xref: /linux/arch/arm64/Kconfig (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_OPS if XEN
28	select ARCH_HAS_DMA_PREP_COHERENT
29	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
30	select ARCH_HAS_FAST_MULTIPLIER
31	select ARCH_HAS_FORTIFY_SOURCE
32	select ARCH_HAS_GCOV_PROFILE_ALL
33	select ARCH_HAS_GIGANTIC_PAGE
34	select ARCH_HAS_KCOV
35	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
36	select ARCH_HAS_KEEPINITRD
37	select ARCH_HAS_MEMBARRIER_SYNC_CORE
38	select ARCH_HAS_MEM_ENCRYPT
39	select ARCH_SUPPORTS_MSEAL_SYSTEM_MAPPINGS
40	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
41	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
42	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
43	select ARCH_HAS_PREEMPT_LAZY
44	select ARCH_HAS_PTDUMP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
51	select ARCH_STACKWALK
52	select ARCH_HAS_STRICT_KERNEL_RWX
53	select ARCH_HAS_STRICT_MODULE_RWX
54	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
55	select ARCH_HAS_SYNC_DMA_FOR_CPU
56	select ARCH_HAS_SYSCALL_WRAPPER
57	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
58	select ARCH_HAS_ZONE_DMA_SET if EXPERT
59	select ARCH_HAVE_ELF_PROT
60	select ARCH_HAVE_NMI_SAFE_CMPXCHG
61	select ARCH_HAVE_TRACE_MMIO_ACCESS
62	select ARCH_INLINE_READ_LOCK if !PREEMPTION
63	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
66	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
70	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
74	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
78	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
80	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
84	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
88	select ARCH_KEEP_MEMBLOCK
89	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
90	select ARCH_USE_CMPXCHG_LOCKREF
91	select ARCH_USE_GNU_PROPERTY
92	select ARCH_USE_MEMTEST
93	select ARCH_USE_QUEUED_RWLOCKS
94	select ARCH_USE_QUEUED_SPINLOCKS
95	select ARCH_USE_SYM_ANNOTATIONS
96	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
97	select ARCH_SUPPORTS_HUGETLBFS
98	select ARCH_SUPPORTS_MEMORY_FAILURE
99	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
100	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
101	select ARCH_SUPPORTS_LTO_CLANG_THIN
102	select ARCH_SUPPORTS_CFI
103	select ARCH_SUPPORTS_ATOMIC_RMW
104	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
105	select ARCH_SUPPORTS_NUMA_BALANCING
106	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
107	select ARCH_SUPPORTS_PER_VMA_LOCK
108	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
109	select ARCH_SUPPORTS_RT
110	select ARCH_SUPPORTS_SCHED_SMT
111	select ARCH_SUPPORTS_SCHED_CLUSTER
112	select ARCH_SUPPORTS_SCHED_MC
113	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
114	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
115	select ARCH_WANT_DEFAULT_BPF_JIT
116	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
117	select ARCH_WANT_FRAME_POINTERS
118	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
119	select ARCH_WANT_LD_ORPHAN_WARN
120	select ARCH_WANTS_EXECMEM_LATE
121	select ARCH_WANTS_NO_INSTR
122	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
123	select ARCH_HAS_UBSAN
124	select ARM_AMBA
125	select ARM_ARCH_TIMER
126	select ARM_GIC
127	select AUDIT_ARCH_COMPAT_GENERIC
128	select ARM_GIC_V2M if PCI
129	select ARM_GIC_V3
130	select ARM_GIC_V3_ITS if PCI
131	select ARM_GIC_V5
132	select ARM_PSCI_FW
133	select BUILDTIME_TABLE_SORT
134	select CLONE_BACKWARDS
135	select COMMON_CLK
136	select CPU_PM if (SUSPEND || CPU_IDLE)
137	select CPUMASK_OFFSTACK if NR_CPUS > 256
138	select DCACHE_WORD_ACCESS
139	select HAVE_EXTRA_IPI_TRACEPOINTS
140	select DYNAMIC_FTRACE if FUNCTION_TRACER
141	select DMA_BOUNCE_UNALIGNED_KMALLOC
142	select DMA_DIRECT_REMAP
143	select EDAC_SUPPORT
144	select FRAME_POINTER
145	select FUNCTION_ALIGNMENT_4B
146	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
147	select GENERIC_ALLOCATOR
148	select GENERIC_ARCH_TOPOLOGY
149	select GENERIC_CLOCKEVENTS_BROADCAST
150	select GENERIC_CPU_AUTOPROBE
151	select GENERIC_CPU_DEVICES
152	select GENERIC_CPU_VULNERABILITIES
153	select GENERIC_EARLY_IOREMAP
154	select GENERIC_IDLE_POLL_SETUP
155	select GENERIC_IOREMAP
156	select GENERIC_IRQ_ENTRY
157	select GENERIC_IRQ_IPI
158	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
159	select GENERIC_IRQ_PROBE
160	select GENERIC_IRQ_SHOW
161	select GENERIC_IRQ_SHOW_LEVEL
162	select GENERIC_LIB_DEVMEM_IS_ALLOWED
163	select GENERIC_PCI_IOMAP
164	select GENERIC_SCHED_CLOCK
165	select GENERIC_SMP_IDLE_THREAD
166	select GENERIC_TIME_VSYSCALL
167	select GENERIC_GETTIMEOFDAY
168	select HARDIRQS_SW_RESEND
169	select HAS_IOPORT
170	select HAVE_MOVE_PMD
171	select HAVE_MOVE_PUD
172	select HAVE_PCI
173	select HAVE_ACPI_APEI if (ACPI && EFI)
174	select HAVE_ALIGNED_STRUCT_PAGE
175	select HAVE_ARCH_AUDITSYSCALL
176	select HAVE_ARCH_BITREVERSE
177	select HAVE_ARCH_COMPILER_H
178	select HAVE_ARCH_HUGE_VMALLOC
179	select HAVE_ARCH_HUGE_VMAP
180	select HAVE_ARCH_JUMP_LABEL
181	select HAVE_ARCH_JUMP_LABEL_RELATIVE
182	select HAVE_ARCH_KASAN
183	select HAVE_ARCH_KASAN_VMALLOC
184	select HAVE_ARCH_KASAN_SW_TAGS
185	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
186	# Some instrumentation may be unsound, hence EXPERT
187	select HAVE_ARCH_KCSAN if EXPERT
188	select HAVE_ARCH_KFENCE
189	select HAVE_ARCH_KGDB
190	select HAVE_ARCH_KSTACK_ERASE
191	select HAVE_ARCH_MMAP_RND_BITS
192	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
193	select HAVE_ARCH_PREL32_RELOCATIONS
194	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
195	select HAVE_ARCH_SECCOMP_FILTER
196	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
197	select HAVE_ARCH_TRACEHOOK
198	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
199	select HAVE_ARCH_VMAP_STACK
200	select HAVE_ARM_SMCCC
201	select HAVE_ASM_MODVERSIONS
202	select HAVE_EBPF_JIT
203	select HAVE_C_RECORDMCOUNT
204	select HAVE_CMPXCHG_DOUBLE
205	select HAVE_CMPXCHG_LOCAL
206	select HAVE_CONTEXT_TRACKING_USER
207	select HAVE_DEBUG_KMEMLEAK
208	select HAVE_DMA_CONTIGUOUS
209	select HAVE_DYNAMIC_FTRACE
210	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
211		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
212		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
213	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
214		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
215	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
216		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI && \
217		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
218	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
219		if DYNAMIC_FTRACE_WITH_ARGS
220	select HAVE_SAMPLE_FTRACE_DIRECT
221	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
222	select HAVE_BUILDTIME_MCOUNT_SORT
223	select HAVE_EFFICIENT_UNALIGNED_ACCESS
224	select HAVE_GUP_FAST
225	select HAVE_FTRACE_GRAPH_FUNC
226	select HAVE_FUNCTION_TRACER
227	select HAVE_FUNCTION_ERROR_INJECTION
228	select HAVE_FUNCTION_GRAPH_FREGS
229	select HAVE_FUNCTION_GRAPH_TRACER
230	select HAVE_GCC_PLUGINS
231	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
232		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
233	select HAVE_HW_BREAKPOINT if PERF_EVENTS
234	select HAVE_IOREMAP_PROT
235	select HAVE_IRQ_TIME_ACCOUNTING
236	select HAVE_LIVEPATCH
237	select HAVE_MOD_ARCH_SPECIFIC
238	select HAVE_NMI
239	select HAVE_PERF_EVENTS
240	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
241	select HAVE_PERF_REGS
242	select HAVE_PERF_USER_STACK_DUMP
243	select HAVE_PREEMPT_DYNAMIC_KEY
244	select HAVE_REGS_AND_STACK_ACCESS_API
245	select HAVE_RELIABLE_STACKTRACE
246	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
247	select HAVE_FUNCTION_ARG_ACCESS_API
248	select MMU_GATHER_RCU_TABLE_FREE
249	select HAVE_RSEQ
250	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
251	select HAVE_STACKPROTECTOR
252	select HAVE_SYSCALL_TRACEPOINTS
253	select HAVE_KPROBES
254	select HAVE_KRETPROBES
255	select HAVE_GENERIC_VDSO
256	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
257	select HOTPLUG_SMT if HOTPLUG_CPU
258	select IRQ_DOMAIN
259	select IRQ_FORCED_THREADING
260	select JUMP_LABEL
261	select KASAN_VMALLOC if KASAN
262	select LOCK_MM_AND_FIND_VMA
263	select MODULES_USE_ELF_RELA
264	select NEED_DMA_MAP_STATE
265	select NEED_SG_DMA_LENGTH
266	select OF
267	select OF_EARLY_FLATTREE
268	select PCI_DOMAINS_GENERIC if PCI
269	select PCI_ECAM if (ACPI && PCI)
270	select PCI_SYSCALL if PCI
271	select POWER_RESET
272	select POWER_SUPPLY
273	select SPARSE_IRQ
274	select SWIOTLB
275	select SYSCTL_EXCEPTION_TRACE
276	select THREAD_INFO_IN_TASK
277	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
278	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
279	select TRACE_IRQFLAGS_SUPPORT
280	select TRACE_IRQFLAGS_NMI_SUPPORT
281	select HAVE_SOFTIRQ_ON_OWN_STACK
282	select USER_STACKTRACE_SUPPORT
283	select VDSO_GETRANDOM
284	select VMAP_STACK
285	help
286	  ARM 64-bit (AArch64) Linux support.
287
288config RUSTC_SUPPORTS_ARM64
289	def_bool y
290	depends on CPU_LITTLE_ENDIAN
291	# Shadow call stack is only supported on certain rustc versions.
