xref: /linux/arch/arm64/Kconfig (revision 68c76ad4a9571a2b603665c85cf8229bcf04982a)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_CURRENT_STACK_POINTER
23	select ARCH_HAS_DEBUG_VIRTUAL
24	select ARCH_HAS_DEBUG_VM_PGTABLE
25	select ARCH_HAS_DMA_PREP_COHERENT
26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27	select ARCH_HAS_FAST_MULTIPLIER
28	select ARCH_HAS_FORTIFY_SOURCE
29	select ARCH_HAS_GCOV_PROFILE_ALL
30	select ARCH_HAS_GIGANTIC_PAGE
31	select ARCH_HAS_KCOV
32	select ARCH_HAS_KEEPINITRD
33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35	select ARCH_HAS_PTE_DEVMAP
36	select ARCH_HAS_PTE_SPECIAL
37	select ARCH_HAS_SETUP_DMA_OPS
38	select ARCH_HAS_SET_DIRECT_MAP
39	select ARCH_HAS_SET_MEMORY
40	select ARCH_STACKWALK
41	select ARCH_HAS_STRICT_KERNEL_RWX
42	select ARCH_HAS_STRICT_MODULE_RWX
43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44	select ARCH_HAS_SYNC_DMA_FOR_CPU
45	select ARCH_HAS_SYSCALL_WRAPPER
46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
48	select ARCH_HAS_ZONE_DMA_SET if EXPERT
49	select ARCH_HAVE_ELF_PROT
50	select ARCH_HAVE_NMI_SAFE_CMPXCHG
51	select ARCH_HAVE_TRACE_MMIO_ACCESS
52	select ARCH_INLINE_READ_LOCK if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
54	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
69	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
78	select ARCH_KEEP_MEMBLOCK
79	select ARCH_USE_CMPXCHG_LOCKREF
80	select ARCH_USE_GNU_PROPERTY
81	select ARCH_USE_MEMTEST
82	select ARCH_USE_QUEUED_RWLOCKS
83	select ARCH_USE_QUEUED_SPINLOCKS
84	select ARCH_USE_SYM_ANNOTATIONS
85	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
86	select ARCH_SUPPORTS_HUGETLBFS
87	select ARCH_SUPPORTS_MEMORY_FAILURE
88	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
89	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
90	select ARCH_SUPPORTS_LTO_CLANG_THIN
91	select ARCH_SUPPORTS_CFI_CLANG
92	select ARCH_SUPPORTS_ATOMIC_RMW
93	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
94	select ARCH_SUPPORTS_NUMA_BALANCING
95	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
96	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
97	select ARCH_WANT_DEFAULT_BPF_JIT
98	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
99	select ARCH_WANT_FRAME_POINTERS
100	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
101	select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
102	select ARCH_WANT_LD_ORPHAN_WARN
103	select ARCH_WANTS_NO_INSTR
104	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
105	select ARCH_HAS_UBSAN_SANITIZE_ALL
106	select ARM_AMBA
107	select ARM_ARCH_TIMER
108	select ARM_GIC
109	select AUDIT_ARCH_COMPAT_GENERIC
110	select ARM_GIC_V2M if PCI
111	select ARM_GIC_V3
112	select ARM_GIC_V3_ITS if PCI
113	select ARM_PSCI_FW
114	select BUILDTIME_TABLE_SORT
115	select CLONE_BACKWARDS
116	select COMMON_CLK
117	select CPU_PM if (SUSPEND || CPU_IDLE)
118	select CRC32
119	select DCACHE_WORD_ACCESS
120	select DMA_DIRECT_REMAP
121	select EDAC_SUPPORT
122	select FRAME_POINTER
123	select GENERIC_ALLOCATOR
124	select GENERIC_ARCH_TOPOLOGY
125	select GENERIC_CLOCKEVENTS_BROADCAST
126	select GENERIC_CPU_AUTOPROBE
127	select GENERIC_CPU_VULNERABILITIES
128	select GENERIC_EARLY_IOREMAP
129	select GENERIC_IDLE_POLL_SETUP
130	select GENERIC_IOREMAP
131	select GENERIC_IRQ_IPI
132	select GENERIC_IRQ_PROBE
133	select GENERIC_IRQ_SHOW
134	select GENERIC_IRQ_SHOW_LEVEL
135	select GENERIC_LIB_DEVMEM_IS_ALLOWED
136	select GENERIC_PCI_IOMAP
137	select GENERIC_PTDUMP
138	select GENERIC_SCHED_CLOCK
139	select GENERIC_SMP_IDLE_THREAD
140	select GENERIC_TIME_VSYSCALL
141	select GENERIC_GETTIMEOFDAY
142	select GENERIC_VDSO_TIME_NS
143	select HARDIRQS_SW_RESEND
144	select HAVE_MOVE_PMD
145	select HAVE_MOVE_PUD
146	select HAVE_PCI
147	select HAVE_ACPI_APEI if (ACPI && EFI)
148	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
149	select HAVE_ARCH_AUDITSYSCALL
150	select HAVE_ARCH_BITREVERSE
151	select HAVE_ARCH_COMPILER_H
152	select HAVE_ARCH_HUGE_VMALLOC
153	select HAVE_ARCH_HUGE_VMAP
154	select HAVE_ARCH_JUMP_LABEL
155	select HAVE_ARCH_JUMP_LABEL_RELATIVE
156	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
157	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
158	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
159	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
160	# Some instrumentation may be unsound, hence EXPERT
161	select HAVE_ARCH_KCSAN if EXPERT
162	select HAVE_ARCH_KFENCE
163	select HAVE_ARCH_KGDB
164	select HAVE_ARCH_MMAP_RND_BITS
165	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
166	select HAVE_ARCH_PREL32_RELOCATIONS
167	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
168	select HAVE_ARCH_SECCOMP_FILTER
169	select HAVE_ARCH_STACKLEAK
170	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
171	select HAVE_ARCH_TRACEHOOK
172	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
173	select HAVE_ARCH_VMAP_STACK
174	select HAVE_ARM_SMCCC
175	select HAVE_ASM_MODVERSIONS
176	select HAVE_EBPF_JIT
177	select HAVE_C_RECORDMCOUNT
178	select HAVE_CMPXCHG_DOUBLE
179	select HAVE_CMPXCHG_LOCAL
180	select HAVE_CONTEXT_TRACKING_USER
181	select HAVE_DEBUG_KMEMLEAK
182	select HAVE_DMA_CONTIGUOUS
183	select HAVE_DYNAMIC_FTRACE
184	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
185		if DYNAMIC_FTRACE_WITH_REGS
186	select HAVE_EFFICIENT_UNALIGNED_ACCESS
187	select HAVE_FAST_GUP
188	select HAVE_FTRACE_MCOUNT_RECORD
189	select HAVE_FUNCTION_TRACER
190	select HAVE_FUNCTION_ERROR_INJECTION
191	select HAVE_FUNCTION_GRAPH_TRACER
192	select HAVE_GCC_PLUGINS
193	select HAVE_HW_BREAKPOINT if PERF_EVENTS
194	select HAVE_IOREMAP_PROT
195	select HAVE_IRQ_TIME_ACCOUNTING
196	select HAVE_KVM
197	select HAVE_NMI
198	select HAVE_PERF_EVENTS
199	select HAVE_PERF_REGS
200	select HAVE_PERF_USER_STACK_DUMP
201	select HAVE_PREEMPT_DYNAMIC_KEY
202	select HAVE_REGS_AND_STACK_ACCESS_API
203	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
204	select HAVE_FUNCTION_ARG_ACCESS_API
205	select MMU_GATHER_RCU_TABLE_FREE
206	select HAVE_RSEQ
207	select HAVE_STACKPROTECTOR
208	select HAVE_SYSCALL_TRACEPOINTS
209	select HAVE_KPROBES
210	select HAVE_KRETPROBES
211	select HAVE_GENERIC_VDSO
212	select IRQ_DOMAIN
213	select IRQ_FORCED_THREADING
214	select KASAN_VMALLOC if KASAN
215	select MODULES_USE_ELF_RELA
216	select NEED_DMA_MAP_STATE
217	select NEED_SG_DMA_LENGTH
218	select OF
219	select OF_EARLY_FLATTREE
220	select PCI_DOMAINS_GENERIC if PCI
221	select PCI_ECAM if (ACPI && PCI)
