xref: /linux/arch/arm64/Kconfig (revision a48b0872e69428d3d02994dcfad3519f01def7fa)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
15	select ARCH_ENABLE_MEMORY_HOTPLUG
16	select ARCH_ENABLE_MEMORY_HOTREMOVE
17	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
18	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
19	select ARCH_HAS_CACHE_LINE_SIZE
20	select ARCH_HAS_DEBUG_VIRTUAL
21	select ARCH_HAS_DEBUG_VM_PGTABLE
22	select ARCH_HAS_DMA_PREP_COHERENT
23	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
24	select ARCH_HAS_FAST_MULTIPLIER
25	select ARCH_HAS_FORTIFY_SOURCE
26	select ARCH_HAS_GCOV_PROFILE_ALL
27	select ARCH_HAS_GIGANTIC_PAGE
28	select ARCH_HAS_KCOV
29	select ARCH_HAS_KEEPINITRD
30	select ARCH_HAS_MEMBARRIER_SYNC_CORE
31	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
32	select ARCH_HAS_PTE_DEVMAP
33	select ARCH_HAS_PTE_SPECIAL
34	select ARCH_HAS_SETUP_DMA_OPS
35	select ARCH_HAS_SET_DIRECT_MAP
36	select ARCH_HAS_SET_MEMORY
37	select ARCH_STACKWALK
38	select ARCH_HAS_STRICT_KERNEL_RWX
39	select ARCH_HAS_STRICT_MODULE_RWX
40	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
41	select ARCH_HAS_SYNC_DMA_FOR_CPU
42	select ARCH_HAS_SYSCALL_WRAPPER
43	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
44	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
45	select ARCH_HAVE_ELF_PROT
46	select ARCH_HAVE_NMI_SAFE_CMPXCHG
47	select ARCH_INLINE_READ_LOCK if !PREEMPTION
48	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
49	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
50	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
51	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
52	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
53	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
54	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
55	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
56	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
57	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
59	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
60	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
61	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
63	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
64	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
65	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
66	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
67	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
69	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
70	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
71	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
73	select ARCH_KEEP_MEMBLOCK
74	select ARCH_USE_CMPXCHG_LOCKREF
75	select ARCH_USE_GNU_PROPERTY
76	select ARCH_USE_MEMTEST
77	select ARCH_USE_QUEUED_RWLOCKS
78	select ARCH_USE_QUEUED_SPINLOCKS
79	select ARCH_USE_SYM_ANNOTATIONS
80	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
81	select ARCH_SUPPORTS_HUGETLBFS
82	select ARCH_SUPPORTS_MEMORY_FAILURE
83	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
84	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
85	select ARCH_SUPPORTS_LTO_CLANG_THIN
86	select ARCH_SUPPORTS_CFI_CLANG
87	select ARCH_SUPPORTS_ATOMIC_RMW
88	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
89	select ARCH_SUPPORTS_NUMA_BALANCING
90	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
91	select ARCH_WANT_DEFAULT_BPF_JIT
92	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
93	select ARCH_WANT_FRAME_POINTERS
94	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
95	select ARCH_WANT_LD_ORPHAN_WARN
96	select ARCH_HAS_UBSAN_SANITIZE_ALL
97	select ARM_AMBA
98	select ARM_ARCH_TIMER
99	select ARM_GIC
100	select AUDIT_ARCH_COMPAT_GENERIC
101	select ARM_GIC_V2M if PCI
102	select ARM_GIC_V3
103	select ARM_GIC_V3_ITS if PCI
104	select ARM_PSCI_FW
105	select BUILDTIME_TABLE_SORT
106	select CLONE_BACKWARDS
107	select COMMON_CLK
108	select CPU_PM if (SUSPEND || CPU_IDLE)
109	select CRC32
110	select DCACHE_WORD_ACCESS
111	select DMA_DIRECT_REMAP
112	select EDAC_SUPPORT
113	select FRAME_POINTER
114	select GENERIC_ALLOCATOR
115	select GENERIC_ARCH_TOPOLOGY
116	select GENERIC_CLOCKEVENTS_BROADCAST
117	select GENERIC_CPU_AUTOPROBE
118	select GENERIC_CPU_VULNERABILITIES
119	select GENERIC_EARLY_IOREMAP
120	select GENERIC_FIND_FIRST_BIT
121	select GENERIC_IDLE_POLL_SETUP
122	select GENERIC_IRQ_IPI
123	select GENERIC_IRQ_PROBE
124	select GENERIC_IRQ_SHOW
125	select GENERIC_IRQ_SHOW_LEVEL
126	select GENERIC_LIB_DEVMEM_IS_ALLOWED
127	select GENERIC_PCI_IOMAP
128	select GENERIC_PTDUMP
129	select GENERIC_SCHED_CLOCK
130	select GENERIC_SMP_IDLE_THREAD
131	select GENERIC_STRNCPY_FROM_USER
132	select GENERIC_STRNLEN_USER
133	select GENERIC_TIME_VSYSCALL
134	select GENERIC_GETTIMEOFDAY
135	select GENERIC_VDSO_TIME_NS
136	select HANDLE_DOMAIN_IRQ
137	select HARDIRQS_SW_RESEND
138	select HAVE_MOVE_PMD
139	select HAVE_MOVE_PUD
140	select HAVE_PCI
141	select HAVE_ACPI_APEI if (ACPI && EFI)
142	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
143	select HAVE_ARCH_AUDITSYSCALL
144	select HAVE_ARCH_BITREVERSE
145	select HAVE_ARCH_COMPILER_H
146	select HAVE_ARCH_HUGE_VMAP
147	select HAVE_ARCH_JUMP_LABEL
148	select HAVE_ARCH_JUMP_LABEL_RELATIVE
149	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
150	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
151	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
152	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
153	select HAVE_ARCH_KFENCE
154	select HAVE_ARCH_KGDB
155	select HAVE_ARCH_MMAP_RND_BITS
156	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
157	select HAVE_ARCH_PFN_VALID
158	select HAVE_ARCH_PREL32_RELOCATIONS
159	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
160	select HAVE_ARCH_SECCOMP_FILTER
161	select HAVE_ARCH_STACKLEAK
162	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
163	select HAVE_ARCH_TRACEHOOK
164	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
165	select HAVE_ARCH_VMAP_STACK
166	select HAVE_ARM_SMCCC
167	select HAVE_ASM_MODVERSIONS
168	select HAVE_EBPF_JIT
169	select HAVE_C_RECORDMCOUNT
170	select HAVE_CMPXCHG_DOUBLE
171	select HAVE_CMPXCHG_LOCAL
172	select HAVE_CONTEXT_TRACKING
173	select HAVE_DEBUG_BUGVERBOSE
174	select HAVE_DEBUG_KMEMLEAK
175	select HAVE_DMA_CONTIGUOUS
176	select HAVE_DYNAMIC_FTRACE
177	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
178		if $(cc-option,-fpatchable-function-entry=2)
179	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
180		if DYNAMIC_FTRACE_WITH_REGS
181	select HAVE_EFFICIENT_UNALIGNED_ACCESS
182	select HAVE_FAST_GUP
183	select HAVE_FTRACE_MCOUNT_RECORD
184	select HAVE_FUNCTION_TRACER
185	select HAVE_FUNCTION_ERROR_INJECTION
186	select HAVE_FUNCTION_GRAPH_TRACER
187	select HAVE_GCC_PLUGINS
188	select HAVE_HW_BREAKPOINT if PERF_EVENTS
189	select HAVE_IRQ_TIME_ACCOUNTING
190	select HAVE_NMI
191	select HAVE_PATA_PLATFORM
192	select HAVE_PERF_EVENTS
193	select HAVE_PERF_REGS
194	select HAVE_PERF_USER_STACK_DUMP
195	select HAVE_REGS_AND_STACK_ACCESS_API
196	select HAVE_FUNCTION_ARG_ACCESS_API
197	select HAVE_FUTEX_CMPXCHG if FUTEX
198	select MMU_GATHER_RCU_TABLE_FREE
199	select HAVE_RSEQ
200	select HAVE_STACKPROTECTOR
201	select HAVE_SYSCALL_TRACEPOINTS
202	select HAVE_KPROBES
203	select HAVE_KRETPROBES
204	select HAVE_GENERIC_VDSO
205	select IOMMU_DMA if IOMMU_SUPPORT
206	select IRQ_DOMAIN
207	select IRQ_FORCED_THREADING
208	select KASAN_VMALLOC if KASAN_GENERIC
209	select MODULES_USE_ELF_RELA
210	select NEED_DMA_MAP_STATE
211	select NEED_SG_DMA_LENGTH
212	select OF
213	select OF_EARLY_FLATTREE
214	select PCI_DOMAINS_GENERIC if PCI
215	select PCI_ECAM if (ACPI && PCI)
