP_COHERENT 27 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 28 select ARCH_HAS_FAST_MULTIPLIER 29 select ARCH_HAS_FORTIFY_SOURCE 30 select ARCH_HAS_GCOV_PROFILE_ALL 31 select ARCH_HAS_GIGANTIC_PAGE 32 select ARCH_HAS_KCOV 33 select ARCH_HAS_KEEPINITRD 34 select ARCH_HAS_MEMBARRIER_SYNC_CORE 35 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 36 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 37 select ARCH_HAS_PTE_DEVMAP 38 select ARCH_HAS_PTE_SPECIAL 39 select ARCH_HAS_SETUP_DMA_OPS 40 select ARCH_HAS_SET_DIRECT_MAP 41 select ARCH_HAS_SET_MEMORY 42 select ARCH_STACKWALK 43 select ARCH_HAS_STRICT_KERNEL_RWX 44 select ARCH_HAS_STRICT_MODULE_RWX 45 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 46 select ARCH_HAS_SYNC_DMA_FOR_CPU 47 select ARCH_HAS_SYSCALL_WRAPPER 48 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 49 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 50 select ARCH_HAS_ZONE_DMA_SET if EXPERT 51 select ARCH_HAVE_ELF_PROT 52 select ARCH_HAVE_NMI_SAFE_CMPXCHG 53 select ARCH_HAVE_TRACE_MMIO_ACCESS 54 select ARCH_INLINE_READ_LOCK if !PREEMPTION 55 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 56 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 57 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 58 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 59 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 60 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 62 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 63 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 64 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 66 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 67 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 68 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 70 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 71 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 72 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 73 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 74 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 76 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 77 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 78 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 80 select ARCH_KEEP_MEMBLOCK 81 select ARCH_USE_CMPXCHG_LOCKREF 82 select ARCH_USE_GNU_PROPERTY 83 select ARCH_USE_MEMTEST 84 select ARCH_USE_QUEUED_RWLOCKS 85 select ARCH_USE_QUEUED_SPINLOCKS 86 select ARCH_USE_SYM_ANNOTATIONS 87 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 88 select ARCH_SUPPORTS_HUGETLBFS 89 select ARCH_SUPPORTS_MEMORY_FAILURE 90 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 91 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 92 select ARCH_SUPPORTS_LTO_CLANG_THIN 93 select ARCH_SUPPORTS_CFI_CLANG 94 select ARCH_SUPPORTS_ATOMIC_RMW 95 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 96 select ARCH_SUPPORTS_NUMA_BALANCING 97 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 98 select ARCH_SUPPORTS_PER_VMA_LOCK 99 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 100 select ARCH_WANT_DEFAULT_BPF_JIT 101 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 102 select ARCH_WANT_FRAME_POINTERS 103 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 104 select ARCH_WANT_LD_ORPHAN_WARN 105 select ARCH_WANTS_NO_INSTR 106 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 107 select ARCH_HAS_UBSAN_SANITIZE_ALL 108 select ARM_AMBA 109 select ARM_ARCH_TIMER 110 select ARM_GIC 111 select AUDIT_ARCH_COMPAT_GENERIC 112 select ARM_GIC_V2M if PCI 113 select ARM_GIC_V3 114 select ARM_GIC_V3_ITS if PCI 115 select ARM_PSCI_FW 116 select BUILDTIME_TABLE_SORT 117 select CLONE_BACKWARDS 118 select COMMON_CLK 119 select CPU_PM if (SUSPEND || CPU_IDLE) 120 select CRC32 121 select DCACHE_WORD_ACCESS 122 select DYNAMIC_FTRACE if FUNCTION_TRACER 123 select DMA_BOUNCE_UNALIGNED_KMALLOC 124 select DMA_DIRECT_REMAP 125 select EDAC_SUPPORT 126 select FRAME_POINTER 127 select FUNCTION_ALIGNMENT_4B 128 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 129 select GENERIC_ALLOCATOR 130 select GENERIC_ARCH_TOPOLOGY 131 select GENERIC_CLOCKEVENTS_BROADCAST 132 select GENERIC_CPU_AUTOPROBE 133 select GENERIC_CPU_VULNERABILITIES 134 select GENERIC_EARLY_IOREMAP 135 select GENERIC_IDLE_POLL_SETUP 136 select GENERIC_IOREMAP 137 select GENERIC_IRQ_IPI 138 select GENERIC_IRQ_PROBE 139 select GENERIC_IRQ_SHOW 140 select GENERIC_IRQ_SHOW_LEVEL 141 select GENERIC_LIB_DEVMEM_IS_ALLOWED 142 select GENERIC_PCI_IOMAP 143 select GENERIC_PTDUMP 144 select GENERIC_SCHED_CLOCK 145 select GENERIC_SMP_IDLE_THREAD 146 select GENERIC_TIME_VSYSCALL 147 select GENERIC_GETTIMEOFDAY 148 select GENERIC_VDSO_TIME_NS 149 select HARDIRQS_SW_RESEND 150 select HAS_IOPORT 151 select HAVE_MOVE_PMD 152 select HAVE_MOVE_PUD 153 select HAVE_PCI 154 select HAVE_ACPI_APEI if (ACPI && EFI) 155 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 156 select HAVE_ARCH_AUDITSYSCALL 157 select HAVE_ARCH_BITREVERSE 158 select HAVE_ARCH_COMPILER_H 159 select HAVE_ARCH_HUGE_VMALLOC 160 select HAVE_ARCH_HUGE_VMAP 161 select HAVE_ARCH_JUMP_LABEL 162 select HAVE_ARCH_JUMP_LABEL_RELATIVE 163 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 164 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 165 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 166 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 167 # Some instrumentation may be unsound, hence EXPERT 168 select HAVE_ARCH_KCSAN if EXPERT 169 select HAVE_ARCH_KFENCE 170 select HAVE_ARCH_KGDB 171 select HAVE_ARCH_MMAP_RND_BITS 172 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 173 select HAVE_ARCH_PREL32_RELOCATIONS 174 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 175 select HAVE_ARCH_SECCOMP_FILTER 176 select HAVE_ARCH_STACKLEAK 177 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 178 select HAVE_ARCH_TRACEHOOK 179 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 180 select HAVE_ARCH_VMAP_STACK 181 select HAVE_ARM_SMCCC 182 select HAVE_ASM_MODVERSIONS 183 select HAVE_EBPF_JIT 184 select HAVE_C_RECORDMCOUNT 185 select HAVE_CMPXCHG_DOUBLE 186 select HAVE_CMPXCHG_LOCAL 187 select HAVE_CONTEXT_TRACKING_USER 188 select HAVE_DEBUG_KMEMLEAK 189 select HAVE_DMA_CONTIGUOUS 190 select HAVE_DYNAMIC_FTRACE 191 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 192 if $(cc-option,-fpatchable-function-entry=2) 193 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 194 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 195 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 196 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 197 !CC_OPTIMIZE_FOR_SIZE) 198 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 199 if DYNAMIC_FTRACE_WITH_ARGS 200 select HAVE_EFFICIENT_UNALIGNED_ACCESS 201 select HAVE_FAST_GUP 202 select HAVE_FTRACE_MCOUNT_RECORD 203 select HAVE_FUNCTION_TRACER 204 select HAVE_FUNCTION_ERROR_INJECTION 205 select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER 206 select HAVE_FUNCTION_GRAPH_TRACER 207 select HAVE_GCC_PLUGINS 208 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 209 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 210 select HAVE_HW_BREAKPOINT if PERF_EVENTS 211 select HAVE_IOREMAP_PROT 212 select HAVE_IRQ_TIME_ACCOUNTING 213 select HAVE_KVM 214 select HAVE_MOD_ARCH_SPECIFIC 215 select HAVE_NMI 216 select HAVE_PERF_EVENTS 217 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 218 select HAVE_PERF_REGS 219 select HAVE_PERF_USER_STACK_DUMP 220 select HAVE_PREEMPT_DYNAMIC_KEY 221 select HAVE_REGS_AND_STACK_ACCESS_API 222 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 223 select HAVE_FUNCTION_ARG_ACCESS_API 224 select MMU_GATHER_RCU_TABLE_FREE 225 select HAVE_RSEQ 226 select HAVE_STACKPROTECTOR 227 select HAVE_SYSCALL_TRACEPOINTS 228 select HAVE_KPROBES 229 select HAVE_KRETPROBES 230 select HAVE_GENERIC_VDSO 231 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 232 select IRQ_DOMAIN 233 select IRQ_FORCED_THREADING 234 select KASAN_VMALLOC if KASAN 235 select LOCK_MM_AND_FIND_VMA 236 select MODULES_USE_ELF_RELA 237 select NEED_DMA_MAP_STATE 238 select NEED_SG_DMA_LENGTH 239 select OF 240 select OF_EARLY_FLATTREE 241 select PCI_DOMAINS_GENERIC if PCI 242 select PCI_ECAM if (ACPI && PCI) 243 select PCI_SYSCALL if PCI 244 select POWER_RESET 245 select POWER_SUPPLY 246 select SPARSE_IRQ 247 select SWIOTLB 248 select SYSCTL_EXCEPTION_TRACE 249 select THREAD_INFO_IN_TASK 250 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 251 select TRACE_IRQFLAGS_SUPPORT 252 select TRACE_IRQFLAGS_NMI_SUPPORT 253 select HAVE_SOFTIRQ_ON_OWN_STACK 254 help 255 ARM 64-bit (AArch64) Linux support. 256 257config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 258 def_bool CC_IS_CLANG 259 # https://github.com/ClangBuiltLinux/linux/issues/1507 260 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 261 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 262 263config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 264 def_bool CC_IS_GCC 265 depends on $(cc-option,-fpatchable-function-entry=2) 266 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 267 268config 64BIT 269 def_bool y 270 271config MMU 272 def_bool y 273 274config ARM64_PAGE_SHIFT 275 int 276 default 16 if ARM64_64K_PAGES 277 default 14 if ARM64_16K_PAGES 278 default 12 279 280config ARM64_CONT_PTE_SHIFT 281 int 282 default 5 if ARM64_64K_PAGES 283 default 7 if ARM64_16K_PAGES 284 default 4 285 286config ARM64_CONT_PMD_SHIFT 287 int 288 default 5 if ARM64_64K_PAGES 289 default 5 if ARM64_16K_PAGES 290 default 4 291 292config ARCH_MMAP_RND_BITS_MIN 293 default 14 if ARM64_64K_PAGES 294 default 16 if ARM64_16K_PAGES 295 default 18 296 297# max bits determined by the following formula: 298# VA_BITS - PAGE_SHIFT - 3 299config ARCH_MMAP_RND_BITS_MAX 300 default 19 if ARM64_VA_BITS=36 301 default 24 if ARM64_VA_BITS=39 302 default 27 if ARM64_VA_BITS=42 303 default 30 if ARM64_VA_BITS=47 304 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 305 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 306 default 33 if ARM64_VA_BITS=48 307 default 14 if ARM64_64K_PAGES 308 default 16 if ARM64_16K_PAGES 309 default 18 310 311config ARCH_MMAP_RND_COMPAT_BITS_MIN 312 default 7 if ARM64_64K_PAGES 313 default 9 if ARM64_16K_PAGES 314 default 11 315 316config ARCH_MMAP_RND_COMPAT_BITS_MAX 317 default 16 318 319config NO_IOPORT_MAP 320 def_bool y if !PCI 321 322config STACKTRACE_SUPPORT 323 def_bool y 324 325config ILLEGAL_POINTER_VALUE 326 