222	select PCI_SYSCALL if PCI
223	select POWER_RESET
224	select POWER_SUPPLY
225	select SPARSE_IRQ
226	select SWIOTLB
227	select SYSCTL_EXCEPTION_TRACE
228	select THREAD_INFO_IN_TASK
229	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
230	select TRACE_IRQFLAGS_SUPPORT
231	select TRACE_IRQFLAGS_NMI_SUPPORT
232	select HAVE_SOFTIRQ_ON_OWN_STACK
233	help
234	  ARM 64-bit (AArch64) Linux support.
235
236config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
237	def_bool CC_IS_CLANG
238	# https://github.com/ClangBuiltLinux/linux/issues/1507
239	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
240	select HAVE_DYNAMIC_FTRACE_WITH_REGS
241
242config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
243	def_bool CC_IS_GCC
244	depends on $(cc-option,-fpatchable-function-entry=2)
245	select HAVE_DYNAMIC_FTRACE_WITH_REGS
246
247config 64BIT
248	def_bool y
249
250config MMU
251	def_bool y
252
253config ARM64_PAGE_SHIFT
254	int
255	default 16 if ARM64_64K_PAGES
256	default 14 if ARM64_16K_PAGES
257	default 12
258
259config ARM64_CONT_PTE_SHIFT
260	int
261	default 5 if ARM64_64K_PAGES
262	default 7 if ARM64_16K_PAGES
263	default 4
264
265config ARM64_CONT_PMD_SHIFT
266	int
267	default 5 if ARM64_64K_PAGES
268	default 5 if ARM64_16K_PAGES
269	default 4
270
271config ARCH_MMAP_RND_BITS_MIN
272	default 14 if ARM64_64K_PAGES
273	default 16 if ARM64_16K_PAGES
274	default 18
275
276# max bits determined by the following formula:
277#  VA_BITS - PAGE_SHIFT - 3
278config ARCH_MMAP_RND_BITS_MAX
279	default 19 if ARM64_VA_BITS=36
280	default 24 if ARM64_VA_BITS=39
281	default 27 if ARM64_VA_BITS=42
282	default 30 if ARM64_VA_BITS=47
283	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
284	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
285	default 33 if ARM64_VA_BITS=48
286	default 14 if ARM64_64K_PAGES
287	default 16 if ARM64_16K_PAGES
288	default 18
289
290config ARCH_MMAP_RND_COMPAT_BITS_MIN
291	default 7 if ARM64_64K_PAGES
292	default 9 if ARM64_16K_PAGES
293	default 11
294
295config ARCH_MMAP_RND_COMPAT_BITS_MAX
296	default 16
297
298config NO_IOPORT_MAP
299	def_bool y if !PCI
300
301config STACKTRACE_SUPPORT
302	def_bool y
303
304config ILLEGAL_POINTER_VALUE
305	hex
306	default 0xdead000000000000
307
308config LOCKDEP_SUPPORT
309	def_bool y
310
311config GENERIC_BUG
312	def_bool y
313	depends on BUG
314
315config GENERIC_BUG_RELATIVE_POINTERS
316	def_bool y
317	depends on GENERIC_BUG
318
319config GENERIC_HWEIGHT
320	def_bool y
321
322config GENERIC_CSUM
323	def_bool y
324
325config GENERIC_CALIBRATE_DELAY
326	def_bool y
327
328config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
329	def_bool y
330
331config SMP
332	def_bool y
333
334config KERNEL_MODE_NEON
335	def_bool y
336
337config FIX_EARLYCON_MEM
338	def_bool y
339
340config PGTABLE_LEVELS
341	int
342	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
343	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
344	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
345	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
346	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
347	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
348
349config ARCH_SUPPORTS_UPROBES
350	def_bool y
351
352config ARCH_PROC_KCORE_TEXT
353	def_bool y
354
355config BROKEN_GAS_INST
356	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
357
358config KASAN_SHADOW_OFFSET
359	hex
360	depends on KASAN_GENERIC || KASAN_SW_TAGS
361	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
362	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
363	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
364	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
365	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
366	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
367	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
368	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
369	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
370	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
371	default 0xffffffffffffffff
372
373config UNWIND_TABLES
374	bool
375
376source "arch/arm64/Kconfig.platforms"
377
378menu "Kernel Features"
379
380menu "ARM errata workarounds via the alternatives framework"
381
382config ARM64_WORKAROUND_CLEAN_CACHE
383	bool
384
385config ARM64_ERRATUM_826319
386	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
387	default y
388	select ARM64_WORKAROUND_CLEAN_CACHE
389	help
390	  This option adds an alternative code sequence to work around ARM
391	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
392	  AXI master interface and an L2 cache.
393
394	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
395	  and is unable to accept a certain write via this interface, it will
396	  not progress on read data presented on the read data channel and the
397	  system can deadlock.
398
399	  The workaround promotes data cache clean instructions to
400	  data cache clean-and-invalidate.
401	  Please note that this does not necessarily enable the workaround,
402	  as it depends on the alternative framework, which will only patch
403	  the kernel if an affected CPU is detected.
404
405	  If unsure, say Y.
406
407config ARM64_ERRATUM_827319
408	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
409	default y
410	select ARM64_WORKAROUND_CLEAN_CACHE
411	help
412	  This option adds an alternative code sequence to work around ARM
413	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
414	  master interface and an L2 cache.
415
416	  Under certain conditions this erratum can cause a clean line eviction
417	  to occur at the same time as another transaction to the same address
418	  on the AMBA 5 CHI interface, which can cause data corruption if the
419	  interconnect reorders the two transactions.
420
421	  The workaround promotes data cache clean instructions to
422	  data cache clean-and-invalidate.
423	  Please note that this does not necessarily enable the workaround,
424	  as it depends on the alternative framework, which will only patch
425	  the kernel if an affected CPU is detected.
426
427	  If unsure, say Y.
428
429config ARM64_ERRATUM_824069
430	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
431	default y
432	select ARM64_WORKAROUND_CLEAN_CACHE
433	help
434	  This option adds an alternative code sequence to work around ARM
435	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
436	  to a coherent interconnect.
437
438	  If a Cortex-A53 processor is executing a store or prefetch for
439	  write instruction at the same time as a processor in another
440	  cluster is executing a cache maintenance operation to the same
441	  address, then this erratum might cause a clean cache line to be
442	  incorrectly marked as dirty.
