xref: /linux/arch/arm64/Kconfig (revision 87c9c16317882dd6dbbc07e349bc3223e14f3244)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
15	select ARCH_ENABLE_MEMORY_HOTPLUG
16	select ARCH_ENABLE_MEMORY_HOTREMOVE
17	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
18	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
19	select ARCH_HAS_CACHE_LINE_SIZE
20	select ARCH_HAS_DEBUG_VIRTUAL
21	select ARCH_HAS_DEBUG_VM_PGTABLE
22	select ARCH_HAS_DMA_PREP_COHERENT
23	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
24	select ARCH_HAS_FAST_MULTIPLIER
25	select ARCH_HAS_FORTIFY_SOURCE
26	select ARCH_HAS_GCOV_PROFILE_ALL
27	select ARCH_HAS_GIGANTIC_PAGE
28	select ARCH_HAS_KCOV
29	select ARCH_HAS_KEEPINITRD
30	select ARCH_HAS_MEMBARRIER_SYNC_CORE
31	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
32	select ARCH_HAS_PTE_DEVMAP
33	select ARCH_HAS_PTE_SPECIAL
34	select ARCH_HAS_SETUP_DMA_OPS
35	select ARCH_HAS_SET_DIRECT_MAP
36	select ARCH_HAS_SET_MEMORY
37	select ARCH_STACKWALK
38	select ARCH_HAS_STRICT_KERNEL_RWX
39	select ARCH_HAS_STRICT_MODULE_RWX
40	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
41	select ARCH_HAS_SYNC_DMA_FOR_CPU
42	select ARCH_HAS_SYSCALL_WRAPPER
43	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
44	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
45	select ARCH_HAVE_ELF_PROT
46	select ARCH_HAVE_NMI_SAFE_CMPXCHG
47	select ARCH_INLINE_READ_LOCK if !PREEMPTION
48	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
49	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
50	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
51	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
52	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
53	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
54	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
55	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
56	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
57	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
59	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
60	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
61	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
63	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
64	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
65	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
66	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
67	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
69	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
70	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
71	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
73	select ARCH_KEEP_MEMBLOCK
74	select ARCH_USE_CMPXCHG_LOCKREF
75	select ARCH_USE_GNU_PROPERTY
76	select ARCH_USE_MEMTEST
77	select ARCH_USE_QUEUED_RWLOCKS
78	select ARCH_USE_QUEUED_SPINLOCKS
79	select ARCH_USE_SYM_ANNOTATIONS
80	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
81	select ARCH_SUPPORTS_HUGETLBFS
82	select ARCH_SUPPORTS_MEMORY_FAILURE
83	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
84	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
85	select ARCH_SUPPORTS_LTO_CLANG_THIN
86	select ARCH_SUPPORTS_CFI_CLANG
87	select ARCH_SUPPORTS_ATOMIC_RMW
88	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
89	select ARCH_SUPPORTS_NUMA_BALANCING
90	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
91	select ARCH_WANT_DEFAULT_BPF_JIT
92	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
93	select ARCH_WANT_FRAME_POINTERS
94	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
95	select ARCH_WANT_LD_ORPHAN_WARN
96	select ARCH_HAS_UBSAN_SANITIZE_ALL
97	select ARM_AMBA
98	select ARM_ARCH_TIMER
99	select ARM_GIC
100	select AUDIT_ARCH_COMPAT_GENERIC
101	select ARM_GIC_V2M if PCI
102	select ARM_GIC_V3
103	select ARM_GIC_V3_ITS if PCI
104	select ARM_PSCI_FW
105	select BUILDTIME_TABLE_SORT
106	select CLONE_BACKWARDS
107	select COMMON_CLK
108	select CPU_PM if (SUSPEND || CPU_IDLE)
109	select CRC32
110	select DCACHE_WORD_ACCESS
111	select DMA_DIRECT_REMAP
112	select EDAC_SUPPORT
113	select FRAME_POINTER
114	select GENERIC_ALLOCATOR
115	select GENERIC_ARCH_TOPOLOGY
116	select GENERIC_CLOCKEVENTS_BROADCAST
117	select GENERIC_CPU_AUTOPROBE
118	select GENERIC_CPU_VULNERABILITIES
119	select GENERIC_EARLY_IOREMAP
120	select GENERIC_FIND_FIRST_BIT
121	select GENERIC_IDLE_POLL_SETUP
122	select GENERIC_IRQ_IPI
123	select GENERIC_IRQ_PROBE
124	select GENERIC_IRQ_SHOW
125	select GENERIC_IRQ_SHOW_LEVEL
126	select GENERIC_LIB_DEVMEM_IS_ALLOWED
127	select GENERIC_PCI_IOMAP
128	select GENERIC_PTDUMP
129	select GENERIC_SCHED_CLOCK
130	select GENERIC_SMP_IDLE_THREAD
131	select GENERIC_STRNCPY_FROM_USER
132	select GENERIC_STRNLEN_USER
133	select GENERIC_TIME_VSYSCALL
134	select GENERIC_GETTIMEOFDAY
135	select GENERIC_VDSO_TIME_NS
136	select HANDLE_DOMAIN_IRQ
137	select HARDIRQS_SW_RESEND
138	select HAVE_MOVE_PMD
139	select HAVE_MOVE_PUD
140	select HAVE_PCI
141	select HAVE_ACPI_APEI if (ACPI && EFI)
142	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
143	select HAVE_ARCH_AUDITSYSCALL
144	select HAVE_ARCH_BITREVERSE
145	select HAVE_ARCH_COMPILER_H
146	select HAVE_ARCH_HUGE_VMAP
147	select HAVE_ARCH_JUMP_LABEL
148	select HAVE_ARCH_JUMP_LABEL_RELATIVE
149	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
150	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
151	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
152	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
153	select HAVE_ARCH_KFENCE
154	select HAVE_ARCH_KGDB
155	select HAVE_ARCH_MMAP_RND_BITS
156	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
157	select HAVE_ARCH_PFN_VALID
158	select HAVE_ARCH_PREL32_RELOCATIONS
159	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
160	select HAVE_ARCH_SECCOMP_FILTER
161	select HAVE_ARCH_STACKLEAK
162	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
163	select HAVE_ARCH_TRACEHOOK
164	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
165	select HAVE_ARCH_VMAP_STACK
166	select HAVE_ARM_SMCCC
167	select HAVE_ASM_MODVERSIONS
168	select HAVE_EBPF_JIT
169	select HAVE_C_RECORDMCOUNT
170	select HAVE_CMPXCHG_DOUBLE
171	select HAVE_CMPXCHG_LOCAL
172	select HAVE_CONTEXT_TRACKING
173	select HAVE_DEBUG_KMEMLEAK
174	select HAVE_DMA_CONTIGUOUS
175	select HAVE_DYNAMIC_FTRACE
176	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
177		if $(cc-option,-fpatchable-function-entry=2)
178	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
179		if DYNAMIC_FTRACE_WITH_REGS
180	select HAVE_EFFICIENT_UNALIGNED_ACCESS
181	select HAVE_FAST_GUP
182	select HAVE_FTRACE_MCOUNT_RECORD
183	select HAVE_FUNCTION_TRACER
184	select HAVE_FUNCTION_ERROR_INJECTION
185	select HAVE_FUNCTION_GRAPH_TRACER
186	select HAVE_GCC_PLUGINS
187	select HAVE_HW_BREAKPOINT if PERF_EVENTS
188	select HAVE_IRQ_TIME_ACCOUNTING
189	select HAVE_NMI
190	select HAVE_PATA_PLATFORM
191	select HAVE_PERF_EVENTS
192	select HAVE_PERF_REGS
193	select HAVE_PERF_USER_STACK_DUMP
194	select HAVE_REGS_AND_STACK_ACCESS_API
195	select HAVE_FUNCTION_ARG_ACCESS_API
196	select HAVE_FUTEX_CMPXCHG if FUTEX
197	select MMU_GATHER_RCU_TABLE_FREE
198	select HAVE_RSEQ
199	select HAVE_STACKPROTECTOR
200	select HAVE_SYSCALL_TRACEPOINTS
201	select HAVE_KPROBES
202	select HAVE_KRETPROBES
203	select HAVE_GENERIC_VDSO
204	select IOMMU_DMA if IOMMU_SUPPORT
205	select IRQ_DOMAIN
206	select IRQ_FORCED_THREADING
207	select KASAN_VMALLOC if KASAN_GENERIC
208	select MODULES_USE_ELF_RELA
209	select NEED_DMA_MAP_STATE
210	select NEED_SG_DMA_LENGTH
211	select OF
212	select OF_EARLY_FLATTREE
213	select PCI_DOMAINS_GENERIC if PCI
214	select PCI_ECAM if (ACPI && PCI)