216	select PCI_SYSCALL if PCI
217	select POWER_RESET
218	select POWER_SUPPLY
219	select SPARSE_IRQ
220	select SWIOTLB
221	select SYSCTL_EXCEPTION_TRACE
222	select THREAD_INFO_IN_TASK
223	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
224	help
225	  ARM 64-bit (AArch64) Linux support.
226
227config 64BIT
228	def_bool y
229
230config MMU
231	def_bool y
232
233config ARM64_PAGE_SHIFT
234	int
235	default 16 if ARM64_64K_PAGES
236	default 14 if ARM64_16K_PAGES
237	default 12
238
239config ARM64_CONT_PTE_SHIFT
240	int
241	default 5 if ARM64_64K_PAGES
242	default 7 if ARM64_16K_PAGES
243	default 4
244
245config ARM64_CONT_PMD_SHIFT
246	int
247	default 5 if ARM64_64K_PAGES
248	default 5 if ARM64_16K_PAGES
249	default 4
250
251config ARCH_MMAP_RND_BITS_MIN
252       default 14 if ARM64_64K_PAGES
253       default 16 if ARM64_16K_PAGES
254       default 18
255
256# max bits determined by the following formula:
257#  VA_BITS - PAGE_SHIFT - 3
258config ARCH_MMAP_RND_BITS_MAX
259       default 19 if ARM64_VA_BITS=36
260       default 24 if ARM64_VA_BITS=39
261       default 27 if ARM64_VA_BITS=42
262       default 30 if ARM64_VA_BITS=47
263       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
264       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
265       default 33 if ARM64_VA_BITS=48
266       default 14 if ARM64_64K_PAGES
267       default 16 if ARM64_16K_PAGES
268       default 18
269
270config ARCH_MMAP_RND_COMPAT_BITS_MIN
271       default 7 if ARM64_64K_PAGES
272       default 9 if ARM64_16K_PAGES
273       default 11
274
275config ARCH_MMAP_RND_COMPAT_BITS_MAX
276       default 16
277
278config NO_IOPORT_MAP
279	def_bool y if !PCI
280
281config STACKTRACE_SUPPORT
282	def_bool y
283
284config ILLEGAL_POINTER_VALUE
285	hex
286	default 0xdead000000000000
287
288config LOCKDEP_SUPPORT
289	def_bool y
290
291config TRACE_IRQFLAGS_SUPPORT
292	def_bool y
293
294config GENERIC_BUG
295	def_bool y
296	depends on BUG
297
298config GENERIC_BUG_RELATIVE_POINTERS
299	def_bool y
300	depends on GENERIC_BUG
301
302config GENERIC_HWEIGHT
303	def_bool y
304
305config GENERIC_CSUM
306        def_bool y
307
308config GENERIC_CALIBRATE_DELAY
309	def_bool y
310
311config ZONE_DMA
312	bool "Support DMA zone" if EXPERT
313	default y
314
315config ZONE_DMA32
316	bool "Support DMA32 zone" if EXPERT
317	default y
318
319config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
320	def_bool y
321
322config SMP
323	def_bool y
324
325config KERNEL_MODE_NEON
326	def_bool y
327
328config FIX_EARLYCON_MEM
329	def_bool y
330
331config PGTABLE_LEVELS
332	int
333	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
334	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
335	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
336	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
337	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
338	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
339
340config ARCH_SUPPORTS_UPROBES
341	def_bool y
342
343config ARCH_PROC_KCORE_TEXT
344	def_bool y
345
346config BROKEN_GAS_INST
347	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
348
349config KASAN_SHADOW_OFFSET
350	hex
351	depends on KASAN_GENERIC || KASAN_SW_TAGS
352	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
353	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
354	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
355	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
356	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
357	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
358	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
359	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
360	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
361	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
362	default 0xffffffffffffffff
363
364source "arch/arm64/Kconfig.platforms"
365
366menu "Kernel Features"
367
368menu "ARM errata workarounds via the alternatives framework"
369
370config ARM64_WORKAROUND_CLEAN_CACHE
371	bool
372
373config ARM64_ERRATUM_826319
374	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
375	default y
376	select ARM64_WORKAROUND_CLEAN_CACHE
377	help
378	  This option adds an alternative code sequence to work around ARM
379	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
380	  AXI master interface and an L2 cache.
381
382	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
383	  and is unable to accept a certain write via this interface, it will
384	  not progress on read data presented on the read data channel and the
385	  system can deadlock.
386
387	  The workaround promotes data cache clean instructions to
388	  data cache clean-and-invalidate.
389	  Please note that this does not necessarily enable the workaround,
390	  as it depends on the alternative framework, which will only patch
391	  the kernel if an affected CPU is detected.
392
393	  If unsure, say Y.
394
395config ARM64_ERRATUM_827319
396	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
397	default y
398	select ARM64_WORKAROUND_CLEAN_CACHE
399	help
400	  This option adds an alternative code sequence to work around ARM
401	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
402	  master interface and an L2 cache.
403
404	  Under certain conditions this erratum can cause a clean line eviction
405	  to occur at the same time as another transaction to the same address
406	  on the AMBA 5 CHI interface, which can cause data corruption if the
407	  interconnect reorders the two transactions.
408
409	  The workaround promotes data cache clean instructions to
410	  data cache clean-and-invalidate.
411	  Please note that this does not necessarily enable the workaround,
412	  as it depends on the alternative framework, which will only patch
413	  the kernel if an affected CPU is detected.
414
415	  If unsure, say Y.
416
417config ARM64_ERRATUM_824069
418	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
419	default y
420	select ARM64_WORKAROUND_CLEAN_CACHE
421	help
422	  This option adds an alternative code sequence to work around ARM
423	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
424	  to a coherent interconnect.
425
426	  If a Cortex-A53 processor is executing a store or prefetch for
427	  write instruction at the same time as a processor in another
428	  cluster is executing a cache maintenance operation to the same
429	  address, then this erratum might cause a clean cache line to be
430	  incorrectly marked as dirty.
431
432	  The workaround promotes data cache clean instructions to
433	  data cache clean-and-invalidate.
434	  Please note that this option does not necessarily enable the
435	  workaround, as it depends on the alternative framework, which will
436	  only patch the kernel if an affected CPU is detected.
437
438	  If unsure, say Y.
439
440config ARM64_ERRATUM_819472
441	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
442	default y
443	select ARM64_WORKAROUND_CLEAN_CACHE
444	help
445	  This option adds an alternative code sequence to work around ARM
446	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
447	  present when it is connected to a coherent interconnect.
448
449	  If the processor is executing a load and store exclusive sequence at
450	  the same time as a processor in another cluster is executing a cache
451	  maintenance operation to the same address, then this erratum might
452	  cause data corruption.
453
454	  The workaround promotes data cache clean instructions to
455	  data cache clean-and-invalidate.
456	  Please note that this does not necessarily enable the workaround,
457	  as it depends on the alternative framework, which will only patch
458	  the kernel if an affected CPU is detected.
459
460	  If unsure, say Y.
461
462config ARM64_ERRATUM_832075
463	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
464	default y
465	help
466	  This option adds an alternative code sequence to work around ARM
467	  erratum 832075 on Cortex-A57 parts up to r1p2.
468
469	  Affected Cortex-A57 parts might deadlock when exclusive load/store
470	  instructions to Write-Back memory are mixed with Device loads.
471
472	  The workaround is to promote device loads to use Load-Acquire
473	  semantics.
474	  Please note that this does not necessarily enable the workaround,
475	  as it depends on the alternative framework, which will only patch
476	  the kernel if an affected CPU is detected.
477
478	  If unsure, say Y.
479
480config ARM64_ERRATUM_834220
481	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
482	depends on KVM
483	default y
484	help
485	  This option adds an alternative code sequence to work around ARM
486	  erratum 834220 on Cortex-A57 parts up to r1p2.
