xref: /linux/arch/arm64/Kconfig (revision 9b960d8cd6f712cb2c03e2bdd4d5ca058238037f)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CRC32
25	select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON
26	select ARCH_HAS_CURRENT_STACK_POINTER
27	select ARCH_HAS_DEBUG_VIRTUAL
28	select ARCH_HAS_DEBUG_VM_PGTABLE
29	select ARCH_HAS_DMA_OPS if XEN
30	select ARCH_HAS_DMA_PREP_COHERENT
31	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
32	select ARCH_HAS_FAST_MULTIPLIER
33	select ARCH_HAS_FORTIFY_SOURCE
34	select ARCH_HAS_GCOV_PROFILE_ALL
35	select ARCH_HAS_GIGANTIC_PAGE
36	select ARCH_HAS_KCOV
37	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
38	select ARCH_HAS_KEEPINITRD
39	select ARCH_HAS_MEMBARRIER_SYNC_CORE
40	select ARCH_HAS_MEM_ENCRYPT
41	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
42	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
43	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
44	select ARCH_HAS_PTE_DEVMAP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_MEM_ENCRYPT
51	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
52	select ARCH_STACKWALK
53	select ARCH_HAS_STRICT_KERNEL_RWX
54	select ARCH_HAS_STRICT_MODULE_RWX
55	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
56	select ARCH_HAS_SYNC_DMA_FOR_CPU
57	select ARCH_HAS_SYSCALL_WRAPPER
58	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
59	select ARCH_HAS_ZONE_DMA_SET if EXPERT
60	select ARCH_HAVE_ELF_PROT
61	select ARCH_HAVE_NMI_SAFE_CMPXCHG
62	select ARCH_HAVE_TRACE_MMIO_ACCESS
63	select ARCH_INLINE_READ_LOCK if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
89	select ARCH_KEEP_MEMBLOCK
90	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
91	select ARCH_USE_CMPXCHG_LOCKREF
92	select ARCH_USE_GNU_PROPERTY
93	select ARCH_USE_MEMTEST
94	select ARCH_USE_QUEUED_RWLOCKS
95	select ARCH_USE_QUEUED_SPINLOCKS
96	select ARCH_USE_SYM_ANNOTATIONS
97	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
98	select ARCH_SUPPORTS_HUGETLBFS
99	select ARCH_SUPPORTS_MEMORY_FAILURE
100	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
101	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
102	select ARCH_SUPPORTS_LTO_CLANG_THIN
103	select ARCH_SUPPORTS_CFI_CLANG
104	select ARCH_SUPPORTS_ATOMIC_RMW
105	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
106	select ARCH_SUPPORTS_NUMA_BALANCING
107	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
108	select ARCH_SUPPORTS_PER_VMA_LOCK
109	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
110	select ARCH_SUPPORTS_RT
111	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
112	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
113	select ARCH_WANT_DEFAULT_BPF_JIT
114	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
115	select ARCH_WANT_FRAME_POINTERS
116	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
117	select ARCH_WANT_LD_ORPHAN_WARN
118	select ARCH_WANTS_EXECMEM_LATE
119	select ARCH_WANTS_NO_INSTR
120	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
121	select ARCH_HAS_UBSAN
122	select ARM_AMBA
123	select ARM_ARCH_TIMER
124	select ARM_GIC
125	select AUDIT_ARCH_COMPAT_GENERIC
126	select ARM_GIC_V2M if PCI
127	select ARM_GIC_V3
128	select ARM_GIC_V3_ITS if PCI
129	select ARM_PSCI_FW
130	select BUILDTIME_TABLE_SORT
131	select CLONE_BACKWARDS
132	select COMMON_CLK
133	select CPU_PM if (SUSPEND || CPU_IDLE)
134	select CPUMASK_OFFSTACK if NR_CPUS > 256
135	select CRC32
136	select DCACHE_WORD_ACCESS
137	select DYNAMIC_FTRACE if FUNCTION_TRACER
138	select DMA_BOUNCE_UNALIGNED_KMALLOC
139	select DMA_DIRECT_REMAP
140	select EDAC_SUPPORT
141	select FRAME_POINTER
142	select FUNCTION_ALIGNMENT_4B
143	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
144	select GENERIC_ALLOCATOR
145	select GENERIC_ARCH_TOPOLOGY
146	select GENERIC_CLOCKEVENTS_BROADCAST
147	select GENERIC_CPU_AUTOPROBE
148	select GENERIC_CPU_DEVICES
149	select GENERIC_CPU_VULNERABILITIES
150	select GENERIC_EARLY_IOREMAP
151	select GENERIC_IDLE_POLL_SETUP
152	select GENERIC_IOREMAP
153	select GENERIC_IRQ_IPI
154	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
155	select GENERIC_IRQ_PROBE
156	select GENERIC_IRQ_SHOW
157	select GENERIC_IRQ_SHOW_LEVEL
158	select GENERIC_LIB_DEVMEM_IS_ALLOWED
159	select GENERIC_PCI_IOMAP
160	select GENERIC_PTDUMP
161	select GENERIC_SCHED_CLOCK
162	select GENERIC_SMP_IDLE_THREAD
163	select GENERIC_TIME_VSYSCALL
164	select GENERIC_GETTIMEOFDAY
165	select GENERIC_VDSO_DATA_STORE
166	select GENERIC_VDSO_TIME_NS
167	select HARDIRQS_SW_RESEND
168	select HAS_IOPORT
169	select HAVE_MOVE_PMD
170	select HAVE_MOVE_PUD
171	select HAVE_PCI
172	select HAVE_ACPI_APEI if (ACPI && EFI)
173	select HAVE_ALIGNED_STRUCT_PAGE
174	select HAVE_ARCH_AUDITSYSCALL
175	select HAVE_ARCH_BITREVERSE
176	select HAVE_ARCH_COMPILER_H
177	select HAVE_ARCH_HUGE_VMALLOC
178	select HAVE_ARCH_HUGE_VMAP
179	select HAVE_ARCH_JUMP_LABEL
180	select HAVE_ARCH_JUMP_LABEL_RELATIVE
181	select HAVE_ARCH_KASAN
182	select HAVE_ARCH_KASAN_VMALLOC
183	select HAVE_ARCH_KASAN_SW_TAGS
184	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
185	# Some instrumentation may be unsound, hence EXPERT
186	select HAVE_ARCH_KCSAN if EXPERT
187	select HAVE_ARCH_KFENCE
188	select HAVE_ARCH_KGDB
189	select HAVE_ARCH_MMAP_RND_BITS
190	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
191	select HAVE_ARCH_PREL32_RELOCATIONS
192	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
193	select HAVE_ARCH_SECCOMP_FILTER
194	select HAVE_ARCH_STACKLEAK
195	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
196	select HAVE_ARCH_TRACEHOOK
197	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
198	select HAVE_ARCH_VMAP_STACK
199	select HAVE_ARM_SMCCC
200	select HAVE_ASM_MODVERSIONS
201	select HAVE_EBPF_JIT
202	select HAVE_C_RECORDMCOUNT
203	select HAVE_CMPXCHG_DOUBLE
204	select HAVE_CMPXCHG_LOCAL
205	select HAVE_CONTEXT_TRACKING_USER
206	select HAVE_DEBUG_KMEMLEAK
207	select HAVE_DMA_CONTIGUOUS
208	select HAVE_DYNAMIC_FTRACE
209	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
210		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
211		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
212	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
213		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
214	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
215		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
216		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
217	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
218		if DYNAMIC_FTRACE_WITH_ARGS
219	select HAVE_SAMPLE_FTRACE_DIRECT
220	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
221	select HAVE_EFFICIENT_UNALIGNED_ACCESS
222	select HAVE_GUP_FAST
223	select HAVE_FTRACE_GRAPH_FUNC
224	select HAVE_FTRACE_MCOUNT_RECORD
225	select HAVE_FUNCTION_TRACER
226	select HAVE_FUNCTION_ERROR_INJECTION
227	select HAVE_FUNCTION_GRAPH_FREGS
228	select HAVE_FUNCTION_GRAPH_TRACER
229	select HAVE_GCC_PLUGINS
230	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
231		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
232	select HAVE_HW_BREAKPOINT if PERF_EVENTS
233	select HAVE_IOREMAP_PROT
234	select HAVE_IRQ_TIME_ACCOUNTING
235	select HAVE_MOD_ARCH_SPECIFIC
236	select HAVE_NMI
237	select HAVE_PERF_EVENTS
238	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
239	select HAVE_PERF_REGS
240	select HAVE_PERF_USER_STACK_DUMP
241	select HAVE_PREEMPT_DYNAMIC_KEY
242	select HAVE_REGS_AND_STACK_ACCESS_API
243	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
244	select HAVE_FUNCTION_ARG_ACCESS_API
245	select MMU_GATHER_RCU_TABLE_FREE
246	select HAVE_RSEQ
247	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
248	select HAVE_STACKPROTECTOR
249	select HAVE_SYSCALL_TRACEPOINTS
250	select HAVE_KPROBES
251	select HAVE_KRETPROBES
252	select HAVE_GENERIC_VDSO
253	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
254	select HOTPLUG_SMT if HOTPLUG_CPU
255	select IRQ_DOMAIN
256	select IRQ_FORCED_THREADING
257	select KASAN_VMALLOC if KASAN
258	select LOCK_MM_AND_FIND_VMA
259	select MODULES_USE_ELF_RELA
260	select NEED_DMA_MAP_STATE
261	select NEED_SG_DMA_LENGTH
262	select OF
263	select OF_EARLY_FLATTREE
264	select PCI_DOMAINS_GENERIC if PCI
265	select PCI_ECAM if (ACPI && PCI)
266	select PCI_SYSCALL if PCI
267	select POWER_RESET
268	select POWER_SUPPLY
269	select SPARSE_IRQ
270	select SWIOTLB
271	select SYSCTL_EXCEPTION_TRACE
272	select THREAD_INFO_IN_TASK
273	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
274	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
275	select TRACE_IRQFLAGS_SUPPORT
276	select TRACE_IRQFLAGS_NMI_SUPPORT
277	select HAVE_SOFTIRQ_ON_OWN_STACK
278	select USER_STACKTRACE_SUPPORT
279	select VDSO_GETRANDOM
280	help
281	  ARM 64-bit (AArch64) Linux support.
282
283config RUSTC_SUPPORTS_ARM64
284	def_bool y
285	depends on CPU_LITTLE_ENDIAN
286	# Shadow call stack is only supported on certain rustc versions.