215	select PCI_SYSCALL if PCI
216	select POWER_RESET
217	select POWER_SUPPLY
218	select SPARSE_IRQ
219	select SWIOTLB
220	select SYSCTL_EXCEPTION_TRACE
221	select THREAD_INFO_IN_TASK
222	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
223	help
224	  ARM 64-bit (AArch64) Linux support.
225
226config 64BIT
227	def_bool y
228
229config MMU
230	def_bool y
231
232config ARM64_PAGE_SHIFT
233	int
234	default 16 if ARM64_64K_PAGES
235	default 14 if ARM64_16K_PAGES
236	default 12
237
238config ARM64_CONT_PTE_SHIFT
239	int
240	default 5 if ARM64_64K_PAGES
241	default 7 if ARM64_16K_PAGES
242	default 4
243
244config ARM64_CONT_PMD_SHIFT
245	int
246	default 5 if ARM64_64K_PAGES
247	default 5 if ARM64_16K_PAGES
248	default 4
249
250config ARCH_MMAP_RND_BITS_MIN
251       default 14 if ARM64_64K_PAGES
252       default 16 if ARM64_16K_PAGES
253       default 18
254
255# max bits determined by the following formula:
256#  VA_BITS - PAGE_SHIFT - 3
257config ARCH_MMAP_RND_BITS_MAX
258       default 19 if ARM64_VA_BITS=36
259       default 24 if ARM64_VA_BITS=39
260       default 27 if ARM64_VA_BITS=42
261       default 30 if ARM64_VA_BITS=47
262       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
263       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
264       default 33 if ARM64_VA_BITS=48
265       default 14 if ARM64_64K_PAGES
266       default 16 if ARM64_16K_PAGES
267       default 18
268
269config ARCH_MMAP_RND_COMPAT_BITS_MIN
270       default 7 if ARM64_64K_PAGES
271       default 9 if ARM64_16K_PAGES
272       default 11
273
274config ARCH_MMAP_RND_COMPAT_BITS_MAX
275       default 16
276
277config NO_IOPORT_MAP
278	def_bool y if !PCI
279
280config STACKTRACE_SUPPORT
281	def_bool y
282
283config ILLEGAL_POINTER_VALUE
284	hex
285	default 0xdead000000000000
286
287config LOCKDEP_SUPPORT
288	def_bool y
289
290config TRACE_IRQFLAGS_SUPPORT
291	def_bool y
292
293config GENERIC_BUG
294	def_bool y
295	depends on BUG
296
297config GENERIC_BUG_RELATIVE_POINTERS
298	def_bool y
299	depends on GENERIC_BUG
300
301config GENERIC_HWEIGHT
302	def_bool y
303
304config GENERIC_CSUM
305        def_bool y
306
307config GENERIC_CALIBRATE_DELAY
308	def_bool y
309
310config ZONE_DMA
311	bool "Support DMA zone" if EXPERT
312	default y
313
314config ZONE_DMA32
315	bool "Support DMA32 zone" if EXPERT
316	default y
317
318config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
319	def_bool y
320
321config SMP
322	def_bool y
323
324config KERNEL_MODE_NEON
325	def_bool y
326
327config FIX_EARLYCON_MEM
328	def_bool y
329
330config PGTABLE_LEVELS
331	int
332	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
333	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
334	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
335	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
336	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
337	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
338
339config ARCH_SUPPORTS_UPROBES
340	def_bool y
341
342config ARCH_PROC_KCORE_TEXT
343	def_bool y
344
345config BROKEN_GAS_INST
346	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
347
348config KASAN_SHADOW_OFFSET
349	hex
350	depends on KASAN_GENERIC || KASAN_SW_TAGS
351	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
352	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
353	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
354	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
355	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
356	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
357	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
358	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
359	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
360	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
361	default 0xffffffffffffffff
362
363source "arch/arm64/Kconfig.platforms"
364
365menu "Kernel Features"
366
367menu "ARM errata workarounds via the alternatives framework"
368
369config ARM64_WORKAROUND_CLEAN_CACHE
370	bool
371
372config ARM64_ERRATUM_826319
373	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
374	default y
375	select ARM64_WORKAROUND_CLEAN_CACHE
376	help
377	  This option adds an alternative code sequence to work around ARM
378	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
379	  AXI master interface and an L2 cache.
380
381	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
382	  and is unable to accept a certain write via this interface, it will
383	  not progress on read data presented on the read data channel and the
384	  system can deadlock.
385
386	  The workaround promotes data cache clean instructions to
387	  data cache clean-and-invalidate.
388	  Please note that this does not necessarily enable the workaround,
389	  as it depends on the alternative framework, which will only patch
390	  the kernel if an affected CPU is detected.
391
392	  If unsure, say Y.
393
394config ARM64_ERRATUM_827319
395	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
396	default y
397	select ARM64_WORKAROUND_CLEAN_CACHE
398	help
399	  This option adds an alternative code sequence to work around ARM
400	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
401	  master interface and an L2 cache.
402
403	  Under certain conditions this erratum can cause a clean line eviction
404	  to occur at the same time as another transaction to the same address
405	  on the AMBA 5 CHI interface, which can cause data corruption if the
406	  interconnect reorders the two transactions.
407
408	  The workaround promotes data cache clean instructions to
409	  data cache clean-and-invalidate.
410	  Please note that this does not necessarily enable the workaround,
411	  as it depends on the alternative framework, which will only patch
412	  the kernel if an affected CPU is detected.
413
414	  If unsure, say Y.
415
416config ARM64_ERRATUM_824069
417	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
418	default y
419	select ARM64_WORKAROUND_CLEAN_CACHE
420	help
421	  This option adds an alternative code sequence to work around ARM
422	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
423	  to a coherent interconnect.
424
425	  If a Cortex-A53 processor is executing a store or prefetch for
426	  write instruction at the same time as a processor in another
427	  cluster is executing a cache maintenance operation to the same
428	  address, then this erratum might cause a clean cache line to be
429	  incorrectly marked as dirty.
430
431	  The workaround promotes data cache clean instructions to
432	  data cache clean-and-invalidate.
433	  Please note that this option does not necessarily enable the
434	  workaround, as it depends on the alternative framework, which will
435	  only patch the kernel if an affected CPU is detected.
436
437	  If unsure, say Y.
438
439config ARM64_ERRATUM_819472
440	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
441	default y
442	select ARM64_WORKAROUND_CLEAN_CACHE
443	help
444	  This option adds an alternative code sequence to work around ARM
445	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
446	  present when it is connected to a coherent interconnect.
447
448	  If the processor is executing a load and store exclusive sequence at
449	  the same time as a processor in another cluster is executing a cache
450	  maintenance operation to the same address, then this erratum might
451	  cause data corruption.
452
453	  The workaround promotes data cache clean instructions to
454	  data cache clean-and-invalidate.
455	  Please note that this does not necessarily enable the workaround,
456	  as it depends on the alternative framework, which will only patch
457	  the kernel if an affected CPU is detected.
458
459	  If unsure, say Y.
460
461config ARM64_ERRATUM_832075
462	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
463	default y
464	help
465	  This option adds an alternative code sequence to work around ARM
466	  erratum 832075 on Cortex-A57 parts up to r1p2.
467
468	  Affected Cortex-A57 parts might deadlock when exclusive load/store
469	  instructions to Write-Back memory are mixed with Device loads.
470
471	  The workaround is to promote device loads to use Load-Acquire
472	  semantics.
473	  Please note that this does not necessarily enable the workaround,
474	  as it depends on the alternative framework, which will only patch
475	  the kernel if an affected CPU is detected.
476
477	  If unsure, say Y.
478
479config ARM64_ERRATUM_834220
480	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
481	depends on KVM
482	default y
483	help
484	  This option adds an alternative code sequence to work around ARM
485	  erratum 834220 on Cortex-A57 parts up to r1p2.