hex 327 default 0xdead000000000000 328 329config LOCKDEP_SUPPORT 330 def_bool y 331 332config GENERIC_BUG 333 def_bool y 334 depends on BUG 335 336config GENERIC_BUG_RELATIVE_POINTERS 337 def_bool y 338 depends on GENERIC_BUG 339 340config GENERIC_HWEIGHT 341 def_bool y 342 343config GENERIC_CSUM 344 def_bool y 345 346config GENERIC_CALIBRATE_DELAY 347 def_bool y 348 349config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 350 def_bool y 351 352config SMP 353 def_bool y 354 355config KERNEL_MODE_NEON 356 def_bool y 357 358config FIX_EARLYCON_MEM 359 def_bool y 360 361config PGTABLE_LEVELS 362 int 363 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 364 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 365 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 366 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 367 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 368 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 369 370config ARCH_SUPPORTS_UPROBES 371 def_bool y 372 373config ARCH_PROC_KCORE_TEXT 374 def_bool y 375 376config BROKEN_GAS_INST 377 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 378 379config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 380 bool 381 # Clang's __builtin_return_adddress() strips the PAC since 12.0.0 382 # https://reviews.llvm.org/D75044 383 default y if CC_IS_CLANG && (CLANG_VERSION >= 120000) 384 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 385 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 386 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 387 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 388 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 389 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 390 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 391 default n 392 393config KASAN_SHADOW_OFFSET 394 hex 395 depends on KASAN_GENERIC || KASAN_SW_TAGS 396 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 397 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 398 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 399 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 400 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 401 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 402 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 403 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 404 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 405 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 406 default 0xffffffffffffffff 407 408config UNWIND_TABLES 409 bool 410 411source "arch/arm64/Kconfig.platforms" 412 413menu "Kernel Features" 414 415menu "ARM errata workarounds via the alternatives framework" 416 417config AMPERE_ERRATUM_AC03_CPU_38 418 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 419 default y 420 help 421 This option adds an alternative code sequence to work around Ampere 422 erratum AC03_CPU_38 on AmpereOne. 423 424 The affected design reports FEAT_HAFDBS as not implemented in 425 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 426 as required by the architecture. The unadvertised HAFDBS 427 implementation suffers from an additional erratum where hardware 428 A/D updates can occur after a PTE has been marked invalid. 429 430 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 431 which avoids enabling unadvertised hardware Access Flag management 432 at stage-2. 433 434 If unsure, say Y. 435 436config ARM64_WORKAROUND_CLEAN_CACHE 437 bool 438 439config ARM64_ERRATUM_826319 440 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 441 default y 442 select ARM64_WORKAROUND_CLEAN_CACHE 443 help 444 This option adds an alternative code sequence to work around ARM 445 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 446 AXI master interface and an L2 cache. 447 448 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 449 and is unable to accept a certain write via this interface, it will 450 not progress on read data presented on the read data channel and the 451 system can deadlock. 452 453 The workaround promotes data cache clean instructions to 454 data cache clean-and-invalidate. 455 Please note that this does not necessarily enable the workaround, 456 as it depends on the alternative framework, which will only patch 457 the kernel if an affected CPU is detected. 458 459 If unsure, say Y. 460 461config ARM64_ERRATUM_827319 462 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 463 default y 464 select ARM64_WORKAROUND_CLEAN_CACHE 465 help 466 This option adds an alternative code sequence to work around ARM 467 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 468 master interface and an L2 cache. 469 470 Under certain conditions this erratum can cause a clean line eviction 471 to occur at the same time as another transaction to the same address 472 on the AMBA 5 CHI interface, which can cause data corruption if the 473 interconnect reorders the two transactions. 474 475 The workaround promotes data cache clean instructions to 476 data cache clean-and-invalidate. 477 Please note that this does not necessarily enable the workaround, 478 as it depends on the alternative framework, which will only patch 479 the kernel if an affected CPU is detected. 480 481 If unsure, say Y. 482 483config ARM64_ERRATUM_824069 484 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 485 default y 486 select ARM64_WORKAROUND_CLEAN_CACHE 487 help 488 This option adds an alternative code sequence to work around ARM 489 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 490 to a coherent interconnect. 491 492 If a Cortex-A53 processor is executing a store or prefetch for 493 write instruction at the same time as a processor in another 494 cluster is executing a cache maintenance operation to the same 495 address, then this erratum might cause a clean cache line to be 496 incorrectly marked as dirty. 497 498 The workaround promotes data cache clean instructions to 499 data cache clean-and-invalidate. 500 Please note that this option does not necessarily enable the 501 workaround, as it depends on the alternative framework, which will 502 only patch the kernel if an affected CPU is detected. 503 504 If unsure, say Y. 505 506config ARM64_ERRATUM_819472 507 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 508 default y 509 select ARM64_WORKAROUND_CLEAN_CACHE 510 help 511 This option adds an alternative code sequence to work around ARM 512 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 513 present when it is connected to a coherent interconnect. 514 515 If the processor is executing a load and store exclusive sequence at 516 the same time as a processor in another cluster is executing a cache 517 maintenance operation to the same address, then this erratum might 518 cause data corruption. 519 520 The workaround promotes data cache clean instructions to 521 data cache clean-and-invalidate. 522 Please note that this does not necessarily enable the workaround, 523 as it depends on the alternative framework, which will only patch 524 the kernel if an affected CPU is detected. 525 526 If unsure, say Y. 527 528config ARM64_ERRATUM_832075 529 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 530 default y 531 help 532 This option adds an alternative code sequence to work around ARM 533 erratum 832075 on Cortex-A57 parts up to r1p2. 534 535 Affected Cortex-A57 parts might deadlock when exclusive load/store 536 instructions to Write-Back memory are mixed with Device loads. 537 538 The workaround is to promote device loads to use Load-Acquire 539 semantics. 540 Please note that this does not necessarily enable the workaround, 541 as it depends on the alternative framework, which will only patch 542 the kernel if an affected CPU is detected. 543 544 If unsure, say Y. 545 546config ARM64_ERRATUM_834220 547 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 548 depends on KVM 549 default y 550 help 551 This option adds an alternative code sequence to work around ARM 552 erratum 834220 on Cortex-A57 parts up to r1p2. 553 554 Affected Cortex-A57 parts might report a Stage 2 translation 555 fault as the result of a Stage 1 fault for load crossing a 556 page boundary when there is a permission or device memory 557 alignment fault at Stage 1 and a translation fault at Stage 2. 558 559 The workaround is to verify that the Stage 1 translation 560 doesn't generate a fault before handling the Stage 2 fault. 561 Please note that this does not necessarily enable the workaround, 562 as it depends on the alternative framework, which will only patch 563 the kernel if an affected CPU is detected. 564 565 If unsure, say Y. 566 567config ARM64_ERRATUM_1742098 568 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 569 depends on COMPAT 570 default y 571 help 572 This option removes the AES hwcap for aarch32 user-space to 573 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 574 575 Affected parts may corrupt the AES state if an interrupt is 576 taken between a pair of AES instructions. These instructions 577 are only present if the cryptography extensions are present. 578 All software should have a fallback implementation for CPUs 579 that don't implement the cryptography extensions. 580 581 If unsure, say Y. 582 583config ARM64_ERRATUM_845719 584 bool "Cortex-A53: 845719: a load might read incorrect data" 585 depends on COMPAT 586 default y 587 help 588 This option adds an alternative code sequence to work around ARM 589 erratum 845719 on Cortex-A53 parts up to r0p4. 590 591 When running a compat (AArch32) userspace on an affected Cortex-A53 592 part, a load at EL0 from a virtual address that matches the bottom 32 593 bits of the virtual address used by a recent load at (AArch64) EL1 594 might return incorrect data. 595 596 The workaround is to write the contextidr_el1 register on exception 597 return to a 32-bit task. 598 Please note that this does not necessarily enable the workaround, 599 as it depends on the alternative framework, which will only patch 600 the kernel if an affected CPU is detected. 601 602 If unsure, say Y. 603 604config ARM64_ERRATUM_843419 605 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 606 default y 607 help 608 This option links the kernel with '--fix-cortex-a53-843419' and 609 enables PLT support to replace certain ADRP instructions, which can 610 cause subsequent memory accesses to use an incorrect address on 611 Cortex-A53 parts up to r0p4. 