1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 15 select ARCH_ENABLE_MEMORY_HOTPLUG 16 select ARCH_ENABLE_MEMORY_HOTREMOVE 17 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 18 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 19 select ARCH_HAS_CACHE_LINE_SIZE 20 select ARCH_HAS_DEBUG_VIRTUAL 21 select ARCH_HAS_DEBUG_VM_PGTABLE 22 select ARCH_HAS_DMA_PREP_COHERENT 23 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 24 select ARCH_HAS_FAST_MULTIPLIER 25 select ARCH_HAS_FORTIFY_SOURCE 26 select ARCH_HAS_GCOV_PROFILE_ALL 27 select ARCH_HAS_GIGANTIC_PAGE 28 select ARCH_HAS_KCOV 29 select ARCH_HAS_KEEPINITRD 30 select ARCH_HAS_MEMBARRIER_SYNC_CORE 31 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 32 select ARCH_HAS_PTE_DEVMAP 33 select ARCH_HAS_PTE_SPECIAL 34 select ARCH_HAS_SETUP_DMA_OPS 35 select ARCH_HAS_SET_DIRECT_MAP 36 select ARCH_HAS_SET_MEMORY 37 select ARCH_STACKWALK 38 select ARCH_HAS_STRICT_KERNEL_RWX 39 select ARCH_HAS_STRICT_MODULE_RWX 40 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 41 select ARCH_HAS_SYNC_DMA_FOR_CPU 42 select ARCH_HAS_SYSCALL_WRAPPER 43 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 44 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 45 select ARCH_HAVE_ELF_PROT 46 select ARCH_HAVE_NMI_SAFE_CMPXCHG 47 select ARCH_INLINE_READ_LOCK if !PREEMPTION 48 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 49 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 51 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 52 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 55 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 56 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 59 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 60 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 63 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 64 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 65 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 66 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 69 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 70 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 73 select ARCH_KEEP_MEMBLOCK 74 select ARCH_USE_CMPXCHG_LOCKREF 75 select ARCH_USE_GNU_PROPERTY 76 select ARCH_USE_MEMTEST 77 select ARCH_USE_QUEUED_RWLOCKS 78 select ARCH_USE_QUEUED_SPINLOCKS 79 select ARCH_USE_SYM_ANNOTATIONS 80 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 81 select ARCH_SUPPORTS_HUGETLBFS 82 select ARCH_SUPPORTS_MEMORY_FAILURE 83 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 84 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 85 select ARCH_SUPPORTS_LTO_CLANG_THIN 86 select ARCH_SUPPORTS_CFI_CLANG 87 select ARCH_SUPPORTS_ATOMIC_RMW 88 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 89 select ARCH_SUPPORTS_NUMA_BALANCING 90 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 91 select ARCH_WANT_DEFAULT_BPF_JIT 92 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 93 select ARCH_WANT_FRAME_POINTERS 94 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 95 select ARCH_WANT_LD_ORPHAN_WARN 96 select ARCH_HAS_UBSAN_SANITIZE_ALL 97 select ARM_AMBA 98 select ARM_ARCH_TIMER 99 select ARM_GIC 100 select AUDIT_ARCH_COMPAT_GENERIC 101 select ARM_GIC_V2M if PCI 102 select ARM_GIC_V3 103 select ARM_GIC_V3_ITS if PCI 104 select ARM_PSCI_FW 105 select BUILDTIME_TABLE_SORT 106 select CLONE_BACKWARDS 107 select COMMON_CLK 108 select CPU_PM if (SUSPEND || CPU_IDLE) 109 select CRC32 110 select DCACHE_WORD_ACCESS 111 select DMA_DIRECT_REMAP 112 select EDAC_SUPPORT 113 select FRAME_POINTER 114 select GENERIC_ALLOCATOR 115 select GENERIC_ARCH_TOPOLOGY 116 select GENERIC_CLOCKEVENTS_BROADCAST 117 select GENERIC_CPU_AUTOPROBE 118 select GENERIC_CPU_VULNERABILITIES 119 select GENERIC_EARLY_IOREMAP 120 select GENERIC_FIND_FIRST_BIT 121 select GENERIC_IDLE_POLL_SETUP 122 select GENERIC_IRQ_IPI 123 select GENERIC_IRQ_PROBE 124 select GENERIC_IRQ_SHOW 125 select GENERIC_IRQ_SHOW_LEVEL 126 select GENERIC_LIB_DEVMEM_IS_ALLOWED 127 select GENERIC_PCI_IOMAP 128 select GENERIC_PTDUMP 129 select GENERIC_SCHED_CLOCK 130 select GENERIC_SMP_IDLE_THREAD 131 select GENERIC_STRNCPY_FROM_USER 132 select GENERIC_STRNLEN_USER 133 select GENERIC_TIME_VSYSCALL 134 select GENERIC_GETTIMEOFDAY 135 select GENERIC_VDSO_TIME_NS 136 select HANDLE_DOMAIN_IRQ 137 select HARDIRQS_SW_RESEND 138 select HAVE_MOVE_PMD 139 select HAVE_MOVE_PUD 140 select HAVE_PCI 141 select HAVE_ACPI_APEI if (ACPI && EFI) 142 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 143 select HAVE_ARCH_AUDITSYSCALL 144 select HAVE_ARCH_BITREVERSE 145 select HAVE_ARCH_COMPILER_H 146 select HAVE_ARCH_HUGE_VMAP 147 select HAVE_ARCH_JUMP_LABEL 148 select HAVE_ARCH_JUMP_LABEL_RELATIVE 149 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 150 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 151 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 152 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 153 select HAVE_ARCH_KFENCE 154 select HAVE_ARCH_KGDB 155 select HAVE_ARCH_MMAP_RND_BITS 156 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 157 select HAVE_ARCH_PFN_VALID 158 select HAVE_ARCH_PREL32_RELOCATIONS 159 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 160 select HAVE_ARCH_SECCOMP_FILTER 161 select HAVE_ARCH_STACKLEAK 162 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 163 select HAVE_ARCH_TRACEHOOK 164 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 165 select HAVE_ARCH_VMAP_STACK 166 select HAVE_ARM_SMCCC 167 select HAVE_ASM_MODVERSIONS 168 select HAVE_EBPF_JIT 169 select HAVE_C_RECORDMCOUNT 170 select HAVE_CMPXCHG_DOUBLE 171 select HAVE_CMPXCHG_LOCAL 172 select HAVE_CONTEXT_TRACKING 173 select HAVE_DEBUG_KMEMLEAK 174 select HAVE_DMA_CONTIGUOUS 175 select HAVE_DYNAMIC_FTRACE 176 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 177 if $(cc-option,-fpatchable-function-entry=2) 178 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 179 if DYNAMIC_FTRACE_WITH_REGS 180 select HAVE_EFFICIENT_UNALIGNED_ACCESS 181 select HAVE_FAST_GUP 182 select HAVE_FTRACE_MCOUNT_RECORD 183 select HAVE_FUNCTION_TRACER 184 select HAVE_FUNCTION_ERROR_INJECTION 185 select HAVE_FUNCTION_GRAPH_TRACER 186 select HAVE_GCC_PLUGINS 187 select HAVE_HW_BREAKPOINT if PERF_EVENTS 188 select HAVE_IRQ_TIME_ACCOUNTING 189 select HAVE_NMI 190 select HAVE_PATA_PLATFORM 191 select HAVE_PERF_EVENTS 192 select HAVE_PERF_REGS 193 select HAVE_PERF_USER_STACK_DUMP 194 select HAVE_REGS_AND_STACK_ACCESS_API 195 select HAVE_FUNCTION_ARG_ACCESS_API 196 select HAVE_FUTEX_CMPXCHG if FUTEX 197 select MMU_GATHER_RCU_TABLE_FREE 198 select HAVE_RSEQ 199 select HAVE_STACKPROTECTOR 200 select HAVE_SYSCALL_TRACEPOINTS 201 select HAVE_KPROBES 202 select HAVE_KRETPROBES 203 select HAVE_GENERIC_VDSO 204 select IOMMU_DMA if IOMMU_SUPPORT 205 select IRQ_DOMAIN 206 select IRQ_FORCED_THREADING 207 select KASAN_VMALLOC if KASAN_GENERIC 208 select MODULES_USE_ELF_RELA 209 select NEED_DMA_MAP_STATE 210 select NEED_SG_DMA_LENGTH 211 select OF 212 select OF_EARLY_FLATTREE 213 select PCI_DOMAINS_GENERIC if PCI 214 select PCI_ECAM if (ACPI && PCI) 215 select PCI_SYSCALL if PCI 216 select POWER_RESET 217 select POWER_SUPPLY 218 select SPARSE_IRQ 219 select SWIOTLB 220 select SYSCTL_EXCEPTION_TRACE 221 select THREAD_INFO_IN_TASK 222 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 223 help 224 ARM 64-bit (AArch64) Linux support. 