287	#
288	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
289	# required due to use of the -Zfixed-x18 flag.
290	#
291	# Otherwise, rustc version 1.82+ is required due to use of the
292	# -Zsanitizer=shadow-call-stack flag.
293	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
294
295config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
296	def_bool CC_IS_CLANG
297	# https://github.com/ClangBuiltLinux/linux/issues/1507
298	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
299
300config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
301	def_bool CC_IS_GCC
302	depends on $(cc-option,-fpatchable-function-entry=2)
303
304config 64BIT
305	def_bool y
306
307config MMU
308	def_bool y
309
310config ARM64_CONT_PTE_SHIFT
311	int
312	default 5 if PAGE_SIZE_64KB
313	default 7 if PAGE_SIZE_16KB
314	default 4
315
316config ARM64_CONT_PMD_SHIFT
317	int
318	default 5 if PAGE_SIZE_64KB
319	default 5 if PAGE_SIZE_16KB
320	default 4
321
322config ARCH_MMAP_RND_BITS_MIN
323	default 14 if PAGE_SIZE_64KB
324	default 16 if PAGE_SIZE_16KB
325	default 18
326
327# max bits determined by the following formula:
328#  VA_BITS - PTDESC_TABLE_SHIFT
329config ARCH_MMAP_RND_BITS_MAX
330	default 19 if ARM64_VA_BITS=36
331	default 24 if ARM64_VA_BITS=39
332	default 27 if ARM64_VA_BITS=42
333	default 30 if ARM64_VA_BITS=47
334	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
335	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
336	default 33 if ARM64_VA_BITS=48
337	default 14 if ARM64_64K_PAGES
338	default 16 if ARM64_16K_PAGES
339	default 18
340
341config ARCH_MMAP_RND_COMPAT_BITS_MIN
342	default 7 if ARM64_64K_PAGES
343	default 9 if ARM64_16K_PAGES
344	default 11
345
346config ARCH_MMAP_RND_COMPAT_BITS_MAX
347	default 16
348
349config NO_IOPORT_MAP
350	def_bool y if !PCI
351
352config STACKTRACE_SUPPORT
353	def_bool y
354
355config ILLEGAL_POINTER_VALUE
356	hex
357	default 0xdead000000000000
358
359config LOCKDEP_SUPPORT
360	def_bool y
361
362config GENERIC_BUG
363	def_bool y
364	depends on BUG
365
366config GENERIC_BUG_RELATIVE_POINTERS
367	def_bool y
368	depends on GENERIC_BUG
369
370config GENERIC_HWEIGHT
371	def_bool y
372
373config GENERIC_CSUM
374	def_bool y
375
376config GENERIC_CALIBRATE_DELAY
377	def_bool y
378
379config SMP
380	def_bool y
381
382config KERNEL_MODE_NEON
383	def_bool y
384
385config FIX_EARLYCON_MEM
386	def_bool y
387
388config PGTABLE_LEVELS
389	int
390	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
391	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
392	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
393	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
394	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
395	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
396	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
397	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
398
399config ARCH_SUPPORTS_UPROBES
400	def_bool y
401
402config ARCH_PROC_KCORE_TEXT
403	def_bool y
404
405config BROKEN_GAS_INST
406	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
407
408config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
409	bool
410	# Clang's __builtin_return_address() strips the PAC since 12.0.0
411	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
412	default y if CC_IS_CLANG
413	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
414	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
415	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
416	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
417	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
418	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
419	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
420	default n
421
422config KASAN_SHADOW_OFFSET
423	hex
424	depends on KASAN_GENERIC || KASAN_SW_TAGS
425	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
426	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
427	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
428	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
429	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
430	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
431	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
432	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
433	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
434	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
435	default 0xffffffffffffffff
436
437config UNWIND_TABLES
438	bool
439
440source "arch/arm64/Kconfig.platforms"
441
442menu "Kernel Features"
443
444menu "ARM errata workarounds via the alternatives framework"
445
446config AMPERE_ERRATUM_AC03_CPU_38
447        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
448	default y
449	help
450	  This option adds an alternative code sequence to work around Ampere
451	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
452
453	  The affected design reports FEAT_HAFDBS as not implemented in
454	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
455	  as required by the architecture. The unadvertised HAFDBS
456	  implementation suffers from an additional erratum where hardware
457	  A/D updates can occur after a PTE has been marked invalid.
458
459	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
460	  which avoids enabling unadvertised hardware Access Flag management
461	  at stage-2.
462
463	  If unsure, say Y.
464
465config ARM64_WORKAROUND_CLEAN_CACHE
466	bool
467
468config ARM64_ERRATUM_826319
469	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
470	default y
471	select ARM64_WORKAROUND_CLEAN_CACHE
472	help
473	  This option adds an alternative code sequence to work around ARM
474	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
475	  AXI master interface and an L2 cache.
476
477	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
478	  and is unable to accept a certain write via this interface, it will
479	  not progress on read data presented on the read data channel and the
480	  system can deadlock.
481
482	  The workaround promotes data cache clean instructions to
483	  data cache clean-and-invalidate.
484	  Please note that this does not necessarily enable the workaround,
485	  as it depends on the alternative framework, which will only patch
486	  the kernel if an affected CPU is detected.
487
488	  If unsure, say Y.
489
490config ARM64_ERRATUM_827319
491	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
492	default y
493	select ARM64_WORKAROUND_CLEAN_CACHE
494	help
495	  This option adds an alternative code sequence to work around ARM
496	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
497	  master interface and an L2 cache.
498
499	  Under certain conditions this erratum can cause a clean line eviction
500	  to occur at the same time as another transaction to the same address
501	  on the AMBA 5 CHI interface, which can cause data corruption if the
502	  interconnect reorders the two transactions.
503
504	  The workaround promotes data cache clean instructions to
505	  data cache clean-and-invalidate.
506	  Please note that this does not necessarily enable the workaround,
507	  as it depends on the alternative framework, which will only patch
508	  the kernel if an affected CPU is detected.
509
510	  If unsure, say Y.
511
512config ARM64_ERRATUM_824069
513	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
514	default y
515	select ARM64_WORKAROUND_CLEAN_CACHE
516	help
517	  This option adds an alternative code sequence to work around ARM
518	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
519	  to a coherent interconnect.
520
521	  If a Cortex-A53 processor is executing a store or prefetch for
522	  write instruction at the same time as a processor in another
523	  cluster is executing a cache maintenance operation to the same
524	  address, then this erratum might cause a clean cache line to be
525	  incorrectly marked as dirty.
526
527	  The workaround promotes data cache clean instructions to
528	  data cache clean-and-invalidate.
529	  Please note that this option does not necessarily enable the
530	  workaround, as it depends on the alternative framework, which will
531	  only patch the kernel if an affected CPU is detected.
532
533	  If unsure, say Y.
534
535config ARM64_ERRATUM_819472
536	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
537	default y
538	select ARM64_WORKAROUND_CLEAN_CACHE
539	help
540	  This option adds an alternative code sequence to work around ARM
541	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
542	  present when it is connected to a coherent interconnect.
543
544	  If the processor is executing a load and store exclusive sequence at
545	  the same time as a processor in another cluster is executing a cache
546	  maintenance operation to the same address, then this erratum might
547	  cause data corruption.
548
549	  The workaround promotes data cache clean instructions to
550	  data cache clean-and-invalidate.
551	  Please note that this does not necessarily enable the workaround,
552	  as it depends on the alternative framework, which will only patch
553	  the kernel if an affected CPU is detected.
554
555	  If unsure, say Y.
556
557config ARM64_ERRATUM_832075
558	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
559	default y
560	help
561	  This option adds an alternative code sequence to work around ARM
562	  erratum 832075 on Cortex-A57 parts up to r1p2.
563
564	  Affected Cortex-A57 parts might deadlock when exclusive load/store
565	  instructions to Write-Back memory are mixed with Device loads.
566
567	  The workaround is to promote device loads to use Load-Acquire
568	  semantics.
569	  Please note that this does not necessarily enable the workaround,
570	  as it depends on the alternative framework, which will only patch
571	  the kernel if an affected CPU is detected.
572
573	  If unsure, say Y.
574
575config ARM64_ERRATUM_834220
576	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
577	depends on KVM
578	help
579	  This option adds an alternative code sequence to work around ARM
580	  erratum 834220 on Cortex-A57 parts up to r1p2.
581
582	  Affected Cortex-A57 parts might report a Stage 2 translation
583	  fault as the result of a Stage 1 fault for load crossing a
584	  page boundary when there is a permission or device memory
585	  alignment fault at Stage 1 and a translation fault at Stage 2.
586
587	  The workaround is to verify that the Stage 1 translation
588	  doesn't generate a fault before handling the Stage 2 fault.
589	  Please note that this does not necessarily enable the workaround,
590	  as it depends on the alternative framework, which will only patch
591	  the kernel if an affected CPU is detected.
592
593	  If unsure, say N.
594
595config ARM64_ERRATUM_1742098
596	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
597	depends on COMPAT
598	default y
599	help
600	  This option removes the AES hwcap for aarch32 user-space to
601	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
602
603	  Affected parts may corrupt the AES state if an interrupt is
604	  taken between a pair of AES instructions. These instructions
605	  are only present if the cryptography extensions are present.
606	  All software should have a fallback implementation for CPUs
607	  that don't implement the cryptography extensions.
608
609	  If unsure, say Y.
610
611config ARM64_ERRATUM_845719
612	bool "Cortex-A53: 845719: a load might read incorrect data"
613	depends on COMPAT
614	default y
615	help
616	  This option adds an alternative code sequence to work around ARM
617	  erratum 845719 on Cortex-A53 parts up to r0p4.
618
619	  When running a compat (AArch32) userspace on an affected Cortex-A53
620	  part, a load at EL0 from a virtual address that matches the bottom 32
621	  bits of the virtual address used by a recent load at (AArch64) EL1
622	  might return incorrect data.
623
624	  The workaround is to write the contextidr_el1 register on exception
625	  return to a 32-bit task.