612 613 If unsure, say Y. 614 615config ARM64_LD_HAS_FIX_ERRATUM_843419 616 def_bool $(ld-option,--fix-cortex-a53-843419) 617 618config ARM64_ERRATUM_1024718 619 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 620 default y 621 help 622 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 623 624 Affected Cortex-A55 cores (all revisions) could cause incorrect 625 update of the hardware dirty bit when the DBM/AP bits are updated 626 without a break-before-make. The workaround is to disable the usage 627 of hardware DBM locally on the affected cores. CPUs not affected by 628 this erratum will continue to use the feature. 629 630 If unsure, say Y. 631 632config ARM64_ERRATUM_1418040 633 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 634 default y 635 depends on COMPAT 636 help 637 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 638 errata 1188873 and 1418040. 639 640 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 641 cause register corruption when accessing the timer registers 642 from AArch32 userspace. 643 644 If unsure, say Y. 645 646config ARM64_WORKAROUND_SPECULATIVE_AT 647 bool 648 649config ARM64_ERRATUM_1165522 650 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 651 default y 652 select ARM64_WORKAROUND_SPECULATIVE_AT 653 help 654 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 655 656 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 657 corrupted TLBs by speculating an AT instruction during a guest 658 context switch. 659 660 If unsure, say Y. 661 662config ARM64_ERRATUM_1319367 663 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 664 default y 665 select ARM64_WORKAROUND_SPECULATIVE_AT 666 help 667 This option adds work arounds for ARM Cortex-A57 erratum 1319537 668 and A72 erratum 1319367 669 670 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 671 speculating an AT instruction during a guest context switch. 672 673 If unsure, say Y. 674 675config ARM64_ERRATUM_1530923 676 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 677 default y 678 select ARM64_WORKAROUND_SPECULATIVE_AT 679 help 680 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 681 682 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 683 corrupted TLBs by speculating an AT instruction during a guest 684 context switch. 685 686 If unsure, say Y. 687 688config ARM64_WORKAROUND_REPEAT_TLBI 689 bool 690 691config ARM64_ERRATUM_2441007 692 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI" 693 default y 694 select ARM64_WORKAROUND_REPEAT_TLBI 695 help 696 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 697 698 Under very rare circumstances, affected Cortex-A55 CPUs 699 may not handle a race between a break-before-make sequence on one 700 CPU, and another CPU accessing the same page. This could allow a 701 store to a page that has been unmapped. 702 703 Work around this by adding the affected CPUs to the list that needs 704 TLB sequences to be done twice. 705 706 If unsure, say Y. 707 708config ARM64_ERRATUM_1286807 709 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 710 default y 711 select ARM64_WORKAROUND_REPEAT_TLBI 712 help 713 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 714 715 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 716 address for a cacheable mapping of a location is being 717 accessed by a core while another core is remapping the virtual 718 address to a new physical page using the recommended 719 break-before-make sequence, then under very rare circumstances 720 TLBI+DSB completes before a read using the translation being 721 invalidated has been observed by other observers. The 722 workaround repeats the TLBI+DSB operation. 723 724config ARM64_ERRATUM_1463225 725 bool "Cortex-A76: Software Step might prevent interrupt recognition" 726 default y 727 help 728 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 729 730 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 731 of a system call instruction (SVC) can prevent recognition of 732 subsequent interrupts when software stepping is disabled in the 733 exception handler of the system call and either kernel debugging 734 is enabled or VHE is in use. 735 736 Work around the erratum by triggering a dummy step exception 737 when handling a system call from a task that is being stepped 738 in a VHE configuration of the kernel. 739 740 If unsure, say Y. 741 742config ARM64_ERRATUM_1542419 743 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 744 default y 745 help 746 This option adds a workaround for ARM Neoverse-N1 erratum 747 1542419. 748 749 Affected Neoverse-N1 cores could execute a stale instruction when 750 modified by another CPU. The workaround depends on a firmware 751 counterpart. 752 753 Workaround the issue by hiding the DIC feature from EL0. This 754 forces user-space to perform cache maintenance. 755 756 If unsure, say Y. 757 758config ARM64_ERRATUM_1508412 759 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 760 default y 761 help 762 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 763 764 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 765 of a store-exclusive or read of PAR_EL1 and a load with device or 766 non-cacheable memory attributes. The workaround depends on a firmware 767 counterpart. 768 769 KVM guests must also have the workaround implemented or they can 770 deadlock the system. 771 772 Work around the issue by inserting DMB SY barriers around PAR_EL1 773 register reads and warning KVM users. The DMB barrier is sufficient 774 to prevent a speculative PAR_EL1 read. 775 776 If unsure, say Y. 777 778config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 779 bool 780 781config ARM64_ERRATUM_2051678 782 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 783 default y 784 help 785 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 786 Affected Cortex-A510 might not respect the ordering rules for 787 hardware update of the page table's dirty bit. The workaround 788 is to not enable the feature on affected CPUs. 789 790 If unsure, say Y. 791 792config ARM64_ERRATUM_2077057 793 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 794 default y 795 help 796 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 797 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 798 expected, but a Pointer Authentication trap is taken instead. The 799 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 800 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 801 802 This can only happen when EL2 is stepping EL1. 803 804 When these conditions occur, the SPSR_EL2 value is unchanged from the 805 previous guest entry, and can be restored from the in-memory copy. 806 807 If unsure, say Y. 808 809config ARM64_ERRATUM_2658417 810 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 811 default y 812 help 813 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 814 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 815 BFMMLA or VMMLA instructions in rare circumstances when a pair of 816 A510 CPUs are using shared neon hardware. As the sharing is not 817 discoverable by the kernel, hide the BF16 HWCAP to indicate that 818 user-space should not be using these instructions. 819 820 If unsure, say Y. 821 822config ARM64_ERRATUM_2119858 823 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 824 default y 825 depends on CORESIGHT_TRBE 826 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 827 help 828 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 829 830 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 831 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 832 the event of a WRAP event. 833 834 Work around the issue by always making sure we move the TRBPTR_EL1 by 835 256 bytes before enabling the buffer and filling the first 256 bytes of 836 the buffer with ETM ignore packets upon disabling. 837 838 If unsure, say Y. 839 840config ARM64_ERRATUM_2139208 841 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 842 default y 843 depends on CORESIGHT_TRBE 844 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 845 help 846 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 847 848 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 849 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 850 the event of a WRAP event. 851 852 Work around the issue by always making sure we move the TRBPTR_EL1 by 853 256 bytes before enabling the buffer and filling the first 256 bytes of 854 the buffer with ETM ignore packets upon disabling. 855 856 If unsure, say Y. 857 858config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 859 bool 860 861config ARM64_ERRATUM_2054223 862 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 863 default y 864 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 865 help 866 Enable workaround for ARM Cortex-A710 erratum 2054223 867 868 Affected cores may fail to flush the trace data on a TSB instruction, when 869 the PE is in trace prohibited state. This will cause losing a few bytes 870 of the trace cached. 871 872 Workaround is to issue two TSB consecutively on affected cores. 873 874 If unsure, say Y. 875 876config ARM64_ERRATUM_2067961 877 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 878 default y 879 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 880 help 881 Enable workaround for ARM Neoverse-N2 erratum 2067961 882 883 Affected cores may fail to flush the trace data on a TSB instruction, when 884 the PE is in trace prohibited state. This will cause losing a few bytes 885 of the trace cached. 886 887 Workaround is to issue two TSB consecutively on affected cores. 888 889 If unsure, say Y. 890 891config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 892 bool 893 894config ARM64_ERRATUM_2253138 895 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 896 depends on CORESIGHT_TRBE 897 default y 898 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 899 help 900 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 901 902 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 903 for TRBE. Under some conditions, the TRBE might generate a write to the next 904 virtually addressed page following the last page of the TRBE address space 905 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 906 907 Work around this in the driver by always making sure that there is a 908 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 909 910 If unsure, say Y. 911 912config ARM64_ERRATUM_2224489 913 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 914 depends on CORESIGHT_TRBE 915 default y 916 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 917 help 918 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 919 920 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 921 for TRBE. Under some conditions, the TRBE might generate a write to the next 922 virtually addressed page following the last page of the TRBE address space 923 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 924 925 Work around this in the driver by always making sure that there is a 926 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 927 928 If unsure, say Y. 929 930config ARM64_ERRATUM_2441009 931 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI" 932 default y 933 select ARM64_WORKAROUND_REPEAT_TLBI 934 help 935 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 936 937 Under very rare circumstances, affected Cortex-A510 CPUs 938 may not handle a race between a break-before-make sequence on one 939 CPU, and another CPU accessing the same page. This could allow a 940 store to a page that has been unmapped. 