225 226config 64BIT 227 def_bool y 228 229config MMU 230 def_bool y 231 232config ARM64_PAGE_SHIFT 233 int 234 default 16 if ARM64_64K_PAGES 235 default 14 if ARM64_16K_PAGES 236 default 12 237 238config ARM64_CONT_PTE_SHIFT 239 int 240 default 5 if ARM64_64K_PAGES 241 default 7 if ARM64_16K_PAGES 242 default 4 243 244config ARM64_CONT_PMD_SHIFT 245 int 246 default 5 if ARM64_64K_PAGES 247 default 5 if ARM64_16K_PAGES 248 default 4 249 250config ARCH_MMAP_RND_BITS_MIN 251 default 14 if ARM64_64K_PAGES 252 default 16 if ARM64_16K_PAGES 253 default 18 254 255# max bits determined by the following formula: 256# VA_BITS - PAGE_SHIFT - 3 257config ARCH_MMAP_RND_BITS_MAX 258 default 19 if ARM64_VA_BITS=36 259 default 24 if ARM64_VA_BITS=39 260 default 27 if ARM64_VA_BITS=42 261 default 30 if ARM64_VA_BITS=47 262 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 263 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 264 default 33 if ARM64_VA_BITS=48 265 default 14 if ARM64_64K_PAGES 266 default 16 if ARM64_16K_PAGES 267 default 18 268 269config ARCH_MMAP_RND_COMPAT_BITS_MIN 270 default 7 if ARM64_64K_PAGES 271 default 9 if ARM64_16K_PAGES 272 default 11 273 274config ARCH_MMAP_RND_COMPAT_BITS_MAX 275 default 16 276 277config NO_IOPORT_MAP 278 def_bool y if !PCI 279 280config STACKTRACE_SUPPORT 281 def_bool y 282 283config ILLEGAL_POINTER_VALUE 284 hex 285 default 0xdead000000000000 286 287config LOCKDEP_SUPPORT 288 def_bool y 289 290config TRACE_IRQFLAGS_SUPPORT 291 def_bool y 292 293config GENERIC_BUG 294 def_bool y 295 depends on BUG 296 297config GENERIC_BUG_RELATIVE_POINTERS 298 def_bool y 299 depends on GENERIC_BUG 300 301config GENERIC_HWEIGHT 302 def_bool y 303 304config GENERIC_CSUM 305 def_bool y 306 307config GENERIC_CALIBRATE_DELAY 308 def_bool y 309 310config ZONE_DMA 311 bool "Support DMA zone" if EXPERT 312 default y 313 314config ZONE_DMA32 315 bool "Support DMA32 zone" if EXPERT 316 default y 317 318config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 319 def_bool y 320 321config SMP 322 def_bool y 323 324config KERNEL_MODE_NEON 325 def_bool y 326 327config FIX_EARLYCON_MEM 328 def_bool y 329 330config PGTABLE_LEVELS 331 int 332 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 333 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 334 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 335 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 336 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 337 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 338 339config ARCH_SUPPORTS_UPROBES 340 def_bool y 341 342config ARCH_PROC_KCORE_TEXT 343 def_bool y 344 345config BROKEN_GAS_INST 346 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 347 348config KASAN_SHADOW_OFFSET 349 hex 350 depends on KASAN_GENERIC || KASAN_SW_TAGS 351 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 352 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 353 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 354 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 355 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 356 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 357 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 358 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 359 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 360 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 361 default 0xffffffffffffffff 362 363source "arch/arm64/Kconfig.platforms" 364 365menu "Kernel Features" 366 367menu "ARM errata workarounds via the alternatives framework" 368 369config ARM64_WORKAROUND_CLEAN_CACHE 370 bool 371 372config ARM64_ERRATUM_826319 373 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 374 default y 375 select ARM64_WORKAROUND_CLEAN_CACHE 376 help 377 This option adds an alternative code sequence to work around ARM 378 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 379 AXI master interface and an L2 cache. 380 381 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 382 and is unable to accept a certain write via this interface, it will 383 not progress on read data presented on the read data channel and the 384 system can deadlock. 385 386 The workaround promotes data cache clean instructions to 387 data cache clean-and-invalidate. 388 Please note that this does not necessarily enable the workaround, 389 as it depends on the alternative framework, which will only patch 390 the kernel if an affected CPU is detected. 391 392 If unsure, say Y. 393 394config ARM64_ERRATUM_827319 395 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 396 default y 397 select ARM64_WORKAROUND_CLEAN_CACHE 398 help 399 This option adds an alternative code sequence to work around ARM 400 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 401 master interface and an L2 cache. 402 403 Under certain conditions this erratum can cause a clean line eviction 404 to occur at the same time as another transaction to the same address 405 on the AMBA 5 CHI interface, which can cause data corruption if the 406 interconnect reorders the two transactions. 407 408 The workaround promotes data cache clean instructions to 409 data cache clean-and-invalidate. 410 Please note that this does not necessarily enable the workaround, 411 as it depends on the alternative framework, which will only patch 412 the kernel if an affected CPU is detected. 413 414 If unsure, say Y. 415 416config ARM64_ERRATUM_824069 417 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 418 default y 419 select ARM64_WORKAROUND_CLEAN_CACHE 420 help 421 This option adds an alternative code sequence to work around ARM 422 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 423 to a coherent interconnect. 424 425 If a Cortex-A53 processor is executing a store or prefetch for 426 write instruction at the same time as a processor in another 427 cluster is executing a cache maintenance operation to the same 428 address, then this erratum might cause a clean cache line to be 429 incorrectly marked as dirty. 430 431 The workaround promotes data cache clean instructions to 432 data cache clean-and-invalidate. 433 Please note that this option does not necessarily enable the 434 workaround, as it depends on the alternative framework, which will 435 only patch the kernel if an affected CPU is detected. 436 437 If unsure, say Y. 438 439config ARM64_ERRATUM_819472 440 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 441 default y 442 select ARM64_WORKAROUND_CLEAN_CACHE 443 help 444 This option adds an alternative code sequence to work around ARM 445 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 446 present when it is connected to a coherent interconnect. 447 448 If the processor is executing a load and store exclusive sequence at 449 the same time as a processor in another cluster is executing a cache 450 maintenance operation to the same address, then this erratum might 451 cause data corruption. 452 453 The workaround promotes data cache clean instructions to 454 data cache clean-and-invalidate. 455 Please note that this does not necessarily enable the workaround, 456 as it depends on the alternative framework, which will only patch 457 the kernel if an affected CPU is detected. 458 459 If unsure, say Y. 460 461config ARM64_ERRATUM_832075 462 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 463 default y 464 help 465 This option adds an alternative code sequence to work around ARM 466 erratum 832075 on Cortex-A57 parts up to r1p2. 467 468 Affected Cortex-A57 parts might deadlock when exclusive load/store 469 instructions to Write-Back memory are mixed with Device loads. 470 471 The workaround is to promote device loads to use Load-Acquire 472 semantics. 473 Please note that this does not necessarily enable the workaround, 474 as it depends on the alternative framework, which will only patch 475 the kernel if an affected CPU is detected. 476 477 If unsure, say Y. 478 479config ARM64_ERRATUM_834220 480 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 481 depends on KVM 482 default y 483 help 484 This option adds an alternative code sequence to work around ARM 485 erratum 834220 on Cortex-A57 parts up to r1p2. 486 487 Affected Cortex-A57 parts might report a Stage 2 translation 488 fault as the result of a Stage 1 fault for load crossing a 489 page boundary when there is a permission or device memory 490 alignment fault at Stage 1 and a translation fault at Stage 2. 491 492 The workaround is to verify that the Stage 1 translation 493 doesn't generate a fault before handling the Stage 2 fault. 494 Please note that this does not necessarily enable the workaround, 495 as it depends on the alternative framework, which will only patch 496 the kernel if an affected CPU is detected. 497 498 If unsure, say Y. 499 500config ARM64_ERRATUM_845719 501 bool "Cortex-A53: 845719: a load might read incorrect data" 502 depends on COMPAT 503 default y 504 help 505 This option adds an alternative code sequence to work around ARM 506 erratum 845719 on Cortex-A53 parts up to r0p4. 507 508 When running a compat (AArch32) userspace on an affected Cortex-A53 509 part, a load at EL0 from a virtual address that matches the bottom 32 510 bits of the virtual address used by a recent load at (AArch64) EL1 511 might return incorrect data. 512 513 The workaround is to write the contextidr_el1 register on exception 514 return to a 32-bit task. 515 Please note that this does not necessarily enable the workaround, 516 as it depends on the alternative framework, which will only patch 517 the kernel if an affected CPU is detected. 