486
487	  Affected Cortex-A57 parts might report a Stage 2 translation
488	  fault as the result of a Stage 1 fault for load crossing a
489	  page boundary when there is a permission or device memory
490	  alignment fault at Stage 1 and a translation fault at Stage 2.
491
492	  The workaround is to verify that the Stage 1 translation
493	  doesn't generate a fault before handling the Stage 2 fault.
494	  Please note that this does not necessarily enable the workaround,
495	  as it depends on the alternative framework, which will only patch
496	  the kernel if an affected CPU is detected.
497
498	  If unsure, say Y.
499
500config ARM64_ERRATUM_845719
501	bool "Cortex-A53: 845719: a load might read incorrect data"
502	depends on COMPAT
503	default y
504	help
505	  This option adds an alternative code sequence to work around ARM
506	  erratum 845719 on Cortex-A53 parts up to r0p4.
507
508	  When running a compat (AArch32) userspace on an affected Cortex-A53
509	  part, a load at EL0 from a virtual address that matches the bottom 32
510	  bits of the virtual address used by a recent load at (AArch64) EL1
511	  might return incorrect data.
512
513	  The workaround is to write the contextidr_el1 register on exception
514	  return to a 32-bit task.
515	  Please note that this does not necessarily enable the workaround,
516	  as it depends on the alternative framework, which will only patch
517	  the kernel if an affected CPU is detected.
518
519	  If unsure, say Y.
520
521config ARM64_ERRATUM_843419
522	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
523	default y
524	select ARM64_MODULE_PLTS if MODULES
525	help
526	  This option links the kernel with '--fix-cortex-a53-843419' and
527	  enables PLT support to replace certain ADRP instructions, which can
528	  cause subsequent memory accesses to use an incorrect address on
529	  Cortex-A53 parts up to r0p4.
530
531	  If unsure, say Y.
532
533config ARM64_LD_HAS_FIX_ERRATUM_843419
534	def_bool $(ld-option,--fix-cortex-a53-843419)
535
536config ARM64_ERRATUM_1024718
537	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
538	default y
539	help
540	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
541
542	  Affected Cortex-A55 cores (all revisions) could cause incorrect
543	  update of the hardware dirty bit when the DBM/AP bits are updated
544	  without a break-before-make. The workaround is to disable the usage
545	  of hardware DBM locally on the affected cores. CPUs not affected by
546	  this erratum will continue to use the feature.
547
548	  If unsure, say Y.
549
550config ARM64_ERRATUM_1418040
551	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
552	default y
553	depends on COMPAT
554	help
555	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
556	  errata 1188873 and 1418040.
557
558	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
559	  cause register corruption when accessing the timer registers
560	  from AArch32 userspace.
561
562	  If unsure, say Y.
563
564config ARM64_WORKAROUND_SPECULATIVE_AT
565	bool
566
567config ARM64_ERRATUM_1165522
568	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
569	default y
570	select ARM64_WORKAROUND_SPECULATIVE_AT
571	help
572	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
573
574	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
575	  corrupted TLBs by speculating an AT instruction during a guest
576	  context switch.
577
578	  If unsure, say Y.
579
580config ARM64_ERRATUM_1319367
581	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
582	default y
583	select ARM64_WORKAROUND_SPECULATIVE_AT
584	help
585	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
586	  and A72 erratum 1319367
587
588	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
589	  speculating an AT instruction during a guest context switch.
590
591	  If unsure, say Y.
592
593config ARM64_ERRATUM_1530923
594	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
595	default y
596	select ARM64_WORKAROUND_SPECULATIVE_AT
597	help
598	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
599
600	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
601	  corrupted TLBs by speculating an AT instruction during a guest
602	  context switch.
603
604	  If unsure, say Y.
605
606config ARM64_WORKAROUND_REPEAT_TLBI
607	bool
608
609config ARM64_ERRATUM_1286807
610	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
611	default y
612	select ARM64_WORKAROUND_REPEAT_TLBI
613	help
614	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
615
616	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
617	  address for a cacheable mapping of a location is being
618	  accessed by a core while another core is remapping the virtual
619	  address to a new physical page using the recommended
620	  break-before-make sequence, then under very rare circumstances
621	  TLBI+DSB completes before a read using the translation being
622	  invalidated has been observed by other observers. The
623	  workaround repeats the TLBI+DSB operation.
624
625config ARM64_ERRATUM_1463225
626	bool "Cortex-A76: Software Step might prevent interrupt recognition"
627	default y
628	help
629	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
630
631	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
632	  of a system call instruction (SVC) can prevent recognition of
633	  subsequent interrupts when software stepping is disabled in the
634	  exception handler of the system call and either kernel debugging
635	  is enabled or VHE is in use.
636
637	  Work around the erratum by triggering a dummy step exception
638	  when handling a system call from a task that is being stepped
639	  in a VHE configuration of the kernel.
640
641	  If unsure, say Y.
642
643config ARM64_ERRATUM_1542419
644	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
645	default y
646	help
647	  This option adds a workaround for ARM Neoverse-N1 erratum
648	  1542419.
649
650	  Affected Neoverse-N1 cores could execute a stale instruction when
651	  modified by another CPU. The workaround depends on a firmware
652	  counterpart.
653
654	  Workaround the issue by hiding the DIC feature from EL0. This
655	  forces user-space to perform cache maintenance.
656
657	  If unsure, say Y.
658
659config ARM64_ERRATUM_1508412
660	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
661	default y
662	help
663	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
664
665	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
666	  of a store-exclusive or read of PAR_EL1 and a load with device or
667	  non-cacheable memory attributes. The workaround depends on a firmware
668	  counterpart.
669
670	  KVM guests must also have the workaround implemented or they can
671	  deadlock the system.
672
673	  Work around the issue by inserting DMB SY barriers around PAR_EL1
674	  register reads and warning KVM users. The DMB barrier is sufficient
675	  to prevent a speculative PAR_EL1 read.
676
677	  If unsure, say Y.
678
679config CAVIUM_ERRATUM_22375
680	bool "Cavium erratum 22375, 24313"
681	default y
682	help
683	  Enable workaround for errata 22375 and 24313.
684
685	  This implements two gicv3-its errata workarounds for ThunderX. Both
686	  with a small impact affecting only ITS table allocation.
687
688	    erratum 22375: only alloc 8MB table size
689	    erratum 24313: ignore memory access type
690
691	  The fixes are in ITS initialization and basically ignore memory access
692	  type and table size provided by the TYPER and BASER registers.
693
694	  If unsure, say Y.
695
696config CAVIUM_ERRATUM_23144
697	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
698	depends on NUMA
699	default y
700	help
701	  ITS SYNC command hang for cross node io and collections/cpu mapping.
702
703	  If unsure, say Y.
704
705config CAVIUM_ERRATUM_23154
706	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
707	default y
708	help
709	  The gicv3 of ThunderX requires a modified version for
710	  reading the IAR status to ensure data synchronization
711	  (access to icc_iar1_el1 is not sync'ed before and after).
712
713	  If unsure, say Y.
714
715config CAVIUM_ERRATUM_27456
716	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
717	default y
718	help
719	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
720	  instructions may cause the icache to become corrupted if it
721	  contains data for a non-current ASID.  The fix is to
722	  invalidate the icache when changing the mm context.
723
724	  If unsure, say Y.
725
726config CAVIUM_ERRATUM_30115
727	bool "Cavium erratum 30115: Guest may disable interrupts in host"
728	default y
729	help
730	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
731	  1.2, and T83 Pass 1.0, KVM guest execution may disable
732	  interrupts in host. Trapping both GICv3 group-0 and group-1
733	  accesses sidesteps the issue.
734
735	  If unsure, say Y.
736
737config CAVIUM_TX2_ERRATUM_219
738	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
739	default y
740	help
741	  On Cavium ThunderX2, a load, store or prefetch instruction between a
742	  TTBR update and the corresponding context synchronizing operation can
743	  cause a spurious Data Abort to be delivered to any hardware thread in
744	  the CPU core.
745
746	  Work around the issue by avoiding the problematic code sequence and
747	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
748	  trap handler performs the corresponding register access, skips the
749	  instruction and ensures context synchronization by virtue of the
750	  exception return.