941 942 Work around this by adding the affected CPUs to the list that needs 943 TLB sequences to be done twice. 944 945 If unsure, say Y. 946 947config ARM64_ERRATUM_2064142 948 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 949 depends on CORESIGHT_TRBE 950 default y 951 help 952 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 953 954 Affected Cortex-A510 core might fail to write into system registers after the 955 TRBE has been disabled. Under some conditions after the TRBE has been disabled 956 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 957 and TRBTRG_EL1 will be ignored and will not be effected. 958 959 Work around this in the driver by executing TSB CSYNC and DSB after collection 960 is stopped and before performing a system register write to one of the affected 961 registers. 962 963 If unsure, say Y. 964 965config ARM64_ERRATUM_2038923 966 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 967 depends on CORESIGHT_TRBE 968 default y 969 help 970 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 971 972 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 973 prohibited within the CPU. As a result, the trace buffer or trace buffer state 974 might be corrupted. This happens after TRBE buffer has been enabled by setting 975 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 976 execution changes from a context, in which trace is prohibited to one where it 977 isn't, or vice versa. In these mentioned conditions, the view of whether trace 978 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 979 the trace buffer state might be corrupted. 980 981 Work around this in the driver by preventing an inconsistent view of whether the 982 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 983 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 984 two ISB instructions if no ERET is to take place. 985 986 If unsure, say Y. 987 988config ARM64_ERRATUM_1902691 989 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 990 depends on CORESIGHT_TRBE 991 default y 992 help 993 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 994 995 Affected Cortex-A510 core might cause trace data corruption, when being written 996 into the memory. Effectively TRBE is broken and hence cannot be used to capture 997 trace data. 998 999 Work around this problem in the driver by just preventing TRBE initialization on 1000 affected cpus. The firmware must have disabled the access to TRBE for the kernel 1001 on such implementations. This will cover the kernel for any firmware that doesn't 1002 do this already. 1003 1004 If unsure, say Y. 1005 1006config ARM64_ERRATUM_2457168 1007 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1008 depends on ARM64_AMU_EXTN 1009 default y 1010 help 1011 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1012 1013 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1014 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1015 incorrectly giving a significantly higher output value. 1016 1017 Work around this problem by returning 0 when reading the affected counter in 1018 key locations that results in disabling all users of this counter. This effect 1019 is the same to firmware disabling affected counters. 1020 1021 If unsure, say Y. 1022 1023config ARM64_ERRATUM_2645198 1024 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1025 default y 1026 help 1027 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1028 1029 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1030 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1031 next instruction abort caused by permission fault. 1032 1033 Only user-space does executable to non-executable permission transition via 1034 mprotect() system call. Workaround the problem by doing a break-before-make 1035 TLB invalidation, for all changes to executable user space mappings. 1036 1037 If unsure, say Y. 1038 1039config CAVIUM_ERRATUM_22375 1040 bool "Cavium erratum 22375, 24313" 1041 default y 1042 help 1043 Enable workaround for errata 22375 and 24313. 1044 1045 This implements two gicv3-its errata workarounds for ThunderX. Both 1046 with a small impact affecting only ITS table allocation. 1047 1048 erratum 22375: only alloc 8MB table size 1049 erratum 24313: ignore memory access type 1050 1051 The fixes are in ITS initialization and basically ignore memory access 1052 type and table size provided by the TYPER and BASER registers. 1053 1054 If unsure, say Y. 1055 1056config CAVIUM_ERRATUM_23144 1057 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1058 depends on NUMA 1059 default y 1060 help 1061 ITS SYNC command hang for cross node io and collections/cpu mapping. 1062 1063 If unsure, say Y. 1064 1065config CAVIUM_ERRATUM_23154 1066 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1067 default y 1068 help 1069 The ThunderX GICv3 implementation requires a modified version for 1070 reading the IAR status to ensure data synchronization 1071 (access to icc_iar1_el1 is not sync'ed before and after). 1072 1073 It also suffers from erratum 38545 (also present on Marvell's 1074 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1075 spuriously presented to the CPU interface. 1076 1077 If unsure, say Y. 1078 1079config CAVIUM_ERRATUM_27456 1080 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1081 default y 1082 help 1083 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1084 instructions may cause the icache to become corrupted if it 1085 contains data for a non-current ASID. The fix is to 1086 invalidate the icache when changing the mm context. 1087 1088 If unsure, say Y. 1089 1090config CAVIUM_ERRATUM_30115 1091 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1092 default y 1093 help 1094 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1095 1.2, and T83 Pass 1.0, KVM guest execution may disable 1096 interrupts in host. Trapping both GICv3 group-0 and group-1 1097 accesses sidesteps the issue. 1098 1099 If unsure, say Y. 1100 1101config CAVIUM_TX2_ERRATUM_219 1102 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1103 default y 1104 help 1105 On Cavium ThunderX2, a load, store or prefetch instruction between a 1106 TTBR update and the corresponding context synchronizing operation can 1107 cause a spurious Data Abort to be delivered to any hardware thread in 1108 the CPU core. 1109 1110 Work around the issue by avoiding the problematic code sequence and 1111 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1112 trap handler performs the corresponding register access, skips the 1113 instruction and ensures context synchronization by virtue of the 1114 exception return. 1115 1116 If unsure, say Y. 1117 1118config FUJITSU_ERRATUM_010001 1119 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1120 default y 1121 help 1122 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1123 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1124 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1125 This fault occurs under a specific hardware condition when a 1126 load/store instruction performs an address translation using: 1127 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1128 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1129 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1130 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1131 1132 The workaround is to ensure these bits are clear in TCR_ELx. 1133 The workaround only affects the Fujitsu-A64FX. 1134 1135 If unsure, say Y. 1136 1137config HISILICON_ERRATUM_161600802 1138 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1139 default y 1140 help 1141 The HiSilicon Hip07 SoC uses the wrong redistributor base 1142 when issued ITS commands such as VMOVP and VMAPP, and requires 1143 a 128kB offset to be applied to the target address in this commands. 1144 1145 If unsure, say Y. 1146 1147config QCOM_FALKOR_ERRATUM_1003 1148 bool "Falkor E1003: Incorrect translation due to ASID change" 1149 default y 1150 help 1151 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1152 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1153 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1154 then only for entries in the walk cache, since the leaf translation 1155 is unchanged. Work around the erratum by invalidating the walk cache 1156 entries for the trampoline before entering the kernel proper. 1157 1158config QCOM_FALKOR_ERRATUM_1009 1159 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1160 default y 1161 select ARM64_WORKAROUND_REPEAT_TLBI 1162 help 1163 On Falkor v1, the CPU may prematurely complete a DSB following a 1164 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1165 one more time to fix the issue. 1166 1167 If unsure, say Y. 1168 1169config QCOM_QDF2400_ERRATUM_0065 1170 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1171 default y 1172 help 1173 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1174 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1175 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1176 1177 If unsure, say Y. 1178 1179config QCOM_FALKOR_ERRATUM_E1041 1180 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1181 default y 1182 help 1183 Falkor CPU may speculatively fetch instructions from an improper 1184 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1185 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1186 1187 If unsure, say Y. 1188 1189config NVIDIA_CARMEL_CNP_ERRATUM 1190 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1191 default y 1192 help 1193 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1194 invalidate shared TLB entries installed by a different core, as it would 1195 on standard ARM cores. 