518 519 If unsure, say Y. 520 521config ARM64_ERRATUM_843419 522 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 523 default y 524 select ARM64_MODULE_PLTS if MODULES 525 help 526 This option links the kernel with '--fix-cortex-a53-843419' and 527 enables PLT support to replace certain ADRP instructions, which can 528 cause subsequent memory accesses to use an incorrect address on 529 Cortex-A53 parts up to r0p4. 530 531 If unsure, say Y. 532 533config ARM64_LD_HAS_FIX_ERRATUM_843419 534 def_bool $(ld-option,--fix-cortex-a53-843419) 535 536config ARM64_ERRATUM_1024718 537 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 538 default y 539 help 540 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 541 542 Affected Cortex-A55 cores (all revisions) could cause incorrect 543 update of the hardware dirty bit when the DBM/AP bits are updated 544 without a break-before-make. The workaround is to disable the usage 545 of hardware DBM locally on the affected cores. CPUs not affected by 546 this erratum will continue to use the feature. 547 548 If unsure, say Y. 549 550config ARM64_ERRATUM_1418040 551 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 552 default y 553 depends on COMPAT 554 help 555 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 556 errata 1188873 and 1418040. 557 558 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 559 cause register corruption when accessing the timer registers 560 from AArch32 userspace. 561 562 If unsure, say Y. 563 564config ARM64_WORKAROUND_SPECULATIVE_AT 565 bool 566 567config ARM64_ERRATUM_1165522 568 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 569 default y 570 select ARM64_WORKAROUND_SPECULATIVE_AT 571 help 572 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 573 574 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 575 corrupted TLBs by speculating an AT instruction during a guest 576 context switch. 577 578 If unsure, say Y. 579 580config ARM64_ERRATUM_1319367 581 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 582 default y 583 select ARM64_WORKAROUND_SPECULATIVE_AT 584 help 585 This option adds work arounds for ARM Cortex-A57 erratum 1319537 586 and A72 erratum 1319367 587 588 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 589 speculating an AT instruction during a guest context switch. 590 591 If unsure, say Y. 592 593config ARM64_ERRATUM_1530923 594 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 595 default y 596 select ARM64_WORKAROUND_SPECULATIVE_AT 597 help 598 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 599 600 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 601 corrupted TLBs by speculating an AT instruction during a guest 602 context switch. 603 604 If unsure, say Y. 605 606config ARM64_WORKAROUND_REPEAT_TLBI 607 bool 608 609config ARM64_ERRATUM_1286807 610 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 611 default y 612 select ARM64_WORKAROUND_REPEAT_TLBI 613 help 614 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 615 616 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 617 address for a cacheable mapping of a location is being 618 accessed by a core while another core is remapping the virtual 619 address to a new physical page using the recommended 620 break-before-make sequence, then under very rare circumstances 621 TLBI+DSB completes before a read using the translation being 622 invalidated has been observed by other observers. The 623 workaround repeats the TLBI+DSB operation. 624 625config ARM64_ERRATUM_1463225 626 bool "Cortex-A76: Software Step might prevent interrupt recognition" 627 default y 628 help 629 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 630 631 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 632 of a system call instruction (SVC) can prevent recognition of 633 subsequent interrupts when software stepping is disabled in the 634 exception handler of the system call and either kernel debugging 635 is enabled or VHE is in use. 636 637 Work around the erratum by triggering a dummy step exception 638 when handling a system call from a task that is being stepped 639 in a VHE configuration of the kernel. 640 641 If unsure, say Y. 642 643config ARM64_ERRATUM_1542419 644 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 645 default y 646 help 647 This option adds a workaround for ARM Neoverse-N1 erratum 648 1542419. 649 650 Affected Neoverse-N1 cores could execute a stale instruction when 651 modified by another CPU. The workaround depends on a firmware 652 counterpart. 653 654 Workaround the issue by hiding the DIC feature from EL0. This 655 forces user-space to perform cache maintenance. 656 657 If unsure, say Y. 658 659config ARM64_ERRATUM_1508412 660 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 661 default y 662 help 663 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 664 665 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 666 of a store-exclusive or read of PAR_EL1 and a load with device or 667 non-cacheable memory attributes. The workaround depends on a firmware 668 counterpart. 669 670 KVM guests must also have the workaround implemented or they can 671 deadlock the system. 672 673 Work around the issue by inserting DMB SY barriers around PAR_EL1 674 register reads and warning KVM users. The DMB barrier is sufficient 675 to prevent a speculative PAR_EL1 read. 676 677 If unsure, say Y. 678 679config CAVIUM_ERRATUM_22375 680 bool "Cavium erratum 22375, 24313" 681 default y 682 help 683 Enable workaround for errata 22375 and 24313. 684 685 This implements two gicv3-its errata workarounds for ThunderX. Both 686 with a small impact affecting only ITS table allocation. 687 688 erratum 22375: only alloc 8MB table size 689 erratum 24313: ignore memory access type 690 691 The fixes are in ITS initialization and basically ignore memory access 692 type and table size provided by the TYPER and BASER registers. 693 694 If unsure, say Y. 695 696config CAVIUM_ERRATUM_23144 697 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 698 depends on NUMA 699 default y 700 help 701 ITS SYNC command hang for cross node io and collections/cpu mapping. 702 703 If unsure, say Y. 704 705config CAVIUM_ERRATUM_23154 706 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 707 default y 708 help 709 The gicv3 of ThunderX requires a modified version for 710 reading the IAR status to ensure data synchronization 711 (access to icc_iar1_el1 is not sync'ed before and after). 712 713 If unsure, say Y. 714 715config CAVIUM_ERRATUM_27456 716 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 717 default y 718 help 719 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 720 instructions may cause the icache to become corrupted if it 721 contains data for a non-current ASID. The fix is to 722 invalidate the icache when changing the mm context. 723 724 If unsure, say Y. 725 726config CAVIUM_ERRATUM_30115 727 bool "Cavium erratum 30115: Guest may disable interrupts in host" 728 default y 729 help 730 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 731 1.2, and T83 Pass 1.0, KVM guest execution may disable 732 interrupts in host. Trapping both GICv3 group-0 and group-1 733 accesses sidesteps the issue. 734 735 If unsure, say Y. 736 737config CAVIUM_TX2_ERRATUM_219 738 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 739 default y 740 help 741 On Cavium ThunderX2, a load, store or prefetch instruction between a 742 TTBR update and the corresponding context synchronizing operation can 743 cause a spurious Data Abort to be delivered to any hardware thread in 744 the CPU core. 745 746 Work around the issue by avoiding the problematic code sequence and 747 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 748 trap handler performs the corresponding register access, skips the 749 instruction and ensures context synchronization by virtue of the 750 exception return. 751 752 If unsure, say Y. 753 754config FUJITSU_ERRATUM_010001 755 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 756 default y 757 help 758 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 759 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 760 accesses may cause undefined fault (Data abort, DFSC=0b111111). 