626	  Please note that this does not necessarily enable the workaround,
627	  as it depends on the alternative framework, which will only patch
628	  the kernel if an affected CPU is detected.
629
630	  If unsure, say Y.
631
632config ARM64_ERRATUM_843419
633	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
634	default y
635	help
636	  This option links the kernel with '--fix-cortex-a53-843419' and
637	  enables PLT support to replace certain ADRP instructions, which can
638	  cause subsequent memory accesses to use an incorrect address on
639	  Cortex-A53 parts up to r0p4.
640
641	  If unsure, say Y.
642
643config ARM64_LD_HAS_FIX_ERRATUM_843419
644	def_bool $(ld-option,--fix-cortex-a53-843419)
645
646config ARM64_ERRATUM_1024718
647	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
648	default y
649	help
650	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
651
652	  Affected Cortex-A55 cores (all revisions) could cause incorrect
653	  update of the hardware dirty bit when the DBM/AP bits are updated
654	  without a break-before-make. The workaround is to disable the usage
655	  of hardware DBM locally on the affected cores. CPUs not affected by
656	  this erratum will continue to use the feature.
657
658	  If unsure, say Y.
659
660config ARM64_ERRATUM_1418040
661	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
662	default y
663	depends on COMPAT
664	help
665	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
666	  errata 1188873 and 1418040.
667
668	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
669	  cause register corruption when accessing the timer registers
670	  from AArch32 userspace.
671
672	  If unsure, say Y.
673
674config ARM64_WORKAROUND_SPECULATIVE_AT
675	bool
676
677config ARM64_ERRATUM_1165522
678	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
679	default y
680	select ARM64_WORKAROUND_SPECULATIVE_AT
681	help
682	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
683
684	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
685	  corrupted TLBs by speculating an AT instruction during a guest
686	  context switch.
687
688	  If unsure, say Y.
689
690config ARM64_ERRATUM_1319367
691	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
692	default y
693	select ARM64_WORKAROUND_SPECULATIVE_AT
694	help
695	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
696	  and A72 erratum 1319367
697
698	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
699	  speculating an AT instruction during a guest context switch.
700
701	  If unsure, say Y.
702
703config ARM64_ERRATUM_1530923
704	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
705	default y
706	select ARM64_WORKAROUND_SPECULATIVE_AT
707	help
708	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
709
710	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
711	  corrupted TLBs by speculating an AT instruction during a guest
712	  context switch.
713
714	  If unsure, say Y.
715
716config ARM64_WORKAROUND_REPEAT_TLBI
717	bool
718
719config ARM64_ERRATUM_2441007
720	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
721	select ARM64_WORKAROUND_REPEAT_TLBI
722	help
723	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
724
725	  Under very rare circumstances, affected Cortex-A55 CPUs
726	  may not handle a race between a break-before-make sequence on one
727	  CPU, and another CPU accessing the same page. This could allow a
728	  store to a page that has been unmapped.
729
730	  Work around this by adding the affected CPUs to the list that needs
731	  TLB sequences to be done twice.
732
733	  If unsure, say N.
734
735config ARM64_ERRATUM_1286807
736	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
737	select ARM64_WORKAROUND_REPEAT_TLBI
738	help
739	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
740
741	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
742	  address for a cacheable mapping of a location is being
743	  accessed by a core while another core is remapping the virtual
744	  address to a new physical page using the recommended
745	  break-before-make sequence, then under very rare circumstances
746	  TLBI+DSB completes before a read using the translation being
747	  invalidated has been observed by other observers. The
748	  workaround repeats the TLBI+DSB operation.
749
750	  If unsure, say N.
751
752config ARM64_ERRATUM_1463225
753	bool "Cortex-A76: Software Step might prevent interrupt recognition"
754	default y
755	help
756	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
757
758	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
759	  of a system call instruction (SVC) can prevent recognition of
760	  subsequent interrupts when software stepping is disabled in the
761	  exception handler of the system call and either kernel debugging
762	  is enabled or VHE is in use.
763
764	  Work around the erratum by triggering a dummy step exception
765	  when handling a system call from a task that is being stepped
766	  in a VHE configuration of the kernel.
767
768	  If unsure, say Y.
769
770config ARM64_ERRATUM_1542419
771	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
772	help
773	  This option adds a workaround for ARM Neoverse-N1 erratum
774	  1542419.
775
776	  Affected Neoverse-N1 cores could execute a stale instruction when
777	  modified by another CPU. The workaround depends on a firmware
778	  counterpart.
779
780	  Workaround the issue by hiding the DIC feature from EL0. This
781	  forces user-space to perform cache maintenance.
782
783	  If unsure, say N.
784
785config ARM64_ERRATUM_1508412
786	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
787	default y
788	help
789	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
790
791	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
792	  of a store-exclusive or read of PAR_EL1 and a load with device or
793	  non-cacheable memory attributes. The workaround depends on a firmware
794	  counterpart.
795
796	  KVM guests must also have the workaround implemented or they can
797	  deadlock the system.
798
799	  Work around the issue by inserting DMB SY barriers around PAR_EL1
800	  register reads and warning KVM users. The DMB barrier is sufficient
801	  to prevent a speculative PAR_EL1 read.
802
803	  If unsure, say Y.
804
805config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
806	bool
807
808config ARM64_ERRATUM_2051678
809	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
810	default y
811	help
812	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
813	  Affected Cortex-A510 might not respect the ordering rules for
814	  hardware update of the page table's dirty bit. The workaround
815	  is to not enable the feature on affected CPUs.
816
817	  If unsure, say Y.
818
819config ARM64_ERRATUM_2077057
820	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
821	default y
822	help
823	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
824	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
825	  expected, but a Pointer Authentication trap is taken instead. The
826	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
827	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
828
829	  This can only happen when EL2 is stepping EL1.
830
831	  When these conditions occur, the SPSR_EL2 value is unchanged from the
832	  previous guest entry, and can be restored from the in-memory copy.
833
834	  If unsure, say Y.
835
836config ARM64_ERRATUM_2658417
837	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
838	default y
839	help
840	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
841	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
842	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
843	  A510 CPUs are using shared neon hardware. As the sharing is not
844	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
845	  user-space should not be using these instructions.
846
847	  If unsure, say Y.
848
849config ARM64_ERRATUM_2119858
850	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
851	default y
852	depends on CORESIGHT_TRBE
853	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
854	help
855	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
856
857	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
858	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
859	  the event of a WRAP event.
860
861	  Work around the issue by always making sure we move the TRBPTR_EL1 by
862	  256 bytes before enabling the buffer and filling the first 256 bytes of
863	  the buffer with ETM ignore packets upon disabling.
864
865	  If unsure, say Y.
866
867config ARM64_ERRATUM_2139208
868	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
869	default y
870	depends on CORESIGHT_TRBE
871	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
872	help
873	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
874
875	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
876	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
877	  the event of a WRAP event.
878
879	  Work around the issue by always making sure we move the TRBPTR_EL1 by
880	  256 bytes before enabling the buffer and filling the first 256 bytes of
881	  the buffer with ETM ignore packets upon disabling.
882
883	  If unsure, say Y.
884
885config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
886	bool
887
888config ARM64_ERRATUM_2054223
889	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
890	default y
891	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
892	help
893	  Enable workaround for ARM Cortex-A710 erratum 2054223
894
895	  Affected cores may fail to flush the trace data on a TSB instruction, when
896	  the PE is in trace prohibited state. This will cause losing a few bytes
897	  of the trace cached.
898
899	  Workaround is to issue two TSB consecutively on affected cores.
900
901	  If unsure, say Y.
902
903config ARM64_ERRATUM_2067961
904	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
905	default y
906	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
907	help
908	  Enable workaround for ARM Neoverse-N2 erratum 2067961
909
910	  Affected cores may fail to flush the trace data on a TSB instruction, when
911	  the PE is in trace prohibited state. This will cause losing a few bytes
912	  of the trace cached.
913
914	  Workaround is to issue two TSB consecutively on affected cores.
915
916	  If unsure, say Y.
917
918config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
919	bool
920
921config ARM64_ERRATUM_2253138
922	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
923	depends on CORESIGHT_TRBE
924	default y
925	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
926	help
927	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
928
929	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
930	  for TRBE. Under some conditions, the TRBE might generate a write to the next
931	  virtually addressed page following the last page of the TRBE address space
932	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
933
934	  Work around this in the driver by always making sure that there is a
935	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
936
937	  If unsure, say Y.
938
939config ARM64_ERRATUM_2224489
940	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
941	depends on CORESIGHT_TRBE
942	default y
943	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
944	help
945	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
946
947	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
948	  for TRBE. Under some conditions, the TRBE might generate a write to the next
949	  virtually addressed page following the last page of the TRBE address space
950	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
951
952	  Work around this in the driver by always making sure that there is a
953	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
954
955	  If unsure, say Y.
956
957config ARM64_ERRATUM_2441009
958	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
959	select ARM64_WORKAROUND_REPEAT_TLBI
960	help
961	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
962
963	  Under very rare circumstances, affected Cortex-A510 CPUs
964	  may not handle a race between a break-before-make sequence on one
965	  CPU, and another CPU accessing the same page. This could allow a
966	  store to a page that has been unmapped.
967
968	  Work around this by adding the affected CPUs to the list that needs
969	  TLB sequences to be done twice.
970
971	  If unsure, say N.
972
973config ARM64_ERRATUM_2064142
974	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
975	depends on CORESIGHT_TRBE
976	default y
977	help
978	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
979
980	  Affected Cortex-A510 core might fail to write into system registers after the
981	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
982	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
983	  and TRBTRG_EL1 will be ignored and will not be effected.
984
985	  Work around this in the driver by executing TSB CSYNC and DSB after collection
986	  is stopped and before performing a system register write to one of the affected
987	  registers.
988
989	  If unsure, say Y.
990
991config ARM64_ERRATUM_2038923
992	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
993	depends on CORESIGHT_TRBE
994	default y
995	help
996	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
997
998	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
999	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1000	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1001	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1002	  execution changes from a context, in which trace is prohibited to one where it
1003	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1004	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1005	  the trace buffer state might be corrupted.
1006
1007	  Work around this in the driver by preventing an inconsistent view of whether the
1008	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1009	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1010	  two ISB instructions if no ERET is to take place.