443
444	  The workaround promotes data cache clean instructions to
445	  data cache clean-and-invalidate.
446	  Please note that this option does not necessarily enable the
447	  workaround, as it depends on the alternative framework, which will
448	  only patch the kernel if an affected CPU is detected.
449
450	  If unsure, say Y.
451
452config ARM64_ERRATUM_819472
453	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
454	default y
455	select ARM64_WORKAROUND_CLEAN_CACHE
456	help
457	  This option adds an alternative code sequence to work around ARM
458	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
459	  present when it is connected to a coherent interconnect.
460
461	  If the processor is executing a load and store exclusive sequence at
462	  the same time as a processor in another cluster is executing a cache
463	  maintenance operation to the same address, then this erratum might
464	  cause data corruption.
465
466	  The workaround promotes data cache clean instructions to
467	  data cache clean-and-invalidate.
468	  Please note that this does not necessarily enable the workaround,
469	  as it depends on the alternative framework, which will only patch
470	  the kernel if an affected CPU is detected.
471
472	  If unsure, say Y.
473
474config ARM64_ERRATUM_832075
475	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
476	default y
477	help
478	  This option adds an alternative code sequence to work around ARM
479	  erratum 832075 on Cortex-A57 parts up to r1p2.
480
481	  Affected Cortex-A57 parts might deadlock when exclusive load/store
482	  instructions to Write-Back memory are mixed with Device loads.
483
484	  The workaround is to promote device loads to use Load-Acquire
485	  semantics.
486	  Please note that this does not necessarily enable the workaround,
487	  as it depends on the alternative framework, which will only patch
488	  the kernel if an affected CPU is detected.
489
490	  If unsure, say Y.
491
492config ARM64_ERRATUM_834220
493	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
494	depends on KVM
495	default y
496	help
497	  This option adds an alternative code sequence to work around ARM
498	  erratum 834220 on Cortex-A57 parts up to r1p2.
499
500	  Affected Cortex-A57 parts might report a Stage 2 translation
501	  fault as the result of a Stage 1 fault for load crossing a
502	  page boundary when there is a permission or device memory
503	  alignment fault at Stage 1 and a translation fault at Stage 2.
504
505	  The workaround is to verify that the Stage 1 translation
506	  doesn't generate a fault before handling the Stage 2 fault.
507	  Please note that this does not necessarily enable the workaround,
508	  as it depends on the alternative framework, which will only patch
509	  the kernel if an affected CPU is detected.
510
511	  If unsure, say Y.
512
513config ARM64_ERRATUM_1742098
514	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
515	depends on COMPAT
516	default y
517	help
518	  This option removes the AES hwcap for aarch32 user-space to
519	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
520
521	  Affected parts may corrupt the AES state if an interrupt is
522	  taken between a pair of AES instructions. These instructions
523	  are only present if the cryptography extensions are present.
524	  All software should have a fallback implementation for CPUs
525	  that don't implement the cryptography extensions.
526
527	  If unsure, say Y.
528
529config ARM64_ERRATUM_845719
530	bool "Cortex-A53: 845719: a load might read incorrect data"
531	depends on COMPAT
532	default y
533	help
534	  This option adds an alternative code sequence to work around ARM
535	  erratum 845719 on Cortex-A53 parts up to r0p4.
536
537	  When running a compat (AArch32) userspace on an affected Cortex-A53
538	  part, a load at EL0 from a virtual address that matches the bottom 32
539	  bits of the virtual address used by a recent load at (AArch64) EL1
540	  might return incorrect data.
541
542	  The workaround is to write the contextidr_el1 register on exception
543	  return to a 32-bit task.
544	  Please note that this does not necessarily enable the workaround,
545	  as it depends on the alternative framework, which will only patch
546	  the kernel if an affected CPU is detected.
547
548	  If unsure, say Y.
549
550config ARM64_ERRATUM_843419
551	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
552	default y
553	select ARM64_MODULE_PLTS if MODULES
554	help
555	  This option links the kernel with '--fix-cortex-a53-843419' and
556	  enables PLT support to replace certain ADRP instructions, which can
557	  cause subsequent memory accesses to use an incorrect address on
558	  Cortex-A53 parts up to r0p4.
559
560	  If unsure, say Y.
561
562config ARM64_LD_HAS_FIX_ERRATUM_843419
563	def_bool $(ld-option,--fix-cortex-a53-843419)
564
565config ARM64_ERRATUM_1024718
566	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
567	default y
568	help
569	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
570
571	  Affected Cortex-A55 cores (all revisions) could cause incorrect
572	  update of the hardware dirty bit when the DBM/AP bits are updated
573	  without a break-before-make. The workaround is to disable the usage
574	  of hardware DBM locally on the affected cores. CPUs not affected by
575	  this erratum will continue to use the feature.
576
577	  If unsure, say Y.
578
579config ARM64_ERRATUM_1418040
580	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
581	default y
582	depends on COMPAT
583	help
584	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
585	  errata 1188873 and 1418040.
586
587	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
588	  cause register corruption when accessing the timer registers
589	  from AArch32 userspace.
590
591	  If unsure, say Y.
592
593config ARM64_WORKAROUND_SPECULATIVE_AT
594	bool
595
596config ARM64_ERRATUM_1165522
597	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
598	default y
599	select ARM64_WORKAROUND_SPECULATIVE_AT
600	help
601	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
602
603	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
604	  corrupted TLBs by speculating an AT instruction during a guest
605	  context switch.
606
607	  If unsure, say Y.
608
609config ARM64_ERRATUM_1319367
610	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
611	default y
612	select ARM64_WORKAROUND_SPECULATIVE_AT
613	help
614	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
615	  and A72 erratum 1319367
616
617	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
618	  speculating an AT instruction during a guest context switch.
619
620	  If unsure, say Y.
621
622config ARM64_ERRATUM_1530923
623	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
624	default y
625	select ARM64_WORKAROUND_SPECULATIVE_AT
626	help
627	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
628
629	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
630	  corrupted TLBs by speculating an AT instruction during a guest
631	  context switch.
632
633	  If unsure, say Y.
634
635config ARM64_WORKAROUND_REPEAT_TLBI
636	bool
637
638config ARM64_ERRATUM_2441007
639	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
640	default y
641	select ARM64_WORKAROUND_REPEAT_TLBI
642	help
643	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
644
645	  Under very rare circumstances, affected Cortex-A55 CPUs
646	  may not handle a race between a break-before-make sequence on one
647	  CPU, and another CPU accessing the same page. This could allow a
648	  store to a page that has been unmapped.
649
650	  Work around this by adding the affected CPUs to the list that needs
651	  TLB sequences to be done twice.
652
653	  If unsure, say Y.
654
655config ARM64_ERRATUM_1286807
656	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
657	default y
658	select ARM64_WORKAROUND_REPEAT_TLBI
659	help
660	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
661
662	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
663	  address for a cacheable mapping of a location is being
664	  accessed by a core while another core is remapping the virtual
665	  address to a new physical page using the recommended
666	  break-before-make sequence, then under very rare circumstances
667	  TLBI+DSB completes before a read using the translation being
668	  invalidated has been observed by other observers. The
669	  workaround repeats the TLBI+DSB operation.