292	#
293	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
294	# required due to use of the -Zfixed-x18 flag.
295	#
296	# Otherwise, rustc version 1.82+ is required due to use of the
297	# -Zsanitizer=shadow-call-stack flag.
298	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
299
300config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
301	def_bool CC_IS_CLANG
302	# https://github.com/ClangBuiltLinux/linux/issues/1507
303	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
304
305config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
306	def_bool CC_IS_GCC
307	depends on $(cc-option,-fpatchable-function-entry=2)
308
309config 64BIT
310	def_bool y
311
312config MMU
313	def_bool y
314
315config ARM64_CONT_PTE_SHIFT
316	int
317	default 5 if PAGE_SIZE_64KB
318	default 7 if PAGE_SIZE_16KB
319	default 4
320
321config ARM64_CONT_PMD_SHIFT
322	int
323	default 5 if PAGE_SIZE_64KB
324	default 5 if PAGE_SIZE_16KB
325	default 4
326
327config ARCH_MMAP_RND_BITS_MIN
328	default 14 if PAGE_SIZE_64KB
329	default 16 if PAGE_SIZE_16KB
330	default 18
331
332# max bits determined by the following formula:
333#  VA_BITS - PTDESC_TABLE_SHIFT
334config ARCH_MMAP_RND_BITS_MAX
335	default 19 if ARM64_VA_BITS=36
336	default 24 if ARM64_VA_BITS=39
337	default 27 if ARM64_VA_BITS=42
338	default 30 if ARM64_VA_BITS=47
339	default 29 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_64K_PAGES
340	default 31 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_16K_PAGES
341	default 33 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52)
342	default 14 if ARM64_64K_PAGES
343	default 16 if ARM64_16K_PAGES
344	default 18
345
346config ARCH_MMAP_RND_COMPAT_BITS_MIN
347	default 7 if ARM64_64K_PAGES
348	default 9 if ARM64_16K_PAGES
349	default 11
350
351config ARCH_MMAP_RND_COMPAT_BITS_MAX
352	default 16
353
354config NO_IOPORT_MAP
355	def_bool y if !PCI
356
357config STACKTRACE_SUPPORT
358	def_bool y
359
360config ILLEGAL_POINTER_VALUE
361	hex
362	default 0xdead000000000000
363
364config LOCKDEP_SUPPORT
365	def_bool y
366
367config GENERIC_BUG
368	def_bool y
369	depends on BUG
370
371config GENERIC_BUG_RELATIVE_POINTERS
372	def_bool y
373	depends on GENERIC_BUG
374
375config GENERIC_HWEIGHT
376	def_bool y
377
378config GENERIC_CSUM
379	def_bool y
380
381config GENERIC_CALIBRATE_DELAY
382	def_bool y
383
384config SMP
385	def_bool y
386
387config KERNEL_MODE_NEON
388	def_bool y
389
390config FIX_EARLYCON_MEM
391	def_bool y
392
393config PGTABLE_LEVELS
394	int
395	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
396	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
397	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
398	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
399	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
400	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
401	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
402	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
403
404config ARCH_SUPPORTS_UPROBES
405	def_bool y
406
407config ARCH_PROC_KCORE_TEXT
408	def_bool y
409
410config BROKEN_GAS_INST
411	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
412
413config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
414	bool
415	# Clang's __builtin_return_address() strips the PAC since 12.0.0
416	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
417	default y if CC_IS_CLANG
418	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
419	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
420	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
421	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
422	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
423	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
424	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
425	default n
426
427config KASAN_SHADOW_OFFSET
428	hex
429	depends on KASAN_GENERIC || KASAN_SW_TAGS
430	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
431	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
432	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
433	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
434	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
435	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
436	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
437	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
438	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
439	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
440	default 0xffffffffffffffff
441
442config UNWIND_TABLES
443	bool
444
445source "arch/arm64/Kconfig.platforms"
446
447menu "Kernel Features"
448
449menu "ARM errata workarounds via the alternatives framework"
450
451config AMPERE_ERRATUM_AC03_CPU_38
452        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
453	default y
454	help
455	  This option adds an alternative code sequence to work around Ampere
456	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
457
458	  The affected design reports FEAT_HAFDBS as not implemented in
459	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
460	  as required by the architecture. The unadvertised HAFDBS
461	  implementation suffers from an additional erratum where hardware
462	  A/D updates can occur after a PTE has been marked invalid.
463
464	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
465	  which avoids enabling unadvertised hardware Access Flag management
466	  at stage-2.
467
468	  If unsure, say Y.
469
470config AMPERE_ERRATUM_AC04_CPU_23
471        bool "AmpereOne: AC04_CPU_23:  Failure to synchronize writes to HCR_EL2 may corrupt address translations."
472	default y
473	help
474	  This option adds an alternative code sequence to work around Ampere
475	  errata AC04_CPU_23 on AmpereOne.
476
477	  Updates to HCR_EL2 can rarely corrupt simultaneous translations for
478	  data addresses initiated by load/store instructions. Only
479	  instruction initiated translations are vulnerable, not translations
480	  from prefetches for example. A DSB before the store to HCR_EL2 is
481	  sufficient to prevent older instructions from hitting the window
482	  for corruption, and an ISB after is sufficient to prevent younger
483	  instructions from hitting the window for corruption.
484
485	  If unsure, say Y.
486
487config ARM64_WORKAROUND_CLEAN_CACHE
488	bool
489
490config ARM64_ERRATUM_826319
491	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
492	default y
493	select ARM64_WORKAROUND_CLEAN_CACHE
494	help
495	  This option adds an alternative code sequence to work around ARM
496	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
497	  AXI master interface and an L2 cache.
498
499	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
500	  and is unable to accept a certain write via this interface, it will
501	  not progress on read data presented on the read data channel and the
502	  system can deadlock.
503
504	  The workaround promotes data cache clean instructions to
505	  data cache clean-and-invalidate.
506	  Please note that this does not necessarily enable the workaround,
507	  as it depends on the alternative framework, which will only patch
508	  the kernel if an affected CPU is detected.
509
510	  If unsure, say Y.
511
512config ARM64_ERRATUM_827319
513	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
514	default y
515	select ARM64_WORKAROUND_CLEAN_CACHE
516	help
517	  This option adds an alternative code sequence to work around ARM
518	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
519	  master interface and an L2 cache.
520
521	  Under certain conditions this erratum can cause a clean line eviction
522	  to occur at the same time as another transaction to the same address
523	  on the AMBA 5 CHI interface, which can cause data corruption if the
524	  interconnect reorders the two transactions.
525
526	  The workaround promotes data cache clean instructions to
527	  data cache clean-and-invalidate.
528	  Please note that this does not necessarily enable the workaround,
529	  as it depends on the alternative framework, which will only patch
530	  the kernel if an affected CPU is detected.
531
532	  If unsure, say Y.
533
534config ARM64_ERRATUM_824069
535	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
536	default y
537	select ARM64_WORKAROUND_CLEAN_CACHE
538	help
539	  This option adds an alternative code sequence to work around ARM
540	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
541	  to a coherent interconnect.
542
543	  If a Cortex-A53 processor is executing a store or prefetch for
544	  write instruction at the same time as a processor in another
545	  cluster is executing a cache maintenance operation to the same
546	  address, then this erratum might cause a clean cache line to be
547	  incorrectly marked as dirty.
548
549	  The workaround promotes data cache clean instructions to
550	  data cache clean-and-invalidate.
551	  Please note that this option does not necessarily enable the
552	  workaround, as it depends on the alternative framework, which will
553	  only patch the kernel if an affected CPU is detected.
554
555	  If unsure, say Y.
556
557config ARM64_ERRATUM_819472
558	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
559	default y
560	select ARM64_WORKAROUND_CLEAN_CACHE
561	help
562	  This option adds an alternative code sequence to work around ARM
563	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
564	  present when it is connected to a coherent interconnect.
565
566	  If the processor is executing a load and store exclusive sequence at
567	  the same time as a processor in another cluster is executing a cache
568	  maintenance operation to the same address, then this erratum might
569	  cause data corruption.
570
571	  The workaround promotes data cache clean instructions to
572	  data cache clean-and-invalidate.
573	  Please note that this does not necessarily enable the workaround,
574	  as it depends on the alternative framework, which will only patch
575	  the kernel if an affected CPU is detected.
576
577	  If unsure, say Y.
578
579config ARM64_ERRATUM_832075
580	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
581	default y
582	help
583	  This option adds an alternative code sequence to work around ARM
584	  erratum 832075 on Cortex-A57 parts up to r1p2.
585
586	  Affected Cortex-A57 parts might deadlock when exclusive load/store
587	  instructions to Write-Back memory are mixed with Device loads.
588
589	  The workaround is to promote device loads to use Load-Acquire
590	  semantics.
591	  Please note that this does not necessarily enable the workaround,
592	  as it depends on the alternative framework, which will only patch
593	  the kernel if an affected CPU is detected.
594
595	  If unsure, say Y.
596
597config ARM64_ERRATUM_834220
598	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
599	depends on KVM
600	help
601	  This option adds an alternative code sequence to work around ARM
602	  erratum 834220 on Cortex-A57 parts up to r1p2.
603
604	  Affected Cortex-A57 parts might report a Stage 2 translation
605	  fault as the result of a Stage 1 fault for load crossing a
606	  page boundary when there is a permission or device memory
607	  alignment fault at Stage 1 and a translation fault at Stage 2.
608
609	  The workaround is to verify that the Stage 1 translation
610	  doesn't generate a fault before handling the Stage 2 fault.
611	  Please note that this does not necessarily enable the workaround,
612	  as it depends on the alternative framework, which will only patch
613	  the kernel if an affected CPU is detected.