487
488	  Affected Cortex-A57 parts might report a Stage 2 translation
489	  fault as the result of a Stage 1 fault for load crossing a
490	  page boundary when there is a permission or device memory
491	  alignment fault at Stage 1 and a translation fault at Stage 2.
492
493	  The workaround is to verify that the Stage 1 translation
494	  doesn't generate a fault before handling the Stage 2 fault.
495	  Please note that this does not necessarily enable the workaround,
496	  as it depends on the alternative framework, which will only patch
497	  the kernel if an affected CPU is detected.
498
499	  If unsure, say Y.
500
501config ARM64_ERRATUM_845719
502	bool "Cortex-A53: 845719: a load might read incorrect data"
503	depends on COMPAT
504	default y
505	help
506	  This option adds an alternative code sequence to work around ARM
507	  erratum 845719 on Cortex-A53 parts up to r0p4.
508
509	  When running a compat (AArch32) userspace on an affected Cortex-A53
510	  part, a load at EL0 from a virtual address that matches the bottom 32
511	  bits of the virtual address used by a recent load at (AArch64) EL1
512	  might return incorrect data.
513
514	  The workaround is to write the contextidr_el1 register on exception
515	  return to a 32-bit task.
516	  Please note that this does not necessarily enable the workaround,
517	  as it depends on the alternative framework, which will only patch
518	  the kernel if an affected CPU is detected.
519
520	  If unsure, say Y.
521
522config ARM64_ERRATUM_843419
523	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
524	default y
525	select ARM64_MODULE_PLTS if MODULES
526	help
527	  This option links the kernel with '--fix-cortex-a53-843419' and
528	  enables PLT support to replace certain ADRP instructions, which can
529	  cause subsequent memory accesses to use an incorrect address on
530	  Cortex-A53 parts up to r0p4.
531
532	  If unsure, say Y.
533
534config ARM64_LD_HAS_FIX_ERRATUM_843419
535	def_bool $(ld-option,--fix-cortex-a53-843419)
536
537config ARM64_ERRATUM_1024718
538	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
539	default y
540	help
541	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
542
543	  Affected Cortex-A55 cores (all revisions) could cause incorrect
544	  update of the hardware dirty bit when the DBM/AP bits are updated
545	  without a break-before-make. The workaround is to disable the usage
546	  of hardware DBM locally on the affected cores. CPUs not affected by
547	  this erratum will continue to use the feature.
548
549	  If unsure, say Y.
550
551config ARM64_ERRATUM_1418040
552	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
553	default y
554	depends on COMPAT
555	help
556	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
557	  errata 1188873 and 1418040.
558
559	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
560	  cause register corruption when accessing the timer registers
561	  from AArch32 userspace.
562
563	  If unsure, say Y.
564
565config ARM64_WORKAROUND_SPECULATIVE_AT
566	bool
567
568config ARM64_ERRATUM_1165522
569	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
570	default y
571	select ARM64_WORKAROUND_SPECULATIVE_AT
572	help
573	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
574
575	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
576	  corrupted TLBs by speculating an AT instruction during a guest
577	  context switch.
578
579	  If unsure, say Y.
580
581config ARM64_ERRATUM_1319367
582	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
583	default y
584	select ARM64_WORKAROUND_SPECULATIVE_AT
585	help
586	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
587	  and A72 erratum 1319367
588
589	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
590	  speculating an AT instruction during a guest context switch.
591
592	  If unsure, say Y.
593
594config ARM64_ERRATUM_1530923
595	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
596	default y
597	select ARM64_WORKAROUND_SPECULATIVE_AT
598	help
599	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
600
601	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
602	  corrupted TLBs by speculating an AT instruction during a guest
603	  context switch.
604
605	  If unsure, say Y.
606
607config ARM64_WORKAROUND_REPEAT_TLBI
608	bool
609
610config ARM64_ERRATUM_1286807
611	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
612	default y
613	select ARM64_WORKAROUND_REPEAT_TLBI
614	help
615	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
616
617	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
618	  address for a cacheable mapping of a location is being
619	  accessed by a core while another core is remapping the virtual
620	  address to a new physical page using the recommended
621	  break-before-make sequence, then under very rare circumstances
622	  TLBI+DSB completes before a read using the translation being
623	  invalidated has been observed by other observers. The
624	  workaround repeats the TLBI+DSB operation.
625
626config ARM64_ERRATUM_1463225
627	bool "Cortex-A76: Software Step might prevent interrupt recognition"
628	default y
629	help
630	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
631
632	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
633	  of a system call instruction (SVC) can prevent recognition of
634	  subsequent interrupts when software stepping is disabled in the
635	  exception handler of the system call and either kernel debugging
636	  is enabled or VHE is in use.
637
638	  Work around the erratum by triggering a dummy step exception
639	  when handling a system call from a task that is being stepped
640	  in a VHE configuration of the kernel.
641
642	  If unsure, say Y.
643
644config ARM64_ERRATUM_1542419
645	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
646	default y
647	help
648	  This option adds a workaround for ARM Neoverse-N1 erratum
649	  1542419.
650
651	  Affected Neoverse-N1 cores could execute a stale instruction when
652	  modified by another CPU. The workaround depends on a firmware
653	  counterpart.
654
655	  Workaround the issue by hiding the DIC feature from EL0. This
656	  forces user-space to perform cache maintenance.
657
658	  If unsure, say Y.
659
660config ARM64_ERRATUM_1508412
661	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
662	default y
663	help
664	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
665
666	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
667	  of a store-exclusive or read of PAR_EL1 and a load with device or
668	  non-cacheable memory attributes. The workaround depends on a firmware
669	  counterpart.
670
671	  KVM guests must also have the workaround implemented or they can
672	  deadlock the system.
673
674	  Work around the issue by inserting DMB SY barriers around PAR_EL1
675	  register reads and warning KVM users. The DMB barrier is sufficient
676	  to prevent a speculative PAR_EL1 read.
677
678	  If unsure, say Y.
679
680config CAVIUM_ERRATUM_22375
681	bool "Cavium erratum 22375, 24313"
682	default y
683	help
684	  Enable workaround for errata 22375 and 24313.
685
686	  This implements two gicv3-its errata workarounds for ThunderX. Both
687	  with a small impact affecting only ITS table allocation.
688
689	    erratum 22375: only alloc 8MB table size
690	    erratum 24313: ignore memory access type
691
692	  The fixes are in ITS initialization and basically ignore memory access
693	  type and table size provided by the TYPER and BASER registers.
694
695	  If unsure, say Y.
696
697config CAVIUM_ERRATUM_23144
698	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
699	depends on NUMA
700	default y
701	help
702	  ITS SYNC command hang for cross node io and collections/cpu mapping.
703
704	  If unsure, say Y.
705
706config CAVIUM_ERRATUM_23154
707	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
708	default y
709	help
710	  The gicv3 of ThunderX requires a modified version for
711	  reading the IAR status to ensure data synchronization
712	  (access to icc_iar1_el1 is not sync'ed before and after).
713
714	  If unsure, say Y.
715
716config CAVIUM_ERRATUM_27456
717	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
718	default y
719	help
720	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
721	  instructions may cause the icache to become corrupted if it
722	  contains data for a non-current ASID.  The fix is to
723	  invalidate the icache when changing the mm context.
724
725	  If unsure, say Y.
726
727config CAVIUM_ERRATUM_30115
728	bool "Cavium erratum 30115: Guest may disable interrupts in host"
729	default y
730	help
731	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
732	  1.2, and T83 Pass 1.0, KVM guest execution may disable
733	  interrupts in host. Trapping both GICv3 group-0 and group-1
734	  accesses sidesteps the issue.
735
736	  If unsure, say Y.
737
738config CAVIUM_TX2_ERRATUM_219
739	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
740	default y
741	help
742	  On Cavium ThunderX2, a load, store or prefetch instruction between a
743	  TTBR update and the corresponding context synchronizing operation can
744	  cause a spurious Data Abort to be delivered to any hardware thread in
745	  the CPU core.
746
747	  Work around the issue by avoiding the problematic code sequence and
748	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
749	  trap handler performs the corresponding register access, skips the
750	  instruction and ensures context synchronization by virtue of the
751	  exception return.