751
752	  If unsure, say Y.
753
754config FUJITSU_ERRATUM_010001
755	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
756	default y
757	help
758	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
759	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
760	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
761	  This fault occurs under a specific hardware condition when a
762	  load/store instruction performs an address translation using:
763	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
764	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
765	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
766	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
767
768	  The workaround is to ensure these bits are clear in TCR_ELx.
769	  The workaround only affects the Fujitsu-A64FX.
770
771	  If unsure, say Y.
772
773config HISILICON_ERRATUM_161600802
774	bool "Hip07 161600802: Erroneous redistributor VLPI base"
775	default y
776	help
777	  The HiSilicon Hip07 SoC uses the wrong redistributor base
778	  when issued ITS commands such as VMOVP and VMAPP, and requires
779	  a 128kB offset to be applied to the target address in this commands.
780
781	  If unsure, say Y.
782
783config QCOM_FALKOR_ERRATUM_1003
784	bool "Falkor E1003: Incorrect translation due to ASID change"
785	default y
786	help
787	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
788	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
789	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
790	  then only for entries in the walk cache, since the leaf translation
791	  is unchanged. Work around the erratum by invalidating the walk cache
792	  entries for the trampoline before entering the kernel proper.
793
794config QCOM_FALKOR_ERRATUM_1009
795	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
796	default y
797	select ARM64_WORKAROUND_REPEAT_TLBI
798	help
799	  On Falkor v1, the CPU may prematurely complete a DSB following a
800	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
801	  one more time to fix the issue.
802
803	  If unsure, say Y.
804
805config QCOM_QDF2400_ERRATUM_0065
806	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
807	default y
808	help
809	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
810	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
811	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
812
813	  If unsure, say Y.
814
815config QCOM_FALKOR_ERRATUM_E1041
816	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
817	default y
818	help
819	  Falkor CPU may speculatively fetch instructions from an improper
820	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
821	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
822
823	  If unsure, say Y.
824
825config NVIDIA_CARMEL_CNP_ERRATUM
826	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
827	default y
828	help
829	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
830	  invalidate shared TLB entries installed by a different core, as it would
831	  on standard ARM cores.
832
833	  If unsure, say Y.
834
835config SOCIONEXT_SYNQUACER_PREITS
836	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
837	default y
838	help
839	  Socionext Synquacer SoCs implement a separate h/w block to generate
840	  MSI doorbell writes with non-zero values for the device ID.
841
842	  If unsure, say Y.
843
844endmenu
845
846
847choice
848	prompt "Page size"
849	default ARM64_4K_PAGES
850	help
851	  Page size (translation granule) configuration.
852
853config ARM64_4K_PAGES
854	bool "4KB"
855	help
856	  This feature enables 4KB pages support.
857
858config ARM64_16K_PAGES
859	bool "16KB"
860	help
861	  The system will use 16KB pages support. AArch32 emulation
862	  requires applications compiled with 16K (or a multiple of 16K)
863	  aligned segments.
864
865config ARM64_64K_PAGES
866	bool "64KB"
867	help
868	  This feature enables 64KB pages support (4KB by default)
869	  allowing only two levels of page tables and faster TLB
870	  look-up. AArch32 emulation requires applications compiled
871	  with 64K aligned segments.
872
873endchoice
874
875choice
876	prompt "Virtual address space size"
877	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
878	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
879	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
880	help
881	  Allows choosing one of multiple possible virtual address
882	  space sizes. The level of translation table is determined by
883	  a combination of page size and virtual address space size.
884
885config ARM64_VA_BITS_36
886	bool "36-bit" if EXPERT
887	depends on ARM64_16K_PAGES
888
889config ARM64_VA_BITS_39
890	bool "39-bit"
891	depends on ARM64_4K_PAGES
892
893config ARM64_VA_BITS_42
894	bool "42-bit"
895	depends on ARM64_64K_PAGES
896
897config ARM64_VA_BITS_47
898	bool "47-bit"
899	depends on ARM64_16K_PAGES
900
901config ARM64_VA_BITS_48
902	bool "48-bit"
903
904config ARM64_VA_BITS_52
905	bool "52-bit"
906	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
907	help
908	  Enable 52-bit virtual addressing for userspace when explicitly
909	  requested via a hint to mmap(). The kernel will also use 52-bit
910	  virtual addresses for its own mappings (provided HW support for
911	  this feature is available, otherwise it reverts to 48-bit).
912
913	  NOTE: Enabling 52-bit virtual addressing in conjunction with
914	  ARMv8.3 Pointer Authentication will result in the PAC being
915	  reduced from 7 bits to 3 bits, which may have a significant
916	  impact on its susceptibility to brute-force attacks.
917
918	  If unsure, select 48-bit virtual addressing instead.
919
920endchoice
921
922config ARM64_FORCE_52BIT
923	bool "Force 52-bit virtual addresses for userspace"
924	depends on ARM64_VA_BITS_52 && EXPERT
925	help
926	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
927	  to maintain compatibility with older software by providing 48-bit VAs
928	  unless a hint is supplied to mmap.
929
930	  This configuration option disables the 48-bit compatibility logic, and
931	  forces all userspace addresses to be 52-bit on HW that supports it. One
932	  should only enable this configuration option for stress testing userspace
933	  memory management code. If unsure say N here.
934
935config ARM64_VA_BITS
936	int
937	default 36 if ARM64_VA_BITS_36
938	default 39 if ARM64_VA_BITS_39
939	default 42 if ARM64_VA_BITS_42
940	default 47 if ARM64_VA_BITS_47
941	default 48 if ARM64_VA_BITS_48
942	default 52 if ARM64_VA_BITS_52
943
944choice
945	prompt "Physical address space size"
946	default ARM64_PA_BITS_48
947	help
948	  Choose the maximum physical address range that the kernel will
949	  support.
950
951config ARM64_PA_BITS_48
952	bool "48-bit"
953
954config ARM64_PA_BITS_52
955	bool "52-bit (ARMv8.2)"
956	depends on ARM64_64K_PAGES
957	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
958	help
959	  Enable support for a 52-bit physical address space, introduced as
960	  part of the ARMv8.2-LPA extension.
961
962	  With this enabled, the kernel will also continue to work on CPUs that
963	  do not support ARMv8.2-LPA, but with some added memory overhead (and
964	  minor performance overhead).
965
966endchoice
967
968config ARM64_PA_BITS
969	int
970	default 48 if ARM64_PA_BITS_48
971	default 52 if ARM64_PA_BITS_52
972
973choice
974	prompt "Endianness"
975	default CPU_LITTLE_ENDIAN
976	help
977	  Select the endianness of data accesses performed by the CPU. Userspace
978	  applications will need to be compiled and linked for the endianness
979	  that is selected here.
980
981config CPU_BIG_ENDIAN
982	bool "Build big-endian kernel"
983	depends on !LD_IS_LLD || LLD_VERSION >= 130000
984	help
985	  Say Y if you plan on running a kernel with a big-endian userspace.
986
987config CPU_LITTLE_ENDIAN
988	bool "Build little-endian kernel"
989	help
990	  Say Y if you plan on running a kernel with a little-endian userspace.
991	  This is usually the case for distributions targeting arm64.
992
993endchoice
994
995config SCHED_MC
996	bool "Multi-core scheduler support"
997	help
998	  Multi-core scheduler support improves the CPU scheduler's decision
999	  making when dealing with multi-core CPU chips at a cost of slightly
1000	  increased overhead in some places. If unsure say N here.
1001
1002config SCHED_SMT
1003	bool "SMT scheduler support"
1004	help
1005	  Improves the CPU scheduler's decision making when dealing with
1006	  MultiThreading at a cost of slightly increased overhead in some
1007	  places. If unsure say N here.
1008
1009config NR_CPUS
1010	int "Maximum number of CPUs (2-4096)"
1011	range 2 4096
1012	default "256"
1013
1014config HOTPLUG_CPU
1015	bool "Support for hot-pluggable CPUs"
1016	select GENERIC_IRQ_MIGRATION
1017	help
1018	  Say Y here to experiment with turning CPUs off and on.  CPUs
1019	  can be controlled through /sys/devices/system/cpu.