614
615	  If unsure, say N.
616
617config ARM64_ERRATUM_1742098
618	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
619	depends on COMPAT
620	default y
621	help
622	  This option removes the AES hwcap for aarch32 user-space to
623	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
624
625	  Affected parts may corrupt the AES state if an interrupt is
626	  taken between a pair of AES instructions. These instructions
627	  are only present if the cryptography extensions are present.
628	  All software should have a fallback implementation for CPUs
629	  that don't implement the cryptography extensions.
630
631	  If unsure, say Y.
632
633config ARM64_ERRATUM_845719
634	bool "Cortex-A53: 845719: a load might read incorrect data"
635	depends on COMPAT
636	default y
637	help
638	  This option adds an alternative code sequence to work around ARM
639	  erratum 845719 on Cortex-A53 parts up to r0p4.
640
641	  When running a compat (AArch32) userspace on an affected Cortex-A53
642	  part, a load at EL0 from a virtual address that matches the bottom 32
643	  bits of the virtual address used by a recent load at (AArch64) EL1
644	  might return incorrect data.
645
646	  The workaround is to write the contextidr_el1 register on exception
647	  return to a 32-bit task.
648	  Please note that this does not necessarily enable the workaround,
649	  as it depends on the alternative framework, which will only patch
650	  the kernel if an affected CPU is detected.
651
652	  If unsure, say Y.
653
654config ARM64_ERRATUM_843419
655	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
656	default y
657	help
658	  This option links the kernel with '--fix-cortex-a53-843419' and
659	  enables PLT support to replace certain ADRP instructions, which can
660	  cause subsequent memory accesses to use an incorrect address on
661	  Cortex-A53 parts up to r0p4.
662
663	  If unsure, say Y.
664
665config ARM64_ERRATUM_1024718
666	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
667	default y
668	help
669	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
670
671	  Affected Cortex-A55 cores (all revisions) could cause incorrect
672	  update of the hardware dirty bit when the DBM/AP bits are updated
673	  without a break-before-make. The workaround is to disable the usage
674	  of hardware DBM locally on the affected cores. CPUs not affected by
675	  this erratum will continue to use the feature.
676
677	  If unsure, say Y.
678
679config ARM64_ERRATUM_1418040
680	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
681	default y
682	depends on COMPAT
683	help
684	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
685	  errata 1188873 and 1418040.
686
687	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
688	  cause register corruption when accessing the timer registers
689	  from AArch32 userspace.
690
691	  If unsure, say Y.
692
693config ARM64_WORKAROUND_SPECULATIVE_AT
694	bool
695
696config ARM64_ERRATUM_1165522
697	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
698	default y
699	select ARM64_WORKAROUND_SPECULATIVE_AT
700	help
701	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
702
703	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
704	  corrupted TLBs by speculating an AT instruction during a guest
705	  context switch.
706
707	  If unsure, say Y.
708
709config ARM64_ERRATUM_1319367
710	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
711	default y
712	select ARM64_WORKAROUND_SPECULATIVE_AT
713	help
714	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
715	  and A72 erratum 1319367
716
717	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
718	  speculating an AT instruction during a guest context switch.
719
720	  If unsure, say Y.
721
722config ARM64_ERRATUM_1530923
723	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
724	default y
725	select ARM64_WORKAROUND_SPECULATIVE_AT
726	help
727	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
728
729	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
730	  corrupted TLBs by speculating an AT instruction during a guest
731	  context switch.
732
733	  If unsure, say Y.
734
735config ARM64_WORKAROUND_REPEAT_TLBI
736	bool
737
738config ARM64_ERRATUM_2441007
739	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
740	select ARM64_WORKAROUND_REPEAT_TLBI
741	help
742	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
743
744	  Under very rare circumstances, affected Cortex-A55 CPUs
745	  may not handle a race between a break-before-make sequence on one
746	  CPU, and another CPU accessing the same page. This could allow a
747	  store to a page that has been unmapped.
748
749	  Work around this by adding the affected CPUs to the list that needs
750	  TLB sequences to be done twice.
751
752	  If unsure, say N.
753
754config ARM64_ERRATUM_1286807
755	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
756	select ARM64_WORKAROUND_REPEAT_TLBI
757	help
758	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
759
760	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
761	  address for a cacheable mapping of a location is being
762	  accessed by a core while another core is remapping the virtual
763	  address to a new physical page using the recommended
764	  break-before-make sequence, then under very rare circumstances
765	  TLBI+DSB completes before a read using the translation being
766	  invalidated has been observed by other observers. The
767	  workaround repeats the TLBI+DSB operation.
768
769	  If unsure, say N.
770
771config ARM64_ERRATUM_1463225
772	bool "Cortex-A76: Software Step might prevent interrupt recognition"
773	default y
774	help
775	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
776
777	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
778	  of a system call instruction (SVC) can prevent recognition of
779	  subsequent interrupts when software stepping is disabled in the
780	  exception handler of the system call and either kernel debugging
781	  is enabled or VHE is in use.
782
783	  Work around the erratum by triggering a dummy step exception
784	  when handling a system call from a task that is being stepped
785	  in a VHE configuration of the kernel.
786
787	  If unsure, say Y.
788
789config ARM64_ERRATUM_1542419
790	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
791	help
792	  This option adds a workaround for ARM Neoverse-N1 erratum
793	  1542419.
794
795	  Affected Neoverse-N1 cores could execute a stale instruction when
796	  modified by another CPU. The workaround depends on a firmware
797	  counterpart.
798
799	  Workaround the issue by hiding the DIC feature from EL0. This
800	  forces user-space to perform cache maintenance.
801
802	  If unsure, say N.
803
804config ARM64_ERRATUM_1508412
805	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
806	default y
807	help
808	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
809
810	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
811	  of a store-exclusive or read of PAR_EL1 and a load with device or
812	  non-cacheable memory attributes. The workaround depends on a firmware
813	  counterpart.
814
815	  KVM guests must also have the workaround implemented or they can
816	  deadlock the system.
817
818	  Work around the issue by inserting DMB SY barriers around PAR_EL1
819	  register reads and warning KVM users. The DMB barrier is sufficient
820	  to prevent a speculative PAR_EL1 read.
821
822	  If unsure, say Y.
823
824config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
825	bool
826
827config ARM64_ERRATUM_2051678
828	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
829	default y
830	help
831	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
832	  Affected Cortex-A510 might not respect the ordering rules for
833	  hardware update of the page table's dirty bit. The workaround
834	  is to not enable the feature on affected CPUs.
835
836	  If unsure, say Y.
837
838config ARM64_ERRATUM_2077057
839	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
840	default y
841	help
842	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
843	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
844	  expected, but a Pointer Authentication trap is taken instead. The
845	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
846	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
847
848	  This can only happen when EL2 is stepping EL1.
849
850	  When these conditions occur, the SPSR_EL2 value is unchanged from the
851	  previous guest entry, and can be restored from the in-memory copy.
852
853	  If unsure, say Y.
854
855config ARM64_ERRATUM_2658417
856	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
857	default y
858	help
859	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
860	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
861	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
862	  A510 CPUs are using shared neon hardware. As the sharing is not
863	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
864	  user-space should not be using these instructions.
865
866	  If unsure, say Y.
867
868config ARM64_ERRATUM_2119858
869	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
870	default y
871	depends on CORESIGHT_TRBE
872	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
873	help
874	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
875
876	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
877	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
878	  the event of a WRAP event.
879
880	  Work around the issue by always making sure we move the TRBPTR_EL1 by
881	  256 bytes before enabling the buffer and filling the first 256 bytes of
882	  the buffer with ETM ignore packets upon disabling.
883
884	  If unsure, say Y.
885
886config ARM64_ERRATUM_2139208
887	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
888	default y
889	depends on CORESIGHT_TRBE
890	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
891	help
892	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
893
894	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
895	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
896	  the event of a WRAP event.
897
898	  Work around the issue by always making sure we move the TRBPTR_EL1 by
899	  256 bytes before enabling the buffer and filling the first 256 bytes of
900	  the buffer with ETM ignore packets upon disabling.
901
902	  If unsure, say Y.
903
904config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
905	bool
906
907config ARM64_ERRATUM_2054223
908	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
909	default y
910	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
911	help
912	  Enable workaround for ARM Cortex-A710 erratum 2054223
913
914	  Affected cores may fail to flush the trace data on a TSB instruction, when
915	  the PE is in trace prohibited state. This will cause losing a few bytes
916	  of the trace cached.
917
918	  Workaround is to issue two TSB consecutively on affected cores.
919
920	  If unsure, say Y.
921
922config ARM64_ERRATUM_2067961
923	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
924	default y
925	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
926	help
927	  Enable workaround for ARM Neoverse-N2 erratum 2067961
928
929	  Affected cores may fail to flush the trace data on a TSB instruction, when
930	  the PE is in trace prohibited state. This will cause losing a few bytes
931	  of the trace cached.
932
933	  Workaround is to issue two TSB consecutively on affected cores.
934
935	  If unsure, say Y.
936
937config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
938	bool
939
940config ARM64_ERRATUM_2253138
941	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
942	depends on CORESIGHT_TRBE
943	default y
944	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
945	help
946	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
947
948	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
949	  for TRBE. Under some conditions, the TRBE might generate a write to the next
950	  virtually addressed page following the last page of the TRBE address space
951	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
952
953	  Work around this in the driver by always making sure that there is a
954	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
955
956	  If unsure, say Y.
957
958config ARM64_ERRATUM_2224489
959	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
960	depends on CORESIGHT_TRBE
961	default y
962	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
963	help
964	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
965
966	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
967	  for TRBE. Under some conditions, the TRBE might generate a write to the next
968	  virtually addressed page following the last page of the TRBE address space
969	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
970
971	  Work around this in the driver by always making sure that there is a
972	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
973
974	  If unsure, say Y.
975
976config ARM64_ERRATUM_2441009
977	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
978	select ARM64_WORKAROUND_REPEAT_TLBI
979	help
980	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
981
982	  Under very rare circumstances, affected Cortex-A510 CPUs
983	  may not handle a race between a break-before-make sequence on one
984	  CPU, and another CPU accessing the same page. This could allow a
985	  store to a page that has been unmapped.