752
753	  If unsure, say Y.
754
755config FUJITSU_ERRATUM_010001
756	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
757	default y
758	help
759	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
760	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
761	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
762	  This fault occurs under a specific hardware condition when a
763	  load/store instruction performs an address translation using:
764	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
765	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
766	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
767	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
768
769	  The workaround is to ensure these bits are clear in TCR_ELx.
770	  The workaround only affects the Fujitsu-A64FX.
771
772	  If unsure, say Y.
773
774config HISILICON_ERRATUM_161600802
775	bool "Hip07 161600802: Erroneous redistributor VLPI base"
776	default y
777	help
778	  The HiSilicon Hip07 SoC uses the wrong redistributor base
779	  when issued ITS commands such as VMOVP and VMAPP, and requires
780	  a 128kB offset to be applied to the target address in this commands.
781
782	  If unsure, say Y.
783
784config QCOM_FALKOR_ERRATUM_1003
785	bool "Falkor E1003: Incorrect translation due to ASID change"
786	default y
787	help
788	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
789	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
790	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
791	  then only for entries in the walk cache, since the leaf translation
792	  is unchanged. Work around the erratum by invalidating the walk cache
793	  entries for the trampoline before entering the kernel proper.
794
795config QCOM_FALKOR_ERRATUM_1009
796	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
797	default y
798	select ARM64_WORKAROUND_REPEAT_TLBI
799	help
800	  On Falkor v1, the CPU may prematurely complete a DSB following a
801	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
802	  one more time to fix the issue.
803
804	  If unsure, say Y.
805
806config QCOM_QDF2400_ERRATUM_0065
807	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
808	default y
809	help
810	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
811	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
812	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
813
814	  If unsure, say Y.
815
816config QCOM_FALKOR_ERRATUM_E1041
817	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
818	default y
819	help
820	  Falkor CPU may speculatively fetch instructions from an improper
821	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
822	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
823
824	  If unsure, say Y.
825
826config NVIDIA_CARMEL_CNP_ERRATUM
827	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
828	default y
829	help
830	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
831	  invalidate shared TLB entries installed by a different core, as it would
832	  on standard ARM cores.
833
834	  If unsure, say Y.
835
836config SOCIONEXT_SYNQUACER_PREITS
837	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
838	default y
839	help
840	  Socionext Synquacer SoCs implement a separate h/w block to generate
841	  MSI doorbell writes with non-zero values for the device ID.
842
843	  If unsure, say Y.
844
845endmenu
846
847
848choice
849	prompt "Page size"
850	default ARM64_4K_PAGES
851	help
852	  Page size (translation granule) configuration.
853
854config ARM64_4K_PAGES
855	bool "4KB"
856	help
857	  This feature enables 4KB pages support.
858
859config ARM64_16K_PAGES
860	bool "16KB"
861	help
862	  The system will use 16KB pages support. AArch32 emulation
863	  requires applications compiled with 16K (or a multiple of 16K)
864	  aligned segments.
865
866config ARM64_64K_PAGES
867	bool "64KB"
868	help
869	  This feature enables 64KB pages support (4KB by default)
870	  allowing only two levels of page tables and faster TLB
871	  look-up. AArch32 emulation requires applications compiled
872	  with 64K aligned segments.
873
874endchoice
875
876choice
877	prompt "Virtual address space size"
878	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
879	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
880	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
881	help
882	  Allows choosing one of multiple possible virtual address
883	  space sizes. The level of translation table is determined by
884	  a combination of page size and virtual address space size.
885
886config ARM64_VA_BITS_36
887	bool "36-bit" if EXPERT
888	depends on ARM64_16K_PAGES
889
890config ARM64_VA_BITS_39
891	bool "39-bit"
892	depends on ARM64_4K_PAGES
893
894config ARM64_VA_BITS_42
895	bool "42-bit"
896	depends on ARM64_64K_PAGES
897
898config ARM64_VA_BITS_47
899	bool "47-bit"
900	depends on ARM64_16K_PAGES
901
902config ARM64_VA_BITS_48
903	bool "48-bit"
904
905config ARM64_VA_BITS_52
906	bool "52-bit"
907	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
908	help
909	  Enable 52-bit virtual addressing for userspace when explicitly
910	  requested via a hint to mmap(). The kernel will also use 52-bit
911	  virtual addresses for its own mappings (provided HW support for
912	  this feature is available, otherwise it reverts to 48-bit).
913
914	  NOTE: Enabling 52-bit virtual addressing in conjunction with
915	  ARMv8.3 Pointer Authentication will result in the PAC being
916	  reduced from 7 bits to 3 bits, which may have a significant
917	  impact on its susceptibility to brute-force attacks.
918
919	  If unsure, select 48-bit virtual addressing instead.
920
921endchoice
922
923config ARM64_FORCE_52BIT
924	bool "Force 52-bit virtual addresses for userspace"
925	depends on ARM64_VA_BITS_52 && EXPERT
926	help
927	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
928	  to maintain compatibility with older software by providing 48-bit VAs
929	  unless a hint is supplied to mmap.
930
931	  This configuration option disables the 48-bit compatibility logic, and
932	  forces all userspace addresses to be 52-bit on HW that supports it. One
933	  should only enable this configuration option for stress testing userspace
934	  memory management code. If unsure say N here.
935
936config ARM64_VA_BITS
937	int
938	default 36 if ARM64_VA_BITS_36
939	default 39 if ARM64_VA_BITS_39
940	default 42 if ARM64_VA_BITS_42
941	default 47 if ARM64_VA_BITS_47
942	default 48 if ARM64_VA_BITS_48
943	default 52 if ARM64_VA_BITS_52
944
945choice
946	prompt "Physical address space size"
947	default ARM64_PA_BITS_48
948	help
949	  Choose the maximum physical address range that the kernel will
950	  support.
951
952config ARM64_PA_BITS_48
953	bool "48-bit"
954
955config ARM64_PA_BITS_52
956	bool "52-bit (ARMv8.2)"
957	depends on ARM64_64K_PAGES
958	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
959	help
960	  Enable support for a 52-bit physical address space, introduced as
961	  part of the ARMv8.2-LPA extension.
962
963	  With this enabled, the kernel will also continue to work on CPUs that
964	  do not support ARMv8.2-LPA, but with some added memory overhead (and
965	  minor performance overhead).
966
967endchoice
968
969config ARM64_PA_BITS
970	int
971	default 48 if ARM64_PA_BITS_48
972	default 52 if ARM64_PA_BITS_52
973
974choice
975	prompt "Endianness"
976	default CPU_LITTLE_ENDIAN
977	help
978	  Select the endianness of data accesses performed by the CPU. Userspace
979	  applications will need to be compiled and linked for the endianness
980	  that is selected here.
981
982config CPU_BIG_ENDIAN
983	bool "Build big-endian kernel"
984	depends on !LD_IS_LLD || LLD_VERSION >= 130000
985	help
986	  Say Y if you plan on running a kernel with a big-endian userspace.
987
988config CPU_LITTLE_ENDIAN
989	bool "Build little-endian kernel"
990	help
991	  Say Y if you plan on running a kernel with a little-endian userspace.
992	  This is usually the case for distributions targeting arm64.
993
994endchoice
995
996config SCHED_MC
997	bool "Multi-core scheduler support"
998	help
999	  Multi-core scheduler support improves the CPU scheduler's decision
1000	  making when dealing with multi-core CPU chips at a cost of slightly
1001	  increased overhead in some places. If unsure say N here.
1002
1003config SCHED_SMT
1004	bool "SMT scheduler support"
1005	help
1006	  Improves the CPU scheduler's decision making when dealing with
1007	  MultiThreading at a cost of slightly increased overhead in some
1008	  places. If unsure say N here.
1009
1010config NR_CPUS
1011	int "Maximum number of CPUs (2-4096)"
1012	range 2 4096
1013	default "256"
1014
1015config HOTPLUG_CPU
1016	bool "Support for hot-pluggable CPUs"
1017	select GENERIC_IRQ_MIGRATION
1018	help
1019	  Say Y here to experiment with turning CPUs off and on.  CPUs
1020	  can be controlled through /sys/devices/system/cpu.