1011
1012	  If unsure, say Y.
1013
1014config ARM64_ERRATUM_1902691
1015	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1016	depends on CORESIGHT_TRBE
1017	default y
1018	help
1019	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1020
1021	  Affected Cortex-A510 core might cause trace data corruption, when being written
1022	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1023	  trace data.
1024
1025	  Work around this problem in the driver by just preventing TRBE initialization on
1026	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1027	  on such implementations. This will cover the kernel for any firmware that doesn't
1028	  do this already.
1029
1030	  If unsure, say Y.
1031
1032config ARM64_ERRATUM_2457168
1033	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1034	depends on ARM64_AMU_EXTN
1035	default y
1036	help
1037	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1038
1039	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1040	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1041	  incorrectly giving a significantly higher output value.
1042
1043	  Work around this problem by returning 0 when reading the affected counter in
1044	  key locations that results in disabling all users of this counter. This effect
1045	  is the same to firmware disabling affected counters.
1046
1047	  If unsure, say Y.
1048
1049config ARM64_ERRATUM_2645198
1050	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1051	default y
1052	help
1053	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1054
1055	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1056	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1057	  next instruction abort caused by permission fault.
1058
1059	  Only user-space does executable to non-executable permission transition via
1060	  mprotect() system call. Workaround the problem by doing a break-before-make
1061	  TLB invalidation, for all changes to executable user space mappings.
1062
1063	  If unsure, say Y.
1064
1065config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1066	bool
1067
1068config ARM64_ERRATUM_2966298
1069	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1070	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1071	default y
1072	help
1073	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1074
1075	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1076	  load might leak data from a privileged level via a cache side channel.
1077
1078	  Work around this problem by executing a TLBI before returning to EL0.
1079
1080	  If unsure, say Y.
1081
1082config ARM64_ERRATUM_3117295
1083	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1084	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1085	default y
1086	help
1087	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1088
1089	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1090	  load might leak data from a privileged level via a cache side channel.
1091
1092	  Work around this problem by executing a TLBI before returning to EL0.
1093
1094	  If unsure, say Y.
1095
1096config ARM64_ERRATUM_3194386
1097	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1098	default y
1099	help
1100	  This option adds the workaround for the following errata:
1101
1102	  * ARM Cortex-A76 erratum 3324349
1103	  * ARM Cortex-A77 erratum 3324348
1104	  * ARM Cortex-A78 erratum 3324344
1105	  * ARM Cortex-A78C erratum 3324346
1106	  * ARM Cortex-A78C erratum 3324347
1107	  * ARM Cortex-A710 erratam 3324338
1108	  * ARM Cortex-A715 errartum 3456084
1109	  * ARM Cortex-A720 erratum 3456091
1110	  * ARM Cortex-A725 erratum 3456106
1111	  * ARM Cortex-X1 erratum 3324344
1112	  * ARM Cortex-X1C erratum 3324346
1113	  * ARM Cortex-X2 erratum 3324338
1114	  * ARM Cortex-X3 erratum 3324335
1115	  * ARM Cortex-X4 erratum 3194386
1116	  * ARM Cortex-X925 erratum 3324334
1117	  * ARM Neoverse-N1 erratum 3324349
1118	  * ARM Neoverse N2 erratum 3324339
1119	  * ARM Neoverse-N3 erratum 3456111
1120	  * ARM Neoverse-V1 erratum 3324341
1121	  * ARM Neoverse V2 erratum 3324336
1122	  * ARM Neoverse-V3 erratum 3312417
1123
1124	  On affected cores "MSR SSBS, #0" instructions may not affect
1125	  subsequent speculative instructions, which may permit unexepected
1126	  speculative store bypassing.
1127
1128	  Work around this problem by placing a Speculation Barrier (SB) or
1129	  Instruction Synchronization Barrier (ISB) after kernel changes to
1130	  SSBS. The presence of the SSBS special-purpose register is hidden
1131	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1132	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1133
1134	  If unsure, say Y.
1135
1136config CAVIUM_ERRATUM_22375
1137	bool "Cavium erratum 22375, 24313"
1138	default y
1139	help
1140	  Enable workaround for errata 22375 and 24313.
1141
1142	  This implements two gicv3-its errata workarounds for ThunderX. Both
1143	  with a small impact affecting only ITS table allocation.
1144
1145	    erratum 22375: only alloc 8MB table size
1146	    erratum 24313: ignore memory access type
1147
1148	  The fixes are in ITS initialization and basically ignore memory access
1149	  type and table size provided by the TYPER and BASER registers.
1150
1151	  If unsure, say Y.
1152
1153config CAVIUM_ERRATUM_23144
1154	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1155	depends on NUMA
1156	default y
1157	help
1158	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1159
1160	  If unsure, say Y.
1161
1162config CAVIUM_ERRATUM_23154
1163	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1164	default y
1165	help
1166	  The ThunderX GICv3 implementation requires a modified version for
1167	  reading the IAR status to ensure data synchronization
1168	  (access to icc_iar1_el1 is not sync'ed before and after).
1169
1170	  It also suffers from erratum 38545 (also present on Marvell's
1171	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1172	  spuriously presented to the CPU interface.
1173
1174	  If unsure, say Y.
1175
1176config CAVIUM_ERRATUM_27456
1177	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1178	default y
1179	help
1180	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1181	  instructions may cause the icache to become corrupted if it
1182	  contains data for a non-current ASID.  The fix is to
1183	  invalidate the icache when changing the mm context.
1184
1185	  If unsure, say Y.
1186
1187config CAVIUM_ERRATUM_30115
1188	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1189	default y
1190	help
1191	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1192	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1193	  interrupts in host. Trapping both GICv3 group-0 and group-1
1194	  accesses sidesteps the issue.
1195
1196	  If unsure, say Y.
1197
1198config CAVIUM_TX2_ERRATUM_219
1199	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1200	default y
1201	help
1202	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1203	  TTBR update and the corresponding context synchronizing operation can
1204	  cause a spurious Data Abort to be delivered to any hardware thread in
1205	  the CPU core.
1206
1207	  Work around the issue by avoiding the problematic code sequence and
1208	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1209	  trap handler performs the corresponding register access, skips the
1210	  instruction and ensures context synchronization by virtue of the
1211	  exception return.
1212
1213	  If unsure, say Y.
1214
1215config FUJITSU_ERRATUM_010001
1216	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1217	default y
1218	help
1219	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1220	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1221	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1222	  This fault occurs under a specific hardware condition when a
1223	  load/store instruction performs an address translation using:
1224	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1225	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1226	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1227	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1228
1229	  The workaround is to ensure these bits are clear in TCR_ELx.
1230	  The workaround only affects the Fujitsu-A64FX.
1231
1232	  If unsure, say Y.
1233
1234config HISILICON_ERRATUM_161600802
1235	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1236	default y
1237	help
1238	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1239	  when issued ITS commands such as VMOVP and VMAPP, and requires
1240	  a 128kB offset to be applied to the target address in this commands.
1241
1242	  If unsure, say Y.
1243
1244config HISILICON_ERRATUM_162100801
1245	bool "Hip09 162100801 erratum support"
1246	default y
1247	help
1248	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1249	  during unmapping operation, which will cause some vSGIs lost.
1250	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1251	  after VMOVP.
1252
1253	  If unsure, say Y.
1254
1255config QCOM_FALKOR_ERRATUM_1003
1256	bool "Falkor E1003: Incorrect translation due to ASID change"
1257	default y
1258	help
1259	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1260	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1261	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1262	  then only for entries in the walk cache, since the leaf translation
1263	  is unchanged. Work around the erratum by invalidating the walk cache
1264	  entries for the trampoline before entering the kernel proper.
1265
1266config QCOM_FALKOR_ERRATUM_1009
1267	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1268	default y
1269	select ARM64_WORKAROUND_REPEAT_TLBI
1270	help
1271	  On Falkor v1, the CPU may prematurely complete a DSB following a
1272	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1273	  one more time to fix the issue.
1274
1275	  If unsure, say Y.
1276
1277config QCOM_QDF2400_ERRATUM_0065
1278	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1279	default y
1280	help
1281	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1282	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1283	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1284
1285	  If unsure, say Y.
1286
1287config QCOM_FALKOR_ERRATUM_E1041
1288	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1289	default y
1290	help
1291	  Falkor CPU may speculatively fetch instructions from an improper
1292	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1293	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1294
1295	  If unsure, say Y.
1296
1297config NVIDIA_CARMEL_CNP_ERRATUM
1298	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1299	default y
1300	help
1301	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1302	  invalidate shared TLB entries installed by a different core, as it would
1303	  on standard ARM cores.
1304
1305	  If unsure, say Y.
1306
1307config ROCKCHIP_ERRATUM_3568002
1308	bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB"
1309	default y
1310	help
1311	  The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI
1312	  addressing limited to the first 32bit of physical address space.
1313
1314	  If unsure, say Y.
1315
1316config ROCKCHIP_ERRATUM_3588001
1317	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1318	default y
1319	help
1320	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1321	  This means, that its sharability feature may not be used, even though it
1322	  is supported by the IP itself.
1323
1324	  If unsure, say Y.
1325
1326config SOCIONEXT_SYNQUACER_PREITS
1327	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1328	default y
1329	help
1330	  Socionext Synquacer SoCs implement a separate h/w block to generate
1331	  MSI doorbell writes with non-zero values for the device ID.
1332
1333	  If unsure, say Y.
1334
1335endmenu # "ARM errata workarounds via the alternatives framework"
1336
1337choice
1338	prompt "Page size"
1339	default ARM64_4K_PAGES
1340	help
1341	  Page size (translation granule) configuration.
1342
1343config ARM64_4K_PAGES
1344	bool "4KB"
1345	select HAVE_PAGE_SIZE_4KB
1346	help
1347	  This feature enables 4KB pages support.
1348
1349config ARM64_16K_PAGES
1350	bool "16KB"
1351	select HAVE_PAGE_SIZE_16KB
1352	help
1353	  The system will use 16KB pages support. AArch32 emulation
1354	  requires applications compiled with 16K (or a multiple of 16K)
1355	  aligned segments.
1356
1357config ARM64_64K_PAGES
1358	bool "64KB"
1359	select HAVE_PAGE_SIZE_64KB
1360	help
1361	  This feature enables 64KB pages support (4KB by default)
1362	  allowing only two levels of page tables and faster TLB
1363	  look-up. AArch32 emulation requires applications compiled
1364	  with 64K aligned segments.