670
671config ARM64_ERRATUM_1463225
672	bool "Cortex-A76: Software Step might prevent interrupt recognition"
673	default y
674	help
675	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
676
677	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
678	  of a system call instruction (SVC) can prevent recognition of
679	  subsequent interrupts when software stepping is disabled in the
680	  exception handler of the system call and either kernel debugging
681	  is enabled or VHE is in use.
682
683	  Work around the erratum by triggering a dummy step exception
684	  when handling a system call from a task that is being stepped
685	  in a VHE configuration of the kernel.
686
687	  If unsure, say Y.
688
689config ARM64_ERRATUM_1542419
690	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
691	default y
692	help
693	  This option adds a workaround for ARM Neoverse-N1 erratum
694	  1542419.
695
696	  Affected Neoverse-N1 cores could execute a stale instruction when
697	  modified by another CPU. The workaround depends on a firmware
698	  counterpart.
699
700	  Workaround the issue by hiding the DIC feature from EL0. This
701	  forces user-space to perform cache maintenance.
702
703	  If unsure, say Y.
704
705config ARM64_ERRATUM_1508412
706	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
707	default y
708	help
709	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
710
711	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
712	  of a store-exclusive or read of PAR_EL1 and a load with device or
713	  non-cacheable memory attributes. The workaround depends on a firmware
714	  counterpart.
715
716	  KVM guests must also have the workaround implemented or they can
717	  deadlock the system.
718
719	  Work around the issue by inserting DMB SY barriers around PAR_EL1
720	  register reads and warning KVM users. The DMB barrier is sufficient
721	  to prevent a speculative PAR_EL1 read.
722
723	  If unsure, say Y.
724
725config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
726	bool
727
728config ARM64_ERRATUM_2051678
729	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
730	default y
731	help
732	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
733	  Affected Cortex-A510 might not respect the ordering rules for
734	  hardware update of the page table's dirty bit. The workaround
735	  is to not enable the feature on affected CPUs.
736
737	  If unsure, say Y.
738
739config ARM64_ERRATUM_2077057
740	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
741	default y
742	help
743	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
744	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
745	  expected, but a Pointer Authentication trap is taken instead. The
746	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
747	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
748
749	  This can only happen when EL2 is stepping EL1.
750
751	  When these conditions occur, the SPSR_EL2 value is unchanged from the
752	  previous guest entry, and can be restored from the in-memory copy.
753
754	  If unsure, say Y.
755
756config ARM64_ERRATUM_2658417
757	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
758	default y
759	help
760	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
761	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
762	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
763	  A510 CPUs are using shared neon hardware. As the sharing is not
764	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
765	  user-space should not be using these instructions.
766
767	  If unsure, say Y.
768
769config ARM64_ERRATUM_2119858
770	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
771	default y
772	depends on CORESIGHT_TRBE
773	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
774	help
775	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
776
777	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
778	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
779	  the event of a WRAP event.
780
781	  Work around the issue by always making sure we move the TRBPTR_EL1 by
782	  256 bytes before enabling the buffer and filling the first 256 bytes of
783	  the buffer with ETM ignore packets upon disabling.
784
785	  If unsure, say Y.
786
787config ARM64_ERRATUM_2139208
788	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
789	default y
790	depends on CORESIGHT_TRBE
791	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
792	help
793	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
794
795	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
796	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
797	  the event of a WRAP event.
798
799	  Work around the issue by always making sure we move the TRBPTR_EL1 by
800	  256 bytes before enabling the buffer and filling the first 256 bytes of
801	  the buffer with ETM ignore packets upon disabling.
802
803	  If unsure, say Y.
804
805config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
806	bool
807
808config ARM64_ERRATUM_2054223
809	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
810	default y
811	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
812	help
813	  Enable workaround for ARM Cortex-A710 erratum 2054223
814
815	  Affected cores may fail to flush the trace data on a TSB instruction, when
816	  the PE is in trace prohibited state. This will cause losing a few bytes
817	  of the trace cached.
818
819	  Workaround is to issue two TSB consecutively on affected cores.
820
821	  If unsure, say Y.
822
823config ARM64_ERRATUM_2067961
824	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
825	default y
826	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
827	help
828	  Enable workaround for ARM Neoverse-N2 erratum 2067961
829
830	  Affected cores may fail to flush the trace data on a TSB instruction, when
831	  the PE is in trace prohibited state. This will cause losing a few bytes
832	  of the trace cached.
833
834	  Workaround is to issue two TSB consecutively on affected cores.
835
836	  If unsure, say Y.
837
838config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
839	bool
840
841config ARM64_ERRATUM_2253138
842	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
843	depends on CORESIGHT_TRBE
844	default y
845	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
846	help
847	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
848
849	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
850	  for TRBE. Under some conditions, the TRBE might generate a write to the next
851	  virtually addressed page following the last page of the TRBE address space
852	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
853
854	  Work around this in the driver by always making sure that there is a
855	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
856
857	  If unsure, say Y.
858
859config ARM64_ERRATUM_2224489
860	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
861	depends on CORESIGHT_TRBE
862	default y
863	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
864	help
865	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
866
867	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
868	  for TRBE. Under some conditions, the TRBE might generate a write to the next
869	  virtually addressed page following the last page of the TRBE address space
870	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
871
872	  Work around this in the driver by always making sure that there is a
873	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
874
875	  If unsure, say Y.
876
877config ARM64_ERRATUM_2441009
878	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
879	default y
880	select ARM64_WORKAROUND_REPEAT_TLBI
881	help
882	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
883
884	  Under very rare circumstances, affected Cortex-A510 CPUs
885	  may not handle a race between a break-before-make sequence on one
886	  CPU, and another CPU accessing the same page. This could allow a
887	  store to a page that has been unmapped.
888
889	  Work around this by adding the affected CPUs to the list that needs
890	  TLB sequences to be done twice.
891
892	  If unsure, say Y.
893
894config ARM64_ERRATUM_2064142
895	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
896	depends on CORESIGHT_TRBE
897	default y
898	help
899	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
900
901	  Affected Cortex-A510 core might fail to write into system registers after the
902	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
903	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
904	  and TRBTRG_EL1 will be ignored and will not be effected.
905
906	  Work around this in the driver by executing TSB CSYNC and DSB after collection
907	  is stopped and before performing a system register write to one of the affected
908	  registers.
909
910	  If unsure, say Y.
911
912config ARM64_ERRATUM_2038923
913	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
914	depends on CORESIGHT_TRBE
915	default y
916	help
917	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
918
919	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
920	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
921	  might be corrupted. This happens after TRBE buffer has been enabled by setting
922	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
923	  execution changes from a context, in which trace is prohibited to one where it
924	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
925	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
926	  the trace buffer state might be corrupted.
927
928	  Work around this in the driver by preventing an inconsistent view of whether the
929	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
930	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
931	  two ISB instructions if no ERET is to take place.
932
933	  If unsure, say Y.
934
935config ARM64_ERRATUM_1902691
936	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
937	depends on CORESIGHT_TRBE
938	default y
939	help
940	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
941
942	  Affected Cortex-A510 core might cause trace data corruption, when being written
943	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
944	  trace data.
945
946	  Work around this problem in the driver by just preventing TRBE initialization on
947	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
948	  on such implementations. This will cover the kernel for any firmware that doesn't
949	  do this already.