1196 1197 If unsure, say Y. 1198 1199config ROCKCHIP_ERRATUM_3588001 1200 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1201 default y 1202 help 1203 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1204 This means, that its sharability feature may not be used, even though it 1205 is supported by the IP itself. 1206 1207 If unsure, say Y. 1208 1209config SOCIONEXT_SYNQUACER_PREITS 1210 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1211 default y 1212 help 1213 Socionext Synquacer SoCs implement a separate h/w block to generate 1214 MSI doorbell writes with non-zero values for the device ID. 1215 1216 If unsure, say Y. 1217 1218endmenu # "ARM errata workarounds via the alternatives framework" 1219 1220choice 1221 prompt "Page size" 1222 default ARM64_4K_PAGES 1223 help 1224 Page size (translation granule) configuration. 1225 1226config ARM64_4K_PAGES 1227 bool "4KB" 1228 help 1229 This feature enables 4KB pages support. 1230 1231config ARM64_16K_PAGES 1232 bool "16KB" 1233 help 1234 The system will use 16KB pages support. AArch32 emulation 1235 requires applications compiled with 16K (or a multiple of 16K) 1236 aligned segments. 1237 1238config ARM64_64K_PAGES 1239 bool "64KB" 1240 help 1241 This feature enables 64KB pages support (4KB by default) 1242 allowing only two levels of page tables and faster TLB 1243 look-up. AArch32 emulation requires applications compiled 1244 with 64K aligned segments. 1245 1246endchoice 1247 1248choice 1249 prompt "Virtual address space size" 1250 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 1251 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 1252 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 1253 help 1254 Allows choosing one of multiple possible virtual address 1255 space sizes. The level of translation table is determined by 1256 a combination of page size and virtual address space size. 1257 1258config ARM64_VA_BITS_36 1259 bool "36-bit" if EXPERT 1260 depends on ARM64_16K_PAGES 1261 1262config ARM64_VA_BITS_39 1263 bool "39-bit" 1264 depends on ARM64_4K_PAGES 1265 1266config ARM64_VA_BITS_42 1267 bool "42-bit" 1268 depends on ARM64_64K_PAGES 1269 1270config ARM64_VA_BITS_47 1271 bool "47-bit" 1272 depends on ARM64_16K_PAGES 1273 1274config ARM64_VA_BITS_48 1275 bool "48-bit" 1276 1277config ARM64_VA_BITS_52 1278 bool "52-bit" 1279 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 1280 help 1281 Enable 52-bit virtual addressing for userspace when explicitly 1282 requested via a hint to mmap(). The kernel will also use 52-bit 1283 virtual addresses for its own mappings (provided HW support for 1284 this feature is available, otherwise it reverts to 48-bit). 1285 1286 NOTE: Enabling 52-bit virtual addressing in conjunction with 1287 ARMv8.3 Pointer Authentication will result in the PAC being 1288 reduced from 7 bits to 3 bits, which may have a significant 1289 impact on its susceptibility to brute-force attacks. 1290 1291 If unsure, select 48-bit virtual addressing instead. 1292 1293endchoice 1294 1295config ARM64_FORCE_52BIT 1296 bool "Force 52-bit virtual addresses for userspace" 1297 depends on ARM64_VA_BITS_52 && EXPERT 1298 help 1299 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1300 to maintain compatibility with older software by providing 48-bit VAs 1301 unless a hint is supplied to mmap. 1302 1303 This configuration option disables the 48-bit compatibility logic, and 1304 forces all userspace addresses to be 52-bit on HW that supports it. One 1305 should only enable this configuration option for stress testing userspace 1306 memory management code. If unsure say N here. 1307 1308config ARM64_VA_BITS 1309 int 1310 default 36 if ARM64_VA_BITS_36 1311 default 39 if ARM64_VA_BITS_39 1312 default 42 if ARM64_VA_BITS_42 1313 default 47 if ARM64_VA_BITS_47 1314 default 48 if ARM64_VA_BITS_48 1315 default 52 if ARM64_VA_BITS_52 1316 1317choice 1318 prompt "Physical address space size" 1319 default ARM64_PA_BITS_48 1320 help 1321 Choose the maximum physical address range that the kernel will 1322 support. 1323 1324config ARM64_PA_BITS_48 1325 bool "48-bit" 1326 1327config ARM64_PA_BITS_52 1328 bool "52-bit (ARMv8.2)" 1329 depends on ARM64_64K_PAGES 1330 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1331 help 1332 Enable support for a 52-bit physical address space, introduced as 1333 part of the ARMv8.2-LPA extension. 1334 1335 With this enabled, the kernel will also continue to work on CPUs that 1336 do not support ARMv8.2-LPA, but with some added memory overhead (and 1337 minor performance overhead). 1338 1339endchoice 1340 1341config ARM64_PA_BITS 1342 int 1343 default 48 if ARM64_PA_BITS_48 1344 default 52 if ARM64_PA_BITS_52 1345 1346choice 1347 prompt "Endianness" 1348 default CPU_LITTLE_ENDIAN 1349 help 1350 Select the endianness of data accesses performed by the CPU. Userspace 1351 applications will need to be compiled and linked for the endianness 1352 that is selected here. 1353 1354config CPU_BIG_ENDIAN 1355 bool "Build big-endian kernel" 1356 depends on !LD_IS_LLD || LLD_VERSION >= 130000 1357 help 1358 Say Y if you plan on running a kernel with a big-endian userspace. 1359 1360config CPU_LITTLE_ENDIAN 1361 bool "Build little-endian kernel" 1362 help 1363 Say Y if you plan on running a kernel with a little-endian userspace. 1364 This is usually the case for distributions targeting arm64. 1365 1366endchoice 1367 1368config SCHED_MC 1369 bool "Multi-core scheduler support" 1370 help 1371 Multi-core scheduler support improves the CPU scheduler's decision 1372 making when dealing with multi-core CPU chips at a cost of slightly 1373 increased overhead in some places. If unsure say N here. 1374 1375config SCHED_CLUSTER 1376 bool "Cluster scheduler support" 1377 help 1378 Cluster scheduler support improves the CPU scheduler's decision 1379 making when dealing with machines that have clusters of CPUs. 1380 Cluster usually means a couple of CPUs which are placed closely 1381 by sharing mid-level caches, last-level cache tags or internal 1382 busses. 1383 1384config SCHED_SMT 1385 bool "SMT scheduler support" 1386 help 1387 Improves the CPU scheduler's decision making when dealing with 1388 MultiThreading at a cost of slightly increased overhead in some 1389 places. If unsure say N here. 1390 1391config NR_CPUS 1392 int "Maximum number of CPUs (2-4096)" 1393 range 2 4096 1394 default "256" 1395 1396config HOTPLUG_CPU 1397 bool "Support for hot-pluggable CPUs" 1398 select GENERIC_IRQ_MIGRATION 1399 help 1400 Say Y here to experiment with turning CPUs off and on. CPUs 1401 can be controlled through /sys/devices/system/cpu. 1402 1403# Common NUMA Features 1404config NUMA 1405 bool "NUMA Memory Allocation and Scheduler Support" 1406 select GENERIC_ARCH_NUMA 1407 select ACPI_NUMA if ACPI 1408 select OF_NUMA 1409 select HAVE_SETUP_PER_CPU_AREA 1410 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1411 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1412 select USE_PERCPU_NUMA_NODE_ID 1413 help 1414 Enable NUMA (Non-Uniform Memory Access) support. 1415 1416 The kernel will try to allocate memory used by a CPU on the 1417 local memory of the CPU and add some more 1418 NUMA awareness to the kernel. 1419 1420config NODES_SHIFT 1421 int "Maximum NUMA Nodes (as a power of 2)" 1422 range 1 10 1423 default "4" 1424 depends on NUMA 1425 help 1426 Specify the maximum number of NUMA Nodes available on the target 1427 system. Increases memory reserved to accommodate various tables. 1428 1429source "kernel/Kconfig.hz" 1430 1431config ARCH_SPARSEMEM_ENABLE 1432 def_bool y 1433 select SPARSEMEM_VMEMMAP_ENABLE 1434 select SPARSEMEM_VMEMMAP 1435 1436config HW_PERF_EVENTS 1437 def_bool y 1438 depends on ARM_PMU 1439 1440# Supported by clang >= 7.0 or GCC >= 12.0.0 1441config CC_HAVE_SHADOW_CALL_STACK 1442 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1443 1444config PARAVIRT 1445 bool "Enable paravirtualization code" 1446 help 1447 This changes the kernel so it can modify itself when it is run 1448 under a hypervisor, potentially improving performance significantly 1449 over full virtualization. 1450 1451config PARAVIRT_TIME_ACCOUNTING 1452 bool "Paravirtual steal time accounting" 1453 select PARAVIRT 1454 help 1455 Select this option to enable fine granularity task steal time 1456 accounting. Time spent executing other tasks in parallel with 1457 the current vCPU is discounted from the vCPU power. To account for 1458 that, there can be a small performance impact. 1459 1460 If in doubt, say N here. 1461 1462config KEXEC 1463 depends on PM_SLEEP_SMP 1464 select KEXEC_CORE 1465 bool "kexec system call" 1466 help 1467 kexec is a system call that implements the ability to shutdown your 1468 current kernel, and to start another kernel. It is like a reboot 1469 but it is independent of the system firmware. And like a reboot 1470 you can start any kernel with it, not just Linux. 1471 1472config KEXEC_FILE 1473 bool "kexec file based system call" 1474 select KEXEC_CORE 1475 select HAVE_IMA_KEXEC if IMA 1476 help 1477 This is new version of kexec system call. This system call is 1478 file based and takes file descriptors as system call argument 1479 for kernel and initramfs as opposed to list of segments as 1480 accepted by previous system call. 1481 1482config KEXEC_SIG 1483 bool "Verify kernel signature during kexec_file_load() syscall" 1484 depends on KEXEC_FILE 1485 help 1486 Select this option to verify a signature with loaded kernel 1487 image. If configured, any attempt of loading a image without 1488 valid signature will fail. 1489 1490 In addition to that option, you need to enable signature 1491 verification for the corresponding kernel image type being 1492 loaded in order for this to work. 1493 1494config KEXEC_IMAGE_VERIFY_SIG 1495 bool "Enable Image signature verification support" 1496 default y 1497 depends on KEXEC_SIG 1498 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1499 help 1500 Enable Image signature verification support. 1501 1502comment "Support for PE file signature verification disabled" 1503 depends on KEXEC_SIG 1504 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1505 1506config CRASH_DUMP 1507 bool "Build kdump crash kernel" 1508 help 1509 Generate crash dump after being started by kexec. This should 1510 be normally only set in special crash dump kernels which are 1511 loaded in the main kernel with kexec-tools into a specially 1512 reserved region and then later executed after a crash by 1513 kdump/kexec. 