986
987	  Work around this by adding the affected CPUs to the list that needs
988	  TLB sequences to be done twice.
989
990	  If unsure, say N.
991
992config ARM64_ERRATUM_2064142
993	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
994	depends on CORESIGHT_TRBE
995	default y
996	help
997	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
998
999	  Affected Cortex-A510 core might fail to write into system registers after the
1000	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
1001	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
1002	  and TRBTRG_EL1 will be ignored and will not be effected.
1003
1004	  Work around this in the driver by executing TSB CSYNC and DSB after collection
1005	  is stopped and before performing a system register write to one of the affected
1006	  registers.
1007
1008	  If unsure, say Y.
1009
1010config ARM64_ERRATUM_2038923
1011	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
1012	depends on CORESIGHT_TRBE
1013	default y
1014	help
1015	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
1016
1017	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
1018	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1019	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1020	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1021	  execution changes from a context, in which trace is prohibited to one where it
1022	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1023	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1024	  the trace buffer state might be corrupted.
1025
1026	  Work around this in the driver by preventing an inconsistent view of whether the
1027	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1028	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1029	  two ISB instructions if no ERET is to take place.
1030
1031	  If unsure, say Y.
1032
1033config ARM64_ERRATUM_1902691
1034	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1035	depends on CORESIGHT_TRBE
1036	default y
1037	help
1038	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1039
1040	  Affected Cortex-A510 core might cause trace data corruption, when being written
1041	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1042	  trace data.
1043
1044	  Work around this problem in the driver by just preventing TRBE initialization on
1045	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1046	  on such implementations. This will cover the kernel for any firmware that doesn't
1047	  do this already.
1048
1049	  If unsure, say Y.
1050
1051config ARM64_ERRATUM_2457168
1052	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1053	depends on ARM64_AMU_EXTN
1054	default y
1055	help
1056	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1057
1058	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1059	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1060	  incorrectly giving a significantly higher output value.
1061
1062	  Work around this problem by returning 0 when reading the affected counter in
1063	  key locations that results in disabling all users of this counter. This effect
1064	  is the same to firmware disabling affected counters.
1065
1066	  If unsure, say Y.
1067
1068config ARM64_ERRATUM_2645198
1069	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1070	default y
1071	help
1072	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1073
1074	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1075	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1076	  next instruction abort caused by permission fault.
1077
1078	  Only user-space does executable to non-executable permission transition via
1079	  mprotect() system call. Workaround the problem by doing a break-before-make
1080	  TLB invalidation, for all changes to executable user space mappings.
1081
1082	  If unsure, say Y.
1083
1084config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1085	bool
1086
1087config ARM64_ERRATUM_2966298
1088	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1089	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1090	default y
1091	help
1092	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1093
1094	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1095	  load might leak data from a privileged level via a cache side channel.
1096
1097	  Work around this problem by executing a TLBI before returning to EL0.
1098
1099	  If unsure, say Y.
1100
1101config ARM64_ERRATUM_3117295
1102	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1103	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1104	default y
1105	help
1106	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1107
1108	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1109	  load might leak data from a privileged level via a cache side channel.
1110
1111	  Work around this problem by executing a TLBI before returning to EL0.
1112
1113	  If unsure, say Y.
1114
1115config ARM64_ERRATUM_3194386
1116	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1117	default y
1118	help
1119	  This option adds the workaround for the following errata:
1120
1121	  * ARM Cortex-A76 erratum 3324349
1122	  * ARM Cortex-A77 erratum 3324348
1123	  * ARM Cortex-A78 erratum 3324344
1124	  * ARM Cortex-A78C erratum 3324346
1125	  * ARM Cortex-A78C erratum 3324347
1126	  * ARM Cortex-A710 erratam 3324338
1127	  * ARM Cortex-A715 errartum 3456084
1128	  * ARM Cortex-A720 erratum 3456091
1129	  * ARM Cortex-A725 erratum 3456106
1130	  * ARM Cortex-X1 erratum 3324344
1131	  * ARM Cortex-X1C erratum 3324346
1132	  * ARM Cortex-X2 erratum 3324338
1133	  * ARM Cortex-X3 erratum 3324335
1134	  * ARM Cortex-X4 erratum 3194386
1135	  * ARM Cortex-X925 erratum 3324334
1136	  * ARM Neoverse-N1 erratum 3324349
1137	  * ARM Neoverse N2 erratum 3324339
1138	  * ARM Neoverse-N3 erratum 3456111
1139	  * ARM Neoverse-V1 erratum 3324341
1140	  * ARM Neoverse V2 erratum 3324336
1141	  * ARM Neoverse-V3 erratum 3312417
1142	  * ARM Neoverse-V3AE erratum 3312417
1143
1144	  On affected cores "MSR SSBS, #0" instructions may not affect
1145	  subsequent speculative instructions, which may permit unexepected
1146	  speculative store bypassing.
1147
1148	  Work around this problem by placing a Speculation Barrier (SB) or
1149	  Instruction Synchronization Barrier (ISB) after kernel changes to
1150	  SSBS. The presence of the SSBS special-purpose register is hidden
1151	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1152	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1153
1154	  If unsure, say Y.
1155
1156config CAVIUM_ERRATUM_22375
1157	bool "Cavium erratum 22375, 24313"
1158	default y
1159	help
1160	  Enable workaround for errata 22375 and 24313.
1161
1162	  This implements two gicv3-its errata workarounds for ThunderX. Both
1163	  with a small impact affecting only ITS table allocation.
1164
1165	    erratum 22375: only alloc 8MB table size
1166	    erratum 24313: ignore memory access type
1167
1168	  The fixes are in ITS initialization and basically ignore memory access
1169	  type and table size provided by the TYPER and BASER registers.
1170
1171	  If unsure, say Y.
1172
1173config CAVIUM_ERRATUM_23144
1174	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1175	depends on NUMA
1176	default y
1177	help
1178	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1179
1180	  If unsure, say Y.
1181
1182config CAVIUM_ERRATUM_23154
1183	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1184	default y
1185	help
1186	  The ThunderX GICv3 implementation requires a modified version for
1187	  reading the IAR status to ensure data synchronization
1188	  (access to icc_iar1_el1 is not sync'ed before and after).
1189
1190	  It also suffers from erratum 38545 (also present on Marvell's
1191	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1192	  spuriously presented to the CPU interface.
1193
1194	  If unsure, say Y.
1195
1196config CAVIUM_ERRATUM_27456
1197	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1198	default y
1199	help
1200	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1201	  instructions may cause the icache to become corrupted if it
1202	  contains data for a non-current ASID.  The fix is to
1203	  invalidate the icache when changing the mm context.
1204
1205	  If unsure, say Y.
1206
1207config CAVIUM_ERRATUM_30115
1208	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1209	default y
1210	help
1211	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1212	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1213	  interrupts in host. Trapping both GICv3 group-0 and group-1
1214	  accesses sidesteps the issue.
1215
1216	  If unsure, say Y.
1217
1218config CAVIUM_TX2_ERRATUM_219
1219	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1220	default y
1221	help
1222	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1223	  TTBR update and the corresponding context synchronizing operation can
1224	  cause a spurious Data Abort to be delivered to any hardware thread in
1225	  the CPU core.
1226
1227	  Work around the issue by avoiding the problematic code sequence and
1228	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1229	  trap handler performs the corresponding register access, skips the
1230	  instruction and ensures context synchronization by virtue of the
1231	  exception return.
1232
1233	  If unsure, say Y.
1234
1235config FUJITSU_ERRATUM_010001
1236	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1237	default y
1238	help
1239	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1240	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1241	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1242	  This fault occurs under a specific hardware condition when a
1243	  load/store instruction performs an address translation using:
1244	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1245	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1246	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1247	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1248
1249	  The workaround is to ensure these bits are clear in TCR_ELx.
1250	  The workaround only affects the Fujitsu-A64FX.
1251
1252	  If unsure, say Y.
1253
1254config HISILICON_ERRATUM_161600802
1255	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1256	default y
1257	help
1258	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1259	  when issued ITS commands such as VMOVP and VMAPP, and requires
1260	  a 128kB offset to be applied to the target address in this commands.
1261
1262	  If unsure, say Y.
1263
1264config HISILICON_ERRATUM_162100801
1265	bool "Hip09 162100801 erratum support"
1266	default y
1267	help
1268	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1269	  during unmapping operation, which will cause some vSGIs lost.
1270	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1271	  after VMOVP.
1272
1273	  If unsure, say Y.
1274
1275config QCOM_FALKOR_ERRATUM_1003
1276	bool "Falkor E1003: Incorrect translation due to ASID change"
1277	default y
1278	help
1279	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1280	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1281	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1282	  then only for entries in the walk cache, since the leaf translation
1283	  is unchanged. Work around the erratum by invalidating the walk cache
1284	  entries for the trampoline before entering the kernel proper.
1285
1286config QCOM_FALKOR_ERRATUM_1009
1287	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1288	default y
1289	select ARM64_WORKAROUND_REPEAT_TLBI
1290	help
1291	  On Falkor v1, the CPU may prematurely complete a DSB following a
1292	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1293	  one more time to fix the issue.
1294
1295	  If unsure, say Y.
1296
1297config QCOM_QDF2400_ERRATUM_0065
1298	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1299	default y
1300	help
1301	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1302	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1303	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1304
1305	  If unsure, say Y.
1306
1307config QCOM_FALKOR_ERRATUM_E1041
1308	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1309	default y
1310	help
1311	  Falkor CPU may speculatively fetch instructions from an improper
1312	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1313	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1314
1315	  If unsure, say Y.
1316
1317config NVIDIA_CARMEL_CNP_ERRATUM
1318	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1319	default y
1320	help
1321	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1322	  invalidate shared TLB entries installed by a different core, as it would
1323	  on standard ARM cores.
1324
1325	  If unsure, say Y.
1326
1327config ROCKCHIP_ERRATUM_3568002
1328	bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB"
1329	default y
1330	help
1331	  The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI
1332	  addressing limited to the first 32bit of physical address space.
1333
1334	  If unsure, say Y.
1335
1336config ROCKCHIP_ERRATUM_3588001
1337	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1338	default y
1339	help
1340	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1341	  This means, that its sharability feature may not be used, even though it
1342	  is supported by the IP itself.