761 This fault occurs under a specific hardware condition when a 762 load/store instruction performs an address translation using: 763 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 764 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 765 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 766 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 767 768 The workaround is to ensure these bits are clear in TCR_ELx. 769 The workaround only affects the Fujitsu-A64FX. 770 771 If unsure, say Y. 772 773config HISILICON_ERRATUM_161600802 774 bool "Hip07 161600802: Erroneous redistributor VLPI base" 775 default y 776 help 777 The HiSilicon Hip07 SoC uses the wrong redistributor base 778 when issued ITS commands such as VMOVP and VMAPP, and requires 779 a 128kB offset to be applied to the target address in this commands. 780 781 If unsure, say Y. 782 783config QCOM_FALKOR_ERRATUM_1003 784 bool "Falkor E1003: Incorrect translation due to ASID change" 785 default y 786 help 787 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 788 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 789 in TTBR1_EL1, this situation only occurs in the entry trampoline and 790 then only for entries in the walk cache, since the leaf translation 791 is unchanged. Work around the erratum by invalidating the walk cache 792 entries for the trampoline before entering the kernel proper. 793 794config QCOM_FALKOR_ERRATUM_1009 795 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 796 default y 797 select ARM64_WORKAROUND_REPEAT_TLBI 798 help 799 On Falkor v1, the CPU may prematurely complete a DSB following a 800 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 801 one more time to fix the issue. 802 803 If unsure, say Y. 804 805config QCOM_QDF2400_ERRATUM_0065 806 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 807 default y 808 help 809 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 810 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 811 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 812 813 If unsure, say Y. 814 815config QCOM_FALKOR_ERRATUM_E1041 816 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 817 default y 818 help 819 Falkor CPU may speculatively fetch instructions from an improper 820 memory location when MMU translation is changed from SCTLR_ELn[M]=1 821 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 822 823 If unsure, say Y. 824 825config NVIDIA_CARMEL_CNP_ERRATUM 826 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 827 default y 828 help 829 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 830 invalidate shared TLB entries installed by a different core, as it would 831 on standard ARM cores. 832 833 If unsure, say Y. 834 835config SOCIONEXT_SYNQUACER_PREITS 836 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 837 default y 838 help 839 Socionext Synquacer SoCs implement a separate h/w block to generate 840 MSI doorbell writes with non-zero values for the device ID. 841 842 If unsure, say Y. 843 844endmenu 845 846 847choice 848 prompt "Page size" 849 default ARM64_4K_PAGES 850 help 851 Page size (translation granule) configuration. 852 853config ARM64_4K_PAGES 854 bool "4KB" 855 help 856 This feature enables 4KB pages support. 857 858config ARM64_16K_PAGES 859 bool "16KB" 860 help 861 The system will use 16KB pages support. AArch32 emulation 862 requires applications compiled with 16K (or a multiple of 16K) 863 aligned segments. 864 865config ARM64_64K_PAGES 866 bool "64KB" 867 help 868 This feature enables 64KB pages support (4KB by default) 869 allowing only two levels of page tables and faster TLB 870 look-up. AArch32 emulation requires applications compiled 871 with 64K aligned segments. 872 873endchoice 874 875choice 876 prompt "Virtual address space size" 877 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 878 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 879 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 880 help 881 Allows choosing one of multiple possible virtual address 882 space sizes. The level of translation table is determined by 883 a combination of page size and virtual address space size. 884 885config ARM64_VA_BITS_36 886 bool "36-bit" if EXPERT 887 depends on ARM64_16K_PAGES 888 889config ARM64_VA_BITS_39 890 bool "39-bit" 891 depends on ARM64_4K_PAGES 892 893config ARM64_VA_BITS_42 894 bool "42-bit" 895 depends on ARM64_64K_PAGES 896 897config ARM64_VA_BITS_47 898 bool "47-bit" 899 depends on ARM64_16K_PAGES 900 901config ARM64_VA_BITS_48 902 bool "48-bit" 903 904config ARM64_VA_BITS_52 905 bool "52-bit" 906 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 907 help 908 Enable 52-bit virtual addressing for userspace when explicitly 909 requested via a hint to mmap(). The kernel will also use 52-bit 910 virtual addresses for its own mappings (provided HW support for 911 this feature is available, otherwise it reverts to 48-bit). 912 913 NOTE: Enabling 52-bit virtual addressing in conjunction with 914 ARMv8.3 Pointer Authentication will result in the PAC being 915 reduced from 7 bits to 3 bits, which may have a significant 916 impact on its susceptibility to brute-force attacks. 917 918 If unsure, select 48-bit virtual addressing instead. 919 920endchoice 921 922config ARM64_FORCE_52BIT 923 bool "Force 52-bit virtual addresses for userspace" 924 depends on ARM64_VA_BITS_52 && EXPERT 925 help 926 For systems with 52-bit userspace VAs enabled, the kernel will attempt 927 to maintain compatibility with older software by providing 48-bit VAs 928 unless a hint is supplied to mmap. 929 930 This configuration option disables the 48-bit compatibility logic, and 931 forces all userspace addresses to be 52-bit on HW that supports it. One 932 should only enable this configuration option for stress testing userspace 933 memory management code. If unsure say N here. 934 935config ARM64_VA_BITS 936 int 937 default 36 if ARM64_VA_BITS_36 938 default 39 if ARM64_VA_BITS_39 939 default 42 if ARM64_VA_BITS_42 940 default 47 if ARM64_VA_BITS_47 941 default 48 if ARM64_VA_BITS_48 942 default 52 if ARM64_VA_BITS_52 943 944choice 945 prompt "Physical address space size" 946 default ARM64_PA_BITS_48 947 help 948 Choose the maximum physical address range that the kernel will 949 support. 950 951config ARM64_PA_BITS_48 952 bool "48-bit" 953 954config ARM64_PA_BITS_52 955 bool "52-bit (ARMv8.2)" 956 depends on ARM64_64K_PAGES 957 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 958 help 959 Enable support for a 52-bit physical address space, introduced as 960 part of the ARMv8.2-LPA extension. 961 962 With this enabled, the kernel will also continue to work on CPUs that 963 do not support ARMv8.2-LPA, but with some added memory overhead (and 964 minor performance overhead). 965 966endchoice 967 968config ARM64_PA_BITS 969 int 970 default 48 if ARM64_PA_BITS_48 971 default 52 if ARM64_PA_BITS_52 972 973choice 974 prompt "Endianness" 975 default CPU_LITTLE_ENDIAN 976 help 977 Select the endianness of data accesses performed by the CPU. Userspace 978 applications will need to be compiled and linked for the endianness 979 that is selected here. 980 981config CPU_BIG_ENDIAN 982 bool "Build big-endian kernel" 983 depends on !LD_IS_LLD || LLD_VERSION >= 130000 984 help 985 Say Y if you plan on running a kernel with a big-endian userspace. 986 987config CPU_LITTLE_ENDIAN 988 bool "Build little-endian kernel" 989 help 990 Say Y if you plan on running a kernel with a little-endian userspace. 991 This is usually the case for distributions targeting arm64. 992 993endchoice 994 995config SCHED_MC 996 bool "Multi-core scheduler support" 997 help 998 Multi-core scheduler support improves the CPU scheduler's decision 999 making when dealing with multi-core CPU chips at a cost of slightly 1000 increased overhead in some places. If unsure say N here. 1001 1002config SCHED_SMT 1003 bool "SMT scheduler support" 1004 help 1005 Improves the CPU scheduler's decision making when dealing with 1006 MultiThreading at a cost of slightly increased overhead in some 1007 places. If unsure say N here. 1008 1009config NR_CPUS 1010 int "Maximum number of CPUs (2-4096)" 1011 range 2 4096 1012 default "256" 1013 1014config HOTPLUG_CPU 1015 bool "Support for hot-pluggable CPUs" 1016 select GENERIC_IRQ_MIGRATION 1017 help 1018 Say Y here to experiment with turning CPUs off and on. CPUs 1019 can be controlled through /sys/devices/system/cpu. 1020 1021# Common NUMA Features 1022config NUMA 1023 bool "NUMA Memory Allocation and Scheduler Support" 1024 select GENERIC_ARCH_NUMA 1025 select ACPI_NUMA if ACPI 1026 select OF_NUMA 1027 help 1028 Enable NUMA (Non-Uniform Memory Access) support. 