1514 1515 For more details see Documentation/admin-guide/kdump/kdump.rst 1516 1517config TRANS_TABLE 1518 def_bool y 1519 depends on HIBERNATION || KEXEC_CORE 1520 1521config XEN_DOM0 1522 def_bool y 1523 depends on XEN 1524 1525config XEN 1526 bool "Xen guest support on ARM64" 1527 depends on ARM64 && OF 1528 select SWIOTLB_XEN 1529 select PARAVIRT 1530 help 1531 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1532 1533# include/linux/mmzone.h requires the following to be true: 1534# 1535# MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1536# 1537# so the maximum value of MAX_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1538# 1539# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_ORDER | default MAX_ORDER | 1540# ----+-------------------+--------------+-----------------+--------------------+ 1541# 4K | 27 | 12 | 15 | 10 | 1542# 16K | 27 | 14 | 13 | 11 | 1543# 64K | 29 | 16 | 13 | 13 | 1544config ARCH_FORCE_MAX_ORDER 1545 int 1546 default "13" if ARM64_64K_PAGES 1547 default "11" if ARM64_16K_PAGES 1548 default "10" 1549 help 1550 The kernel page allocator limits the size of maximal physically 1551 contiguous allocations. The limit is called MAX_ORDER and it 1552 defines the maximal power of two of number of pages that can be 1553 allocated as a single contiguous block. This option allows 1554 overriding the default setting when ability to allocate very 1555 large blocks of physically contiguous memory is required. 1556 1557 The maximal size of allocation cannot exceed the size of the 1558 section, so the value of MAX_ORDER should satisfy 1559 1560 MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1561 1562 Don't change if unsure. 1563 1564config UNMAP_KERNEL_AT_EL0 1565 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1566 default y 1567 help 1568 Speculation attacks against some high-performance processors can 1569 be used to bypass MMU permission checks and leak kernel data to 1570 userspace. This can be defended against by unmapping the kernel 1571 when running in userspace, mapping it back in on exception entry 1572 via a trampoline page in the vector table. 1573 1574 If unsure, say Y. 1575 1576config MITIGATE_SPECTRE_BRANCH_HISTORY 1577 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1578 default y 1579 help 1580 Speculation attacks against some high-performance processors can 1581 make use of branch history to influence future speculation. 1582 When taking an exception from user-space, a sequence of branches 1583 or a firmware call overwrites the branch history. 1584 1585config RODATA_FULL_DEFAULT_ENABLED 1586 bool "Apply r/o permissions of VM areas also to their linear aliases" 1587 default y 1588 help 1589 Apply read-only attributes of VM areas to the linear alias of 1590 the backing pages as well. This prevents code or read-only data 1591 from being modified (inadvertently or intentionally) via another 1592 mapping of the same memory page. This additional enhancement can 1593 be turned off at runtime by passing rodata=[off|on] (and turned on 1594 with rodata=full if this option is set to 'n') 1595 1596 This requires the linear region to be mapped down to pages, 1597 which may adversely affect performance in some cases. 1598 1599config ARM64_SW_TTBR0_PAN 1600 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1601 help 1602 Enabling this option prevents the kernel from accessing 1603 user-space memory directly by pointing TTBR0_EL1 to a reserved 1604 zeroed area and reserved ASID. The user access routines 1605 restore the valid TTBR0_EL1 temporarily. 1606 1607config ARM64_TAGGED_ADDR_ABI 1608 bool "Enable the tagged user addresses syscall ABI" 1609 default y 1610 help 1611 When this option is enabled, user applications can opt in to a 1612 relaxed ABI via prctl() allowing tagged addresses to be passed 1613 to system calls as pointer arguments. For details, see 1614 Documentation/arch/arm64/tagged-address-abi.rst. 1615 1616menuconfig COMPAT 1617 bool "Kernel support for 32-bit EL0" 1618 depends on ARM64_4K_PAGES || EXPERT 1619 select HAVE_UID16 1620 select OLD_SIGSUSPEND3 1621 select COMPAT_OLD_SIGACTION 1622 help 1623 This option enables support for a 32-bit EL0 running under a 64-bit 1624 kernel at EL1. AArch32-specific components such as system calls, 1625 the user helper functions, VFP support and the ptrace interface are 1626 handled appropriately by the kernel. 1627 1628 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1629 that you will only be able to execute AArch32 binaries that were compiled 1630 with page size aligned segments. 1631 1632 If you want to execute 32-bit userspace applications, say Y. 1633 1634if COMPAT 1635 1636config KUSER_HELPERS 1637 bool "Enable kuser helpers page for 32-bit applications" 1638 default y 1639 help 1640 Warning: disabling this option may break 32-bit user programs. 1641 1642 Provide kuser helpers to compat tasks. The kernel provides 1643 helper code to userspace in read only form at a fixed location 1644 to allow userspace to be independent of the CPU type fitted to 1645 the system. This permits binaries to be run on ARMv4 through 1646 to ARMv8 without modification. 1647 1648 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1649 1650 However, the fixed address nature of these helpers can be used 1651 by ROP (return orientated programming) authors when creating 1652 exploits. 1653 1654 If all of the binaries and libraries which run on your platform 1655 are built specifically for your platform, and make no use of 1656 these helpers, then you can turn this option off to hinder 1657 such exploits. However, in that case, if a binary or library 1658 relying on those helpers is run, it will not function correctly. 1659 1660 Say N here only if you are absolutely certain that you do not 1661 need these helpers; otherwise, the safe option is to say Y. 1662 1663config COMPAT_VDSO 1664 bool "Enable vDSO for 32-bit applications" 1665 depends on !CPU_BIG_ENDIAN 1666 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1667 select GENERIC_COMPAT_VDSO 1668 default y 1669 help 1670 Place in the process address space of 32-bit applications an 1671 ELF shared object providing fast implementations of gettimeofday 1672 and clock_gettime. 1673 1674 You must have a 32-bit build of glibc 2.22 or later for programs 1675 to seamlessly take advantage of this. 1676 1677config THUMB2_COMPAT_VDSO 1678 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1679 depends on COMPAT_VDSO 1680 default y 1681 help 1682 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1683 otherwise with '-marm'. 1684 1685config COMPAT_ALIGNMENT_FIXUPS 1686 bool "Fix up misaligned multi-word loads and stores in user space" 1687 1688menuconfig ARMV8_DEPRECATED 1689 bool "Emulate deprecated/obsolete ARMv8 instructions" 1690 depends on SYSCTL 1691 help 1692 Legacy software support may require certain instructions 1693 that have been deprecated or obsoleted in the architecture. 1694 1695 Enable this config to enable selective emulation of these 1696 features. 1697 1698 If unsure, say Y 1699 1700if ARMV8_DEPRECATED 1701 1702config SWP_EMULATION 1703 bool "Emulate SWP/SWPB instructions" 1704 help 1705 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1706 they are always undefined. Say Y here to enable software 1707 emulation of these instructions for userspace using LDXR/STXR. 1708 This feature can be controlled at runtime with the abi.swp 1709 sysctl which is disabled by default. 1710 1711 In some older versions of glibc [<=2.8] SWP is used during futex 1712 trylock() operations with the assumption that the code will not 1713 be preempted. This invalid assumption may be more likely to fail 1714 with SWP emulation enabled, leading to deadlock of the user 1715 application. 1716 1717 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1718 on an external transaction monitoring block called a global 1719 monitor to maintain update atomicity. If your system does not 1720 implement a global monitor, this option can cause programs that 1721 perform SWP operations to uncached memory to deadlock. 1722 1723 If unsure, say Y 1724 1725config CP15_BARRIER_EMULATION 1726 bool "Emulate CP15 Barrier instructions" 1727 help 1728 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1729 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1730 strongly recommended to use the ISB, DSB, and DMB 1731 instructions instead. 1732 1733 Say Y here to enable software emulation of these 1734 instructions for AArch32 userspace code. When this option is 1735 enabled, CP15 barrier usage is traced which can help 1736 identify software that needs updating. This feature can be 1737 controlled at runtime with the abi.cp15_barrier sysctl. 1738 1739 If unsure, say Y 1740 1741config SETEND_EMULATION 1742 bool "Emulate SETEND instruction" 1743 help 1744 The SETEND instruction alters the data-endianness of the 1745 AArch32 EL0, and is deprecated in ARMv8. 1746 1747 Say Y here to enable software emulation of the instruction 1748 for AArch32 userspace code. This feature can be controlled 1749 at runtime with the abi.setend sysctl. 1750 1751 Note: All the cpus on the system must have mixed endian support at EL0 1752 for this feature to be enabled. If a new CPU - which doesn't support mixed 1753 endian - is hotplugged in after this feature has been enabled, there could 1754 be unexpected results in the applications. 1755 1756 If unsure, say Y 1757endif # ARMV8_DEPRECATED 1758 1759endif # COMPAT 1760 1761menu "ARMv8.1 architectural features" 1762 1763config ARM64_HW_AFDBM 1764 bool "Support for hardware updates of the Access and Dirty page flags" 1765 default y 1766 help 1767 The ARMv8.1 architecture extensions introduce support for 1768 hardware updates of the access and dirty information in page 1769 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1770 capable processors, accesses to pages with PTE_AF cleared will 1771 set this bit instead of raising an access flag fault. 1772 Similarly, writes to read-only pages with the DBM bit set will 1773 clear the read-only bit (AP[2]) instead of raising a 1774 permission fault. 1775 1776 Kernels built with this configuration option enabled continue 1777 to work on pre-ARMv8.1 hardware and the performance impact is 1778 minimal. If unsure, say Y. 1779 1780config ARM64_PAN 1781 bool "Enable support for Privileged Access Never (PAN)" 1782 default y 1783 help 1784 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1785 prevents the kernel or hypervisor from accessing user-space (EL0) 1786 memory directly. 