1343
1344	  If unsure, say Y.
1345
1346config SOCIONEXT_SYNQUACER_PREITS
1347	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1348	default y
1349	help
1350	  Socionext Synquacer SoCs implement a separate h/w block to generate
1351	  MSI doorbell writes with non-zero values for the device ID.
1352
1353	  If unsure, say Y.
1354
1355endmenu # "ARM errata workarounds via the alternatives framework"
1356
1357choice
1358	prompt "Page size"
1359	default ARM64_4K_PAGES
1360	help
1361	  Page size (translation granule) configuration.
1362
1363config ARM64_4K_PAGES
1364	bool "4KB"
1365	select HAVE_PAGE_SIZE_4KB
1366	help
1367	  This feature enables 4KB pages support.
1368
1369config ARM64_16K_PAGES
1370	bool "16KB"
1371	select HAVE_PAGE_SIZE_16KB
1372	help
1373	  The system will use 16KB pages support. AArch32 emulation
1374	  requires applications compiled with 16K (or a multiple of 16K)
1375	  aligned segments.
1376
1377config ARM64_64K_PAGES
1378	bool "64KB"
1379	select HAVE_PAGE_SIZE_64KB
1380	help
1381	  This feature enables 64KB pages support (4KB by default)
1382	  allowing only two levels of page tables and faster TLB
1383	  look-up. AArch32 emulation requires applications compiled
1384	  with 64K aligned segments.
1385
1386endchoice
1387
1388choice
1389	prompt "Virtual address space size"
1390	default ARM64_VA_BITS_52
1391	help
1392	  Allows choosing one of multiple possible virtual address
1393	  space sizes. The level of translation table is determined by
1394	  a combination of page size and virtual address space size.
1395
1396config ARM64_VA_BITS_36
1397	bool "36-bit" if EXPERT
1398	depends on PAGE_SIZE_16KB
1399
1400config ARM64_VA_BITS_39
1401	bool "39-bit"
1402	depends on PAGE_SIZE_4KB
1403
1404config ARM64_VA_BITS_42
1405	bool "42-bit"
1406	depends on PAGE_SIZE_64KB
1407
1408config ARM64_VA_BITS_47
1409	bool "47-bit"
1410	depends on PAGE_SIZE_16KB
1411
1412config ARM64_VA_BITS_48
1413	bool "48-bit"
1414
1415config ARM64_VA_BITS_52
1416	bool "52-bit"
1417	help
1418	  Enable 52-bit virtual addressing for userspace when explicitly
1419	  requested via a hint to mmap(). The kernel will also use 52-bit
1420	  virtual addresses for its own mappings (provided HW support for
1421	  this feature is available, otherwise it reverts to 48-bit).
1422
1423	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1424	  ARMv8.3 Pointer Authentication will result in the PAC being
1425	  reduced from 7 bits to 3 bits, which may have a significant
1426	  impact on its susceptibility to brute-force attacks.
1427
1428	  If unsure, select 48-bit virtual addressing instead.
1429
1430endchoice
1431
1432config ARM64_FORCE_52BIT
1433	bool "Force 52-bit virtual addresses for userspace"
1434	depends on ARM64_VA_BITS_52 && EXPERT
1435	help
1436	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1437	  to maintain compatibility with older software by providing 48-bit VAs
1438	  unless a hint is supplied to mmap.
1439
1440	  This configuration option disables the 48-bit compatibility logic, and
1441	  forces all userspace addresses to be 52-bit on HW that supports it. One
1442	  should only enable this configuration option for stress testing userspace
1443	  memory management code. If unsure say N here.
1444
1445config ARM64_VA_BITS
1446	int
1447	default 36 if ARM64_VA_BITS_36
1448	default 39 if ARM64_VA_BITS_39
1449	default 42 if ARM64_VA_BITS_42
1450	default 47 if ARM64_VA_BITS_47
1451	default 48 if ARM64_VA_BITS_48
1452	default 52 if ARM64_VA_BITS_52
1453
1454choice
1455	prompt "Physical address space size"
1456	default ARM64_PA_BITS_48
1457	help
1458	  Choose the maximum physical address range that the kernel will
1459	  support.
1460
1461config ARM64_PA_BITS_48
1462	bool "48-bit"
1463	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1464
1465config ARM64_PA_BITS_52
1466	bool "52-bit"
1467	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1468	help
1469	  Enable support for a 52-bit physical address space, introduced as
1470	  part of the ARMv8.2-LPA extension.
1471
1472	  With this enabled, the kernel will also continue to work on CPUs that
1473	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1474	  minor performance overhead).
1475
1476endchoice
1477
1478config ARM64_PA_BITS
1479	int
1480	default 48 if ARM64_PA_BITS_48
1481	default 52 if ARM64_PA_BITS_52
1482
1483config ARM64_LPA2
1484	def_bool y
1485	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1486
1487choice
1488	prompt "Endianness"
1489	default CPU_LITTLE_ENDIAN
1490	help
1491	  Select the endianness of data accesses performed by the CPU. Userspace
1492	  applications will need to be compiled and linked for the endianness
1493	  that is selected here.
1494
1495config CPU_BIG_ENDIAN
1496	bool "Build big-endian kernel"
1497	depends on BROKEN
1498	help
1499	  Say Y if you plan on running a kernel with a big-endian userspace.
1500
1501config CPU_LITTLE_ENDIAN
1502	bool "Build little-endian kernel"
1503	help
1504	  Say Y if you plan on running a kernel with a little-endian userspace.
1505	  This is usually the case for distributions targeting arm64.
1506
1507endchoice
1508
1509config NR_CPUS
1510	int "Maximum number of CPUs (2-4096)"
1511	range 2 4096
1512	default "512"
1513
1514config HOTPLUG_CPU
1515	bool "Support for hot-pluggable CPUs"
1516	select GENERIC_IRQ_MIGRATION
1517	help
1518	  Say Y here to experiment with turning CPUs off and on.  CPUs
1519	  can be controlled through /sys/devices/system/cpu.
1520
1521# Common NUMA Features
1522config NUMA
1523	bool "NUMA Memory Allocation and Scheduler Support"
1524	select GENERIC_ARCH_NUMA
1525	select OF_NUMA
1526	select HAVE_SETUP_PER_CPU_AREA
1527	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1528	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1529	select USE_PERCPU_NUMA_NODE_ID
1530	help
1531	  Enable NUMA (Non-Uniform Memory Access) support.
1532
1533	  The kernel will try to allocate memory used by a CPU on the
1534	  local memory of the CPU and add some more
1535	  NUMA awareness to the kernel.
1536
1537config NODES_SHIFT
1538	int "Maximum NUMA Nodes (as a power of 2)"
1539	range 1 10
1540	default "4"
1541	depends on NUMA
1542	help
1543	  Specify the maximum number of NUMA Nodes available on the target
1544	  system.  Increases memory reserved to accommodate various tables.
1545
1546source "kernel/Kconfig.hz"
1547
1548config ARCH_SPARSEMEM_ENABLE
1549	def_bool y
1550	select SPARSEMEM_VMEMMAP_ENABLE
1551
1552config HW_PERF_EVENTS
1553	def_bool y
1554	depends on ARM_PMU
1555
1556# Supported by clang >= 7.0 or GCC >= 12.0.0
1557config CC_HAVE_SHADOW_CALL_STACK
1558	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1559
1560config PARAVIRT
1561	bool "Enable paravirtualization code"
1562	help
1563	  This changes the kernel so it can modify itself when it is run
1564	  under a hypervisor, potentially improving performance significantly
1565	  over full virtualization.
1566
1567config PARAVIRT_TIME_ACCOUNTING
1568	bool "Paravirtual steal time accounting"
1569	select PARAVIRT
1570	help
1571	  Select this option to enable fine granularity task steal time
1572	  accounting. Time spent executing other tasks in parallel with
1573	  the current vCPU is discounted from the vCPU power. To account for
1574	  that, there can be a small performance impact.
1575
1576	  If in doubt, say N here.
1577
1578config ARCH_SUPPORTS_KEXEC
1579	def_bool PM_SLEEP_SMP
1580
1581config ARCH_SUPPORTS_KEXEC_FILE
1582	def_bool y
1583
1584config ARCH_SELECTS_KEXEC_FILE
1585	def_bool y
1586	depends on KEXEC_FILE
1587	select HAVE_IMA_KEXEC if IMA
1588
1589config ARCH_SUPPORTS_KEXEC_SIG
1590	def_bool y
1591
1592config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1593	def_bool y
1594
1595config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1596	def_bool y
1597
1598config ARCH_SUPPORTS_KEXEC_HANDOVER
1599	def_bool y
1600
1601config ARCH_SUPPORTS_CRASH_DUMP
1602	def_bool y
1603
1604config ARCH_DEFAULT_CRASH_DUMP
1605	def_bool y
1606
1607config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1608	def_bool CRASH_RESERVE
1609
1610config TRANS_TABLE
1611	def_bool y
1612	depends on HIBERNATION || KEXEC_CORE
1613
1614config XEN_DOM0
1615	def_bool y
1616	depends on XEN
1617
1618config XEN
1619	bool "Xen guest support on ARM64"
1620	depends on ARM64 && OF
1621	select SWIOTLB_XEN
1622	select PARAVIRT
1623	help
1624	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1625
1626# include/linux/mmzone.h requires the following to be true:
1627#
1628#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1629#
1630# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1631#
1632#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1633# ----+-------------------+--------------+----------------------+-------------------------+
1634# 4K  |       27          |      12      |       15             |         10              |
1635# 16K |       27          |      14      |       13             |         11              |
1636# 64K |       29          |      16      |       13             |         13              |
1637config ARCH_FORCE_MAX_ORDER
1638	int
1639	default "13" if ARM64_64K_PAGES
1640	default "11" if ARM64_16K_PAGES
1641	default "10"
1642	help
1643	  The kernel page allocator limits the size of maximal physically
1644	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1645	  defines the maximal power of two of number of pages that can be
1646	  allocated as a single contiguous block. This option allows
1647	  overriding the default setting when ability to allocate very
1648	  large blocks of physically contiguous memory is required.