1020
1021# Common NUMA Features
1022config NUMA
1023	bool "NUMA Memory Allocation and Scheduler Support"
1024	select GENERIC_ARCH_NUMA
1025	select ACPI_NUMA if ACPI
1026	select OF_NUMA
1027	help
1028	  Enable NUMA (Non-Uniform Memory Access) support.
1029
1030	  The kernel will try to allocate memory used by a CPU on the
1031	  local memory of the CPU and add some more
1032	  NUMA awareness to the kernel.
1033
1034config NODES_SHIFT
1035	int "Maximum NUMA Nodes (as a power of 2)"
1036	range 1 10
1037	default "4"
1038	depends on NEED_MULTIPLE_NODES
1039	help
1040	  Specify the maximum number of NUMA Nodes available on the target
1041	  system.  Increases memory reserved to accommodate various tables.
1042
1043config USE_PERCPU_NUMA_NODE_ID
1044	def_bool y
1045	depends on NUMA
1046
1047config HAVE_SETUP_PER_CPU_AREA
1048	def_bool y
1049	depends on NUMA
1050
1051config NEED_PER_CPU_EMBED_FIRST_CHUNK
1052	def_bool y
1053	depends on NUMA
1054
1055config HOLES_IN_ZONE
1056	def_bool y
1057
1058source "kernel/Kconfig.hz"
1059
1060config ARCH_SPARSEMEM_ENABLE
1061	def_bool y
1062	select SPARSEMEM_VMEMMAP_ENABLE
1063	select SPARSEMEM_VMEMMAP
1064
1065config HW_PERF_EVENTS
1066	def_bool y
1067	depends on ARM_PMU
1068
1069config ARCH_HAS_FILTER_PGPROT
1070	def_bool y
1071
1072# Supported by clang >= 7.0
1073config CC_HAVE_SHADOW_CALL_STACK
1074	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1075
1076config PARAVIRT
1077	bool "Enable paravirtualization code"
1078	help
1079	  This changes the kernel so it can modify itself when it is run
1080	  under a hypervisor, potentially improving performance significantly
1081	  over full virtualization.
1082
1083config PARAVIRT_TIME_ACCOUNTING
1084	bool "Paravirtual steal time accounting"
1085	select PARAVIRT
1086	help
1087	  Select this option to enable fine granularity task steal time
1088	  accounting. Time spent executing other tasks in parallel with
1089	  the current vCPU is discounted from the vCPU power. To account for
1090	  that, there can be a small performance impact.
1091
1092	  If in doubt, say N here.
1093
1094config KEXEC
1095	depends on PM_SLEEP_SMP
1096	select KEXEC_CORE
1097	bool "kexec system call"
1098	help
1099	  kexec is a system call that implements the ability to shutdown your
1100	  current kernel, and to start another kernel.  It is like a reboot
1101	  but it is independent of the system firmware.   And like a reboot
1102	  you can start any kernel with it, not just Linux.
1103
1104config KEXEC_FILE
1105	bool "kexec file based system call"
1106	select KEXEC_CORE
1107	select HAVE_IMA_KEXEC if IMA
1108	help
1109	  This is new version of kexec system call. This system call is
1110	  file based and takes file descriptors as system call argument
1111	  for kernel and initramfs as opposed to list of segments as
1112	  accepted by previous system call.
1113
1114config KEXEC_SIG
1115	bool "Verify kernel signature during kexec_file_load() syscall"
1116	depends on KEXEC_FILE
1117	help
1118	  Select this option to verify a signature with loaded kernel
1119	  image. If configured, any attempt of loading a image without
1120	  valid signature will fail.
1121
1122	  In addition to that option, you need to enable signature
1123	  verification for the corresponding kernel image type being
1124	  loaded in order for this to work.
1125
1126config KEXEC_IMAGE_VERIFY_SIG
1127	bool "Enable Image signature verification support"
1128	default y
1129	depends on KEXEC_SIG
1130	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1131	help
1132	  Enable Image signature verification support.
1133
1134comment "Support for PE file signature verification disabled"
1135	depends on KEXEC_SIG
1136	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1137
1138config CRASH_DUMP
1139	bool "Build kdump crash kernel"
1140	help
1141	  Generate crash dump after being started by kexec. This should
1142	  be normally only set in special crash dump kernels which are
1143	  loaded in the main kernel with kexec-tools into a specially
1144	  reserved region and then later executed after a crash by
1145	  kdump/kexec.
1146
1147	  For more details see Documentation/admin-guide/kdump/kdump.rst
1148
1149config TRANS_TABLE
1150	def_bool y
1151	depends on HIBERNATION
1152
1153config XEN_DOM0
1154	def_bool y
1155	depends on XEN
1156
1157config XEN
1158	bool "Xen guest support on ARM64"
1159	depends on ARM64 && OF
1160	select SWIOTLB_XEN
1161	select PARAVIRT
1162	help
1163	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1164
1165config FORCE_MAX_ZONEORDER
1166	int
1167	default "14" if ARM64_64K_PAGES
1168	default "12" if ARM64_16K_PAGES
1169	default "11"
1170	help
1171	  The kernel memory allocator divides physically contiguous memory
1172	  blocks into "zones", where each zone is a power of two number of
1173	  pages.  This option selects the largest power of two that the kernel
1174	  keeps in the memory allocator.  If you need to allocate very large
1175	  blocks of physically contiguous memory, then you may need to
1176	  increase this value.
1177
1178	  This config option is actually maximum order plus one. For example,
1179	  a value of 11 means that the largest free memory block is 2^10 pages.
1180
1181	  We make sure that we can allocate upto a HugePage size for each configuration.
1182	  Hence we have :
1183		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1184
1185	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1186	  4M allocations matching the default size used by generic code.
1187
1188config UNMAP_KERNEL_AT_EL0
1189	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1190	default y
1191	help
1192	  Speculation attacks against some high-performance processors can
1193	  be used to bypass MMU permission checks and leak kernel data to
1194	  userspace. This can be defended against by unmapping the kernel
1195	  when running in userspace, mapping it back in on exception entry
1196	  via a trampoline page in the vector table.
1197
1198	  If unsure, say Y.
1199
1200config RODATA_FULL_DEFAULT_ENABLED
1201	bool "Apply r/o permissions of VM areas also to their linear aliases"
1202	default y
1203	help
1204	  Apply read-only attributes of VM areas to the linear alias of
1205	  the backing pages as well. This prevents code or read-only data
1206	  from being modified (inadvertently or intentionally) via another
1207	  mapping of the same memory page. This additional enhancement can
1208	  be turned off at runtime by passing rodata=[off|on] (and turned on
1209	  with rodata=full if this option is set to 'n')
1210
1211	  This requires the linear region to be mapped down to pages,
1212	  which may adversely affect performance in some cases.
1213
1214config ARM64_SW_TTBR0_PAN
1215	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1216	help
1217	  Enabling this option prevents the kernel from accessing
1218	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1219	  zeroed area and reserved ASID. The user access routines
1220	  restore the valid TTBR0_EL1 temporarily.
1221
1222config ARM64_TAGGED_ADDR_ABI
1223	bool "Enable the tagged user addresses syscall ABI"
1224	default y
1225	help
1226	  When this option is enabled, user applications can opt in to a
1227	  relaxed ABI via prctl() allowing tagged addresses to be passed
1228	  to system calls as pointer arguments. For details, see
1229	  Documentation/arm64/tagged-address-abi.rst.
1230
1231menuconfig COMPAT
1232	bool "Kernel support for 32-bit EL0"
1233	depends on ARM64_4K_PAGES || EXPERT
1234	select HAVE_UID16
1235	select OLD_SIGSUSPEND3
1236	select COMPAT_OLD_SIGACTION
1237	help
1238	  This option enables support for a 32-bit EL0 running under a 64-bit
1239	  kernel at EL1. AArch32-specific components such as system calls,
1240	  the user helper functions, VFP support and the ptrace interface are
1241	  handled appropriately by the kernel.
1242
1243	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1244	  that you will only be able to execute AArch32 binaries that were compiled
1245	  with page size aligned segments.