1021
1022# Common NUMA Features
1023config NUMA
1024	bool "NUMA Memory Allocation and Scheduler Support"
1025	select GENERIC_ARCH_NUMA
1026	select ACPI_NUMA if ACPI
1027	select OF_NUMA
1028	help
1029	  Enable NUMA (Non-Uniform Memory Access) support.
1030
1031	  The kernel will try to allocate memory used by a CPU on the
1032	  local memory of the CPU and add some more
1033	  NUMA awareness to the kernel.
1034
1035config NODES_SHIFT
1036	int "Maximum NUMA Nodes (as a power of 2)"
1037	range 1 10
1038	default "4"
1039	depends on NEED_MULTIPLE_NODES
1040	help
1041	  Specify the maximum number of NUMA Nodes available on the target
1042	  system.  Increases memory reserved to accommodate various tables.
1043
1044config USE_PERCPU_NUMA_NODE_ID
1045	def_bool y
1046	depends on NUMA
1047
1048config HAVE_SETUP_PER_CPU_AREA
1049	def_bool y
1050	depends on NUMA
1051
1052config NEED_PER_CPU_EMBED_FIRST_CHUNK
1053	def_bool y
1054	depends on NUMA
1055
1056config HOLES_IN_ZONE
1057	def_bool y
1058
1059source "kernel/Kconfig.hz"
1060
1061config ARCH_SPARSEMEM_ENABLE
1062	def_bool y
1063	select SPARSEMEM_VMEMMAP_ENABLE
1064
1065config ARCH_SPARSEMEM_DEFAULT
1066	def_bool ARCH_SPARSEMEM_ENABLE
1067
1068config ARCH_SELECT_MEMORY_MODEL
1069	def_bool ARCH_SPARSEMEM_ENABLE
1070
1071config ARCH_FLATMEM_ENABLE
1072	def_bool !NUMA
1073
1074config HW_PERF_EVENTS
1075	def_bool y
1076	depends on ARM_PMU
1077
1078config ARCH_HAS_FILTER_PGPROT
1079	def_bool y
1080
1081# Supported by clang >= 7.0
1082config CC_HAVE_SHADOW_CALL_STACK
1083	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1084
1085config PARAVIRT
1086	bool "Enable paravirtualization code"
1087	help
1088	  This changes the kernel so it can modify itself when it is run
1089	  under a hypervisor, potentially improving performance significantly
1090	  over full virtualization.
1091
1092config PARAVIRT_TIME_ACCOUNTING
1093	bool "Paravirtual steal time accounting"
1094	select PARAVIRT
1095	help
1096	  Select this option to enable fine granularity task steal time
1097	  accounting. Time spent executing other tasks in parallel with
1098	  the current vCPU is discounted from the vCPU power. To account for
1099	  that, there can be a small performance impact.
1100
1101	  If in doubt, say N here.
1102
1103config KEXEC
1104	depends on PM_SLEEP_SMP
1105	select KEXEC_CORE
1106	bool "kexec system call"
1107	help
1108	  kexec is a system call that implements the ability to shutdown your
1109	  current kernel, and to start another kernel.  It is like a reboot
1110	  but it is independent of the system firmware.   And like a reboot
1111	  you can start any kernel with it, not just Linux.
1112
1113config KEXEC_FILE
1114	bool "kexec file based system call"
1115	select KEXEC_CORE
1116	select HAVE_IMA_KEXEC if IMA
1117	help
1118	  This is new version of kexec system call. This system call is
1119	  file based and takes file descriptors as system call argument
1120	  for kernel and initramfs as opposed to list of segments as
1121	  accepted by previous system call.
1122
1123config KEXEC_SIG
1124	bool "Verify kernel signature during kexec_file_load() syscall"
1125	depends on KEXEC_FILE
1126	help
1127	  Select this option to verify a signature with loaded kernel
1128	  image. If configured, any attempt of loading a image without
1129	  valid signature will fail.
1130
1131	  In addition to that option, you need to enable signature
1132	  verification for the corresponding kernel image type being
1133	  loaded in order for this to work.
1134
1135config KEXEC_IMAGE_VERIFY_SIG
1136	bool "Enable Image signature verification support"
1137	default y
1138	depends on KEXEC_SIG
1139	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1140	help
1141	  Enable Image signature verification support.
1142
1143comment "Support for PE file signature verification disabled"
1144	depends on KEXEC_SIG
1145	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1146
1147config CRASH_DUMP
1148	bool "Build kdump crash kernel"
1149	help
1150	  Generate crash dump after being started by kexec. This should
1151	  be normally only set in special crash dump kernels which are
1152	  loaded in the main kernel with kexec-tools into a specially
1153	  reserved region and then later executed after a crash by
1154	  kdump/kexec.
1155
1156	  For more details see Documentation/admin-guide/kdump/kdump.rst
1157
1158config TRANS_TABLE
1159	def_bool y
1160	depends on HIBERNATION
1161
1162config XEN_DOM0
1163	def_bool y
1164	depends on XEN
1165
1166config XEN
1167	bool "Xen guest support on ARM64"
1168	depends on ARM64 && OF
1169	select SWIOTLB_XEN
1170	select PARAVIRT
1171	help
1172	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1173
1174config FORCE_MAX_ZONEORDER
1175	int
1176	default "14" if ARM64_64K_PAGES
1177	default "12" if ARM64_16K_PAGES
1178	default "11"
1179	help
1180	  The kernel memory allocator divides physically contiguous memory
1181	  blocks into "zones", where each zone is a power of two number of
1182	  pages.  This option selects the largest power of two that the kernel
1183	  keeps in the memory allocator.  If you need to allocate very large
1184	  blocks of physically contiguous memory, then you may need to
1185	  increase this value.
1186
1187	  This config option is actually maximum order plus one. For example,
1188	  a value of 11 means that the largest free memory block is 2^10 pages.
1189
1190	  We make sure that we can allocate upto a HugePage size for each configuration.
1191	  Hence we have :
1192		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1193
1194	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1195	  4M allocations matching the default size used by generic code.
1196
1197config UNMAP_KERNEL_AT_EL0
1198	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1199	default y
1200	help
1201	  Speculation attacks against some high-performance processors can
1202	  be used to bypass MMU permission checks and leak kernel data to
1203	  userspace. This can be defended against by unmapping the kernel
1204	  when running in userspace, mapping it back in on exception entry
1205	  via a trampoline page in the vector table.
1206
1207	  If unsure, say Y.
1208
1209config RODATA_FULL_DEFAULT_ENABLED
1210	bool "Apply r/o permissions of VM areas also to their linear aliases"
1211	default y
1212	help
1213	  Apply read-only attributes of VM areas to the linear alias of
1214	  the backing pages as well. This prevents code or read-only data
1215	  from being modified (inadvertently or intentionally) via another
1216	  mapping of the same memory page. This additional enhancement can
1217	  be turned off at runtime by passing rodata=[off|on] (and turned on
1218	  with rodata=full if this option is set to 'n')
1219
1220	  This requires the linear region to be mapped down to pages,
1221	  which may adversely affect performance in some cases.
1222
1223config ARM64_SW_TTBR0_PAN
1224	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1225	help
1226	  Enabling this option prevents the kernel from accessing
1227	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1228	  zeroed area and reserved ASID. The user access routines
1229	  restore the valid TTBR0_EL1 temporarily.
1230
1231config ARM64_TAGGED_ADDR_ABI
1232	bool "Enable the tagged user addresses syscall ABI"
1233	default y
1234	help
1235	  When this option is enabled, user applications can opt in to a
1236	  relaxed ABI via prctl() allowing tagged addresses to be passed
1237	  to system calls as pointer arguments. For details, see
1238	  Documentation/arm64/tagged-address-abi.rst.
1239
1240menuconfig COMPAT
1241	bool "Kernel support for 32-bit EL0"
1242	depends on ARM64_4K_PAGES || EXPERT
1243	select HAVE_UID16
1244	select OLD_SIGSUSPEND3
1245	select COMPAT_OLD_SIGACTION
1246	help
1247	  This option enables support for a 32-bit EL0 running under a 64-bit
1248	  kernel at EL1. AArch32-specific components such as system calls,
1249	  the user helper functions, VFP support and the ptrace interface are
1250	  handled appropriately by the kernel.
1251
1252	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1253	  that you will only be able to execute AArch32 binaries that were compiled
1254	  with page size aligned segments.