1649
1650	  The maximal size of allocation cannot exceed the size of the
1651	  section, so the value of MAX_PAGE_ORDER should satisfy
1652
1653	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1654
1655	  Don't change if unsure.
1656
1657config UNMAP_KERNEL_AT_EL0
1658	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1659	default y
1660	help
1661	  Speculation attacks against some high-performance processors can
1662	  be used to bypass MMU permission checks and leak kernel data to
1663	  userspace. This can be defended against by unmapping the kernel
1664	  when running in userspace, mapping it back in on exception entry
1665	  via a trampoline page in the vector table.
1666
1667	  If unsure, say Y.
1668
1669config MITIGATE_SPECTRE_BRANCH_HISTORY
1670	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1671	default y
1672	help
1673	  Speculation attacks against some high-performance processors can
1674	  make use of branch history to influence future speculation.
1675	  When taking an exception from user-space, a sequence of branches
1676	  or a firmware call overwrites the branch history.
1677
1678config ARM64_SW_TTBR0_PAN
1679	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1680	depends on !KCSAN
1681	select ARM64_PAN
1682	help
1683	  Enabling this option prevents the kernel from accessing
1684	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1685	  zeroed area and reserved ASID. The user access routines
1686	  restore the valid TTBR0_EL1 temporarily.
1687
1688config ARM64_TAGGED_ADDR_ABI
1689	bool "Enable the tagged user addresses syscall ABI"
1690	default y
1691	help
1692	  When this option is enabled, user applications can opt in to a
1693	  relaxed ABI via prctl() allowing tagged addresses to be passed
1694	  to system calls as pointer arguments. For details, see
1695	  Documentation/arch/arm64/tagged-address-abi.rst.
1696
1697menuconfig COMPAT
1698	bool "Kernel support for 32-bit EL0"
1699	depends on ARM64_4K_PAGES || EXPERT
1700	select HAVE_UID16
1701	select OLD_SIGSUSPEND3
1702	select COMPAT_OLD_SIGACTION
1703	help
1704	  This option enables support for a 32-bit EL0 running under a 64-bit
1705	  kernel at EL1. AArch32-specific components such as system calls,
1706	  the user helper functions, VFP support and the ptrace interface are
1707	  handled appropriately by the kernel.
1708
1709	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1710	  that you will only be able to execute AArch32 binaries that were compiled
1711	  with page size aligned segments.
1712
1713	  If you want to execute 32-bit userspace applications, say Y.
1714
1715if COMPAT
1716
1717config KUSER_HELPERS
1718	bool "Enable kuser helpers page for 32-bit applications"
1719	default y
1720	help
1721	  Warning: disabling this option may break 32-bit user programs.
1722
1723	  Provide kuser helpers to compat tasks. The kernel provides
1724	  helper code to userspace in read only form at a fixed location
1725	  to allow userspace to be independent of the CPU type fitted to
1726	  the system. This permits binaries to be run on ARMv4 through
1727	  to ARMv8 without modification.
1728
1729	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1730
1731	  However, the fixed address nature of these helpers can be used
1732	  by ROP (return orientated programming) authors when creating
1733	  exploits.
1734
1735	  If all of the binaries and libraries which run on your platform
1736	  are built specifically for your platform, and make no use of
1737	  these helpers, then you can turn this option off to hinder
1738	  such exploits. However, in that case, if a binary or library
1739	  relying on those helpers is run, it will not function correctly.
1740
1741	  Say N here only if you are absolutely certain that you do not
1742	  need these helpers; otherwise, the safe option is to say Y.
1743
1744config COMPAT_VDSO
1745	bool "Enable vDSO for 32-bit applications"
1746	depends on !CPU_BIG_ENDIAN
1747	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1748	default y
1749	help
1750	  Place in the process address space of 32-bit applications an
1751	  ELF shared object providing fast implementations of gettimeofday
1752	  and clock_gettime.
1753
1754	  You must have a 32-bit build of glibc 2.22 or later for programs
1755	  to seamlessly take advantage of this.
1756
1757config THUMB2_COMPAT_VDSO
1758	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1759	depends on COMPAT_VDSO
1760	default y
1761	help
1762	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1763	  otherwise with '-marm'.
1764
1765config COMPAT_ALIGNMENT_FIXUPS
1766	bool "Fix up misaligned multi-word loads and stores in user space"
1767
1768menuconfig ARMV8_DEPRECATED
1769	bool "Emulate deprecated/obsolete ARMv8 instructions"
1770	depends on SYSCTL
1771	help
1772	  Legacy software support may require certain instructions
1773	  that have been deprecated or obsoleted in the architecture.
1774
1775	  Enable this config to enable selective emulation of these
1776	  features.
1777
1778	  If unsure, say Y
1779
1780if ARMV8_DEPRECATED
1781
1782config SWP_EMULATION
1783	bool "Emulate SWP/SWPB instructions"
1784	help
1785	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1786	  they are always undefined. Say Y here to enable software
1787	  emulation of these instructions for userspace using LDXR/STXR.
1788	  This feature can be controlled at runtime with the abi.swp
1789	  sysctl which is disabled by default.
1790
1791	  In some older versions of glibc [<=2.8] SWP is used during futex
1792	  trylock() operations with the assumption that the code will not
1793	  be preempted. This invalid assumption may be more likely to fail
1794	  with SWP emulation enabled, leading to deadlock of the user
1795	  application.
1796
1797	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1798	  on an external transaction monitoring block called a global
1799	  monitor to maintain update atomicity. If your system does not
1800	  implement a global monitor, this option can cause programs that
1801	  perform SWP operations to uncached memory to deadlock.
1802
1803	  If unsure, say Y
1804
1805config CP15_BARRIER_EMULATION
1806	bool "Emulate CP15 Barrier instructions"
1807	help
1808	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1809	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1810	  strongly recommended to use the ISB, DSB, and DMB
1811	  instructions instead.
1812
1813	  Say Y here to enable software emulation of these
1814	  instructions for AArch32 userspace code. When this option is
1815	  enabled, CP15 barrier usage is traced which can help
1816	  identify software that needs updating. This feature can be
1817	  controlled at runtime with the abi.cp15_barrier sysctl.
1818
1819	  If unsure, say Y
1820
1821config SETEND_EMULATION
1822	bool "Emulate SETEND instruction"
1823	help
1824	  The SETEND instruction alters the data-endianness of the
1825	  AArch32 EL0, and is deprecated in ARMv8.
1826
1827	  Say Y here to enable software emulation of the instruction
1828	  for AArch32 userspace code. This feature can be controlled
1829	  at runtime with the abi.setend sysctl.
1830
1831	  Note: All the cpus on the system must have mixed endian support at EL0
1832	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1833	  endian - is hotplugged in after this feature has been enabled, there could
1834	  be unexpected results in the applications.
1835
1836	  If unsure, say Y
1837endif # ARMV8_DEPRECATED
1838
1839endif # COMPAT
1840
1841menu "ARMv8.1 architectural features"
1842
1843config ARM64_HW_AFDBM
1844	bool "Support for hardware updates of the Access and Dirty page flags"
1845	default y
1846	help
1847	  The ARMv8.1 architecture extensions introduce support for
1848	  hardware updates of the access and dirty information in page
1849	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1850	  capable processors, accesses to pages with PTE_AF cleared will
1851	  set this bit instead of raising an access flag fault.
1852	  Similarly, writes to read-only pages with the DBM bit set will
1853	  clear the read-only bit (AP[2]) instead of raising a
1854	  permission fault.
1855
1856	  Kernels built with this configuration option enabled continue
1857	  to work on pre-ARMv8.1 hardware and the performance impact is
1858	  minimal. If unsure, say Y.
1859
1860config ARM64_PAN
1861	bool "Enable support for Privileged Access Never (PAN)"
1862	default y
1863	help
1864	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1865	  prevents the kernel or hypervisor from accessing user-space (EL0)
1866	  memory directly.
1867
1868	  Choosing this option will cause any unprotected (not using
1869	  copy_to_user et al) memory access to fail with a permission fault.
1870
1871	  The feature is detected at runtime, and will remain as a 'nop'
1872	  instruction if the cpu does not implement the feature.
1873
1874config ARM64_LSE_ATOMICS
1875	bool
1876	default ARM64_USE_LSE_ATOMICS
1877
1878config ARM64_USE_LSE_ATOMICS
1879	bool "Atomic instructions"
1880	default y
1881	help
1882	  As part of the Large System Extensions, ARMv8.1 introduces new
1883	  atomic instructions that are designed specifically to scale in
1884	  very large systems.
1885
1886	  Say Y here to make use of these instructions for the in-kernel
1887	  atomic routines. This incurs a small overhead on CPUs that do
1888	  not support these instructions.
1889
1890endmenu # "ARMv8.1 architectural features"
1891
1892menu "ARMv8.2 architectural features"
1893
1894config ARM64_PMEM
1895	bool "Enable support for persistent memory"
1896	select ARCH_HAS_PMEM_API
1897	select ARCH_HAS_UACCESS_FLUSHCACHE
1898	help
1899	  Say Y to enable support for the persistent memory API based on the
1900	  ARMv8.2 DCPoP feature.
1901
1902	  The feature is detected at runtime, and the kernel will use DC CVAC
1903	  operations if DC CVAP is not supported (following the behaviour of
1904	  DC CVAP itself if the system does not define a point of persistence).
1905
1906config ARM64_RAS_EXTN
1907	bool "Enable support for RAS CPU Extensions"
1908	default y
1909	help
1910	  CPUs that support the Reliability, Availability and Serviceability
1911	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1912	  errors, classify them and report them to software.
1913
1914	  On CPUs with these extensions system software can use additional
1915	  barriers to determine if faults are pending and read the
1916	  classification from a new set of registers.
1917
1918	  Selecting this feature will allow the kernel to use these barriers
1919	  and access the new registers if the system supports the extension.
1920	  Platform RAS features may additionally depend on firmware support.
1921
1922config ARM64_CNP
1923	bool "Enable support for Common Not Private (CNP) translations"
1924	default y
1925	help
1926	  Common Not Private (CNP) allows translation table entries to
1927	  be shared between different PEs in the same inner shareable
1928	  domain, so the hardware can use this fact to optimise the
1929	  caching of such entries in the TLB.
1930
1931	  Selecting this option allows the CNP feature to be detected
1932	  at runtime, and does not affect PEs that do not implement
1933	  this feature.