1246
1247	  If you want to execute 32-bit userspace applications, say Y.
1248
1249if COMPAT
1250
1251config KUSER_HELPERS
1252	bool "Enable kuser helpers page for 32-bit applications"
1253	default y
1254	help
1255	  Warning: disabling this option may break 32-bit user programs.
1256
1257	  Provide kuser helpers to compat tasks. The kernel provides
1258	  helper code to userspace in read only form at a fixed location
1259	  to allow userspace to be independent of the CPU type fitted to
1260	  the system. This permits binaries to be run on ARMv4 through
1261	  to ARMv8 without modification.
1262
1263	  See Documentation/arm/kernel_user_helpers.rst for details.
1264
1265	  However, the fixed address nature of these helpers can be used
1266	  by ROP (return orientated programming) authors when creating
1267	  exploits.
1268
1269	  If all of the binaries and libraries which run on your platform
1270	  are built specifically for your platform, and make no use of
1271	  these helpers, then you can turn this option off to hinder
1272	  such exploits. However, in that case, if a binary or library
1273	  relying on those helpers is run, it will not function correctly.
1274
1275	  Say N here only if you are absolutely certain that you do not
1276	  need these helpers; otherwise, the safe option is to say Y.
1277
1278config COMPAT_VDSO
1279	bool "Enable vDSO for 32-bit applications"
1280	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1281	select GENERIC_COMPAT_VDSO
1282	default y
1283	help
1284	  Place in the process address space of 32-bit applications an
1285	  ELF shared object providing fast implementations of gettimeofday
1286	  and clock_gettime.
1287
1288	  You must have a 32-bit build of glibc 2.22 or later for programs
1289	  to seamlessly take advantage of this.
1290
1291config THUMB2_COMPAT_VDSO
1292	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1293	depends on COMPAT_VDSO
1294	default y
1295	help
1296	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1297	  otherwise with '-marm'.
1298
1299menuconfig ARMV8_DEPRECATED
1300	bool "Emulate deprecated/obsolete ARMv8 instructions"
1301	depends on SYSCTL
1302	help
1303	  Legacy software support may require certain instructions
1304	  that have been deprecated or obsoleted in the architecture.
1305
1306	  Enable this config to enable selective emulation of these
1307	  features.
1308
1309	  If unsure, say Y
1310
1311if ARMV8_DEPRECATED
1312
1313config SWP_EMULATION
1314	bool "Emulate SWP/SWPB instructions"
1315	help
1316	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1317	  they are always undefined. Say Y here to enable software
1318	  emulation of these instructions for userspace using LDXR/STXR.
1319	  This feature can be controlled at runtime with the abi.swp
1320	  sysctl which is disabled by default.
1321
1322	  In some older versions of glibc [<=2.8] SWP is used during futex
1323	  trylock() operations with the assumption that the code will not
1324	  be preempted. This invalid assumption may be more likely to fail
1325	  with SWP emulation enabled, leading to deadlock of the user
1326	  application.
1327
1328	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1329	  on an external transaction monitoring block called a global
1330	  monitor to maintain update atomicity. If your system does not
1331	  implement a global monitor, this option can cause programs that
1332	  perform SWP operations to uncached memory to deadlock.
1333
1334	  If unsure, say Y
1335
1336config CP15_BARRIER_EMULATION
1337	bool "Emulate CP15 Barrier instructions"
1338	help
1339	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1340	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1341	  strongly recommended to use the ISB, DSB, and DMB
1342	  instructions instead.
1343
1344	  Say Y here to enable software emulation of these
1345	  instructions for AArch32 userspace code. When this option is
1346	  enabled, CP15 barrier usage is traced which can help
1347	  identify software that needs updating. This feature can be
1348	  controlled at runtime with the abi.cp15_barrier sysctl.
1349
1350	  If unsure, say Y
1351
1352config SETEND_EMULATION
1353	bool "Emulate SETEND instruction"
1354	help
1355	  The SETEND instruction alters the data-endianness of the
1356	  AArch32 EL0, and is deprecated in ARMv8.
1357
1358	  Say Y here to enable software emulation of the instruction
1359	  for AArch32 userspace code. This feature can be controlled
1360	  at runtime with the abi.setend sysctl.
1361
1362	  Note: All the cpus on the system must have mixed endian support at EL0
1363	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1364	  endian - is hotplugged in after this feature has been enabled, there could
1365	  be unexpected results in the applications.
1366
1367	  If unsure, say Y
1368endif
1369
1370endif
1371
1372menu "ARMv8.1 architectural features"
1373
1374config ARM64_HW_AFDBM
1375	bool "Support for hardware updates of the Access and Dirty page flags"
1376	default y
1377	help
1378	  The ARMv8.1 architecture extensions introduce support for
1379	  hardware updates of the access and dirty information in page
1380	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1381	  capable processors, accesses to pages with PTE_AF cleared will
1382	  set this bit instead of raising an access flag fault.
1383	  Similarly, writes to read-only pages with the DBM bit set will
1384	  clear the read-only bit (AP[2]) instead of raising a
1385	  permission fault.
1386
1387	  Kernels built with this configuration option enabled continue
1388	  to work on pre-ARMv8.1 hardware and the performance impact is
1389	  minimal. If unsure, say Y.
1390
1391config ARM64_PAN
1392	bool "Enable support for Privileged Access Never (PAN)"
1393	default y
1394	help
1395	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1396	 prevents the kernel or hypervisor from accessing user-space (EL0)
1397	 memory directly.
1398
1399	 Choosing this option will cause any unprotected (not using
1400	 copy_to_user et al) memory access to fail with a permission fault.
1401
1402	 The feature is detected at runtime, and will remain as a 'nop'
1403	 instruction if the cpu does not implement the feature.
1404
1405config AS_HAS_LDAPR
1406	def_bool $(as-instr,.arch_extension rcpc)
1407
1408config AS_HAS_LSE_ATOMICS
1409	def_bool $(as-instr,.arch_extension lse)
1410
1411config ARM64_LSE_ATOMICS
1412	bool
1413	default ARM64_USE_LSE_ATOMICS
1414	depends on AS_HAS_LSE_ATOMICS
1415
1416config ARM64_USE_LSE_ATOMICS
1417	bool "Atomic instructions"
1418	depends on JUMP_LABEL
1419	default y
1420	help
1421	  As part of the Large System Extensions, ARMv8.1 introduces new
1422	  atomic instructions that are designed specifically to scale in
1423	  very large systems.
1424
1425	  Say Y here to make use of these instructions for the in-kernel
1426	  atomic routines. This incurs a small overhead on CPUs that do
1427	  not support these instructions and requires the kernel to be
1428	  built with binutils >= 2.25 in order for the new instructions
1429	  to be used.
1430
1431endmenu
1432
1433menu "ARMv8.2 architectural features"
1434
1435config ARM64_PMEM
1436	bool "Enable support for persistent memory"
1437	select ARCH_HAS_PMEM_API
1438	select ARCH_HAS_UACCESS_FLUSHCACHE
1439	help
1440	  Say Y to enable support for the persistent memory API based on the
1441	  ARMv8.2 DCPoP feature.
1442
1443	  The feature is detected at runtime, and the kernel will use DC CVAC
1444	  operations if DC CVAP is not supported (following the behaviour of
1445	  DC CVAP itself if the system does not define a point of persistence).
1446
1447config ARM64_RAS_EXTN
1448	bool "Enable support for RAS CPU Extensions"
1449	default y
1450	help
1451	  CPUs that support the Reliability, Availability and Serviceability
1452	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1453	  errors, classify them and report them to software.
1454
1455	  On CPUs with these extensions system software can use additional
1456	  barriers to determine if faults are pending and read the
1457	  classification from a new set of registers.
1458
1459	  Selecting this feature will allow the kernel to use these barriers
1460	  and access the new registers if the system supports the extension.
1461	  Platform RAS features may additionally depend on firmware support.
1462
1463config ARM64_CNP
1464	bool "Enable support for Common Not Private (CNP) translations"
1465	default y
1466	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1467	help
1468	  Common Not Private (CNP) allows translation table entries to
1469	  be shared between different PEs in the same inner shareable
1470	  domain, so the hardware can use this fact to optimise the
1471	  caching of such entries in the TLB.
1472
1473	  Selecting this option allows the CNP feature to be detected
1474	  at runtime, and does not affect PEs that do not implement
1475	  this feature.