1365
1366endchoice
1367
1368choice
1369	prompt "Virtual address space size"
1370	default ARM64_VA_BITS_52
1371	help
1372	  Allows choosing one of multiple possible virtual address
1373	  space sizes. The level of translation table is determined by
1374	  a combination of page size and virtual address space size.
1375
1376config ARM64_VA_BITS_36
1377	bool "36-bit" if EXPERT
1378	depends on PAGE_SIZE_16KB
1379
1380config ARM64_VA_BITS_39
1381	bool "39-bit"
1382	depends on PAGE_SIZE_4KB
1383
1384config ARM64_VA_BITS_42
1385	bool "42-bit"
1386	depends on PAGE_SIZE_64KB
1387
1388config ARM64_VA_BITS_47
1389	bool "47-bit"
1390	depends on PAGE_SIZE_16KB
1391
1392config ARM64_VA_BITS_48
1393	bool "48-bit"
1394
1395config ARM64_VA_BITS_52
1396	bool "52-bit"
1397	help
1398	  Enable 52-bit virtual addressing for userspace when explicitly
1399	  requested via a hint to mmap(). The kernel will also use 52-bit
1400	  virtual addresses for its own mappings (provided HW support for
1401	  this feature is available, otherwise it reverts to 48-bit).
1402
1403	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1404	  ARMv8.3 Pointer Authentication will result in the PAC being
1405	  reduced from 7 bits to 3 bits, which may have a significant
1406	  impact on its susceptibility to brute-force attacks.
1407
1408	  If unsure, select 48-bit virtual addressing instead.
1409
1410endchoice
1411
1412config ARM64_FORCE_52BIT
1413	bool "Force 52-bit virtual addresses for userspace"
1414	depends on ARM64_VA_BITS_52 && EXPERT
1415	help
1416	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1417	  to maintain compatibility with older software by providing 48-bit VAs
1418	  unless a hint is supplied to mmap.
1419
1420	  This configuration option disables the 48-bit compatibility logic, and
1421	  forces all userspace addresses to be 52-bit on HW that supports it. One
1422	  should only enable this configuration option for stress testing userspace
1423	  memory management code. If unsure say N here.
1424
1425config ARM64_VA_BITS
1426	int
1427	default 36 if ARM64_VA_BITS_36
1428	default 39 if ARM64_VA_BITS_39
1429	default 42 if ARM64_VA_BITS_42
1430	default 47 if ARM64_VA_BITS_47
1431	default 48 if ARM64_VA_BITS_48
1432	default 52 if ARM64_VA_BITS_52
1433
1434choice
1435	prompt "Physical address space size"
1436	default ARM64_PA_BITS_48
1437	help
1438	  Choose the maximum physical address range that the kernel will
1439	  support.
1440
1441config ARM64_PA_BITS_48
1442	bool "48-bit"
1443	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1444
1445config ARM64_PA_BITS_52
1446	bool "52-bit"
1447	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1448	help
1449	  Enable support for a 52-bit physical address space, introduced as
1450	  part of the ARMv8.2-LPA extension.
1451
1452	  With this enabled, the kernel will also continue to work on CPUs that
1453	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1454	  minor performance overhead).
1455
1456endchoice
1457
1458config ARM64_PA_BITS
1459	int
1460	default 48 if ARM64_PA_BITS_48
1461	default 52 if ARM64_PA_BITS_52
1462
1463config ARM64_LPA2
1464	def_bool y
1465	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1466
1467choice
1468	prompt "Endianness"
1469	default CPU_LITTLE_ENDIAN
1470	help
1471	  Select the endianness of data accesses performed by the CPU. Userspace
1472	  applications will need to be compiled and linked for the endianness
1473	  that is selected here.
1474
1475config CPU_BIG_ENDIAN
1476	bool "Build big-endian kernel"
1477	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1478	depends on AS_IS_GNU || AS_VERSION >= 150000
1479	help
1480	  Say Y if you plan on running a kernel with a big-endian userspace.
1481
1482config CPU_LITTLE_ENDIAN
1483	bool "Build little-endian kernel"
1484	help
1485	  Say Y if you plan on running a kernel with a little-endian userspace.
1486	  This is usually the case for distributions targeting arm64.
1487
1488endchoice
1489
1490config SCHED_MC
1491	bool "Multi-core scheduler support"
1492	help
1493	  Multi-core scheduler support improves the CPU scheduler's decision
1494	  making when dealing with multi-core CPU chips at a cost of slightly
1495	  increased overhead in some places. If unsure say N here.
1496
1497config SCHED_CLUSTER
1498	bool "Cluster scheduler support"
1499	help
1500	  Cluster scheduler support improves the CPU scheduler's decision
1501	  making when dealing with machines that have clusters of CPUs.
1502	  Cluster usually means a couple of CPUs which are placed closely
1503	  by sharing mid-level caches, last-level cache tags or internal
1504	  busses.
1505
1506config SCHED_SMT
1507	bool "SMT scheduler support"
1508	help
1509	  Improves the CPU scheduler's decision making when dealing with
1510	  MultiThreading at a cost of slightly increased overhead in some
1511	  places. If unsure say N here.
1512
1513config NR_CPUS
1514	int "Maximum number of CPUs (2-4096)"
1515	range 2 4096
1516	default "512"
1517
1518config HOTPLUG_CPU
1519	bool "Support for hot-pluggable CPUs"
1520	select GENERIC_IRQ_MIGRATION
1521	help
1522	  Say Y here to experiment with turning CPUs off and on.  CPUs
1523	  can be controlled through /sys/devices/system/cpu.
1524
1525# Common NUMA Features
1526config NUMA
1527	bool "NUMA Memory Allocation and Scheduler Support"
1528	select GENERIC_ARCH_NUMA
1529	select OF_NUMA
1530	select HAVE_SETUP_PER_CPU_AREA
1531	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1532	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1533	select USE_PERCPU_NUMA_NODE_ID
1534	help
1535	  Enable NUMA (Non-Uniform Memory Access) support.
1536
1537	  The kernel will try to allocate memory used by a CPU on the
1538	  local memory of the CPU and add some more
1539	  NUMA awareness to the kernel.
1540
1541config NODES_SHIFT
1542	int "Maximum NUMA Nodes (as a power of 2)"
1543	range 1 10
1544	default "4"
1545	depends on NUMA
1546	help
1547	  Specify the maximum number of NUMA Nodes available on the target
1548	  system.  Increases memory reserved to accommodate various tables.
1549
1550source "kernel/Kconfig.hz"
1551
1552config ARCH_SPARSEMEM_ENABLE
1553	def_bool y
1554	select SPARSEMEM_VMEMMAP_ENABLE
1555	select SPARSEMEM_VMEMMAP
1556
1557config HW_PERF_EVENTS
1558	def_bool y
1559	depends on ARM_PMU
1560
1561# Supported by clang >= 7.0 or GCC >= 12.0.0
1562config CC_HAVE_SHADOW_CALL_STACK
1563	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1564
1565config PARAVIRT
1566	bool "Enable paravirtualization code"
1567	help
1568	  This changes the kernel so it can modify itself when it is run
1569	  under a hypervisor, potentially improving performance significantly
1570	  over full virtualization.
1571
1572config PARAVIRT_TIME_ACCOUNTING
1573	bool "Paravirtual steal time accounting"
1574	select PARAVIRT
1575	help
1576	  Select this option to enable fine granularity task steal time
1577	  accounting. Time spent executing other tasks in parallel with
1578	  the current vCPU is discounted from the vCPU power. To account for
1579	  that, there can be a small performance impact.
1580
1581	  If in doubt, say N here.
1582
1583config ARCH_SUPPORTS_KEXEC
1584	def_bool PM_SLEEP_SMP
1585
1586config ARCH_SUPPORTS_KEXEC_FILE
1587	def_bool y
1588
1589config ARCH_SELECTS_KEXEC_FILE
1590	def_bool y
1591	depends on KEXEC_FILE
1592	select HAVE_IMA_KEXEC if IMA
1593
1594config ARCH_SUPPORTS_KEXEC_SIG
1595	def_bool y
1596
1597config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1598	def_bool y
1599
1600config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1601	def_bool y
1602
1603config ARCH_SUPPORTS_CRASH_DUMP
1604	def_bool y
1605
1606config ARCH_DEFAULT_CRASH_DUMP
1607	def_bool y
1608
1609config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1610	def_bool CRASH_RESERVE
1611
1612config TRANS_TABLE
1613	def_bool y
1614	depends on HIBERNATION || KEXEC_CORE
1615
1616config XEN_DOM0
1617	def_bool y
1618	depends on XEN
1619
1620config XEN
1621	bool "Xen guest support on ARM64"
1622	depends on ARM64 && OF
1623	select SWIOTLB_XEN
1624	select PARAVIRT
1625	help
1626	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1627
1628# include/linux/mmzone.h requires the following to be true:
1629#
1630#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1631#
1632# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1633#
1634#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1635# ----+-------------------+--------------+----------------------+-------------------------+
1636# 4K  |       27          |      12      |       15             |         10              |
1637# 16K |       27          |      14      |       13             |         11              |
1638# 64K |       29          |      16      |       13             |         13              |
1639config ARCH_FORCE_MAX_ORDER
1640	int
1641	default "13" if ARM64_64K_PAGES
1642	default "11" if ARM64_16K_PAGES
1643	default "10"
1644	help
1645	  The kernel page allocator limits the size of maximal physically
1646	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1647	  defines the maximal power of two of number of pages that can be
1648	  allocated as a single contiguous block. This option allows
1649	  overriding the default setting when ability to allocate very
1650	  large blocks of physically contiguous memory is required.
1651
1652	  The maximal size of allocation cannot exceed the size of the
1653	  section, so the value of MAX_PAGE_ORDER should satisfy
1654
1655	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1656
1657	  Don't change if unsure.
1658
1659config UNMAP_KERNEL_AT_EL0
1660	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1661	default y
1662	help
1663	  Speculation attacks against some high-performance processors can
1664	  be used to bypass MMU permission checks and leak kernel data to
1665	  userspace. This can be defended against by unmapping the kernel
1666	  when running in userspace, mapping it back in on exception entry
1667	  via a trampoline page in the vector table.