1934
1935endmenu # "ARMv8.2 architectural features"
1936
1937menu "ARMv8.3 architectural features"
1938
1939config ARM64_PTR_AUTH
1940	bool "Enable support for pointer authentication"
1941	default y
1942	help
1943	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1944	  instructions for signing and authenticating pointers against secret
1945	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1946	  and other attacks.
1947
1948	  This option enables these instructions at EL0 (i.e. for userspace).
1949	  Choosing this option will cause the kernel to initialise secret keys
1950	  for each process at exec() time, with these keys being
1951	  context-switched along with the process.
1952
1953	  The feature is detected at runtime. If the feature is not present in
1954	  hardware it will not be advertised to userspace/KVM guest nor will it
1955	  be enabled.
1956
1957	  If the feature is present on the boot CPU but not on a late CPU, then
1958	  the late CPU will be parked. Also, if the boot CPU does not have
1959	  address auth and the late CPU has then the late CPU will still boot
1960	  but with the feature disabled. On such a system, this option should
1961	  not be selected.
1962
1963config ARM64_PTR_AUTH_KERNEL
1964	bool "Use pointer authentication for kernel"
1965	default y
1966	depends on ARM64_PTR_AUTH
1967	# Modern compilers insert a .note.gnu.property section note for PAC
1968	# which is only understood by binutils starting with version 2.33.1.
1969	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1970	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1971	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1972	help
1973	  If the compiler supports the -mbranch-protection or
1974	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1975	  will cause the kernel itself to be compiled with return address
1976	  protection. In this case, and if the target hardware is known to
1977	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1978	  disabled with minimal loss of protection.
1979
1980	  This feature works with FUNCTION_GRAPH_TRACER option only if
1981	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1982
1983config CC_HAS_BRANCH_PROT_PAC_RET
1984	# GCC 9 or later, clang 8 or later
1985	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1986
1987config AS_HAS_CFI_NEGATE_RA_STATE
1988	# binutils 2.34+
1989	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1990
1991endmenu # "ARMv8.3 architectural features"
1992
1993menu "ARMv8.4 architectural features"
1994
1995config ARM64_AMU_EXTN
1996	bool "Enable support for the Activity Monitors Unit CPU extension"
1997	default y
1998	help
1999	  The activity monitors extension is an optional extension introduced
2000	  by the ARMv8.4 CPU architecture. This enables support for version 1
2001	  of the activity monitors architecture, AMUv1.
2002
2003	  To enable the use of this extension on CPUs that implement it, say Y.
2004
2005	  Note that for architectural reasons, firmware _must_ implement AMU
2006	  support when running on CPUs that present the activity monitors
2007	  extension. The required support is present in:
2008	    * Version 1.5 and later of the ARM Trusted Firmware
2009
2010	  For kernels that have this configuration enabled but boot with broken
2011	  firmware, you may need to say N here until the firmware is fixed.
2012	  Otherwise you may experience firmware panics or lockups when
2013	  accessing the counter registers. Even if you are not observing these
2014	  symptoms, the values returned by the register reads might not
2015	  correctly reflect reality. Most commonly, the value read will be 0,
2016	  indicating that the counter is not enabled.
2017
2018config ARM64_TLB_RANGE
2019	bool "Enable support for tlbi range feature"
2020	default y
2021	help
2022	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2023	  range of input addresses.
2024
2025config ARM64_MPAM
2026	bool "Enable support for MPAM"
2027	select ARM64_MPAM_DRIVER if EXPERT	# does nothing yet
2028	select ACPI_MPAM if ACPI
2029	help
2030	  Memory System Resource Partitioning and Monitoring (MPAM) is an
2031	  optional extension to the Arm architecture that allows each
2032	  transaction issued to the memory system to be labelled with a
2033	  Partition identifier (PARTID) and Performance Monitoring Group
2034	  identifier (PMG).
2035
2036	  Memory system components, such as the caches, can be configured with
2037	  policies to control how much of various physical resources (such as
2038	  memory bandwidth or cache memory) the transactions labelled with each
2039	  PARTID can consume.  Depending on the capabilities of the hardware,
2040	  the PARTID and PMG can also be used as filtering criteria to measure
2041	  the memory system resource consumption of different parts of a
2042	  workload.
2043
2044	  Use of this extension requires CPU support, support in the
2045	  Memory System Components (MSC), and a description from firmware
2046	  of where the MSCs are in the address space.
2047
2048	  MPAM is exposed to user-space via the resctrl pseudo filesystem.
2049
2050endmenu # "ARMv8.4 architectural features"
2051
2052menu "ARMv8.5 architectural features"
2053
2054config AS_HAS_ARMV8_5
2055	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2056
2057config ARM64_BTI
2058	bool "Branch Target Identification support"
2059	default y
2060	help
2061	  Branch Target Identification (part of the ARMv8.5 Extensions)
2062	  provides a mechanism to limit the set of locations to which computed
2063	  branch instructions such as BR or BLR can jump.
2064
2065	  To make use of BTI on CPUs that support it, say Y.
2066
2067	  BTI is intended to provide complementary protection to other control
2068	  flow integrity protection mechanisms, such as the Pointer
2069	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2070	  For this reason, it does not make sense to enable this option without
2071	  also enabling support for pointer authentication.  Thus, when
2072	  enabling this option you should also select ARM64_PTR_AUTH=y.
2073
2074	  Userspace binaries must also be specifically compiled to make use of
2075	  this mechanism.  If you say N here or the hardware does not support
2076	  BTI, such binaries can still run, but you get no additional
2077	  enforcement of branch destinations.
2078
2079config ARM64_BTI_KERNEL
2080	bool "Use Branch Target Identification for kernel"
2081	default y
2082	depends on ARM64_BTI
2083	depends on ARM64_PTR_AUTH_KERNEL
2084	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2085	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2086	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2087	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2088	depends on !CC_IS_GCC
2089	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2090	help
2091	  Build the kernel with Branch Target Identification annotations
2092	  and enable enforcement of this for kernel code. When this option
2093	  is enabled and the system supports BTI all kernel code including
2094	  modular code must have BTI enabled.
2095
2096config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2097	# GCC 9 or later, clang 8 or later
2098	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2099
2100config ARM64_E0PD
2101	bool "Enable support for E0PD"
2102	default y
2103	help
2104	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2105	  that EL0 accesses made via TTBR1 always fault in constant time,
2106	  providing similar benefits to KASLR as those provided by KPTI, but
2107	  with lower overhead and without disrupting legitimate access to
2108	  kernel memory such as SPE.
2109
2110	  This option enables E0PD for TTBR1 where available.
2111
2112config ARM64_AS_HAS_MTE
2113	# Initial support for MTE went in binutils 2.32.0, checked with
2114	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2115	# as a late addition to the final architecture spec (LDGM/STGM)
2116	# is only supported in the newer 2.32.x and 2.33 binutils
2117	# versions, hence the extra "stgm" instruction check below.
2118	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2119
2120config ARM64_MTE
2121	bool "Memory Tagging Extension support"
2122	default y
2123	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2124	depends on AS_HAS_ARMV8_5
2125	# Required for tag checking in the uaccess routines
2126	select ARM64_PAN
2127	select ARCH_HAS_SUBPAGE_FAULTS
2128	select ARCH_USES_HIGH_VMA_FLAGS
2129	select ARCH_USES_PG_ARCH_2
2130	select ARCH_USES_PG_ARCH_3
2131	help
2132	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2133	  architectural support for run-time, always-on detection of
2134	  various classes of memory error to aid with software debugging
2135	  to eliminate vulnerabilities arising from memory-unsafe
2136	  languages.
2137
2138	  This option enables the support for the Memory Tagging
2139	  Extension at EL0 (i.e. for userspace).
2140
2141	  Selecting this option allows the feature to be detected at
2142	  runtime. Any secondary CPU not implementing this feature will
2143	  not be allowed a late bring-up.
2144
2145	  Userspace binaries that want to use this feature must
2146	  explicitly opt in. The mechanism for the userspace is
2147	  described in:
2148
2149	  Documentation/arch/arm64/memory-tagging-extension.rst.
2150
2151endmenu # "ARMv8.5 architectural features"
2152
2153menu "ARMv8.7 architectural features"
2154
2155config ARM64_EPAN
2156	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2157	default y
2158	depends on ARM64_PAN
2159	help
2160	  Enhanced Privileged Access Never (EPAN) allows Privileged
2161	  Access Never to be used with Execute-only mappings.
2162
2163	  The feature is detected at runtime, and will remain disabled
2164	  if the cpu does not implement the feature.
2165endmenu # "ARMv8.7 architectural features"
2166
2167config AS_HAS_MOPS
2168	def_bool $(as-instr,.arch_extension mops)
2169
2170menu "ARMv8.9 architectural features"
2171
2172config ARM64_POE
2173	prompt "Permission Overlay Extension"
2174	def_bool y
2175	select ARCH_USES_HIGH_VMA_FLAGS
2176	select ARCH_HAS_PKEYS
2177	help
2178	  The Permission Overlay Extension is used to implement Memory
2179	  Protection Keys. Memory Protection Keys provides a mechanism for
2180	  enforcing page-based protections, but without requiring modification
2181	  of the page tables when an application changes protection domains.
2182
2183	  For details, see Documentation/core-api/protection-keys.rst
2184
2185	  If unsure, say y.
2186
2187config ARCH_PKEY_BITS
2188	int
2189	default 3
2190
2191config ARM64_HAFT
2192	bool "Support for Hardware managed Access Flag for Table Descriptors"
2193	depends on ARM64_HW_AFDBM
2194	default y
2195	help
2196	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2197	  Flag for Table descriptors. When enabled an architectural executed
2198	  memory access will update the Access Flag in each Table descriptor
2199	  which is accessed during the translation table walk and for which
2200	  the Access Flag is 0. The Access Flag of the Table descriptor use
2201	  the same bit of PTE_AF.
2202
2203	  The feature will only be enabled if all the CPUs in the system
2204	  support this feature. If unsure, say Y.