950
951	  If unsure, say Y.
952
953config ARM64_ERRATUM_2457168
954	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
955	depends on ARM64_AMU_EXTN
956	default y
957	help
958	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
959
960	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
961	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
962	  incorrectly giving a significantly higher output value.
963
964	  Work around this problem by returning 0 when reading the affected counter in
965	  key locations that results in disabling all users of this counter. This effect
966	  is the same to firmware disabling affected counters.
967
968	  If unsure, say Y.
969
970config CAVIUM_ERRATUM_22375
971	bool "Cavium erratum 22375, 24313"
972	default y
973	help
974	  Enable workaround for errata 22375 and 24313.
975
976	  This implements two gicv3-its errata workarounds for ThunderX. Both
977	  with a small impact affecting only ITS table allocation.
978
979	    erratum 22375: only alloc 8MB table size
980	    erratum 24313: ignore memory access type
981
982	  The fixes are in ITS initialization and basically ignore memory access
983	  type and table size provided by the TYPER and BASER registers.
984
985	  If unsure, say Y.
986
987config CAVIUM_ERRATUM_23144
988	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
989	depends on NUMA
990	default y
991	help
992	  ITS SYNC command hang for cross node io and collections/cpu mapping.
993
994	  If unsure, say Y.
995
996config CAVIUM_ERRATUM_23154
997	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
998	default y
999	help
1000	  The ThunderX GICv3 implementation requires a modified version for
1001	  reading the IAR status to ensure data synchronization
1002	  (access to icc_iar1_el1 is not sync'ed before and after).
1003
1004	  It also suffers from erratum 38545 (also present on Marvell's
1005	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1006	  spuriously presented to the CPU interface.
1007
1008	  If unsure, say Y.
1009
1010config CAVIUM_ERRATUM_27456
1011	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1012	default y
1013	help
1014	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1015	  instructions may cause the icache to become corrupted if it
1016	  contains data for a non-current ASID.  The fix is to
1017	  invalidate the icache when changing the mm context.
1018
1019	  If unsure, say Y.
1020
1021config CAVIUM_ERRATUM_30115
1022	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1023	default y
1024	help
1025	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1026	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1027	  interrupts in host. Trapping both GICv3 group-0 and group-1
1028	  accesses sidesteps the issue.
1029
1030	  If unsure, say Y.
1031
1032config CAVIUM_TX2_ERRATUM_219
1033	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1034	default y
1035	help
1036	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1037	  TTBR update and the corresponding context synchronizing operation can
1038	  cause a spurious Data Abort to be delivered to any hardware thread in
1039	  the CPU core.
1040
1041	  Work around the issue by avoiding the problematic code sequence and
1042	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1043	  trap handler performs the corresponding register access, skips the
1044	  instruction and ensures context synchronization by virtue of the
1045	  exception return.
1046
1047	  If unsure, say Y.
1048
1049config FUJITSU_ERRATUM_010001
1050	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1051	default y
1052	help
1053	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1054	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1055	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1056	  This fault occurs under a specific hardware condition when a
1057	  load/store instruction performs an address translation using:
1058	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1059	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1060	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1061	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1062
1063	  The workaround is to ensure these bits are clear in TCR_ELx.
1064	  The workaround only affects the Fujitsu-A64FX.
1065
1066	  If unsure, say Y.
1067
1068config HISILICON_ERRATUM_161600802
1069	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1070	default y
1071	help
1072	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1073	  when issued ITS commands such as VMOVP and VMAPP, and requires
1074	  a 128kB offset to be applied to the target address in this commands.
1075
1076	  If unsure, say Y.
1077
1078config QCOM_FALKOR_ERRATUM_1003
1079	bool "Falkor E1003: Incorrect translation due to ASID change"
1080	default y
1081	help
1082	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1083	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1084	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1085	  then only for entries in the walk cache, since the leaf translation
1086	  is unchanged. Work around the erratum by invalidating the walk cache
1087	  entries for the trampoline before entering the kernel proper.
1088
1089config QCOM_FALKOR_ERRATUM_1009
1090	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1091	default y
1092	select ARM64_WORKAROUND_REPEAT_TLBI
1093	help
1094	  On Falkor v1, the CPU may prematurely complete a DSB following a
1095	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1096	  one more time to fix the issue.
1097
1098	  If unsure, say Y.
1099
1100config QCOM_QDF2400_ERRATUM_0065
1101	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1102	default y
1103	help
1104	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1105	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1106	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1107
1108	  If unsure, say Y.
1109
1110config QCOM_FALKOR_ERRATUM_E1041
1111	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1112	default y
1113	help
1114	  Falkor CPU may speculatively fetch instructions from an improper
1115	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1116	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1117
1118	  If unsure, say Y.
1119
1120config NVIDIA_CARMEL_CNP_ERRATUM
1121	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1122	default y
1123	help
1124	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1125	  invalidate shared TLB entries installed by a different core, as it would
1126	  on standard ARM cores.
1127
1128	  If unsure, say Y.
1129
1130config SOCIONEXT_SYNQUACER_PREITS
1131	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1132	default y
1133	help
1134	  Socionext Synquacer SoCs implement a separate h/w block to generate
1135	  MSI doorbell writes with non-zero values for the device ID.
1136
1137	  If unsure, say Y.
1138
1139endmenu # "ARM errata workarounds via the alternatives framework"
1140
1141choice
1142	prompt "Page size"
1143	default ARM64_4K_PAGES
1144	help
1145	  Page size (translation granule) configuration.
1146
1147config ARM64_4K_PAGES
1148	bool "4KB"
1149	help
1150	  This feature enables 4KB pages support.
1151
1152config ARM64_16K_PAGES
1153	bool "16KB"
1154	help
1155	  The system will use 16KB pages support. AArch32 emulation
1156	  requires applications compiled with 16K (or a multiple of 16K)
1157	  aligned segments.
1158
1159config ARM64_64K_PAGES
1160	bool "64KB"
1161	help
1162	  This feature enables 64KB pages support (4KB by default)
1163	  allowing only two levels of page tables and faster TLB
1164	  look-up. AArch32 emulation requires applications compiled
1165	  with 64K aligned segments.
1166
1167endchoice
1168
1169choice
1170	prompt "Virtual address space size"
1171	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1172	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1173	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1174	help
1175	  Allows choosing one of multiple possible virtual address
1176	  space sizes. The level of translation table is determined by
1177	  a combination of page size and virtual address space size.
1178
1179config ARM64_VA_BITS_36
1180	bool "36-bit" if EXPERT
1181	depends on ARM64_16K_PAGES
1182
1183config ARM64_VA_BITS_39
1184	bool "39-bit"
1185	depends on ARM64_4K_PAGES
1186
1187config ARM64_VA_BITS_42
1188	bool "42-bit"
1189	depends on ARM64_64K_PAGES
1190
1191config ARM64_VA_BITS_47
1192	bool "47-bit"
1193	depends on ARM64_16K_PAGES
1194
1195config ARM64_VA_BITS_48
1196	bool "48-bit"
1197
1198config ARM64_VA_BITS_52
1199	bool "52-bit"
1200	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1201	help
1202	  Enable 52-bit virtual addressing for userspace when explicitly
1203	  requested via a hint to mmap(). The kernel will also use 52-bit
1204	  virtual addresses for its own mappings (provided HW support for
1205	  this feature is available, otherwise it reverts to 48-bit).