1668
1669	  If unsure, say Y.
1670
1671config MITIGATE_SPECTRE_BRANCH_HISTORY
1672	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1673	default y
1674	help
1675	  Speculation attacks against some high-performance processors can
1676	  make use of branch history to influence future speculation.
1677	  When taking an exception from user-space, a sequence of branches
1678	  or a firmware call overwrites the branch history.
1679
1680config RODATA_FULL_DEFAULT_ENABLED
1681	bool "Apply r/o permissions of VM areas also to their linear aliases"
1682	default y
1683	help
1684	  Apply read-only attributes of VM areas to the linear alias of
1685	  the backing pages as well. This prevents code or read-only data
1686	  from being modified (inadvertently or intentionally) via another
1687	  mapping of the same memory page. This additional enhancement can
1688	  be turned off at runtime by passing rodata=[off|on] (and turned on
1689	  with rodata=full if this option is set to 'n')
1690
1691	  This requires the linear region to be mapped down to pages,
1692	  which may adversely affect performance in some cases.
1693
1694config ARM64_SW_TTBR0_PAN
1695	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1696	depends on !KCSAN
1697	select ARM64_PAN
1698	help
1699	  Enabling this option prevents the kernel from accessing
1700	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1701	  zeroed area and reserved ASID. The user access routines
1702	  restore the valid TTBR0_EL1 temporarily.
1703
1704config ARM64_TAGGED_ADDR_ABI
1705	bool "Enable the tagged user addresses syscall ABI"
1706	default y
1707	help
1708	  When this option is enabled, user applications can opt in to a
1709	  relaxed ABI via prctl() allowing tagged addresses to be passed
1710	  to system calls as pointer arguments. For details, see
1711	  Documentation/arch/arm64/tagged-address-abi.rst.
1712
1713menuconfig COMPAT
1714	bool "Kernel support for 32-bit EL0"
1715	depends on ARM64_4K_PAGES || EXPERT
1716	select HAVE_UID16
1717	select OLD_SIGSUSPEND3
1718	select COMPAT_OLD_SIGACTION
1719	help
1720	  This option enables support for a 32-bit EL0 running under a 64-bit
1721	  kernel at EL1. AArch32-specific components such as system calls,
1722	  the user helper functions, VFP support and the ptrace interface are
1723	  handled appropriately by the kernel.
1724
1725	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1726	  that you will only be able to execute AArch32 binaries that were compiled
1727	  with page size aligned segments.
1728
1729	  If you want to execute 32-bit userspace applications, say Y.
1730
1731if COMPAT
1732
1733config KUSER_HELPERS
1734	bool "Enable kuser helpers page for 32-bit applications"
1735	default y
1736	help
1737	  Warning: disabling this option may break 32-bit user programs.
1738
1739	  Provide kuser helpers to compat tasks. The kernel provides
1740	  helper code to userspace in read only form at a fixed location
1741	  to allow userspace to be independent of the CPU type fitted to
1742	  the system. This permits binaries to be run on ARMv4 through
1743	  to ARMv8 without modification.
1744
1745	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1746
1747	  However, the fixed address nature of these helpers can be used
1748	  by ROP (return orientated programming) authors when creating
1749	  exploits.
1750
1751	  If all of the binaries and libraries which run on your platform
1752	  are built specifically for your platform, and make no use of
1753	  these helpers, then you can turn this option off to hinder
1754	  such exploits. However, in that case, if a binary or library
1755	  relying on those helpers is run, it will not function correctly.
1756
1757	  Say N here only if you are absolutely certain that you do not
1758	  need these helpers; otherwise, the safe option is to say Y.
1759
1760config COMPAT_VDSO
1761	bool "Enable vDSO for 32-bit applications"
1762	depends on !CPU_BIG_ENDIAN
1763	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1764	select GENERIC_COMPAT_VDSO
1765	default y
1766	help
1767	  Place in the process address space of 32-bit applications an
1768	  ELF shared object providing fast implementations of gettimeofday
1769	  and clock_gettime.
1770
1771	  You must have a 32-bit build of glibc 2.22 or later for programs
1772	  to seamlessly take advantage of this.
1773
1774config THUMB2_COMPAT_VDSO
1775	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1776	depends on COMPAT_VDSO
1777	default y
1778	help
1779	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1780	  otherwise with '-marm'.
1781
1782config COMPAT_ALIGNMENT_FIXUPS
1783	bool "Fix up misaligned multi-word loads and stores in user space"
1784
1785menuconfig ARMV8_DEPRECATED
1786	bool "Emulate deprecated/obsolete ARMv8 instructions"
1787	depends on SYSCTL
1788	help
1789	  Legacy software support may require certain instructions
1790	  that have been deprecated or obsoleted in the architecture.
1791
1792	  Enable this config to enable selective emulation of these
1793	  features.
1794
1795	  If unsure, say Y
1796
1797if ARMV8_DEPRECATED
1798
1799config SWP_EMULATION
1800	bool "Emulate SWP/SWPB instructions"
1801	help
1802	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1803	  they are always undefined. Say Y here to enable software
1804	  emulation of these instructions for userspace using LDXR/STXR.
1805	  This feature can be controlled at runtime with the abi.swp
1806	  sysctl which is disabled by default.
1807
1808	  In some older versions of glibc [<=2.8] SWP is used during futex
1809	  trylock() operations with the assumption that the code will not
1810	  be preempted. This invalid assumption may be more likely to fail
1811	  with SWP emulation enabled, leading to deadlock of the user
1812	  application.
1813
1814	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1815	  on an external transaction monitoring block called a global
1816	  monitor to maintain update atomicity. If your system does not
1817	  implement a global monitor, this option can cause programs that
1818	  perform SWP operations to uncached memory to deadlock.
1819
1820	  If unsure, say Y
1821
1822config CP15_BARRIER_EMULATION
1823	bool "Emulate CP15 Barrier instructions"
1824	help
1825	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1826	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1827	  strongly recommended to use the ISB, DSB, and DMB
1828	  instructions instead.
1829
1830	  Say Y here to enable software emulation of these
1831	  instructions for AArch32 userspace code. When this option is
1832	  enabled, CP15 barrier usage is traced which can help
1833	  identify software that needs updating. This feature can be
1834	  controlled at runtime with the abi.cp15_barrier sysctl.
1835
1836	  If unsure, say Y
1837
1838config SETEND_EMULATION
1839	bool "Emulate SETEND instruction"
1840	help
1841	  The SETEND instruction alters the data-endianness of the
1842	  AArch32 EL0, and is deprecated in ARMv8.
1843
1844	  Say Y here to enable software emulation of the instruction
1845	  for AArch32 userspace code. This feature can be controlled
1846	  at runtime with the abi.setend sysctl.
1847
1848	  Note: All the cpus on the system must have mixed endian support at EL0
1849	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1850	  endian - is hotplugged in after this feature has been enabled, there could
1851	  be unexpected results in the applications.
1852
1853	  If unsure, say Y
1854endif # ARMV8_DEPRECATED
1855
1856endif # COMPAT
1857
1858menu "ARMv8.1 architectural features"
1859
1860config ARM64_HW_AFDBM
1861	bool "Support for hardware updates of the Access and Dirty page flags"
1862	default y
1863	help
1864	  The ARMv8.1 architecture extensions introduce support for
1865	  hardware updates of the access and dirty information in page
1866	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1867	  capable processors, accesses to pages with PTE_AF cleared will
1868	  set this bit instead of raising an access flag fault.
1869	  Similarly, writes to read-only pages with the DBM bit set will
1870	  clear the read-only bit (AP[2]) instead of raising a
1871	  permission fault.
1872
1873	  Kernels built with this configuration option enabled continue
1874	  to work on pre-ARMv8.1 hardware and the performance impact is
1875	  minimal. If unsure, say Y.
1876
1877config ARM64_PAN
1878	bool "Enable support for Privileged Access Never (PAN)"
1879	default y
1880	help
1881	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1882	  prevents the kernel or hypervisor from accessing user-space (EL0)
1883	  memory directly.
1884
1885	  Choosing this option will cause any unprotected (not using
1886	  copy_to_user et al) memory access to fail with a permission fault.
1887
1888	  The feature is detected at runtime, and will remain as a 'nop'
1889	  instruction if the cpu does not implement the feature.
1890
1891config AS_HAS_LSE_ATOMICS
1892	def_bool $(as-instr,.arch_extension lse)
1893
1894config ARM64_LSE_ATOMICS
1895	bool
1896	default ARM64_USE_LSE_ATOMICS
1897	depends on AS_HAS_LSE_ATOMICS
1898
1899config ARM64_USE_LSE_ATOMICS
1900	bool "Atomic instructions"
1901	default y
1902	help
1903	  As part of the Large System Extensions, ARMv8.1 introduces new
1904	  atomic instructions that are designed specifically to scale in
1905	  very large systems.
1906
1907	  Say Y here to make use of these instructions for the in-kernel
1908	  atomic routines. This incurs a small overhead on CPUs that do
1909	  not support these instructions and requires the kernel to be
1910	  built with binutils >= 2.25 in order for the new instructions
1911	  to be used.
1912
1913endmenu # "ARMv8.1 architectural features"
1914
1915menu "ARMv8.2 architectural features"
1916
1917config AS_HAS_ARMV8_2
1918	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1919
1920config AS_HAS_SHA3
1921	def_bool $(as-instr,.arch armv8.2-a+sha3)
1922
1923config ARM64_PMEM
1924	bool "Enable support for persistent memory"
1925	select ARCH_HAS_PMEM_API
1926	select ARCH_HAS_UACCESS_FLUSHCACHE
1927	help
1928	  Say Y to enable support for the persistent memory API based on the
1929	  ARMv8.2 DCPoP feature.
1930
1931	  The feature is detected at runtime, and the kernel will use DC CVAC
1932	  operations if DC CVAP is not supported (following the behaviour of
1933	  DC CVAP itself if the system does not define a point of persistence).
1934
1935config ARM64_RAS_EXTN
1936	bool "Enable support for RAS CPU Extensions"
1937	default y
1938	help
1939	  CPUs that support the Reliability, Availability and Serviceability
1940	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1941	  errors, classify them and report them to software.
1942
1943	  On CPUs with these extensions system software can use additional
1944	  barriers to determine if faults are pending and read the
1945	  classification from a new set of registers.