1787 1788 Choosing this option will cause any unprotected (not using 1789 copy_to_user et al) memory access to fail with a permission fault. 1790 1791 The feature is detected at runtime, and will remain as a 'nop' 1792 instruction if the cpu does not implement the feature. 1793 1794config AS_HAS_LDAPR 1795 def_bool $(as-instr,.arch_extension rcpc) 1796 1797config AS_HAS_LSE_ATOMICS 1798 def_bool $(as-instr,.arch_extension lse) 1799 1800config ARM64_LSE_ATOMICS 1801 bool 1802 default ARM64_USE_LSE_ATOMICS 1803 depends on AS_HAS_LSE_ATOMICS 1804 1805config ARM64_USE_LSE_ATOMICS 1806 bool "Atomic instructions" 1807 default y 1808 help 1809 As part of the Large System Extensions, ARMv8.1 introduces new 1810 atomic instructions that are designed specifically to scale in 1811 very large systems. 1812 1813 Say Y here to make use of these instructions for the in-kernel 1814 atomic routines. This incurs a small overhead on CPUs that do 1815 not support these instructions and requires the kernel to be 1816 built with binutils >= 2.25 in order for the new instructions 1817 to be used. 1818 1819endmenu # "ARMv8.1 architectural features" 1820 1821menu "ARMv8.2 architectural features" 1822 1823config AS_HAS_ARMV8_2 1824 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1825 1826config AS_HAS_SHA3 1827 def_bool $(as-instr,.arch armv8.2-a+sha3) 1828 1829config ARM64_PMEM 1830 bool "Enable support for persistent memory" 1831 select ARCH_HAS_PMEM_API 1832 select ARCH_HAS_UACCESS_FLUSHCACHE 1833 help 1834 Say Y to enable support for the persistent memory API based on the 1835 ARMv8.2 DCPoP feature. 1836 1837 The feature is detected at runtime, and the kernel will use DC CVAC 1838 operations if DC CVAP is not supported (following the behaviour of 1839 DC CVAP itself if the system does not define a point of persistence). 1840 1841config ARM64_RAS_EXTN 1842 bool "Enable support for RAS CPU Extensions" 1843 default y 1844 help 1845 CPUs that support the Reliability, Availability and Serviceability 1846 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1847 errors, classify them and report them to software. 1848 1849 On CPUs with these extensions system software can use additional 1850 barriers to determine if faults are pending and read the 1851 classification from a new set of registers. 1852 1853 Selecting this feature will allow the kernel to use these barriers 1854 and access the new registers if the system supports the extension. 1855 Platform RAS features may additionally depend on firmware support. 1856 1857config ARM64_CNP 1858 bool "Enable support for Common Not Private (CNP) translations" 1859 default y 1860 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1861 help 1862 Common Not Private (CNP) allows translation table entries to 1863 be shared between different PEs in the same inner shareable 1864 domain, so the hardware can use this fact to optimise the 1865 caching of such entries in the TLB. 1866 1867 Selecting this option allows the CNP feature to be detected 1868 at runtime, and does not affect PEs that do not implement 1869 this feature. 1870 1871endmenu # "ARMv8.2 architectural features" 1872 1873menu "ARMv8.3 architectural features" 1874 1875config ARM64_PTR_AUTH 1876 bool "Enable support for pointer authentication" 1877 default y 1878 help 1879 Pointer authentication (part of the ARMv8.3 Extensions) provides 1880 instructions for signing and authenticating pointers against secret 1881 keys, which can be used to mitigate Return Oriented Programming (ROP) 1882 and other attacks. 1883 1884 This option enables these instructions at EL0 (i.e. for userspace). 1885 Choosing this option will cause the kernel to initialise secret keys 1886 for each process at exec() time, with these keys being 1887 context-switched along with the process. 1888 1889 The feature is detected at runtime. If the feature is not present in 1890 hardware it will not be advertised to userspace/KVM guest nor will it 1891 be enabled. 1892 1893 If the feature is present on the boot CPU but not on a late CPU, then 1894 the late CPU will be parked. Also, if the boot CPU does not have 1895 address auth and the late CPU has then the late CPU will still boot 1896 but with the feature disabled. On such a system, this option should 1897 not be selected. 1898 1899config ARM64_PTR_AUTH_KERNEL 1900 bool "Use pointer authentication for kernel" 1901 default y 1902 depends on ARM64_PTR_AUTH 1903 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1904 # Modern compilers insert a .note.gnu.property section note for PAC 1905 # which is only understood by binutils starting with version 2.33.1. 1906 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1907 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1908 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1909 help 1910 If the compiler supports the -mbranch-protection or 1911 -msign-return-address flag (e.g. GCC 7 or later), then this option 1912 will cause the kernel itself to be compiled with return address 1913 protection. In this case, and if the target hardware is known to 1914 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1915 disabled with minimal loss of protection. 1916 1917 This feature works with FUNCTION_GRAPH_TRACER option only if 1918 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1919 1920config CC_HAS_BRANCH_PROT_PAC_RET 1921 # GCC 9 or later, clang 8 or later 1922 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1923 1924config CC_HAS_SIGN_RETURN_ADDRESS 1925 # GCC 7, 8 1926 def_bool $(cc-option,-msign-return-address=all) 1927 1928config AS_HAS_ARMV8_3 1929 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1930 1931config AS_HAS_CFI_NEGATE_RA_STATE 1932 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1933 1934endmenu # "ARMv8.3 architectural features" 1935 1936menu "ARMv8.4 architectural features" 1937 1938config ARM64_AMU_EXTN 1939 bool "Enable support for the Activity Monitors Unit CPU extension" 1940 default y 1941 help 1942 The activity monitors extension is an optional extension introduced 1943 by the ARMv8.4 CPU architecture. This enables support for version 1 1944 of the activity monitors architecture, AMUv1. 1945 1946 To enable the use of this extension on CPUs that implement it, say Y. 1947 1948 Note that for architectural reasons, firmware _must_ implement AMU 1949 support when running on CPUs that present the activity monitors 1950 extension. The required support is present in: 1951 * Version 1.5 and later of the ARM Trusted Firmware 1952 1953 For kernels that have this configuration enabled but boot with broken 1954 firmware, you may need to say N here until the firmware is fixed. 1955 Otherwise you may experience firmware panics or lockups when 1956 accessing the counter registers. Even if you are not observing these 1957 symptoms, the values returned by the register reads might not 1958 correctly reflect reality. Most commonly, the value read will be 0, 1959 indicating that the counter is not enabled. 1960 1961config AS_HAS_ARMV8_4 1962 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1963 1964config ARM64_TLB_RANGE 1965 bool "Enable support for tlbi range feature" 1966 default y 1967 depends on AS_HAS_ARMV8_4 1968 help 1969 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1970 range of input addresses. 1971 1972 The feature introduces new assembly instructions, and they were 1973 support when binutils >= 2.30. 1974 1975endmenu # "ARMv8.4 architectural features" 1976 1977menu "ARMv8.5 architectural features" 1978 1979config AS_HAS_ARMV8_5 1980 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1981 1982config ARM64_BTI 1983 bool "Branch Target Identification support" 1984 default y 1985 help 1986 Branch Target Identification (part of the ARMv8.5 Extensions) 1987 provides a mechanism to limit the set of locations to which computed 1988 branch instructions such as BR or BLR can jump. 1989 1990 To make use of BTI on CPUs that support it, say Y. 1991 1992 BTI is intended to provide complementary protection to other control 1993 flow integrity protection mechanisms, such as the Pointer 1994 authentication mechanism provided as part of the ARMv8.3 Extensions. 1995 For this reason, it does not make sense to enable this option without 1996 also enabling support for pointer authentication. Thus, when 1997 enabling this option you should also select ARM64_PTR_AUTH=y. 1998 1999 Userspace binaries must also be specifically compiled to make use of 2000 this mechanism. If you say N here or the hardware does not support 2001 BTI, such binaries can still run, but you get no additional 2002 enforcement of branch destinations. 2003 2004config ARM64_BTI_KERNEL 2005 bool "Use Branch Target Identification for kernel" 2006 default y 2007 depends on ARM64_BTI 2008 depends on ARM64_PTR_AUTH_KERNEL 2009 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2010 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2011 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2012 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2013 depends on !CC_IS_GCC 2014 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 2015 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 2016 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2017 help 2018 Build the kernel with Branch Target Identification annotations 2019 and enable enforcement of this for kernel code. When this option 2020 is enabled and the system supports BTI all kernel code including 2021 modular code must have BTI enabled. 2022 2023config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2024 # GCC 9 or later, clang 8 or later 2025 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2026 2027config ARM64_E0PD 2028 bool "Enable support for E0PD" 2029 default y 2030 help 2031 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2032 that EL0 accesses made via TTBR1 always fault in constant time, 2033 providing similar benefits to KASLR as those provided by KPTI, but 2034 with lower overhead and without disrupting legitimate access to 2035 kernel memory such as SPE. 2036 2037 This option enables E0PD for TTBR1 where available. 2038 2039config ARM64_AS_HAS_MTE 2040 # Initial support for MTE went in binutils 2.32.0, checked with 2041 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2042 # as a late addition to the final architecture spec (LDGM/STGM) 2043 # is only supported in the newer 2.32.x and 2.33 binutils 2044 # versions, hence the extra "stgm" instruction check below. 