1255
1256	  If you want to execute 32-bit userspace applications, say Y.
1257
1258if COMPAT
1259
1260config KUSER_HELPERS
1261	bool "Enable kuser helpers page for 32-bit applications"
1262	default y
1263	help
1264	  Warning: disabling this option may break 32-bit user programs.
1265
1266	  Provide kuser helpers to compat tasks. The kernel provides
1267	  helper code to userspace in read only form at a fixed location
1268	  to allow userspace to be independent of the CPU type fitted to
1269	  the system. This permits binaries to be run on ARMv4 through
1270	  to ARMv8 without modification.
1271
1272	  See Documentation/arm/kernel_user_helpers.rst for details.
1273
1274	  However, the fixed address nature of these helpers can be used
1275	  by ROP (return orientated programming) authors when creating
1276	  exploits.
1277
1278	  If all of the binaries and libraries which run on your platform
1279	  are built specifically for your platform, and make no use of
1280	  these helpers, then you can turn this option off to hinder
1281	  such exploits. However, in that case, if a binary or library
1282	  relying on those helpers is run, it will not function correctly.
1283
1284	  Say N here only if you are absolutely certain that you do not
1285	  need these helpers; otherwise, the safe option is to say Y.
1286
1287config COMPAT_VDSO
1288	bool "Enable vDSO for 32-bit applications"
1289	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1290	select GENERIC_COMPAT_VDSO
1291	default y
1292	help
1293	  Place in the process address space of 32-bit applications an
1294	  ELF shared object providing fast implementations of gettimeofday
1295	  and clock_gettime.
1296
1297	  You must have a 32-bit build of glibc 2.22 or later for programs
1298	  to seamlessly take advantage of this.
1299
1300config THUMB2_COMPAT_VDSO
1301	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1302	depends on COMPAT_VDSO
1303	default y
1304	help
1305	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1306	  otherwise with '-marm'.
1307
1308menuconfig ARMV8_DEPRECATED
1309	bool "Emulate deprecated/obsolete ARMv8 instructions"
1310	depends on SYSCTL
1311	help
1312	  Legacy software support may require certain instructions
1313	  that have been deprecated or obsoleted in the architecture.
1314
1315	  Enable this config to enable selective emulation of these
1316	  features.
1317
1318	  If unsure, say Y
1319
1320if ARMV8_DEPRECATED
1321
1322config SWP_EMULATION
1323	bool "Emulate SWP/SWPB instructions"
1324	help
1325	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1326	  they are always undefined. Say Y here to enable software
1327	  emulation of these instructions for userspace using LDXR/STXR.
1328	  This feature can be controlled at runtime with the abi.swp
1329	  sysctl which is disabled by default.
1330
1331	  In some older versions of glibc [<=2.8] SWP is used during futex
1332	  trylock() operations with the assumption that the code will not
1333	  be preempted. This invalid assumption may be more likely to fail
1334	  with SWP emulation enabled, leading to deadlock of the user
1335	  application.
1336
1337	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1338	  on an external transaction monitoring block called a global
1339	  monitor to maintain update atomicity. If your system does not
1340	  implement a global monitor, this option can cause programs that
1341	  perform SWP operations to uncached memory to deadlock.
1342
1343	  If unsure, say Y
1344
1345config CP15_BARRIER_EMULATION
1346	bool "Emulate CP15 Barrier instructions"
1347	help
1348	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1349	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1350	  strongly recommended to use the ISB, DSB, and DMB
1351	  instructions instead.
1352
1353	  Say Y here to enable software emulation of these
1354	  instructions for AArch32 userspace code. When this option is
1355	  enabled, CP15 barrier usage is traced which can help
1356	  identify software that needs updating. This feature can be
1357	  controlled at runtime with the abi.cp15_barrier sysctl.
1358
1359	  If unsure, say Y
1360
1361config SETEND_EMULATION
1362	bool "Emulate SETEND instruction"
1363	help
1364	  The SETEND instruction alters the data-endianness of the
1365	  AArch32 EL0, and is deprecated in ARMv8.
1366
1367	  Say Y here to enable software emulation of the instruction
1368	  for AArch32 userspace code. This feature can be controlled
1369	  at runtime with the abi.setend sysctl.
1370
1371	  Note: All the cpus on the system must have mixed endian support at EL0
1372	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1373	  endian - is hotplugged in after this feature has been enabled, there could
1374	  be unexpected results in the applications.
1375
1376	  If unsure, say Y
1377endif
1378
1379endif
1380
1381menu "ARMv8.1 architectural features"
1382
1383config ARM64_HW_AFDBM
1384	bool "Support for hardware updates of the Access and Dirty page flags"
1385	default y
1386	help
1387	  The ARMv8.1 architecture extensions introduce support for
1388	  hardware updates of the access and dirty information in page
1389	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1390	  capable processors, accesses to pages with PTE_AF cleared will
1391	  set this bit instead of raising an access flag fault.
1392	  Similarly, writes to read-only pages with the DBM bit set will
1393	  clear the read-only bit (AP[2]) instead of raising a
1394	  permission fault.
1395
1396	  Kernels built with this configuration option enabled continue
1397	  to work on pre-ARMv8.1 hardware and the performance impact is
1398	  minimal. If unsure, say Y.
1399
1400config ARM64_PAN
1401	bool "Enable support for Privileged Access Never (PAN)"
1402	default y
1403	help
1404	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1405	 prevents the kernel or hypervisor from accessing user-space (EL0)
1406	 memory directly.
1407
1408	 Choosing this option will cause any unprotected (not using
1409	 copy_to_user et al) memory access to fail with a permission fault.
1410
1411	 The feature is detected at runtime, and will remain as a 'nop'
1412	 instruction if the cpu does not implement the feature.
1413
1414config AS_HAS_LDAPR
1415	def_bool $(as-instr,.arch_extension rcpc)
1416
1417config AS_HAS_LSE_ATOMICS
1418	def_bool $(as-instr,.arch_extension lse)
1419
1420config ARM64_LSE_ATOMICS
1421	bool
1422	default ARM64_USE_LSE_ATOMICS
1423	depends on AS_HAS_LSE_ATOMICS
1424
1425config ARM64_USE_LSE_ATOMICS
1426	bool "Atomic instructions"
1427	depends on JUMP_LABEL
1428	default y
1429	help
1430	  As part of the Large System Extensions, ARMv8.1 introduces new
1431	  atomic instructions that are designed specifically to scale in
1432	  very large systems.
1433
1434	  Say Y here to make use of these instructions for the in-kernel
1435	  atomic routines. This incurs a small overhead on CPUs that do
1436	  not support these instructions and requires the kernel to be
1437	  built with binutils >= 2.25 in order for the new instructions
1438	  to be used.
1439
1440endmenu
1441
1442menu "ARMv8.2 architectural features"
1443
1444config ARM64_PMEM
1445	bool "Enable support for persistent memory"
1446	select ARCH_HAS_PMEM_API
1447	select ARCH_HAS_UACCESS_FLUSHCACHE
1448	help
1449	  Say Y to enable support for the persistent memory API based on the
1450	  ARMv8.2 DCPoP feature.
1451
1452	  The feature is detected at runtime, and the kernel will use DC CVAC
1453	  operations if DC CVAP is not supported (following the behaviour of
1454	  DC CVAP itself if the system does not define a point of persistence).
1455
1456config ARM64_RAS_EXTN
1457	bool "Enable support for RAS CPU Extensions"
1458	default y
1459	help
1460	  CPUs that support the Reliability, Availability and Serviceability
1461	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1462	  errors, classify them and report them to software.
1463
1464	  On CPUs with these extensions system software can use additional
1465	  barriers to determine if faults are pending and read the
1466	  classification from a new set of registers.
1467
1468	  Selecting this feature will allow the kernel to use these barriers
1469	  and access the new registers if the system supports the extension.
1470	  Platform RAS features may additionally depend on firmware support.
1471
1472config ARM64_CNP
1473	bool "Enable support for Common Not Private (CNP) translations"
1474	default y
1475	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1476	help
1477	  Common Not Private (CNP) allows translation table entries to
1478	  be shared between different PEs in the same inner shareable
1479	  domain, so the hardware can use this fact to optimise the
1480	  caching of such entries in the TLB.
1481
1482	  Selecting this option allows the CNP feature to be detected
1483	  at runtime, and does not affect PEs that do not implement
1484	  this feature.