1946
1947	  Selecting this feature will allow the kernel to use these barriers
1948	  and access the new registers if the system supports the extension.
1949	  Platform RAS features may additionally depend on firmware support.
1950
1951config ARM64_CNP
1952	bool "Enable support for Common Not Private (CNP) translations"
1953	default y
1954	help
1955	  Common Not Private (CNP) allows translation table entries to
1956	  be shared between different PEs in the same inner shareable
1957	  domain, so the hardware can use this fact to optimise the
1958	  caching of such entries in the TLB.
1959
1960	  Selecting this option allows the CNP feature to be detected
1961	  at runtime, and does not affect PEs that do not implement
1962	  this feature.
1963
1964endmenu # "ARMv8.2 architectural features"
1965
1966menu "ARMv8.3 architectural features"
1967
1968config ARM64_PTR_AUTH
1969	bool "Enable support for pointer authentication"
1970	default y
1971	help
1972	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1973	  instructions for signing and authenticating pointers against secret
1974	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1975	  and other attacks.
1976
1977	  This option enables these instructions at EL0 (i.e. for userspace).
1978	  Choosing this option will cause the kernel to initialise secret keys
1979	  for each process at exec() time, with these keys being
1980	  context-switched along with the process.
1981
1982	  The feature is detected at runtime. If the feature is not present in
1983	  hardware it will not be advertised to userspace/KVM guest nor will it
1984	  be enabled.
1985
1986	  If the feature is present on the boot CPU but not on a late CPU, then
1987	  the late CPU will be parked. Also, if the boot CPU does not have
1988	  address auth and the late CPU has then the late CPU will still boot
1989	  but with the feature disabled. On such a system, this option should
1990	  not be selected.
1991
1992config ARM64_PTR_AUTH_KERNEL
1993	bool "Use pointer authentication for kernel"
1994	default y
1995	depends on ARM64_PTR_AUTH
1996	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1997	# Modern compilers insert a .note.gnu.property section note for PAC
1998	# which is only understood by binutils starting with version 2.33.1.
1999	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
2000	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
2001	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2002	help
2003	  If the compiler supports the -mbranch-protection or
2004	  -msign-return-address flag (e.g. GCC 7 or later), then this option
2005	  will cause the kernel itself to be compiled with return address
2006	  protection. In this case, and if the target hardware is known to
2007	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
2008	  disabled with minimal loss of protection.
2009
2010	  This feature works with FUNCTION_GRAPH_TRACER option only if
2011	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2012
2013config CC_HAS_BRANCH_PROT_PAC_RET
2014	# GCC 9 or later, clang 8 or later
2015	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2016
2017config CC_HAS_SIGN_RETURN_ADDRESS
2018	# GCC 7, 8
2019	def_bool $(cc-option,-msign-return-address=all)
2020
2021config AS_HAS_ARMV8_3
2022	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2023
2024config AS_HAS_CFI_NEGATE_RA_STATE
2025	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2026
2027config AS_HAS_LDAPR
2028	def_bool $(as-instr,.arch_extension rcpc)
2029
2030endmenu # "ARMv8.3 architectural features"
2031
2032menu "ARMv8.4 architectural features"
2033
2034config ARM64_AMU_EXTN
2035	bool "Enable support for the Activity Monitors Unit CPU extension"
2036	default y
2037	help
2038	  The activity monitors extension is an optional extension introduced
2039	  by the ARMv8.4 CPU architecture. This enables support for version 1
2040	  of the activity monitors architecture, AMUv1.
2041
2042	  To enable the use of this extension on CPUs that implement it, say Y.
2043
2044	  Note that for architectural reasons, firmware _must_ implement AMU
2045	  support when running on CPUs that present the activity monitors
2046	  extension. The required support is present in:
2047	    * Version 1.5 and later of the ARM Trusted Firmware
2048
2049	  For kernels that have this configuration enabled but boot with broken
2050	  firmware, you may need to say N here until the firmware is fixed.
2051	  Otherwise you may experience firmware panics or lockups when
2052	  accessing the counter registers. Even if you are not observing these
2053	  symptoms, the values returned by the register reads might not
2054	  correctly reflect reality. Most commonly, the value read will be 0,
2055	  indicating that the counter is not enabled.
2056
2057config AS_HAS_ARMV8_4
2058	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2059
2060config ARM64_TLB_RANGE
2061	bool "Enable support for tlbi range feature"
2062	default y
2063	depends on AS_HAS_ARMV8_4
2064	help
2065	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2066	  range of input addresses.
2067
2068	  The feature introduces new assembly instructions, and they were
2069	  support when binutils >= 2.30.
2070
2071endmenu # "ARMv8.4 architectural features"
2072
2073menu "ARMv8.5 architectural features"
2074
2075config AS_HAS_ARMV8_5
2076	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2077
2078config ARM64_BTI
2079	bool "Branch Target Identification support"
2080	default y
2081	help
2082	  Branch Target Identification (part of the ARMv8.5 Extensions)
2083	  provides a mechanism to limit the set of locations to which computed
2084	  branch instructions such as BR or BLR can jump.
2085
2086	  To make use of BTI on CPUs that support it, say Y.
2087
2088	  BTI is intended to provide complementary protection to other control
2089	  flow integrity protection mechanisms, such as the Pointer
2090	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2091	  For this reason, it does not make sense to enable this option without
2092	  also enabling support for pointer authentication.  Thus, when
2093	  enabling this option you should also select ARM64_PTR_AUTH=y.
2094
2095	  Userspace binaries must also be specifically compiled to make use of
2096	  this mechanism.  If you say N here or the hardware does not support
2097	  BTI, such binaries can still run, but you get no additional
2098	  enforcement of branch destinations.
2099
2100config ARM64_BTI_KERNEL
2101	bool "Use Branch Target Identification for kernel"
2102	default y
2103	depends on ARM64_BTI
2104	depends on ARM64_PTR_AUTH_KERNEL
2105	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2106	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2107	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2108	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2109	depends on !CC_IS_GCC
2110	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2111	help
2112	  Build the kernel with Branch Target Identification annotations
2113	  and enable enforcement of this for kernel code. When this option
2114	  is enabled and the system supports BTI all kernel code including
2115	  modular code must have BTI enabled.
2116
2117config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2118	# GCC 9 or later, clang 8 or later
2119	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2120
2121config ARM64_E0PD
2122	bool "Enable support for E0PD"
2123	default y
2124	help
2125	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2126	  that EL0 accesses made via TTBR1 always fault in constant time,
2127	  providing similar benefits to KASLR as those provided by KPTI, but
2128	  with lower overhead and without disrupting legitimate access to
2129	  kernel memory such as SPE.
2130
2131	  This option enables E0PD for TTBR1 where available.
2132
2133config ARM64_AS_HAS_MTE
2134	# Initial support for MTE went in binutils 2.32.0, checked with
2135	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2136	# as a late addition to the final architecture spec (LDGM/STGM)
2137	# is only supported in the newer 2.32.x and 2.33 binutils
2138	# versions, hence the extra "stgm" instruction check below.
2139	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2140
2141config ARM64_MTE
2142	bool "Memory Tagging Extension support"
2143	default y
2144	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2145	depends on AS_HAS_ARMV8_5
2146	depends on AS_HAS_LSE_ATOMICS
2147	# Required for tag checking in the uaccess routines
2148	select ARM64_PAN
2149	select ARCH_HAS_SUBPAGE_FAULTS
2150	select ARCH_USES_HIGH_VMA_FLAGS
2151	select ARCH_USES_PG_ARCH_2
2152	select ARCH_USES_PG_ARCH_3
2153	help
2154	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2155	  architectural support for run-time, always-on detection of
2156	  various classes of memory error to aid with software debugging
2157	  to eliminate vulnerabilities arising from memory-unsafe
2158	  languages.
2159
2160	  This option enables the support for the Memory Tagging
2161	  Extension at EL0 (i.e. for userspace).
2162
2163	  Selecting this option allows the feature to be detected at
2164	  runtime. Any secondary CPU not implementing this feature will
2165	  not be allowed a late bring-up.
2166
2167	  Userspace binaries that want to use this feature must
2168	  explicitly opt in. The mechanism for the userspace is
2169	  described in:
2170
2171	  Documentation/arch/arm64/memory-tagging-extension.rst.
2172
2173endmenu # "ARMv8.5 architectural features"
2174
2175menu "ARMv8.7 architectural features"
2176
2177config ARM64_EPAN
2178	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2179	default y
2180	depends on ARM64_PAN
2181	help
2182	  Enhanced Privileged Access Never (EPAN) allows Privileged
2183	  Access Never to be used with Execute-only mappings.
2184
2185	  The feature is detected at runtime, and will remain disabled
2186	  if the cpu does not implement the feature.
2187endmenu # "ARMv8.7 architectural features"
2188
2189config AS_HAS_MOPS
2190	def_bool $(as-instr,.arch_extension mops)
2191
2192menu "ARMv8.9 architectural features"
2193
2194config ARM64_POE
2195	prompt "Permission Overlay Extension"
2196	def_bool y
2197	select ARCH_USES_HIGH_VMA_FLAGS
2198	select ARCH_HAS_PKEYS
2199	help
2200	  The Permission Overlay Extension is used to implement Memory
2201	  Protection Keys. Memory Protection Keys provides a mechanism for
2202	  enforcing page-based protections, but without requiring modification
2203	  of the page tables when an application changes protection domains.
2204
2205	  For details, see Documentation/core-api/protection-keys.rst
2206
2207	  If unsure, say y.
2208
2209config ARCH_PKEY_BITS
2210	int
2211	default 3
2212
2213config ARM64_HAFT
2214	bool "Support for Hardware managed Access Flag for Table Descriptors"
2215	depends on ARM64_HW_AFDBM
2216	default y
2217	help
2218	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2219	  Flag for Table descriptors. When enabled an architectural executed
2220	  memory access will update the Access Flag in each Table descriptor
2221	  which is accessed during the translation table walk and for which
2222	  the Access Flag is 0. The Access Flag of the Table descriptor use
2223	  the same bit of PTE_AF.
2224
2225	  The feature will only be enabled if all the CPUs in the system
2226	  support this feature. If unsure, say Y.