1476
1477endmenu
1478
1479menu "ARMv8.3 architectural features"
1480
1481config ARM64_PTR_AUTH
1482	bool "Enable support for pointer authentication"
1483	default y
1484	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1485	# Modern compilers insert a .note.gnu.property section note for PAC
1486	# which is only understood by binutils starting with version 2.33.1.
1487	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1488	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1489	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1490	help
1491	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1492	  instructions for signing and authenticating pointers against secret
1493	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1494	  and other attacks.
1495
1496	  This option enables these instructions at EL0 (i.e. for userspace).
1497	  Choosing this option will cause the kernel to initialise secret keys
1498	  for each process at exec() time, with these keys being
1499	  context-switched along with the process.
1500
1501	  If the compiler supports the -mbranch-protection or
1502	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1503	  will also cause the kernel itself to be compiled with return address
1504	  protection. In this case, and if the target hardware is known to
1505	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1506	  disabled with minimal loss of protection.
1507
1508	  The feature is detected at runtime. If the feature is not present in
1509	  hardware it will not be advertised to userspace/KVM guest nor will it
1510	  be enabled.
1511
1512	  If the feature is present on the boot CPU but not on a late CPU, then
1513	  the late CPU will be parked. Also, if the boot CPU does not have
1514	  address auth and the late CPU has then the late CPU will still boot
1515	  but with the feature disabled. On such a system, this option should
1516	  not be selected.
1517
1518	  This feature works with FUNCTION_GRAPH_TRACER option only if
1519	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1520
1521config CC_HAS_BRANCH_PROT_PAC_RET
1522	# GCC 9 or later, clang 8 or later
1523	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1524
1525config CC_HAS_SIGN_RETURN_ADDRESS
1526	# GCC 7, 8
1527	def_bool $(cc-option,-msign-return-address=all)
1528
1529config AS_HAS_PAC
1530	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1531
1532config AS_HAS_CFI_NEGATE_RA_STATE
1533	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1534
1535endmenu
1536
1537menu "ARMv8.4 architectural features"
1538
1539config ARM64_AMU_EXTN
1540	bool "Enable support for the Activity Monitors Unit CPU extension"
1541	default y
1542	help
1543	  The activity monitors extension is an optional extension introduced
1544	  by the ARMv8.4 CPU architecture. This enables support for version 1
1545	  of the activity monitors architecture, AMUv1.
1546
1547	  To enable the use of this extension on CPUs that implement it, say Y.
1548
1549	  Note that for architectural reasons, firmware _must_ implement AMU
1550	  support when running on CPUs that present the activity monitors
1551	  extension. The required support is present in:
1552	    * Version 1.5 and later of the ARM Trusted Firmware
1553
1554	  For kernels that have this configuration enabled but boot with broken
1555	  firmware, you may need to say N here until the firmware is fixed.
1556	  Otherwise you may experience firmware panics or lockups when
1557	  accessing the counter registers. Even if you are not observing these
1558	  symptoms, the values returned by the register reads might not
1559	  correctly reflect reality. Most commonly, the value read will be 0,
1560	  indicating that the counter is not enabled.
1561
1562config AS_HAS_ARMV8_4
1563	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1564
1565config ARM64_TLB_RANGE
1566	bool "Enable support for tlbi range feature"
1567	default y
1568	depends on AS_HAS_ARMV8_4
1569	help
1570	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1571	  range of input addresses.
1572
1573	  The feature introduces new assembly instructions, and they were
1574	  support when binutils >= 2.30.
1575
1576endmenu
1577
1578menu "ARMv8.5 architectural features"
1579
1580config AS_HAS_ARMV8_5
1581	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1582
1583config ARM64_BTI
1584	bool "Branch Target Identification support"
1585	default y
1586	help
1587	  Branch Target Identification (part of the ARMv8.5 Extensions)
1588	  provides a mechanism to limit the set of locations to which computed
1589	  branch instructions such as BR or BLR can jump.
1590
1591	  To make use of BTI on CPUs that support it, say Y.
1592
1593	  BTI is intended to provide complementary protection to other control
1594	  flow integrity protection mechanisms, such as the Pointer
1595	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1596	  For this reason, it does not make sense to enable this option without
1597	  also enabling support for pointer authentication.  Thus, when
1598	  enabling this option you should also select ARM64_PTR_AUTH=y.
1599
1600	  Userspace binaries must also be specifically compiled to make use of
1601	  this mechanism.  If you say N here or the hardware does not support
1602	  BTI, such binaries can still run, but you get no additional
1603	  enforcement of branch destinations.
1604
1605config ARM64_BTI_KERNEL
1606	bool "Use Branch Target Identification for kernel"
1607	default y
1608	depends on ARM64_BTI
1609	depends on ARM64_PTR_AUTH
1610	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1611	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1612	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1613	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1614	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1615	help
1616	  Build the kernel with Branch Target Identification annotations
1617	  and enable enforcement of this for kernel code. When this option
1618	  is enabled and the system supports BTI all kernel code including
1619	  modular code must have BTI enabled.
1620
1621config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1622	# GCC 9 or later, clang 8 or later
1623	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1624
1625config ARM64_E0PD
1626	bool "Enable support for E0PD"
1627	default y
1628	help
1629	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1630	  that EL0 accesses made via TTBR1 always fault in constant time,
1631	  providing similar benefits to KASLR as those provided by KPTI, but
1632	  with lower overhead and without disrupting legitimate access to
1633	  kernel memory such as SPE.
1634
1635	  This option enables E0PD for TTBR1 where available.
1636
1637config ARCH_RANDOM
1638	bool "Enable support for random number generation"
1639	default y
1640	help
1641	  Random number generation (part of the ARMv8.5 Extensions)
1642	  provides a high bandwidth, cryptographically secure
1643	  hardware random number generator.
1644
1645config ARM64_AS_HAS_MTE
1646	# Initial support for MTE went in binutils 2.32.0, checked with
1647	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1648	# as a late addition to the final architecture spec (LDGM/STGM)
1649	# is only supported in the newer 2.32.x and 2.33 binutils
1650	# versions, hence the extra "stgm" instruction check below.
1651	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1652
1653config ARM64_MTE
1654	bool "Memory Tagging Extension support"
1655	default y
1656	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1657	depends on AS_HAS_ARMV8_5
1658	depends on AS_HAS_LSE_ATOMICS
1659	# Required for tag checking in the uaccess routines
1660	depends on ARM64_PAN
1661	select ARCH_USES_HIGH_VMA_FLAGS
1662	help
1663	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1664	  architectural support for run-time, always-on detection of
1665	  various classes of memory error to aid with software debugging
1666	  to eliminate vulnerabilities arising from memory-unsafe
1667	  languages.
1668
1669	  This option enables the support for the Memory Tagging
1670	  Extension at EL0 (i.e. for userspace).
1671
1672	  Selecting this option allows the feature to be detected at
1673	  runtime. Any secondary CPU not implementing this feature will
1674	  not be allowed a late bring-up.
1675
1676	  Userspace binaries that want to use this feature must
1677	  explicitly opt in. The mechanism for the userspace is
1678	  described in:
1679
1680	  Documentation/arm64/memory-tagging-extension.rst.
1681
1682endmenu
1683
1684menu "ARMv8.7 architectural features"
1685
1686config ARM64_EPAN
1687	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1688	default y
1689	depends on ARM64_PAN
1690	help
1691	 Enhanced Privileged Access Never (EPAN) allows Privileged
1692	 Access Never to be used with Execute-only mappings.
1693
1694	 The feature is detected at runtime, and will remain disabled
1695	 if the cpu does not implement the feature.
1696endmenu
1697
1698config ARM64_SVE
1699	bool "ARM Scalable Vector Extension support"
1700	default y
1701	help
1702	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1703	  execution state which complements and extends the SIMD functionality
1704	  of the base architecture to support much larger vectors and to enable
1705	  additional vectorisation opportunities.
1706
1707	  To enable use of this extension on CPUs that implement it, say Y.
1708
1709	  On CPUs that support the SVE2 extensions, this option will enable
1710	  those too.
1711
1712	  Note that for architectural reasons, firmware _must_ implement SVE
1713	  support when running on SVE capable hardware.  The required support
1714	  is present in:
1715
1716	    * version 1.5 and later of the ARM Trusted Firmware
1717	    * the AArch64 boot wrapper since commit 5e1261e08abf
1718	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1719
1720	  For other firmware implementations, consult the firmware documentation
1721	  or vendor.