1029 1030 The kernel will try to allocate memory used by a CPU on the 1031 local memory of the CPU and add some more 1032 NUMA awareness to the kernel. 1033 1034config NODES_SHIFT 1035 int "Maximum NUMA Nodes (as a power of 2)" 1036 range 1 10 1037 default "4" 1038 depends on NEED_MULTIPLE_NODES 1039 help 1040 Specify the maximum number of NUMA Nodes available on the target 1041 system. Increases memory reserved to accommodate various tables. 1042 1043config USE_PERCPU_NUMA_NODE_ID 1044 def_bool y 1045 depends on NUMA 1046 1047config HAVE_SETUP_PER_CPU_AREA 1048 def_bool y 1049 depends on NUMA 1050 1051config NEED_PER_CPU_EMBED_FIRST_CHUNK 1052 def_bool y 1053 depends on NUMA 1054 1055config HOLES_IN_ZONE 1056 def_bool y 1057 1058source "kernel/Kconfig.hz" 1059 1060config ARCH_SPARSEMEM_ENABLE 1061 def_bool y 1062 select SPARSEMEM_VMEMMAP_ENABLE 1063 select SPARSEMEM_VMEMMAP 1064 1065config HW_PERF_EVENTS 1066 def_bool y 1067 depends on ARM_PMU 1068 1069config ARCH_HAS_FILTER_PGPROT 1070 def_bool y 1071 1072# Supported by clang >= 7.0 1073config CC_HAVE_SHADOW_CALL_STACK 1074 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1075 1076config PARAVIRT 1077 bool "Enable paravirtualization code" 1078 help 1079 This changes the kernel so it can modify itself when it is run 1080 under a hypervisor, potentially improving performance significantly 1081 over full virtualization. 1082 1083config PARAVIRT_TIME_ACCOUNTING 1084 bool "Paravirtual steal time accounting" 1085 select PARAVIRT 1086 help 1087 Select this option to enable fine granularity task steal time 1088 accounting. Time spent executing other tasks in parallel with 1089 the current vCPU is discounted from the vCPU power. To account for 1090 that, there can be a small performance impact. 1091 1092 If in doubt, say N here. 1093 1094config KEXEC 1095 depends on PM_SLEEP_SMP 1096 select KEXEC_CORE 1097 bool "kexec system call" 1098 help 1099 kexec is a system call that implements the ability to shutdown your 1100 current kernel, and to start another kernel. It is like a reboot 1101 but it is independent of the system firmware. And like a reboot 1102 you can start any kernel with it, not just Linux. 1103 1104config KEXEC_FILE 1105 bool "kexec file based system call" 1106 select KEXEC_CORE 1107 select HAVE_IMA_KEXEC if IMA 1108 help 1109 This is new version of kexec system call. This system call is 1110 file based and takes file descriptors as system call argument 1111 for kernel and initramfs as opposed to list of segments as 1112 accepted by previous system call. 1113 1114config KEXEC_SIG 1115 bool "Verify kernel signature during kexec_file_load() syscall" 1116 depends on KEXEC_FILE 1117 help 1118 Select this option to verify a signature with loaded kernel 1119 image. If configured, any attempt of loading a image without 1120 valid signature will fail. 1121 1122 In addition to that option, you need to enable signature 1123 verification for the corresponding kernel image type being 1124 loaded in order for this to work. 1125 1126config KEXEC_IMAGE_VERIFY_SIG 1127 bool "Enable Image signature verification support" 1128 default y 1129 depends on KEXEC_SIG 1130 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1131 help 1132 Enable Image signature verification support. 1133 1134comment "Support for PE file signature verification disabled" 1135 depends on KEXEC_SIG 1136 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1137 1138config CRASH_DUMP 1139 bool "Build kdump crash kernel" 1140 help 1141 Generate crash dump after being started by kexec. This should 1142 be normally only set in special crash dump kernels which are 1143 loaded in the main kernel with kexec-tools into a specially 1144 reserved region and then later executed after a crash by 1145 kdump/kexec. 1146 1147 For more details see Documentation/admin-guide/kdump/kdump.rst 1148 1149config TRANS_TABLE 1150 def_bool y 1151 depends on HIBERNATION 1152 1153config XEN_DOM0 1154 def_bool y 1155 depends on XEN 1156 1157config XEN 1158 bool "Xen guest support on ARM64" 1159 depends on ARM64 && OF 1160 select SWIOTLB_XEN 1161 select PARAVIRT 1162 help 1163 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1164 1165config FORCE_MAX_ZONEORDER 1166 int 1167 default "14" if ARM64_64K_PAGES 1168 default "12" if ARM64_16K_PAGES 1169 default "11" 1170 help 1171 The kernel memory allocator divides physically contiguous memory 1172 blocks into "zones", where each zone is a power of two number of 1173 pages. This option selects the largest power of two that the kernel 1174 keeps in the memory allocator. If you need to allocate very large 1175 blocks of physically contiguous memory, then you may need to 1176 increase this value. 1177 1178 This config option is actually maximum order plus one. For example, 1179 a value of 11 means that the largest free memory block is 2^10 pages. 1180 1181 We make sure that we can allocate upto a HugePage size for each configuration. 1182 Hence we have : 1183 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1184 1185 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1186 4M allocations matching the default size used by generic code. 1187 1188config UNMAP_KERNEL_AT_EL0 1189 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1190 default y 1191 help 1192 Speculation attacks against some high-performance processors can 1193 be used to bypass MMU permission checks and leak kernel data to 1194 userspace. This can be defended against by unmapping the kernel 1195 when running in userspace, mapping it back in on exception entry 1196 via a trampoline page in the vector table. 1197 1198 If unsure, say Y. 1199 1200config RODATA_FULL_DEFAULT_ENABLED 1201 bool "Apply r/o permissions of VM areas also to their linear aliases" 1202 default y 1203 help 1204 Apply read-only attributes of VM areas to the linear alias of 1205 the backing pages as well. This prevents code or read-only data 1206 from being modified (inadvertently or intentionally) via another 1207 mapping of the same memory page. This additional enhancement can 1208 be turned off at runtime by passing rodata=[off|on] (and turned on 1209 with rodata=full if this option is set to 'n') 1210 1211 This requires the linear region to be mapped down to pages, 1212 which may adversely affect performance in some cases. 1213 1214config ARM64_SW_TTBR0_PAN 1215 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1216 help 1217 Enabling this option prevents the kernel from accessing 1218 user-space memory directly by pointing TTBR0_EL1 to a reserved 1219 zeroed area and reserved ASID. The user access routines 1220 restore the valid TTBR0_EL1 temporarily. 1221 1222config ARM64_TAGGED_ADDR_ABI 1223 bool "Enable the tagged user addresses syscall ABI" 1224 default y 1225 help 1226 When this option is enabled, user applications can opt in to a 1227 relaxed ABI via prctl() allowing tagged addresses to be passed 1228 to system calls as pointer arguments. For details, see 1229 Documentation/arm64/tagged-address-abi.rst. 1230 1231menuconfig COMPAT 1232 bool "Kernel support for 32-bit EL0" 1233 depends on ARM64_4K_PAGES || EXPERT 1234 select HAVE_UID16 1235 select OLD_SIGSUSPEND3 1236 select COMPAT_OLD_SIGACTION 1237 help 1238 This option enables support for a 32-bit EL0 running under a 64-bit 1239 kernel at EL1. AArch32-specific components such as system calls, 1240 the user helper functions, VFP support and the ptrace interface are 1241 handled appropriately by the kernel. 1242 1243 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1244 that you will only be able to execute AArch32 binaries that were compiled 1245 with page size aligned segments. 1246 1247 If you want to execute 32-bit userspace applications, say Y. 1248 1249if COMPAT 1250 1251config KUSER_HELPERS 1252 bool "Enable kuser helpers page for 32-bit applications" 1253 default y 1254 help 1255 Warning: disabling this option may break 32-bit user programs. 1256 1257 Provide kuser helpers to compat tasks. The kernel provides 1258 helper code to userspace in read only form at a fixed location 1259 to allow userspace to be independent of the CPU type fitted to 1260 the system. This permits binaries to be run on ARMv4 through 1261 to ARMv8 without modification. 1262 1263 See Documentation/arm/kernel_user_helpers.rst for details. 1264 1265 However, the fixed address nature of these helpers can be used 1266 by ROP (return orientated programming) authors when creating 1267 exploits. 