2227
2228endmenu # "ARMv8.9 architectural features"
2229
2230menu "v9.4 architectural features"
2231
2232config ARM64_GCS
2233	bool "Enable support for Guarded Control Stack (GCS)"
2234	default y
2235	select ARCH_HAS_USER_SHADOW_STACK
2236	select ARCH_USES_HIGH_VMA_FLAGS
2237	depends on !UPROBES
2238	help
2239	  Guarded Control Stack (GCS) provides support for a separate
2240	  stack with restricted access which contains only return
2241	  addresses.  This can be used to harden against some attacks
2242	  by comparing return address used by the program with what is
2243	  stored in the GCS, and may also be used to efficiently obtain
2244	  the call stack for applications such as profiling.
2245
2246	  The feature is detected at runtime, and will remain disabled
2247	  if the system does not implement the feature.
2248
2249endmenu # "v9.4 architectural features"
2250
2251config ARM64_SVE
2252	bool "ARM Scalable Vector Extension support"
2253	default y
2254	help
2255	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2256	  execution state which complements and extends the SIMD functionality
2257	  of the base architecture to support much larger vectors and to enable
2258	  additional vectorisation opportunities.
2259
2260	  To enable use of this extension on CPUs that implement it, say Y.
2261
2262	  On CPUs that support the SVE2 extensions, this option will enable
2263	  those too.
2264
2265	  Note that for architectural reasons, firmware _must_ implement SVE
2266	  support when running on SVE capable hardware.  The required support
2267	  is present in:
2268
2269	    * version 1.5 and later of the ARM Trusted Firmware
2270	    * the AArch64 boot wrapper since commit 5e1261e08abf
2271	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2272
2273	  For other firmware implementations, consult the firmware documentation
2274	  or vendor.
2275
2276	  If you need the kernel to boot on SVE-capable hardware with broken
2277	  firmware, you may need to say N here until you get your firmware
2278	  fixed.  Otherwise, you may experience firmware panics or lockups when
2279	  booting the kernel.  If unsure and you are not observing these
2280	  symptoms, you should assume that it is safe to say Y.
2281
2282config ARM64_SME
2283	bool "ARM Scalable Matrix Extension support"
2284	default y
2285	depends on ARM64_SVE
2286	depends on BROKEN
2287	help
2288	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2289	  execution state which utilises a substantial subset of the SVE
2290	  instruction set, together with the addition of new architectural
2291	  register state capable of holding two dimensional matrix tiles to
2292	  enable various matrix operations.
2293
2294config ARM64_PSEUDO_NMI
2295	bool "Support for NMI-like interrupts"
2296	select ARM_GIC_V3
2297	help
2298	  Adds support for mimicking Non-Maskable Interrupts through the use of
2299	  GIC interrupt priority. This support requires version 3 or later of
2300	  ARM GIC.
2301
2302	  This high priority configuration for interrupts needs to be
2303	  explicitly enabled by setting the kernel parameter
2304	  "irqchip.gicv3_pseudo_nmi" to 1.
2305
2306	  If unsure, say N
2307
2308if ARM64_PSEUDO_NMI
2309config ARM64_DEBUG_PRIORITY_MASKING
2310	bool "Debug interrupt priority masking"
2311	help
2312	  This adds runtime checks to functions enabling/disabling
2313	  interrupts when using priority masking. The additional checks verify
2314	  the validity of ICC_PMR_EL1 when calling concerned functions.
2315
2316	  If unsure, say N
2317endif # ARM64_PSEUDO_NMI
2318
2319config RELOCATABLE
2320	bool "Build a relocatable kernel image" if EXPERT
2321	select ARCH_HAS_RELR
2322	default y
2323	help
2324	  This builds the kernel as a Position Independent Executable (PIE),
2325	  which retains all relocation metadata required to relocate the
2326	  kernel binary at runtime to a different virtual address than the
2327	  address it was linked at.
2328	  Since AArch64 uses the RELA relocation format, this requires a
2329	  relocation pass at runtime even if the kernel is loaded at the
2330	  same address it was linked at.
2331
2332config RANDOMIZE_BASE
2333	bool "Randomize the address of the kernel image"
2334	select RELOCATABLE
2335	help
2336	  Randomizes the virtual address at which the kernel image is
2337	  loaded, as a security feature that deters exploit attempts
2338	  relying on knowledge of the location of kernel internals.
2339
2340	  It is the bootloader's job to provide entropy, by passing a
2341	  random u64 value in /chosen/kaslr-seed at kernel entry.
2342
2343	  When booting via the UEFI stub, it will invoke the firmware's
2344	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2345	  to the kernel proper. In addition, it will randomise the physical
2346	  location of the kernel Image as well.
2347
2348	  If unsure, say N.
2349
2350config RANDOMIZE_MODULE_REGION_FULL
2351	bool "Randomize the module region over a 2 GB range"
2352	depends on RANDOMIZE_BASE
2353	default y
2354	help
2355	  Randomizes the location of the module region inside a 2 GB window
2356	  covering the core kernel. This way, it is less likely for modules
2357	  to leak information about the location of core kernel data structures
2358	  but it does imply that function calls between modules and the core
2359	  kernel will need to be resolved via veneers in the module PLT.
2360
2361	  When this option is not set, the module region will be randomized over
2362	  a limited range that contains the [_stext, _etext] interval of the
2363	  core kernel, so branch relocations are almost always in range unless
2364	  the region is exhausted. In this particular case of region
2365	  exhaustion, modules might be able to fall back to a larger 2GB area.
2366
2367config CC_HAVE_STACKPROTECTOR_SYSREG
2368	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2369
2370config STACKPROTECTOR_PER_TASK
2371	def_bool y
2372	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2373
2374config UNWIND_PATCH_PAC_INTO_SCS
2375	bool "Enable shadow call stack dynamically using code patching"
2376	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2377	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2378	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2379	depends on SHADOW_CALL_STACK
2380	select UNWIND_TABLES
2381	select DYNAMIC_SCS
2382
2383config ARM64_CONTPTE
2384	bool "Contiguous PTE mappings for user memory" if EXPERT
2385	depends on TRANSPARENT_HUGEPAGE
2386	default y
2387	help
2388	  When enabled, user mappings are configured using the PTE contiguous
2389	  bit, for any mappings that meet the size and alignment requirements.
2390	  This reduces TLB pressure and improves performance.
2391
2392endmenu # "Kernel Features"
2393
2394menu "Boot options"
2395
2396config ARM64_ACPI_PARKING_PROTOCOL
2397	bool "Enable support for the ARM64 ACPI parking protocol"
2398	depends on ACPI
2399	help
2400	  Enable support for the ARM64 ACPI parking protocol. If disabled
2401	  the kernel will not allow booting through the ARM64 ACPI parking
2402	  protocol even if the corresponding data is present in the ACPI
2403	  MADT table.
2404
2405config CMDLINE
2406	string "Default kernel command string"
2407	default ""
2408	help
2409	  Provide a set of default command-line options at build time by
2410	  entering them here. As a minimum, you should specify the the
2411	  root device (e.g. root=/dev/nfs).
2412
2413choice
2414	prompt "Kernel command line type"
2415	depends on CMDLINE != ""
2416	default CMDLINE_FROM_BOOTLOADER
2417	help
2418	  Choose how the kernel will handle the provided default kernel
2419	  command line string.
2420
2421config CMDLINE_FROM_BOOTLOADER
2422	bool "Use bootloader kernel arguments if available"
2423	help
2424	  Uses the command-line options passed by the boot loader. If
2425	  the boot loader doesn't provide any, the default kernel command
2426	  string provided in CMDLINE will be used.
2427
2428config CMDLINE_FORCE
2429	bool "Always use the default kernel command string"
2430	help
2431	  Always use the default kernel command string, even if the boot
2432	  loader passes other arguments to the kernel.
2433	  This is useful if you cannot or don't want to change the
2434	  command-line options your boot loader passes to the kernel.
2435
2436endchoice
2437
2438config EFI_STUB
2439	bool
2440
2441config EFI
2442	bool "UEFI runtime support"
2443	depends on OF && !CPU_BIG_ENDIAN
2444	depends on KERNEL_MODE_NEON
2445	select ARCH_SUPPORTS_ACPI
2446	select LIBFDT
2447	select UCS2_STRING
2448	select EFI_PARAMS_FROM_FDT
2449	select EFI_RUNTIME_WRAPPERS
2450	select EFI_STUB
2451	select EFI_GENERIC_STUB
2452	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2453	default y
2454	help
2455	  This option provides support for runtime services provided
2456	  by UEFI firmware (such as non-volatile variables, realtime
2457	  clock, and platform reset). A UEFI stub is also provided to
2458	  allow the kernel to be booted as an EFI application. This
2459	  is only useful on systems that have UEFI firmware.
2460
2461config COMPRESSED_INSTALL
2462	bool "Install compressed image by default"
2463	help
2464	  This makes the regular "make install" install the compressed
2465	  image we built, not the legacy uncompressed one.
2466
2467	  You can check that a compressed image works for you by doing
2468	  "make zinstall" first, and verifying that everything is fine
2469	  in your environment before making "make install" do this for
2470	  you.
2471
2472config DMI
2473	bool "Enable support for SMBIOS (DMI) tables"
2474	depends on EFI
2475	default y
2476	help
2477	  This enables SMBIOS/DMI feature for systems.
2478
2479	  This option is only useful on systems that have UEFI firmware.
2480	  However, even with this option, the resultant kernel should
2481	  continue to boot on existing non-UEFI platforms.
2482
2483endmenu # "Boot options"
2484
2485menu "Power management options"
2486
2487source "kernel/power/Kconfig"
2488
2489config ARCH_HIBERNATION_POSSIBLE
2490	def_bool y
2491	depends on CPU_PM
2492
2493config ARCH_HIBERNATION_HEADER
2494	def_bool y
2495	depends on HIBERNATION
2496
2497config ARCH_SUSPEND_POSSIBLE
2498	def_bool y
2499
2500endmenu # "Power management options"
2501
2502menu "CPU Power Management"
2503
2504source "drivers/cpuidle/Kconfig"
2505
2506source "drivers/cpufreq/Kconfig"
2507
2508endmenu # "CPU Power Management"
2509
2510source "drivers/acpi/Kconfig"
2511
2512source "arch/arm64/kvm/Kconfig"
2513
2514