2205
2206endmenu # "ARMv8.9 architectural features"
2207
2208menu "ARMv9.4 architectural features"
2209
2210config ARM64_GCS
2211	bool "Enable support for Guarded Control Stack (GCS)"
2212	default y
2213	select ARCH_HAS_USER_SHADOW_STACK
2214	select ARCH_USES_HIGH_VMA_FLAGS
2215	help
2216	  Guarded Control Stack (GCS) provides support for a separate
2217	  stack with restricted access which contains only return
2218	  addresses.  This can be used to harden against some attacks
2219	  by comparing return address used by the program with what is
2220	  stored in the GCS, and may also be used to efficiently obtain
2221	  the call stack for applications such as profiling.
2222
2223	  The feature is detected at runtime, and will remain disabled
2224	  if the system does not implement the feature.
2225
2226endmenu # "ARMv9.4 architectural features"
2227
2228config ARM64_SVE
2229	bool "ARM Scalable Vector Extension support"
2230	default y
2231	help
2232	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2233	  execution state which complements and extends the SIMD functionality
2234	  of the base architecture to support much larger vectors and to enable
2235	  additional vectorisation opportunities.
2236
2237	  To enable use of this extension on CPUs that implement it, say Y.
2238
2239	  On CPUs that support the SVE2 extensions, this option will enable
2240	  those too.
2241
2242	  Note that for architectural reasons, firmware _must_ implement SVE
2243	  support when running on SVE capable hardware.  The required support
2244	  is present in:
2245
2246	    * version 1.5 and later of the ARM Trusted Firmware
2247	    * the AArch64 boot wrapper since commit 5e1261e08abf
2248	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2249
2250	  For other firmware implementations, consult the firmware documentation
2251	  or vendor.
2252
2253	  If you need the kernel to boot on SVE-capable hardware with broken
2254	  firmware, you may need to say N here until you get your firmware
2255	  fixed.  Otherwise, you may experience firmware panics or lockups when
2256	  booting the kernel.  If unsure and you are not observing these
2257	  symptoms, you should assume that it is safe to say Y.
2258
2259config ARM64_SME
2260	bool "ARM Scalable Matrix Extension support"
2261	default y
2262	depends on ARM64_SVE
2263	help
2264	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2265	  execution state which utilises a substantial subset of the SVE
2266	  instruction set, together with the addition of new architectural
2267	  register state capable of holding two dimensional matrix tiles to
2268	  enable various matrix operations.
2269
2270config ARM64_PSEUDO_NMI
2271	bool "Support for NMI-like interrupts"
2272	select ARM_GIC_V3
2273	help
2274	  Adds support for mimicking Non-Maskable Interrupts through the use of
2275	  GIC interrupt priority. This support requires version 3 or later of
2276	  ARM GIC.
2277
2278	  This high priority configuration for interrupts needs to be
2279	  explicitly enabled by setting the kernel parameter
2280	  "irqchip.gicv3_pseudo_nmi" to 1.
2281
2282	  If unsure, say N
2283
2284if ARM64_PSEUDO_NMI
2285config ARM64_DEBUG_PRIORITY_MASKING
2286	bool "Debug interrupt priority masking"
2287	help
2288	  This adds runtime checks to functions enabling/disabling
2289	  interrupts when using priority masking. The additional checks verify
2290	  the validity of ICC_PMR_EL1 when calling concerned functions.
2291
2292	  If unsure, say N
2293endif # ARM64_PSEUDO_NMI
2294
2295config RELOCATABLE
2296	bool "Build a relocatable kernel image" if EXPERT
2297	select ARCH_HAS_RELR
2298	default y
2299	help
2300	  This builds the kernel as a Position Independent Executable (PIE),
2301	  which retains all relocation metadata required to relocate the
2302	  kernel binary at runtime to a different virtual address than the
2303	  address it was linked at.
2304	  Since AArch64 uses the RELA relocation format, this requires a
2305	  relocation pass at runtime even if the kernel is loaded at the
2306	  same address it was linked at.
2307
2308config RANDOMIZE_BASE
2309	bool "Randomize the address of the kernel image"
2310	select RELOCATABLE
2311	help
2312	  Randomizes the virtual address at which the kernel image is
2313	  loaded, as a security feature that deters exploit attempts
2314	  relying on knowledge of the location of kernel internals.
2315
2316	  It is the bootloader's job to provide entropy, by passing a
2317	  random u64 value in /chosen/kaslr-seed at kernel entry.
2318
2319	  When booting via the UEFI stub, it will invoke the firmware's
2320	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2321	  to the kernel proper. In addition, it will randomise the physical
2322	  location of the kernel Image as well.
2323
2324	  If unsure, say N.
2325
2326config RANDOMIZE_MODULE_REGION_FULL
2327	bool "Randomize the module region over a 2 GB range"
2328	depends on RANDOMIZE_BASE
2329	default y
2330	help
2331	  Randomizes the location of the module region inside a 2 GB window
2332	  covering the core kernel. This way, it is less likely for modules
2333	  to leak information about the location of core kernel data structures
2334	  but it does imply that function calls between modules and the core
2335	  kernel will need to be resolved via veneers in the module PLT.
2336
2337	  When this option is not set, the module region will be randomized over
2338	  a limited range that contains the [_stext, _etext] interval of the
2339	  core kernel, so branch relocations are almost always in range unless
2340	  the region is exhausted. In this particular case of region
2341	  exhaustion, modules might be able to fall back to a larger 2GB area.
2342
2343config CC_HAVE_STACKPROTECTOR_SYSREG
2344	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2345
2346config STACKPROTECTOR_PER_TASK
2347	def_bool y
2348	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2349
2350config UNWIND_PATCH_PAC_INTO_SCS
2351	bool "Enable shadow call stack dynamically using code patching"
2352	depends on CC_IS_CLANG
2353	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2354	depends on SHADOW_CALL_STACK
2355	select UNWIND_TABLES
2356	select DYNAMIC_SCS
2357
2358config ARM64_CONTPTE
2359	bool "Contiguous PTE mappings for user memory" if EXPERT
2360	depends on TRANSPARENT_HUGEPAGE
2361	default y
2362	help
2363	  When enabled, user mappings are configured using the PTE contiguous
2364	  bit, for any mappings that meet the size and alignment requirements.
2365	  This reduces TLB pressure and improves performance.
2366
2367endmenu # "Kernel Features"
2368
2369menu "Boot options"
2370
2371config ARM64_ACPI_PARKING_PROTOCOL
2372	bool "Enable support for the ARM64 ACPI parking protocol"
2373	depends on ACPI
2374	help
2375	  Enable support for the ARM64 ACPI parking protocol. If disabled
2376	  the kernel will not allow booting through the ARM64 ACPI parking
2377	  protocol even if the corresponding data is present in the ACPI
2378	  MADT table.
2379
2380config CMDLINE
2381	string "Default kernel command string"
2382	default ""
2383	help
2384	  Provide a set of default command-line options at build time by
2385	  entering them here. As a minimum, you should specify the the
2386	  root device (e.g. root=/dev/nfs).
2387
2388choice
2389	prompt "Kernel command line type"
2390	depends on CMDLINE != ""
2391	default CMDLINE_FROM_BOOTLOADER
2392	help
2393	  Choose how the kernel will handle the provided default kernel
2394	  command line string.
2395
2396config CMDLINE_FROM_BOOTLOADER
2397	bool "Use bootloader kernel arguments if available"
2398	help
2399	  Uses the command-line options passed by the boot loader. If
2400	  the boot loader doesn't provide any, the default kernel command
2401	  string provided in CMDLINE will be used.
2402
2403config CMDLINE_FORCE
2404	bool "Always use the default kernel command string"
2405	help
2406	  Always use the default kernel command string, even if the boot
2407	  loader passes other arguments to the kernel.
2408	  This is useful if you cannot or don't want to change the
2409	  command-line options your boot loader passes to the kernel.
2410
2411endchoice
2412
2413config EFI_STUB
2414	bool
2415
2416config EFI
2417	bool "UEFI runtime support"
2418	depends on OF && !CPU_BIG_ENDIAN
2419	depends on KERNEL_MODE_NEON
2420	select ARCH_SUPPORTS_ACPI
2421	select LIBFDT
2422	select UCS2_STRING
2423	select EFI_PARAMS_FROM_FDT
2424	select EFI_RUNTIME_WRAPPERS
2425	select EFI_STUB
2426	select EFI_GENERIC_STUB
2427	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2428	default y
2429	help
2430	  This option provides support for runtime services provided
2431	  by UEFI firmware (such as non-volatile variables, realtime
2432	  clock, and platform reset). A UEFI stub is also provided to
2433	  allow the kernel to be booted as an EFI application. This
2434	  is only useful on systems that have UEFI firmware.
2435
2436config COMPRESSED_INSTALL
2437	bool "Install compressed image by default"
2438	help
2439	  This makes the regular "make install" install the compressed
2440	  image we built, not the legacy uncompressed one.
2441
2442	  You can check that a compressed image works for you by doing
2443	  "make zinstall" first, and verifying that everything is fine
2444	  in your environment before making "make install" do this for
2445	  you.
2446
2447config DMI
2448	bool "Enable support for SMBIOS (DMI) tables"
2449	depends on EFI
2450	default y
2451	help
2452	  This enables SMBIOS/DMI feature for systems.
2453
2454	  This option is only useful on systems that have UEFI firmware.
2455	  However, even with this option, the resultant kernel should
2456	  continue to boot on existing non-UEFI platforms.
2457
2458endmenu # "Boot options"
2459
2460menu "Power management options"
2461
2462source "kernel/power/Kconfig"
2463
2464config ARCH_HIBERNATION_POSSIBLE
2465	def_bool y
2466	depends on CPU_PM
2467
2468config ARCH_HIBERNATION_HEADER
2469	def_bool y
2470	depends on HIBERNATION
2471
2472config ARCH_SUSPEND_POSSIBLE
2473	def_bool y
2474
2475endmenu # "Power management options"
2476
2477menu "CPU Power Management"
2478
2479source "drivers/cpuidle/Kconfig"
2480
2481source "drivers/cpufreq/Kconfig"
2482
2483endmenu # "CPU Power Management"
2484
2485source "drivers/acpi/Kconfig"
2486
2487source "arch/arm64/kvm/Kconfig"
2488
2489source "kernel/livepatch/Kconfig"
2490