1268 1269 If all of the binaries and libraries which run on your platform 1270 are built specifically for your platform, and make no use of 1271 these helpers, then you can turn this option off to hinder 1272 such exploits. However, in that case, if a binary or library 1273 relying on those helpers is run, it will not function correctly. 1274 1275 Say N here only if you are absolutely certain that you do not 1276 need these helpers; otherwise, the safe option is to say Y. 1277 1278config COMPAT_VDSO 1279 bool "Enable vDSO for 32-bit applications" 1280 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1281 select GENERIC_COMPAT_VDSO 1282 default y 1283 help 1284 Place in the process address space of 32-bit applications an 1285 ELF shared object providing fast implementations of gettimeofday 1286 and clock_gettime. 1287 1288 You must have a 32-bit build of glibc 2.22 or later for programs 1289 to seamlessly take advantage of this. 1290 1291config THUMB2_COMPAT_VDSO 1292 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1293 depends on COMPAT_VDSO 1294 default y 1295 help 1296 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1297 otherwise with '-marm'. 1298 1299menuconfig ARMV8_DEPRECATED 1300 bool "Emulate deprecated/obsolete ARMv8 instructions" 1301 depends on SYSCTL 1302 help 1303 Legacy software support may require certain instructions 1304 that have been deprecated or obsoleted in the architecture. 1305 1306 Enable this config to enable selective emulation of these 1307 features. 1308 1309 If unsure, say Y 1310 1311if ARMV8_DEPRECATED 1312 1313config SWP_EMULATION 1314 bool "Emulate SWP/SWPB instructions" 1315 help 1316 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1317 they are always undefined. Say Y here to enable software 1318 emulation of these instructions for userspace using LDXR/STXR. 1319 This feature can be controlled at runtime with the abi.swp 1320 sysctl which is disabled by default. 1321 1322 In some older versions of glibc [<=2.8] SWP is used during futex 1323 trylock() operations with the assumption that the code will not 1324 be preempted. This invalid assumption may be more likely to fail 1325 with SWP emulation enabled, leading to deadlock of the user 1326 application. 1327 1328 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1329 on an external transaction monitoring block called a global 1330 monitor to maintain update atomicity. If your system does not 1331 implement a global monitor, this option can cause programs that 1332 perform SWP operations to uncached memory to deadlock. 1333 1334 If unsure, say Y 1335 1336config CP15_BARRIER_EMULATION 1337 bool "Emulate CP15 Barrier instructions" 1338 help 1339 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1340 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1341 strongly recommended to use the ISB, DSB, and DMB 1342 instructions instead. 1343 1344 Say Y here to enable software emulation of these 1345 instructions for AArch32 userspace code. When this option is 1346 enabled, CP15 barrier usage is traced which can help 1347 identify software that needs updating. This feature can be 1348 controlled at runtime with the abi.cp15_barrier sysctl. 1349 1350 If unsure, say Y 1351 1352config SETEND_EMULATION 1353 bool "Emulate SETEND instruction" 1354 help 1355 The SETEND instruction alters the data-endianness of the 1356 AArch32 EL0, and is deprecated in ARMv8. 1357 1358 Say Y here to enable software emulation of the instruction 1359 for AArch32 userspace code. This feature can be controlled 1360 at runtime with the abi.setend sysctl. 1361 1362 Note: All the cpus on the system must have mixed endian support at EL0 1363 for this feature to be enabled. If a new CPU - which doesn't support mixed 1364 endian - is hotplugged in after this feature has been enabled, there could 1365 be unexpected results in the applications. 1366 1367 If unsure, say Y 1368endif 1369 1370endif 1371 1372menu "ARMv8.1 architectural features" 1373 1374config ARM64_HW_AFDBM 1375 bool "Support for hardware updates of the Access and Dirty page flags" 1376 default y 1377 help 1378 The ARMv8.1 architecture extensions introduce support for 1379 hardware updates of the access and dirty information in page 1380 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1381 capable processors, accesses to pages with PTE_AF cleared will 1382 set this bit instead of raising an access flag fault. 1383 Similarly, writes to read-only pages with the DBM bit set will 1384 clear the read-only bit (AP[2]) instead of raising a 1385 permission fault. 1386 1387 Kernels built with this configuration option enabled continue 1388 to work on pre-ARMv8.1 hardware and the performance impact is 1389 minimal. If unsure, say Y. 1390 1391config ARM64_PAN 1392 bool "Enable support for Privileged Access Never (PAN)" 1393 default y 1394 help 1395 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1396 prevents the kernel or hypervisor from accessing user-space (EL0) 1397 memory directly. 1398 1399 Choosing this option will cause any unprotected (not using 1400 copy_to_user et al) memory access to fail with a permission fault. 1401 1402 The feature is detected at runtime, and will remain as a 'nop' 1403 instruction if the cpu does not implement the feature. 1404 1405config AS_HAS_LDAPR 1406 def_bool $(as-instr,.arch_extension rcpc) 1407 1408config AS_HAS_LSE_ATOMICS 1409 def_bool $(as-instr,.arch_extension lse) 1410 1411config ARM64_LSE_ATOMICS 1412 bool 1413 default ARM64_USE_LSE_ATOMICS 1414 depends on AS_HAS_LSE_ATOMICS 1415 1416config ARM64_USE_LSE_ATOMICS 1417 bool "Atomic instructions" 1418 depends on JUMP_LABEL 1419 default y 1420 help 1421 As part of the Large System Extensions, ARMv8.1 introduces new 1422 atomic instructions that are designed specifically to scale in 1423 very large systems. 1424 1425 Say Y here to make use of these instructions for the in-kernel 1426 atomic routines. This incurs a small overhead on CPUs that do 1427 not support these instructions and requires the kernel to be 1428 built with binutils >= 2.25 in order for the new instructions 1429 to be used. 1430 1431endmenu 1432 1433menu "ARMv8.2 architectural features" 1434 1435config ARM64_PMEM 1436 bool "Enable support for persistent memory" 1437 select ARCH_HAS_PMEM_API 1438 select ARCH_HAS_UACCESS_FLUSHCACHE 1439 help 1440 Say Y to enable support for the persistent memory API based on the 1441 ARMv8.2 DCPoP feature. 1442 1443 The feature is detected at runtime, and the kernel will use DC CVAC 1444 operations if DC CVAP is not supported (following the behaviour of 1445 DC CVAP itself if the system does not define a point of persistence). 1446 1447config ARM64_RAS_EXTN 1448 bool "Enable support for RAS CPU Extensions" 1449 default y 1450 help 1451 CPUs that support the Reliability, Availability and Serviceability 1452 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1453 errors, classify them and report them to software. 1454 1455 On CPUs with these extensions system software can use additional 1456 barriers to determine if faults are pending and read the 1457 classification from a new set of registers. 1458 1459 Selecting this feature will allow the kernel to use these barriers 1460 and access the new registers if the system supports the extension. 1461 Platform RAS features may additionally depend on firmware support. 1462 1463config ARM64_CNP 1464 bool "Enable support for Common Not Private (CNP) translations" 1465 default y 1466 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1467 help 1468 Common Not Private (CNP) allows translation table entries to 1469 be shared between different PEs in the same inner shareable 1470 domain, so the hardware can use this fact to optimise the 1471 caching of such entries in the TLB. 1472 1473 Selecting this option allows the CNP feature to be detected 1474 at runtime, and does not affect PEs that do not implement 1475 this feature. 1476 1477endmenu 1478 1479menu "ARMv8.3 architectural features" 1480 1481config ARM64_PTR_AUTH 1482 bool "Enable support for pointer authentication" 1483 default y 1484 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1485 # Modern compilers insert a .note.gnu.property section note for PAC 1486 # which is only understood by binutils starting with version 2.33.1. 