1206
1207	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1208	  ARMv8.3 Pointer Authentication will result in the PAC being
1209	  reduced from 7 bits to 3 bits, which may have a significant
1210	  impact on its susceptibility to brute-force attacks.
1211
1212	  If unsure, select 48-bit virtual addressing instead.
1213
1214endchoice
1215
1216config ARM64_FORCE_52BIT
1217	bool "Force 52-bit virtual addresses for userspace"
1218	depends on ARM64_VA_BITS_52 && EXPERT
1219	help
1220	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1221	  to maintain compatibility with older software by providing 48-bit VAs
1222	  unless a hint is supplied to mmap.
1223
1224	  This configuration option disables the 48-bit compatibility logic, and
1225	  forces all userspace addresses to be 52-bit on HW that supports it. One
1226	  should only enable this configuration option for stress testing userspace
1227	  memory management code. If unsure say N here.
1228
1229config ARM64_VA_BITS
1230	int
1231	default 36 if ARM64_VA_BITS_36
1232	default 39 if ARM64_VA_BITS_39
1233	default 42 if ARM64_VA_BITS_42
1234	default 47 if ARM64_VA_BITS_47
1235	default 48 if ARM64_VA_BITS_48
1236	default 52 if ARM64_VA_BITS_52
1237
1238choice
1239	prompt "Physical address space size"
1240	default ARM64_PA_BITS_48
1241	help
1242	  Choose the maximum physical address range that the kernel will
1243	  support.
1244
1245config ARM64_PA_BITS_48
1246	bool "48-bit"
1247
1248config ARM64_PA_BITS_52
1249	bool "52-bit (ARMv8.2)"
1250	depends on ARM64_64K_PAGES
1251	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1252	help
1253	  Enable support for a 52-bit physical address space, introduced as
1254	  part of the ARMv8.2-LPA extension.
1255
1256	  With this enabled, the kernel will also continue to work on CPUs that
1257	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1258	  minor performance overhead).
1259
1260endchoice
1261
1262config ARM64_PA_BITS
1263	int
1264	default 48 if ARM64_PA_BITS_48
1265	default 52 if ARM64_PA_BITS_52
1266
1267choice
1268	prompt "Endianness"
1269	default CPU_LITTLE_ENDIAN
1270	help
1271	  Select the endianness of data accesses performed by the CPU. Userspace
1272	  applications will need to be compiled and linked for the endianness
1273	  that is selected here.
1274
1275config CPU_BIG_ENDIAN
1276	bool "Build big-endian kernel"
1277	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1278	help
1279	  Say Y if you plan on running a kernel with a big-endian userspace.
1280
1281config CPU_LITTLE_ENDIAN
1282	bool "Build little-endian kernel"
1283	help
1284	  Say Y if you plan on running a kernel with a little-endian userspace.
1285	  This is usually the case for distributions targeting arm64.
1286
1287endchoice
1288
1289config SCHED_MC
1290	bool "Multi-core scheduler support"
1291	help
1292	  Multi-core scheduler support improves the CPU scheduler's decision
1293	  making when dealing with multi-core CPU chips at a cost of slightly
1294	  increased overhead in some places. If unsure say N here.
1295
1296config SCHED_CLUSTER
1297	bool "Cluster scheduler support"
1298	help
1299	  Cluster scheduler support improves the CPU scheduler's decision
1300	  making when dealing with machines that have clusters of CPUs.
1301	  Cluster usually means a couple of CPUs which are placed closely
1302	  by sharing mid-level caches, last-level cache tags or internal
1303	  busses.
1304
1305config SCHED_SMT
1306	bool "SMT scheduler support"
1307	help
1308	  Improves the CPU scheduler's decision making when dealing with
1309	  MultiThreading at a cost of slightly increased overhead in some
1310	  places. If unsure say N here.
1311
1312config NR_CPUS
1313	int "Maximum number of CPUs (2-4096)"
1314	range 2 4096
1315	default "256"
1316
1317config HOTPLUG_CPU
1318	bool "Support for hot-pluggable CPUs"
1319	select GENERIC_IRQ_MIGRATION
1320	help
1321	  Say Y here to experiment with turning CPUs off and on.  CPUs
1322	  can be controlled through /sys/devices/system/cpu.
1323
1324# Common NUMA Features
1325config NUMA
1326	bool "NUMA Memory Allocation and Scheduler Support"
1327	select GENERIC_ARCH_NUMA
1328	select ACPI_NUMA if ACPI
1329	select OF_NUMA
1330	select HAVE_SETUP_PER_CPU_AREA
1331	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1332	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1333	select USE_PERCPU_NUMA_NODE_ID
1334	help
1335	  Enable NUMA (Non-Uniform Memory Access) support.
1336
1337	  The kernel will try to allocate memory used by a CPU on the
1338	  local memory of the CPU and add some more
1339	  NUMA awareness to the kernel.
1340
1341config NODES_SHIFT
1342	int "Maximum NUMA Nodes (as a power of 2)"
1343	range 1 10
1344	default "4"
1345	depends on NUMA
1346	help
1347	  Specify the maximum number of NUMA Nodes available on the target
1348	  system.  Increases memory reserved to accommodate various tables.
1349
1350source "kernel/Kconfig.hz"
1351
1352config ARCH_SPARSEMEM_ENABLE
1353	def_bool y
1354	select SPARSEMEM_VMEMMAP_ENABLE
1355	select SPARSEMEM_VMEMMAP
1356
1357config HW_PERF_EVENTS
1358	def_bool y
1359	depends on ARM_PMU
1360
1361# Supported by clang >= 7.0 or GCC >= 12.0.0
1362config CC_HAVE_SHADOW_CALL_STACK
1363	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1364
1365config PARAVIRT
1366	bool "Enable paravirtualization code"
1367	help
1368	  This changes the kernel so it can modify itself when it is run
1369	  under a hypervisor, potentially improving performance significantly
1370	  over full virtualization.
1371
1372config PARAVIRT_TIME_ACCOUNTING
1373	bool "Paravirtual steal time accounting"
1374	select PARAVIRT
1375	help
1376	  Select this option to enable fine granularity task steal time
1377	  accounting. Time spent executing other tasks in parallel with
1378	  the current vCPU is discounted from the vCPU power. To account for
1379	  that, there can be a small performance impact.
1380
1381	  If in doubt, say N here.
1382
1383config KEXEC
1384	depends on PM_SLEEP_SMP
1385	select KEXEC_CORE
1386	bool "kexec system call"
1387	help
1388	  kexec is a system call that implements the ability to shutdown your
1389	  current kernel, and to start another kernel.  It is like a reboot
1390	  but it is independent of the system firmware.   And like a reboot
1391	  you can start any kernel with it, not just Linux.
1392
1393config KEXEC_FILE
1394	bool "kexec file based system call"
1395	select KEXEC_CORE
1396	select HAVE_IMA_KEXEC if IMA
1397	help
1398	  This is new version of kexec system call. This system call is
1399	  file based and takes file descriptors as system call argument
1400	  for kernel and initramfs as opposed to list of segments as
1401	  accepted by previous system call.
1402
1403config KEXEC_SIG
1404	bool "Verify kernel signature during kexec_file_load() syscall"
1405	depends on KEXEC_FILE
1406	help
1407	  Select this option to verify a signature with loaded kernel
1408	  image. If configured, any attempt of loading a image without
1409	  valid signature will fail.