1722
1723	  If you need the kernel to boot on SVE-capable hardware with broken
1724	  firmware, you may need to say N here until you get your firmware
1725	  fixed.  Otherwise, you may experience firmware panics or lockups when
1726	  booting the kernel.  If unsure and you are not observing these
1727	  symptoms, you should assume that it is safe to say Y.
1728
1729config ARM64_MODULE_PLTS
1730	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1731	depends on MODULES
1732	select HAVE_MOD_ARCH_SPECIFIC
1733	help
1734	  Allocate PLTs when loading modules so that jumps and calls whose
1735	  targets are too far away for their relative offsets to be encoded
1736	  in the instructions themselves can be bounced via veneers in the
1737	  module's PLT. This allows modules to be allocated in the generic
1738	  vmalloc area after the dedicated module memory area has been
1739	  exhausted.
1740
1741	  When running with address space randomization (KASLR), the module
1742	  region itself may be too far away for ordinary relative jumps and
1743	  calls, and so in that case, module PLTs are required and cannot be
1744	  disabled.
1745
1746	  Specific errata workaround(s) might also force module PLTs to be
1747	  enabled (ARM64_ERRATUM_843419).
1748
1749config ARM64_PSEUDO_NMI
1750	bool "Support for NMI-like interrupts"
1751	select ARM_GIC_V3
1752	help
1753	  Adds support for mimicking Non-Maskable Interrupts through the use of
1754	  GIC interrupt priority. This support requires version 3 or later of
1755	  ARM GIC.
1756
1757	  This high priority configuration for interrupts needs to be
1758	  explicitly enabled by setting the kernel parameter
1759	  "irqchip.gicv3_pseudo_nmi" to 1.
1760
1761	  If unsure, say N
1762
1763if ARM64_PSEUDO_NMI
1764config ARM64_DEBUG_PRIORITY_MASKING
1765	bool "Debug interrupt priority masking"
1766	help
1767	  This adds runtime checks to functions enabling/disabling
1768	  interrupts when using priority masking. The additional checks verify
1769	  the validity of ICC_PMR_EL1 when calling concerned functions.
1770
1771	  If unsure, say N
1772endif
1773
1774config RELOCATABLE
1775	bool "Build a relocatable kernel image" if EXPERT
1776	select ARCH_HAS_RELR
1777	default y
1778	help
1779	  This builds the kernel as a Position Independent Executable (PIE),
1780	  which retains all relocation metadata required to relocate the
1781	  kernel binary at runtime to a different virtual address than the
1782	  address it was linked at.
1783	  Since AArch64 uses the RELA relocation format, this requires a
1784	  relocation pass at runtime even if the kernel is loaded at the
1785	  same address it was linked at.
1786
1787config RANDOMIZE_BASE
1788	bool "Randomize the address of the kernel image"
1789	select ARM64_MODULE_PLTS if MODULES
1790	select RELOCATABLE
1791	help
1792	  Randomizes the virtual address at which the kernel image is
1793	  loaded, as a security feature that deters exploit attempts
1794	  relying on knowledge of the location of kernel internals.
1795
1796	  It is the bootloader's job to provide entropy, by passing a
1797	  random u64 value in /chosen/kaslr-seed at kernel entry.
1798
1799	  When booting via the UEFI stub, it will invoke the firmware's
1800	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1801	  to the kernel proper. In addition, it will randomise the physical
1802	  location of the kernel Image as well.
1803
1804	  If unsure, say N.
1805
1806config RANDOMIZE_MODULE_REGION_FULL
1807	bool "Randomize the module region over a 4 GB range"
1808	depends on RANDOMIZE_BASE
1809	default y
1810	help
1811	  Randomizes the location of the module region inside a 4 GB window
1812	  covering the core kernel. This way, it is less likely for modules
1813	  to leak information about the location of core kernel data structures
1814	  but it does imply that function calls between modules and the core
1815	  kernel will need to be resolved via veneers in the module PLT.
1816
1817	  When this option is not set, the module region will be randomized over
1818	  a limited range that contains the [_stext, _etext] interval of the
1819	  core kernel, so branch relocations are always in range.
1820
1821config CC_HAVE_STACKPROTECTOR_SYSREG
1822	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1823
1824config STACKPROTECTOR_PER_TASK
1825	def_bool y
1826	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1827
1828endmenu
1829
1830menu "Boot options"
1831
1832config ARM64_ACPI_PARKING_PROTOCOL
1833	bool "Enable support for the ARM64 ACPI parking protocol"
1834	depends on ACPI
1835	help
1836	  Enable support for the ARM64 ACPI parking protocol. If disabled
1837	  the kernel will not allow booting through the ARM64 ACPI parking
1838	  protocol even if the corresponding data is present in the ACPI
1839	  MADT table.
1840
1841config CMDLINE
1842	string "Default kernel command string"
1843	default ""
1844	help
1845	  Provide a set of default command-line options at build time by
1846	  entering them here. As a minimum, you should specify the the
1847	  root device (e.g. root=/dev/nfs).
1848
1849choice
1850	prompt "Kernel command line type" if CMDLINE != ""
1851	default CMDLINE_FROM_BOOTLOADER
1852	help
1853	  Choose how the kernel will handle the provided default kernel
1854	  command line string.
1855
1856config CMDLINE_FROM_BOOTLOADER
1857	bool "Use bootloader kernel arguments if available"
1858	help
1859	  Uses the command-line options passed by the boot loader. If
1860	  the boot loader doesn't provide any, the default kernel command
1861	  string provided in CMDLINE will be used.
1862
1863config CMDLINE_FORCE
1864	bool "Always use the default kernel command string"
1865	help
1866	  Always use the default kernel command string, even if the boot
1867	  loader passes other arguments to the kernel.
1868	  This is useful if you cannot or don't want to change the
1869	  command-line options your boot loader passes to the kernel.
1870
1871endchoice
1872
1873config EFI_STUB
1874	bool
1875
1876config EFI
1877	bool "UEFI runtime support"
1878	depends on OF && !CPU_BIG_ENDIAN
1879	depends on KERNEL_MODE_NEON
1880	select ARCH_SUPPORTS_ACPI
1881	select LIBFDT
1882	select UCS2_STRING
1883	select EFI_PARAMS_FROM_FDT
1884	select EFI_RUNTIME_WRAPPERS
1885	select EFI_STUB
1886	select EFI_GENERIC_STUB
1887	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
1888	default y
1889	help
1890	  This option provides support for runtime services provided
1891	  by UEFI firmware (such as non-volatile variables, realtime
1892          clock, and platform reset). A UEFI stub is also provided to
1893	  allow the kernel to be booted as an EFI application. This
1894	  is only useful on systems that have UEFI firmware.
1895
1896config DMI
1897	bool "Enable support for SMBIOS (DMI) tables"
1898	depends on EFI
1899	default y
1900	help
1901	  This enables SMBIOS/DMI feature for systems.
1902
1903	  This option is only useful on systems that have UEFI firmware.
1904	  However, even with this option, the resultant kernel should
1905	  continue to boot on existing non-UEFI platforms.
1906
1907endmenu
1908
1909config SYSVIPC_COMPAT
1910	def_bool y
1911	depends on COMPAT && SYSVIPC
1912
1913menu "Power management options"
1914
1915source "kernel/power/Kconfig"
1916
1917config ARCH_HIBERNATION_POSSIBLE
1918	def_bool y
1919	depends on CPU_PM
1920
1921config ARCH_HIBERNATION_HEADER
1922	def_bool y
1923	depends on HIBERNATION
1924
1925config ARCH_SUSPEND_POSSIBLE
1926	def_bool y
1927
1928endmenu
1929
1930menu "CPU Power Management"
1931
1932source "drivers/cpuidle/Kconfig"
1933
1934source "drivers/cpufreq/Kconfig"
1935
1936endmenu
1937
1938source "drivers/firmware/Kconfig"
1939
1940source "drivers/acpi/Kconfig"
1941
1942source "arch/arm64/kvm/Kconfig"
1943
1944if CRYPTO
1945source "arch/arm64/crypto/Kconfig"
1946endif
1947