1485
1486endmenu
1487
1488menu "ARMv8.3 architectural features"
1489
1490config ARM64_PTR_AUTH
1491	bool "Enable support for pointer authentication"
1492	default y
1493	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1494	# Modern compilers insert a .note.gnu.property section note for PAC
1495	# which is only understood by binutils starting with version 2.33.1.
1496	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1497	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1498	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1499	help
1500	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1501	  instructions for signing and authenticating pointers against secret
1502	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1503	  and other attacks.
1504
1505	  This option enables these instructions at EL0 (i.e. for userspace).
1506	  Choosing this option will cause the kernel to initialise secret keys
1507	  for each process at exec() time, with these keys being
1508	  context-switched along with the process.
1509
1510	  If the compiler supports the -mbranch-protection or
1511	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1512	  will also cause the kernel itself to be compiled with return address
1513	  protection. In this case, and if the target hardware is known to
1514	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1515	  disabled with minimal loss of protection.
1516
1517	  The feature is detected at runtime. If the feature is not present in
1518	  hardware it will not be advertised to userspace/KVM guest nor will it
1519	  be enabled.
1520
1521	  If the feature is present on the boot CPU but not on a late CPU, then
1522	  the late CPU will be parked. Also, if the boot CPU does not have
1523	  address auth and the late CPU has then the late CPU will still boot
1524	  but with the feature disabled. On such a system, this option should
1525	  not be selected.
1526
1527	  This feature works with FUNCTION_GRAPH_TRACER option only if
1528	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1529
1530config CC_HAS_BRANCH_PROT_PAC_RET
1531	# GCC 9 or later, clang 8 or later
1532	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1533
1534config CC_HAS_SIGN_RETURN_ADDRESS
1535	# GCC 7, 8
1536	def_bool $(cc-option,-msign-return-address=all)
1537
1538config AS_HAS_PAC
1539	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1540
1541config AS_HAS_CFI_NEGATE_RA_STATE
1542	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1543
1544endmenu
1545
1546menu "ARMv8.4 architectural features"
1547
1548config ARM64_AMU_EXTN
1549	bool "Enable support for the Activity Monitors Unit CPU extension"
1550	default y
1551	help
1552	  The activity monitors extension is an optional extension introduced
1553	  by the ARMv8.4 CPU architecture. This enables support for version 1
1554	  of the activity monitors architecture, AMUv1.
1555
1556	  To enable the use of this extension on CPUs that implement it, say Y.
1557
1558	  Note that for architectural reasons, firmware _must_ implement AMU
1559	  support when running on CPUs that present the activity monitors
1560	  extension. The required support is present in:
1561	    * Version 1.5 and later of the ARM Trusted Firmware
1562
1563	  For kernels that have this configuration enabled but boot with broken
1564	  firmware, you may need to say N here until the firmware is fixed.
1565	  Otherwise you may experience firmware panics or lockups when
1566	  accessing the counter registers. Even if you are not observing these
1567	  symptoms, the values returned by the register reads might not
1568	  correctly reflect reality. Most commonly, the value read will be 0,
1569	  indicating that the counter is not enabled.
1570
1571config AS_HAS_ARMV8_4
1572	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1573
1574config ARM64_TLB_RANGE
1575	bool "Enable support for tlbi range feature"
1576	default y
1577	depends on AS_HAS_ARMV8_4
1578	help
1579	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1580	  range of input addresses.
1581
1582	  The feature introduces new assembly instructions, and they were
1583	  support when binutils >= 2.30.
1584
1585endmenu
1586
1587menu "ARMv8.5 architectural features"
1588
1589config AS_HAS_ARMV8_5
1590	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1591
1592config ARM64_BTI
1593	bool "Branch Target Identification support"
1594	default y
1595	help
1596	  Branch Target Identification (part of the ARMv8.5 Extensions)
1597	  provides a mechanism to limit the set of locations to which computed
1598	  branch instructions such as BR or BLR can jump.
1599
1600	  To make use of BTI on CPUs that support it, say Y.
1601
1602	  BTI is intended to provide complementary protection to other control
1603	  flow integrity protection mechanisms, such as the Pointer
1604	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1605	  For this reason, it does not make sense to enable this option without
1606	  also enabling support for pointer authentication.  Thus, when
1607	  enabling this option you should also select ARM64_PTR_AUTH=y.
1608
1609	  Userspace binaries must also be specifically compiled to make use of
1610	  this mechanism.  If you say N here or the hardware does not support
1611	  BTI, such binaries can still run, but you get no additional
1612	  enforcement of branch destinations.
1613
1614config ARM64_BTI_KERNEL
1615	bool "Use Branch Target Identification for kernel"
1616	default y
1617	depends on ARM64_BTI
1618	depends on ARM64_PTR_AUTH
1619	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1620	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1621	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1622	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1623	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1624	help
1625	  Build the kernel with Branch Target Identification annotations
1626	  and enable enforcement of this for kernel code. When this option
1627	  is enabled and the system supports BTI all kernel code including
1628	  modular code must have BTI enabled.
1629
1630config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1631	# GCC 9 or later, clang 8 or later
1632	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1633
1634config ARM64_E0PD
1635	bool "Enable support for E0PD"
1636	default y
1637	help
1638	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1639	  that EL0 accesses made via TTBR1 always fault in constant time,
1640	  providing similar benefits to KASLR as those provided by KPTI, but
1641	  with lower overhead and without disrupting legitimate access to
1642	  kernel memory such as SPE.
1643
1644	  This option enables E0PD for TTBR1 where available.
1645
1646config ARCH_RANDOM
1647	bool "Enable support for random number generation"
1648	default y
1649	help
1650	  Random number generation (part of the ARMv8.5 Extensions)
1651	  provides a high bandwidth, cryptographically secure
1652	  hardware random number generator.
1653
1654config ARM64_AS_HAS_MTE
1655	# Initial support for MTE went in binutils 2.32.0, checked with
1656	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1657	# as a late addition to the final architecture spec (LDGM/STGM)
1658	# is only supported in the newer 2.32.x and 2.33 binutils
1659	# versions, hence the extra "stgm" instruction check below.
1660	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1661
1662config ARM64_MTE
1663	bool "Memory Tagging Extension support"
1664	default y
1665	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1666	depends on AS_HAS_ARMV8_5
1667	depends on AS_HAS_LSE_ATOMICS
1668	# Required for tag checking in the uaccess routines
1669	depends on ARM64_PAN
1670	select ARCH_USES_HIGH_VMA_FLAGS
1671	help
1672	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1673	  architectural support for run-time, always-on detection of
1674	  various classes of memory error to aid with software debugging
1675	  to eliminate vulnerabilities arising from memory-unsafe
1676	  languages.
1677
1678	  This option enables the support for the Memory Tagging
1679	  Extension at EL0 (i.e. for userspace).
1680
1681	  Selecting this option allows the feature to be detected at
1682	  runtime. Any secondary CPU not implementing this feature will
1683	  not be allowed a late bring-up.
1684
1685	  Userspace binaries that want to use this feature must
1686	  explicitly opt in. The mechanism for the userspace is
1687	  described in:
1688
1689	  Documentation/arm64/memory-tagging-extension.rst.
1690
1691endmenu
1692
1693menu "ARMv8.7 architectural features"
1694
1695config ARM64_EPAN
1696	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1697	default y
1698	depends on ARM64_PAN
1699	help
1700	 Enhanced Privileged Access Never (EPAN) allows Privileged
1701	 Access Never to be used with Execute-only mappings.
1702
1703	 The feature is detected at runtime, and will remain disabled
1704	 if the cpu does not implement the feature.
1705endmenu
1706
1707config ARM64_SVE
1708	bool "ARM Scalable Vector Extension support"
1709	default y
1710	help
1711	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1712	  execution state which complements and extends the SIMD functionality
1713	  of the base architecture to support much larger vectors and to enable
1714	  additional vectorisation opportunities.
1715
1716	  To enable use of this extension on CPUs that implement it, say Y.
1717
1718	  On CPUs that support the SVE2 extensions, this option will enable
1719	  those too.
1720
1721	  Note that for architectural reasons, firmware _must_ implement SVE
1722	  support when running on SVE capable hardware.  The required support
1723	  is present in:
1724
1725	    * version 1.5 and later of the ARM Trusted Firmware
1726	    * the AArch64 boot wrapper since commit 5e1261e08abf
1727	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1728
1729	  For other firmware implementations, consult the firmware documentation
1730	  or vendor.