1410
1411	  In addition to that option, you need to enable signature
1412	  verification for the corresponding kernel image type being
1413	  loaded in order for this to work.
1414
1415config KEXEC_IMAGE_VERIFY_SIG
1416	bool "Enable Image signature verification support"
1417	default y
1418	depends on KEXEC_SIG
1419	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1420	help
1421	  Enable Image signature verification support.
1422
1423comment "Support for PE file signature verification disabled"
1424	depends on KEXEC_SIG
1425	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1426
1427config CRASH_DUMP
1428	bool "Build kdump crash kernel"
1429	help
1430	  Generate crash dump after being started by kexec. This should
1431	  be normally only set in special crash dump kernels which are
1432	  loaded in the main kernel with kexec-tools into a specially
1433	  reserved region and then later executed after a crash by
1434	  kdump/kexec.
1435
1436	  For more details see Documentation/admin-guide/kdump/kdump.rst
1437
1438config TRANS_TABLE
1439	def_bool y
1440	depends on HIBERNATION || KEXEC_CORE
1441
1442config XEN_DOM0
1443	def_bool y
1444	depends on XEN
1445
1446config XEN
1447	bool "Xen guest support on ARM64"
1448	depends on ARM64 && OF
1449	select SWIOTLB_XEN
1450	select PARAVIRT
1451	help
1452	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1453
1454config ARCH_FORCE_MAX_ORDER
1455	int
1456	default "14" if ARM64_64K_PAGES
1457	default "12" if ARM64_16K_PAGES
1458	default "11"
1459	help
1460	  The kernel memory allocator divides physically contiguous memory
1461	  blocks into "zones", where each zone is a power of two number of
1462	  pages.  This option selects the largest power of two that the kernel
1463	  keeps in the memory allocator.  If you need to allocate very large
1464	  blocks of physically contiguous memory, then you may need to
1465	  increase this value.
1466
1467	  This config option is actually maximum order plus one. For example,
1468	  a value of 11 means that the largest free memory block is 2^10 pages.
1469
1470	  We make sure that we can allocate upto a HugePage size for each configuration.
1471	  Hence we have :
1472		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1473
1474	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1475	  4M allocations matching the default size used by generic code.
1476
1477config UNMAP_KERNEL_AT_EL0
1478	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1479	default y
1480	help
1481	  Speculation attacks against some high-performance processors can
1482	  be used to bypass MMU permission checks and leak kernel data to
1483	  userspace. This can be defended against by unmapping the kernel
1484	  when running in userspace, mapping it back in on exception entry
1485	  via a trampoline page in the vector table.
1486
1487	  If unsure, say Y.
1488
1489config MITIGATE_SPECTRE_BRANCH_HISTORY
1490	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1491	default y
1492	help
1493	  Speculation attacks against some high-performance processors can
1494	  make use of branch history to influence future speculation.
1495	  When taking an exception from user-space, a sequence of branches
1496	  or a firmware call overwrites the branch history.
1497
1498config RODATA_FULL_DEFAULT_ENABLED
1499	bool "Apply r/o permissions of VM areas also to their linear aliases"
1500	default y
1501	help
1502	  Apply read-only attributes of VM areas to the linear alias of
1503	  the backing pages as well. This prevents code or read-only data
1504	  from being modified (inadvertently or intentionally) via another
1505	  mapping of the same memory page. This additional enhancement can
1506	  be turned off at runtime by passing rodata=[off|on] (and turned on
1507	  with rodata=full if this option is set to 'n')
1508
1509	  This requires the linear region to be mapped down to pages,
1510	  which may adversely affect performance in some cases.
1511
1512config ARM64_SW_TTBR0_PAN
1513	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1514	help
1515	  Enabling this option prevents the kernel from accessing
1516	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1517	  zeroed area and reserved ASID. The user access routines
1518	  restore the valid TTBR0_EL1 temporarily.
1519
1520config ARM64_TAGGED_ADDR_ABI
1521	bool "Enable the tagged user addresses syscall ABI"
1522	default y
1523	help
1524	  When this option is enabled, user applications can opt in to a
1525	  relaxed ABI via prctl() allowing tagged addresses to be passed
1526	  to system calls as pointer arguments. For details, see
1527	  Documentation/arm64/tagged-address-abi.rst.
1528
1529menuconfig COMPAT
1530	bool "Kernel support for 32-bit EL0"
1531	depends on ARM64_4K_PAGES || EXPERT
1532	select HAVE_UID16
1533	select OLD_SIGSUSPEND3
1534	select COMPAT_OLD_SIGACTION
1535	help
1536	  This option enables support for a 32-bit EL0 running under a 64-bit
1537	  kernel at EL1. AArch32-specific components such as system calls,
1538	  the user helper functions, VFP support and the ptrace interface are
1539	  handled appropriately by the kernel.
1540
1541	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1542	  that you will only be able to execute AArch32 binaries that were compiled
1543	  with page size aligned segments.
1544
1545	  If you want to execute 32-bit userspace applications, say Y.
1546
1547if COMPAT
1548
1549config KUSER_HELPERS
1550	bool "Enable kuser helpers page for 32-bit applications"
1551	default y
1552	help
1553	  Warning: disabling this option may break 32-bit user programs.
1554
1555	  Provide kuser helpers to compat tasks. The kernel provides
1556	  helper code to userspace in read only form at a fixed location
1557	  to allow userspace to be independent of the CPU type fitted to
1558	  the system. This permits binaries to be run on ARMv4 through
1559	  to ARMv8 without modification.
1560
1561	  See Documentation/arm/kernel_user_helpers.rst for details.
1562
1563	  However, the fixed address nature of these helpers can be used
1564	  by ROP (return orientated programming) authors when creating
1565	  exploits.
1566
1567	  If all of the binaries and libraries which run on your platform
1568	  are built specifically for your platform, and make no use of
1569	  these helpers, then you can turn this option off to hinder
1570	  such exploits. However, in that case, if a binary or library
1571	  relying on those helpers is run, it will not function correctly.
1572
1573	  Say N here only if you are absolutely certain that you do not
1574	  need these helpers; otherwise, the safe option is to say Y.
1575
1576config COMPAT_VDSO
1577	bool "Enable vDSO for 32-bit applications"
1578	depends on !CPU_BIG_ENDIAN
1579	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1580	select GENERIC_COMPAT_VDSO
1581	default y
1582	help
1583	  Place in the process address space of 32-bit applications an
1584	  ELF shared object providing fast implementations of gettimeofday
1585	  and clock_gettime.
1586
1587	  You must have a 32-bit build of glibc 2.22 or later for programs
1588	  to seamlessly take advantage of this.
1589
1590config THUMB2_COMPAT_VDSO
1591	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1592	depends on COMPAT_VDSO
1593	default y
1594	help
1595	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1596	  otherwise with '-marm'.
1597
1598config COMPAT_ALIGNMENT_FIXUPS
1599	bool "Fix up misaligned multi-word loads and stores in user space"
1600
1601menuconfig ARMV8_DEPRECATED
1602	bool "Emulate deprecated/obsolete ARMv8 instructions"
1603	depends on SYSCTL
1604	help
1605	  Legacy software support may require certain instructions
1606	  that have been deprecated or obsoleted in the architecture.
1607
1608	  Enable this config to enable selective emulation of these
1609	  features.