2045 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2046 2047config ARM64_MTE 2048 bool "Memory Tagging Extension support" 2049 default y 2050 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2051 depends on AS_HAS_ARMV8_5 2052 depends on AS_HAS_LSE_ATOMICS 2053 # Required for tag checking in the uaccess routines 2054 depends on ARM64_PAN 2055 select ARCH_HAS_SUBPAGE_FAULTS 2056 select ARCH_USES_HIGH_VMA_FLAGS 2057 select ARCH_USES_PG_ARCH_X 2058 help 2059 Memory Tagging (part of the ARMv8.5 Extensions) provides 2060 architectural support for run-time, always-on detection of 2061 various classes of memory error to aid with software debugging 2062 to eliminate vulnerabilities arising from memory-unsafe 2063 languages. 2064 2065 This option enables the support for the Memory Tagging 2066 Extension at EL0 (i.e. for userspace). 2067 2068 Selecting this option allows the feature to be detected at 2069 runtime. Any secondary CPU not implementing this feature will 2070 not be allowed a late bring-up. 2071 2072 Userspace binaries that want to use this feature must 2073 explicitly opt in. The mechanism for the userspace is 2074 described in: 2075 2076 Documentation/arch/arm64/memory-tagging-extension.rst. 2077 2078endmenu # "ARMv8.5 architectural features" 2079 2080menu "ARMv8.7 architectural features" 2081 2082config ARM64_EPAN 2083 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2084 default y 2085 depends on ARM64_PAN 2086 help 2087 Enhanced Privileged Access Never (EPAN) allows Privileged 2088 Access Never to be used with Execute-only mappings. 2089 2090 The feature is detected at runtime, and will remain disabled 2091 if the cpu does not implement the feature. 2092endmenu # "ARMv8.7 architectural features" 2093 2094config ARM64_SVE 2095 bool "ARM Scalable Vector Extension support" 2096 default y 2097 help 2098 The Scalable Vector Extension (SVE) is an extension to the AArch64 2099 execution state which complements and extends the SIMD functionality 2100 of the base architecture to support much larger vectors and to enable 2101 additional vectorisation opportunities. 2102 2103 To enable use of this extension on CPUs that implement it, say Y. 2104 2105 On CPUs that support the SVE2 extensions, this option will enable 2106 those too. 2107 2108 Note that for architectural reasons, firmware _must_ implement SVE 2109 support when running on SVE capable hardware. The required support 2110 is present in: 2111 2112 * version 1.5 and later of the ARM Trusted Firmware 2113 * the AArch64 boot wrapper since commit 5e1261e08abf 2114 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2115 2116 For other firmware implementations, consult the firmware documentation 2117 or vendor. 2118 2119 If you need the kernel to boot on SVE-capable hardware with broken 2120 firmware, you may need to say N here until you get your firmware 2121 fixed. Otherwise, you may experience firmware panics or lockups when 2122 booting the kernel. If unsure and you are not observing these 2123 symptoms, you should assume that it is safe to say Y. 2124 2125config ARM64_SME 2126 bool "ARM Scalable Matrix Extension support" 2127 default y 2128 depends on ARM64_SVE 2129 help 2130 The Scalable Matrix Extension (SME) is an extension to the AArch64 2131 execution state which utilises a substantial subset of the SVE 2132 instruction set, together with the addition of new architectural 2133 register state capable of holding two dimensional matrix tiles to 2134 enable various matrix operations. 2135 2136config ARM64_PSEUDO_NMI 2137 bool "Support for NMI-like interrupts" 2138 select ARM_GIC_V3 2139 help 2140 Adds support for mimicking Non-Maskable Interrupts through the use of 2141 GIC interrupt priority. This support requires version 3 or later of 2142 ARM GIC. 2143 2144 This high priority configuration for interrupts needs to be 2145 explicitly enabled by setting the kernel parameter 2146 "irqchip.gicv3_pseudo_nmi" to 1. 2147 2148 If unsure, say N 2149 2150if ARM64_PSEUDO_NMI 2151config ARM64_DEBUG_PRIORITY_MASKING 2152 bool "Debug interrupt priority masking" 2153 help 2154 This adds runtime checks to functions enabling/disabling 2155 interrupts when using priority masking. The additional checks verify 2156 the validity of ICC_PMR_EL1 when calling concerned functions. 2157 2158 If unsure, say N 2159endif # ARM64_PSEUDO_NMI 2160 2161config RELOCATABLE 2162 bool "Build a relocatable kernel image" if EXPERT 2163 select ARCH_HAS_RELR 2164 default y 2165 help 2166 This builds the kernel as a Position Independent Executable (PIE), 2167 which retains all relocation metadata required to relocate the 2168 kernel binary at runtime to a different virtual address than the 2169 address it was linked at. 2170 Since AArch64 uses the RELA relocation format, this requires a 2171 relocation pass at runtime even if the kernel is loaded at the 2172 same address it was linked at. 2173 2174config RANDOMIZE_BASE 2175 bool "Randomize the address of the kernel image" 2176 select RELOCATABLE 2177 help 2178 Randomizes the virtual address at which the kernel image is 2179 loaded, as a security feature that deters exploit attempts 2180 relying on knowledge of the location of kernel internals. 2181 2182 It is the bootloader's job to provide entropy, by passing a 2183 random u64 value in /chosen/kaslr-seed at kernel entry. 2184 2185 When booting via the UEFI stub, it will invoke the firmware's 2186 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2187 to the kernel proper. In addition, it will randomise the physical 2188 location of the kernel Image as well. 2189 2190 If unsure, say N. 2191 2192config RANDOMIZE_MODULE_REGION_FULL 2193 bool "Randomize the module region over a 2 GB range" 2194 depends on RANDOMIZE_BASE 2195 default y 2196 help 2197 Randomizes the location of the module region inside a 2 GB window 2198 covering the core kernel. This way, it is less likely for modules 2199 to leak information about the location of core kernel data structures 2200 but it does imply that function calls between modules and the core 2201 kernel will need to be resolved via veneers in the module PLT. 2202 2203 When this option is not set, the module region will be randomized over 2204 a limited range that contains the [_stext, _etext] interval of the 2205 core kernel, so branch relocations are almost always in range unless 2206 the region is exhausted. In this particular case of region 2207 exhaustion, modules might be able to fall back to a larger 2GB area. 2208 2209config CC_HAVE_STACKPROTECTOR_SYSREG 2210 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2211 2212config STACKPROTECTOR_PER_TASK 2213 def_bool y 2214 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2215 2216config UNWIND_PATCH_PAC_INTO_SCS 2217 bool "Enable shadow call stack dynamically using code patching" 2218 # needs Clang with https://reviews.llvm.org/D111780 incorporated 2219 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2220 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2221 depends on SHADOW_CALL_STACK 2222 select UNWIND_TABLES 2223 select DYNAMIC_SCS 2224 2225endmenu # "Kernel Features" 2226 2227menu "Boot options" 2228 2229config ARM64_ACPI_PARKING_PROTOCOL 2230 bool "Enable support for the ARM64 ACPI parking protocol" 2231 depends on ACPI 2232 help 2233 Enable support for the ARM64 ACPI parking protocol. If disabled 2234 the kernel will not allow booting through the ARM64 ACPI parking 2235 protocol even if the corresponding data is present in the ACPI 2236 MADT table. 2237 2238config CMDLINE 2239 string "Default kernel command string" 2240 default "" 2241 help 2242 Provide a set of default command-line options at build time by 2243 entering them here. As a minimum, you should specify the the 2244 root device (e.g. root=/dev/nfs). 2245 2246choice 2247 prompt "Kernel command line type" if CMDLINE != "" 2248 default CMDLINE_FROM_BOOTLOADER 2249 help 2250 Choose how the kernel will handle the provided default kernel 2251 command line string. 2252 2253config CMDLINE_FROM_BOOTLOADER 2254 bool "Use bootloader kernel arguments if available" 2255 help 2256 Uses the command-line options passed by the boot loader. If 2257 the boot loader doesn't provide any, the default kernel command 2258 string provided in CMDLINE will be used. 2259 2260config CMDLINE_FORCE 2261 bool "Always use the default kernel command string" 2262 help 2263 Always use the default kernel command string, even if the boot 2264 loader passes other arguments to the kernel. 2265 This is useful if you cannot or don't want to change the 2266 command-line options your boot loader passes to the kernel. 2267 2268endchoice 2269 2270config EFI_STUB 2271 bool 2272 2273config EFI 2274 bool "UEFI runtime support" 2275 depends on OF && !CPU_BIG_ENDIAN 2276 depends on KERNEL_MODE_NEON 2277 select ARCH_SUPPORTS_ACPI 2278 select LIBFDT 2279 select UCS2_STRING 2280 select EFI_PARAMS_FROM_FDT 2281 select EFI_RUNTIME_WRAPPERS 2282 select EFI_STUB 2283 select EFI_GENERIC_STUB 2284 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2285 default y 2286 help 2287 This option provides support for runtime services provided 2288 by UEFI firmware (such as non-volatile variables, realtime 2289 clock, and platform reset). A UEFI stub is also provided to 2290 allow the kernel to be booted as an EFI application. This 2291 is only useful on systems that have UEFI firmware. 2292 2293config DMI 2294 bool "Enable support for SMBIOS (DMI) tables" 2295 depends on EFI 2296 default y 2297 help 2298 This enables SMBIOS/DMI feature for systems. 2299 2300 This option is only useful on systems that have UEFI firmware. 2301 However, even with this option, the resultant kernel should 2302 continue to boot on existing non-UEFI platforms. 2303 2304endmenu # "Boot options" 2305 2306menu "Power management options" 2307 2308source "kernel/power/Kconfig" 2309 2310config ARCH_HIBERNATION_POSSIBLE 2311 def_bool y 2312 depends on CPU_PM 2313 2314config ARCH_HIBERNATION_HEADER 2315 def_bool y 2316 depends on HIBERNATION 2317 2318config ARCH_SUSPEND_POSSIBLE 2319 def_bool y 2320 2321endmenu # "Power management options" 2322 2323menu "CPU Power Management" 2324 2325source "drivers/cpuidle/Kconfig" 2326 2327source "drivers/cpufreq/Kconfig" 2328 2329endmenu # "CPU Power Management" 2330 2331source "drivers/acpi/Kconfig" 2332 2333source "arch/arm64/kvm/Kconfig" 2334 2335