1731
1732	  If you need the kernel to boot on SVE-capable hardware with broken
1733	  firmware, you may need to say N here until you get your firmware
1734	  fixed.  Otherwise, you may experience firmware panics or lockups when
1735	  booting the kernel.  If unsure and you are not observing these
1736	  symptoms, you should assume that it is safe to say Y.
1737
1738config ARM64_MODULE_PLTS
1739	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1740	depends on MODULES
1741	select HAVE_MOD_ARCH_SPECIFIC
1742	help
1743	  Allocate PLTs when loading modules so that jumps and calls whose
1744	  targets are too far away for their relative offsets to be encoded
1745	  in the instructions themselves can be bounced via veneers in the
1746	  module's PLT. This allows modules to be allocated in the generic
1747	  vmalloc area after the dedicated module memory area has been
1748	  exhausted.
1749
1750	  When running with address space randomization (KASLR), the module
1751	  region itself may be too far away for ordinary relative jumps and
1752	  calls, and so in that case, module PLTs are required and cannot be
1753	  disabled.
1754
1755	  Specific errata workaround(s) might also force module PLTs to be
1756	  enabled (ARM64_ERRATUM_843419).
1757
1758config ARM64_PSEUDO_NMI
1759	bool "Support for NMI-like interrupts"
1760	select ARM_GIC_V3
1761	help
1762	  Adds support for mimicking Non-Maskable Interrupts through the use of
1763	  GIC interrupt priority. This support requires version 3 or later of
1764	  ARM GIC.
1765
1766	  This high priority configuration for interrupts needs to be
1767	  explicitly enabled by setting the kernel parameter
1768	  "irqchip.gicv3_pseudo_nmi" to 1.
1769
1770	  If unsure, say N
1771
1772if ARM64_PSEUDO_NMI
1773config ARM64_DEBUG_PRIORITY_MASKING
1774	bool "Debug interrupt priority masking"
1775	help
1776	  This adds runtime checks to functions enabling/disabling
1777	  interrupts when using priority masking. The additional checks verify
1778	  the validity of ICC_PMR_EL1 when calling concerned functions.
1779
1780	  If unsure, say N
1781endif
1782
1783config RELOCATABLE
1784	bool "Build a relocatable kernel image" if EXPERT
1785	select ARCH_HAS_RELR
1786	default y
1787	help
1788	  This builds the kernel as a Position Independent Executable (PIE),
1789	  which retains all relocation metadata required to relocate the
1790	  kernel binary at runtime to a different virtual address than the
1791	  address it was linked at.
1792	  Since AArch64 uses the RELA relocation format, this requires a
1793	  relocation pass at runtime even if the kernel is loaded at the
1794	  same address it was linked at.
1795
1796config RANDOMIZE_BASE
1797	bool "Randomize the address of the kernel image"
1798	select ARM64_MODULE_PLTS if MODULES
1799	select RELOCATABLE
1800	help
1801	  Randomizes the virtual address at which the kernel image is
1802	  loaded, as a security feature that deters exploit attempts
1803	  relying on knowledge of the location of kernel internals.
1804
1805	  It is the bootloader's job to provide entropy, by passing a
1806	  random u64 value in /chosen/kaslr-seed at kernel entry.
1807
1808	  When booting via the UEFI stub, it will invoke the firmware's
1809	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1810	  to the kernel proper. In addition, it will randomise the physical
1811	  location of the kernel Image as well.
1812
1813	  If unsure, say N.
1814
1815config RANDOMIZE_MODULE_REGION_FULL
1816	bool "Randomize the module region over a 4 GB range"
1817	depends on RANDOMIZE_BASE
1818	default y
1819	help
1820	  Randomizes the location of the module region inside a 4 GB window
1821	  covering the core kernel. This way, it is less likely for modules
1822	  to leak information about the location of core kernel data structures
1823	  but it does imply that function calls between modules and the core
1824	  kernel will need to be resolved via veneers in the module PLT.
1825
1826	  When this option is not set, the module region will be randomized over
1827	  a limited range that contains the [_stext, _etext] interval of the
1828	  core kernel, so branch relocations are always in range.
1829
1830config CC_HAVE_STACKPROTECTOR_SYSREG
1831	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1832
1833config STACKPROTECTOR_PER_TASK
1834	def_bool y
1835	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1836
1837endmenu
1838
1839menu "Boot options"
1840
1841config ARM64_ACPI_PARKING_PROTOCOL
1842	bool "Enable support for the ARM64 ACPI parking protocol"
1843	depends on ACPI
1844	help
1845	  Enable support for the ARM64 ACPI parking protocol. If disabled
1846	  the kernel will not allow booting through the ARM64 ACPI parking
1847	  protocol even if the corresponding data is present in the ACPI
1848	  MADT table.
1849
1850config CMDLINE
1851	string "Default kernel command string"
1852	default ""
1853	help
1854	  Provide a set of default command-line options at build time by
1855	  entering them here. As a minimum, you should specify the the
1856	  root device (e.g. root=/dev/nfs).
1857
1858choice
1859	prompt "Kernel command line type" if CMDLINE != ""
1860	default CMDLINE_FROM_BOOTLOADER
1861	help
1862	  Choose how the kernel will handle the provided default kernel
1863	  command line string.
1864
1865config CMDLINE_FROM_BOOTLOADER
1866	bool "Use bootloader kernel arguments if available"
1867	help
1868	  Uses the command-line options passed by the boot loader. If
1869	  the boot loader doesn't provide any, the default kernel command
1870	  string provided in CMDLINE will be used.
1871
1872config CMDLINE_FORCE
1873	bool "Always use the default kernel command string"
1874	help
1875	  Always use the default kernel command string, even if the boot
1876	  loader passes other arguments to the kernel.
1877	  This is useful if you cannot or don't want to change the
1878	  command-line options your boot loader passes to the kernel.
1879
1880endchoice
1881
1882config EFI_STUB
1883	bool
1884
1885config EFI
1886	bool "UEFI runtime support"
1887	depends on OF && !CPU_BIG_ENDIAN
1888	depends on KERNEL_MODE_NEON
1889	select ARCH_SUPPORTS_ACPI
1890	select LIBFDT
1891	select UCS2_STRING
1892	select EFI_PARAMS_FROM_FDT
1893	select EFI_RUNTIME_WRAPPERS
1894	select EFI_STUB
1895	select EFI_GENERIC_STUB
1896	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
1897	default y
1898	help
1899	  This option provides support for runtime services provided
1900	  by UEFI firmware (such as non-volatile variables, realtime
1901          clock, and platform reset). A UEFI stub is also provided to
1902	  allow the kernel to be booted as an EFI application. This
1903	  is only useful on systems that have UEFI firmware.
1904
1905config DMI
1906	bool "Enable support for SMBIOS (DMI) tables"
1907	depends on EFI
1908	default y
1909	help
1910	  This enables SMBIOS/DMI feature for systems.
1911
1912	  This option is only useful on systems that have UEFI firmware.
1913	  However, even with this option, the resultant kernel should
1914	  continue to boot on existing non-UEFI platforms.
1915
1916endmenu
1917
1918config SYSVIPC_COMPAT
1919	def_bool y
1920	depends on COMPAT && SYSVIPC
1921
1922menu "Power management options"
1923
1924source "kernel/power/Kconfig"
1925
1926config ARCH_HIBERNATION_POSSIBLE
1927	def_bool y
1928	depends on CPU_PM
1929
1930config ARCH_HIBERNATION_HEADER
1931	def_bool y
1932	depends on HIBERNATION
1933
1934config ARCH_SUSPEND_POSSIBLE
1935	def_bool y
1936
1937endmenu
1938
1939menu "CPU Power Management"
1940
1941source "drivers/cpuidle/Kconfig"
1942
1943source "drivers/cpufreq/Kconfig"
1944
1945endmenu
1946
1947source "drivers/firmware/Kconfig"
1948
1949source "drivers/acpi/Kconfig"
1950
1951source "arch/arm64/kvm/Kconfig"
1952
1953if CRYPTO
1954source "arch/arm64/crypto/Kconfig"
1955endif
1956