1487 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1488 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1489 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1490 help 1491 Pointer authentication (part of the ARMv8.3 Extensions) provides 1492 instructions for signing and authenticating pointers against secret 1493 keys, which can be used to mitigate Return Oriented Programming (ROP) 1494 and other attacks. 1495 1496 This option enables these instructions at EL0 (i.e. for userspace). 1497 Choosing this option will cause the kernel to initialise secret keys 1498 for each process at exec() time, with these keys being 1499 context-switched along with the process. 1500 1501 If the compiler supports the -mbranch-protection or 1502 -msign-return-address flag (e.g. GCC 7 or later), then this option 1503 will also cause the kernel itself to be compiled with return address 1504 protection. In this case, and if the target hardware is known to 1505 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1506 disabled with minimal loss of protection. 1507 1508 The feature is detected at runtime. If the feature is not present in 1509 hardware it will not be advertised to userspace/KVM guest nor will it 1510 be enabled. 1511 1512 If the feature is present on the boot CPU but not on a late CPU, then 1513 the late CPU will be parked. Also, if the boot CPU does not have 1514 address auth and the late CPU has then the late CPU will still boot 1515 but with the feature disabled. On such a system, this option should 1516 not be selected. 1517 1518 This feature works with FUNCTION_GRAPH_TRACER option only if 1519 DYNAMIC_FTRACE_WITH_REGS is enabled. 1520 1521config CC_HAS_BRANCH_PROT_PAC_RET 1522 # GCC 9 or later, clang 8 or later 1523 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1524 1525config CC_HAS_SIGN_RETURN_ADDRESS 1526 # GCC 7, 8 1527 def_bool $(cc-option,-msign-return-address=all) 1528 1529config AS_HAS_PAC 1530 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1531 1532config AS_HAS_CFI_NEGATE_RA_STATE 1533 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1534 1535endmenu 1536 1537menu "ARMv8.4 architectural features" 1538 1539config ARM64_AMU_EXTN 1540 bool "Enable support for the Activity Monitors Unit CPU extension" 1541 default y 1542 help 1543 The activity monitors extension is an optional extension introduced 1544 by the ARMv8.4 CPU architecture. This enables support for version 1 1545 of the activity monitors architecture, AMUv1. 1546 1547 To enable the use of this extension on CPUs that implement it, say Y. 1548 1549 Note that for architectural reasons, firmware _must_ implement AMU 1550 support when running on CPUs that present the activity monitors 1551 extension. The required support is present in: 1552 * Version 1.5 and later of the ARM Trusted Firmware 1553 1554 For kernels that have this configuration enabled but boot with broken 1555 firmware, you may need to say N here until the firmware is fixed. 1556 Otherwise you may experience firmware panics or lockups when 1557 accessing the counter registers. Even if you are not observing these 1558 symptoms, the values returned by the register reads might not 1559 correctly reflect reality. Most commonly, the value read will be 0, 1560 indicating that the counter is not enabled. 1561 1562config AS_HAS_ARMV8_4 1563 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1564 1565config ARM64_TLB_RANGE 1566 bool "Enable support for tlbi range feature" 1567 default y 1568 depends on AS_HAS_ARMV8_4 1569 help 1570 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1571 range of input addresses. 1572 1573 The feature introduces new assembly instructions, and they were 1574 support when binutils >= 2.30. 1575 1576endmenu 1577 1578menu "ARMv8.5 architectural features" 1579 1580config AS_HAS_ARMV8_5 1581 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1582 1583config ARM64_BTI 1584 bool "Branch Target Identification support" 1585 default y 1586 help 1587 Branch Target Identification (part of the ARMv8.5 Extensions) 1588 provides a mechanism to limit the set of locations to which computed 1589 branch instructions such as BR or BLR can jump. 1590 1591 To make use of BTI on CPUs that support it, say Y. 1592 1593 BTI is intended to provide complementary protection to other control 1594 flow integrity protection mechanisms, such as the Pointer 1595 authentication mechanism provided as part of the ARMv8.3 Extensions. 1596 For this reason, it does not make sense to enable this option without 1597 also enabling support for pointer authentication. Thus, when 1598 enabling this option you should also select ARM64_PTR_AUTH=y. 1599 1600 Userspace binaries must also be specifically compiled to make use of 1601 this mechanism. If you say N here or the hardware does not support 1602 BTI, such binaries can still run, but you get no additional 1603 enforcement of branch destinations. 1604 1605config ARM64_BTI_KERNEL 1606 bool "Use Branch Target Identification for kernel" 1607 default y 1608 depends on ARM64_BTI 1609 depends on ARM64_PTR_AUTH 1610 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1611 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1612 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1613 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1614 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1615 help 1616 Build the kernel with Branch Target Identification annotations 1617 and enable enforcement of this for kernel code. When this option 1618 is enabled and the system supports BTI all kernel code including 1619 modular code must have BTI enabled. 1620 1621config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1622 # GCC 9 or later, clang 8 or later 1623 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1624 1625config ARM64_E0PD 1626 bool "Enable support for E0PD" 1627 default y 1628 help 1629 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1630 that EL0 accesses made via TTBR1 always fault in constant time, 1631 providing similar benefits to KASLR as those provided by KPTI, but 1632 with lower overhead and without disrupting legitimate access to 1633 kernel memory such as SPE. 1634 1635 This option enables E0PD for TTBR1 where available. 1636 1637config ARCH_RANDOM 1638 bool "Enable support for random number generation" 1639 default y 1640 help 1641 Random number generation (part of the ARMv8.5 Extensions) 1642 provides a high bandwidth, cryptographically secure 1643 hardware random number generator. 1644 1645config ARM64_AS_HAS_MTE 1646 # Initial support for MTE went in binutils 2.32.0, checked with 1647 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1648 # as a late addition to the final architecture spec (LDGM/STGM) 1649 # is only supported in the newer 2.32.x and 2.33 binutils 1650 # versions, hence the extra "stgm" instruction check below. 1651 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1652 1653config ARM64_MTE 1654 bool "Memory Tagging Extension support" 1655 default y 1656 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1657 depends on AS_HAS_ARMV8_5 1658 depends on AS_HAS_LSE_ATOMICS 1659 # Required for tag checking in the uaccess routines 1660 depends on ARM64_PAN 1661 select ARCH_USES_HIGH_VMA_FLAGS 1662 help 1663 Memory Tagging (part of the ARMv8.5 Extensions) provides 1664 architectural support for run-time, always-on detection of 1665 various classes of memory error to aid with software debugging 1666 to eliminate vulnerabilities arising from memory-unsafe 1667 languages. 1668 1669 This option enables the support for the Memory Tagging 1670 Extension at EL0 (i.e. for userspace). 1671 1672 Selecting this option allows the feature to be detected at 1673 runtime. Any secondary CPU not implementing this feature will 1674 not be allowed a late bring-up. 1675 1676 Userspace binaries that want to use this feature must 1677 explicitly opt in. The mechanism for the userspace is 1678 described in: 1679 1680 Documentation/arm64/memory-tagging-extension.rst. 1681 1682endmenu 1683 1684menu "ARMv8.7 architectural features" 1685 1686config ARM64_EPAN 1687 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1688 default y 1689 depends on ARM64_PAN 1690 help 1691 Enhanced Privileged Access Never (EPAN) allows Privileged 1692 Access Never to be used with Execute-only mappings. 1693 1694 The feature is detected at runtime, and will remain disabled 1695 if the cpu does not implement the feature. 1696endmenu 1697 1698config ARM64_SVE 1699 bool "ARM Scalable Vector Extension support" 1700 default y 1701 help 1702 The Scalable Vector Extension (SVE) is an extension to the AArch64 1703 execution state which complements and extends the SIMD functionality 1704 of the base architecture to support much larger vectors and to enable 1705 additional vectorisation opportunities. 1706 1707 To enable use of this extension on CPUs that implement it, say Y. 1708 1709 On CPUs that support the SVE2 extensions, this option will enable 1710 those too. 1711 1712 Note that for architectural reasons, firmware _must_ implement SVE 1713 support when running on SVE capable hardware. The required support 1714 is present in: 1715 1716 * version 1.5 and later of the ARM Trusted Firmware 1717 * the AArch64 boot wrapper since commit 5e1261e08abf 1718 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1719 1720 For other firmware implementations, consult the firmware documentation 1721 or vendor. 1722 1723 If you need the kernel to boot on SVE-capable hardware with broken 1724 firmware, you may need to say N here until you get your firmware 1725 fixed. Otherwise, you may experience firmware panics or lockups when 1726 booting the kernel. If unsure and you are not observing these 1727 symptoms, you should assume that it is safe to say Y. 1728 1729config ARM64_MODULE_PLTS 1730 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1731 depends on MODULES 1732 select HAVE_MOD_ARCH_SPECIFIC 1733 help 1734 Allocate PLTs when loading modules so that jumps and calls whose 1735 targets are too far away for their relative offsets to be encoded 1736 in the instructions themselves can be bounced via veneers in the 1737 module's PLT. This allows modules to be allocated in the generic 1738 vmalloc area after the dedicated module memory area has been 1739 exhausted. 1740 1741 When running with address space randomization (KASLR), the module 1742 region itself may be too far away for ordinary relative jumps and 1743 calls, and so in that case, module PLTs are required and cannot be 1744 disabled. 1745 1746 Specific errata workaround(s) might also force module PLTs to be 1747 enabled (ARM64_ERRATUM_843419). 1748 1749config ARM64_PSEUDO_NMI 1750 bool "Support for NMI-like interrupts" 1751 select ARM_GIC_V3 1752 help 1753 Adds support for mimicking Non-Maskable Interrupts through the use of 1754 GIC interrupt priority. This support requires version 3 or later of 1755 ARM GIC. 1756 1757 This high priority configuration for interrupts needs to be 1758 explicitly enabled by setting the kernel parameter 1759 "irqchip.gicv3_pseudo_nmi" to 1. 1760 1761 If unsure, say N 1762 1763if ARM64_PSEUDO_NMI 1764config ARM64_DEBUG_PRIORITY_MASKING 1765 bool "Debug interrupt priority masking" 1766 help 1767 This adds runtime checks to functions enabling/disabling 1768 interrupts when using priority masking. The additional checks verify 1769 the validity of ICC_PMR_EL1 when calling concerned functions. 1770 1771 If unsure, say N 1772endif 1773 1774config RELOCATABLE 1775 bool "Build a relocatable kernel image" if EXPERT 1776 select ARCH_HAS_RELR 1777 default y 1778 help 1779 This builds the kernel as a Position Independent Executable (PIE), 1780 which retains all relocation metadata required to relocate the 1781 kernel binary at runtime to a different virtual address than the 1782 address it was linked at. 1783 Since AArch64 uses the RELA relocation format, this requires a 1784 relocation pass at runtime even if the kernel is loaded at the 1785 same address it was linked at. 1786 1787config RANDOMIZE_BASE 1788 bool "Randomize the address of the kernel image" 1789 select ARM64_MODULE_PLTS if MODULES 1790 select RELOCATABLE 1791 help 1792 Randomizes the virtual address at which the kernel image is 1793 loaded, as a security feature that deters exploit attempts 1794 relying on knowledge of the location of kernel internals. 1795 1796 It is the bootloader's job to provide entropy, by passing a 1797 random u64 value in /chosen/kaslr-seed at kernel entry. 1798 1799 When booting via the UEFI stub, it will invoke the firmware's 1800 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1801 to the kernel proper. In addition, it will randomise the physical 1802 location of the kernel Image as well. 1803 1804 If unsure, say N. 1805 1806config RANDOMIZE_MODULE_REGION_FULL 1807 bool "Randomize the module region over a 4 GB range" 1808 depends on RANDOMIZE_BASE 1809 default y 1810 help 1811 Randomizes the location of the module region inside a 4 GB window 1812 covering the core kernel. This way, it is less likely for modules 1813 to leak information about the location of core kernel data structures 1814 but it does imply that function calls between modules and the core 1815 kernel will need to be resolved via veneers in the module PLT. 1816 1817 When this option is not set, the module region will be randomized over 1818 a limited range that contains the [_stext, _etext] interval of the 1819 core kernel, so branch relocations are always in range. 1820 1821config CC_HAVE_STACKPROTECTOR_SYSREG 1822 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1823 1824config STACKPROTECTOR_PER_TASK 1825 def_bool y 1826 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1827 1828endmenu 1829 1830menu "Boot options" 1831 1832config ARM64_ACPI_PARKING_PROTOCOL 1833 bool "Enable support for the ARM64 ACPI parking protocol" 1834 depends on ACPI 1835 help 1836 Enable support for the ARM64 ACPI parking protocol. If disabled 1837 the kernel will not allow booting through the ARM64 ACPI parking 1838 protocol even if the corresponding data is present in the ACPI 1839 MADT table. 1840 1841config CMDLINE 1842 string "Default kernel command string" 1843 default "" 1844 help 1845 Provide a set of default command-line options at build time by 1846 entering them here. As a minimum, you should specify the the 1847 root device (e.g. root=/dev/nfs). 1848 1849choice 1850 prompt "Kernel command line type" if CMDLINE != "" 1851 default CMDLINE_FROM_BOOTLOADER 1852 help 1853 Choose how the kernel will handle the provided default kernel 1854 command line string. 1855 1856config CMDLINE_FROM_BOOTLOADER 1857 bool "Use bootloader kernel arguments if available" 1858 help 1859 Uses the command-line options passed by the boot loader. If 1860 the boot loader doesn't provide any, the default kernel command 1861 string provided in CMDLINE will be used. 1862 1863config CMDLINE_FORCE 1864 bool "Always use the default kernel command string" 1865 help 1866 Always use the default kernel command string, even if the boot 1867 loader passes other arguments to the kernel. 1868 This is useful if you cannot or don't want to change the 1869 command-line options your boot loader passes to the kernel. 1870 1871endchoice 1872 1873config EFI_STUB 1874 bool 1875 1876config EFI 1877 bool "UEFI runtime support" 1878 depends on OF && !CPU_BIG_ENDIAN 1879 depends on KERNEL_MODE_NEON 1880 select ARCH_SUPPORTS_ACPI 1881 select LIBFDT 1882 select UCS2_STRING 1883 select EFI_PARAMS_FROM_FDT 1884 select EFI_RUNTIME_WRAPPERS 1885 select EFI_STUB 1886 select EFI_GENERIC_STUB 1887 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 1888 default y 1889 help 1890 This option provides support for runtime services provided 1891 by UEFI firmware (such as non-volatile variables, realtime 1892 clock, and platform reset). A UEFI stub is also provided to 1893 allow the kernel to be booted as an EFI application. This 1894 is only useful on systems that have UEFI firmware. 1895 1896config DMI 1897 bool "Enable support for SMBIOS (DMI) tables" 1898 depends on EFI 1899 default y 1900 help 1901 This enables SMBIOS/DMI feature for systems. 1902 1903 This option is only useful on systems that have UEFI firmware. 1904 However, even with this option, the resultant kernel should 1905 continue to boot on existing non-UEFI platforms. 1906 1907endmenu 1908 1909config SYSVIPC_COMPAT 1910 def_bool y 1911 depends on COMPAT && SYSVIPC 1912 1913menu "Power management options" 1914 1915source "kernel/power/Kconfig" 1916 1917config ARCH_HIBERNATION_POSSIBLE 1918 def_bool y 1919 depends on CPU_PM 1920 1921config ARCH_HIBERNATION_HEADER 1922 def_bool y 1923 depends on HIBERNATION 1924 1925config ARCH_SUSPEND_POSSIBLE 1926 def_bool y 1927 1928endmenu 1929 1930menu "CPU Power Management" 1931 1932source "drivers/cpuidle/Kconfig" 1933 1934source "drivers/cpufreq/Kconfig" 1935 1936endmenu 1937 1938source "drivers/firmware/Kconfig" 1939 1940source "drivers/acpi/Kconfig" 1941 1942source "arch/arm64/kvm/Kconfig" 1943 1944if CRYPTO 1945source "arch/arm64/crypto/Kconfig" 1946endif 1947