1610
1611	  If unsure, say Y
1612
1613if ARMV8_DEPRECATED
1614
1615config SWP_EMULATION
1616	bool "Emulate SWP/SWPB instructions"
1617	help
1618	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1619	  they are always undefined. Say Y here to enable software
1620	  emulation of these instructions for userspace using LDXR/STXR.
1621	  This feature can be controlled at runtime with the abi.swp
1622	  sysctl which is disabled by default.
1623
1624	  In some older versions of glibc [<=2.8] SWP is used during futex
1625	  trylock() operations with the assumption that the code will not
1626	  be preempted. This invalid assumption may be more likely to fail
1627	  with SWP emulation enabled, leading to deadlock of the user
1628	  application.
1629
1630	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1631	  on an external transaction monitoring block called a global
1632	  monitor to maintain update atomicity. If your system does not
1633	  implement a global monitor, this option can cause programs that
1634	  perform SWP operations to uncached memory to deadlock.
1635
1636	  If unsure, say Y
1637
1638config CP15_BARRIER_EMULATION
1639	bool "Emulate CP15 Barrier instructions"
1640	help
1641	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1642	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1643	  strongly recommended to use the ISB, DSB, and DMB
1644	  instructions instead.
1645
1646	  Say Y here to enable software emulation of these
1647	  instructions for AArch32 userspace code. When this option is
1648	  enabled, CP15 barrier usage is traced which can help
1649	  identify software that needs updating. This feature can be
1650	  controlled at runtime with the abi.cp15_barrier sysctl.
1651
1652	  If unsure, say Y
1653
1654config SETEND_EMULATION
1655	bool "Emulate SETEND instruction"
1656	help
1657	  The SETEND instruction alters the data-endianness of the
1658	  AArch32 EL0, and is deprecated in ARMv8.
1659
1660	  Say Y here to enable software emulation of the instruction
1661	  for AArch32 userspace code. This feature can be controlled
1662	  at runtime with the abi.setend sysctl.
1663
1664	  Note: All the cpus on the system must have mixed endian support at EL0
1665	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1666	  endian - is hotplugged in after this feature has been enabled, there could
1667	  be unexpected results in the applications.
1668
1669	  If unsure, say Y
1670endif # ARMV8_DEPRECATED
1671
1672endif # COMPAT
1673
1674menu "ARMv8.1 architectural features"
1675
1676config ARM64_HW_AFDBM
1677	bool "Support for hardware updates of the Access and Dirty page flags"
1678	default y
1679	help
1680	  The ARMv8.1 architecture extensions introduce support for
1681	  hardware updates of the access and dirty information in page
1682	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1683	  capable processors, accesses to pages with PTE_AF cleared will
1684	  set this bit instead of raising an access flag fault.
1685	  Similarly, writes to read-only pages with the DBM bit set will
1686	  clear the read-only bit (AP[2]) instead of raising a
1687	  permission fault.
1688
1689	  Kernels built with this configuration option enabled continue
1690	  to work on pre-ARMv8.1 hardware and the performance impact is
1691	  minimal. If unsure, say Y.
1692
1693config ARM64_PAN
1694	bool "Enable support for Privileged Access Never (PAN)"
1695	default y
1696	help
1697	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1698	  prevents the kernel or hypervisor from accessing user-space (EL0)
1699	  memory directly.
1700
1701	  Choosing this option will cause any unprotected (not using
1702	  copy_to_user et al) memory access to fail with a permission fault.
1703
1704	  The feature is detected at runtime, and will remain as a 'nop'
1705	  instruction if the cpu does not implement the feature.
1706
1707config AS_HAS_LDAPR
1708	def_bool $(as-instr,.arch_extension rcpc)
1709
1710config AS_HAS_LSE_ATOMICS
1711	def_bool $(as-instr,.arch_extension lse)
1712
1713config ARM64_LSE_ATOMICS
1714	bool
1715	default ARM64_USE_LSE_ATOMICS
1716	depends on AS_HAS_LSE_ATOMICS
1717
1718config ARM64_USE_LSE_ATOMICS
1719	bool "Atomic instructions"
1720	depends on JUMP_LABEL
1721	default y
1722	help
1723	  As part of the Large System Extensions, ARMv8.1 introduces new
1724	  atomic instructions that are designed specifically to scale in
1725	  very large systems.
1726
1727	  Say Y here to make use of these instructions for the in-kernel
1728	  atomic routines. This incurs a small overhead on CPUs that do
1729	  not support these instructions and requires the kernel to be
1730	  built with binutils >= 2.25 in order for the new instructions
1731	  to be used.
1732
1733endmenu # "ARMv8.1 architectural features"
1734
1735menu "ARMv8.2 architectural features"
1736
1737config AS_HAS_ARMV8_2
1738	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1739
1740config AS_HAS_SHA3
1741	def_bool $(as-instr,.arch armv8.2-a+sha3)
1742
1743config ARM64_PMEM
1744	bool "Enable support for persistent memory"
1745	select ARCH_HAS_PMEM_API
1746	select ARCH_HAS_UACCESS_FLUSHCACHE
1747	help
1748	  Say Y to enable support for the persistent memory API based on the
1749	  ARMv8.2 DCPoP feature.
1750
1751	  The feature is detected at runtime, and the kernel will use DC CVAC
1752	  operations if DC CVAP is not supported (following the behaviour of
1753	  DC CVAP itself if the system does not define a point of persistence).
1754
1755config ARM64_RAS_EXTN
1756	bool "Enable support for RAS CPU Extensions"
1757	default y
1758	help
1759	  CPUs that support the Reliability, Availability and Serviceability
1760	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1761	  errors, classify them and report them to software.
1762
1763	  On CPUs with these extensions system software can use additional
1764	  barriers to determine if faults are pending and read the
1765	  classification from a new set of registers.
1766
1767	  Selecting this feature will allow the kernel to use these barriers
1768	  and access the new registers if the system supports the extension.
1769	  Platform RAS features may additionally depend on firmware support.
1770
1771config ARM64_CNP
1772	bool "Enable support for Common Not Private (CNP) translations"
1773	default y
1774	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1775	help
1776	  Common Not Private (CNP) allows translation table entries to
1777	  be shared between different PEs in the same inner shareable
1778	  domain, so the hardware can use this fact to optimise the
1779	  caching of such entries in the TLB.
1780
1781	  Selecting this option allows the CNP feature to be detected
1782	  at runtime, and does not affect PEs that do not implement
1783	  this feature.
1784
1785endmenu # "ARMv8.2 architectural features"
1786
1787menu "ARMv8.3 architectural features"
1788
1789config ARM64_PTR_AUTH
1790	bool "Enable support for pointer authentication"
1791	default y
1792	help
1793	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1794	  instructions for signing and authenticating pointers against secret
1795	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1796	  and other attacks.
1797
1798	  This option enables these instructions at EL0 (i.e. for userspace).
1799	  Choosing this option will cause the kernel to initialise secret keys
1800	  for each process at exec() time, with these keys being
1801	  context-switched along with the process.
1802
1803	  The feature is detected at runtime. If the feature is not present in
1804	  hardware it will not be advertised to userspace/KVM guest nor will it
1805	  be enabled.
1806
1807	  If the feature is present on the boot CPU but not on a late CPU, then
1808	  the late CPU will be parked. Also, if the boot CPU does not have
1809	  address auth and the late CPU has then the late CPU will still boot
1810	  but with the feature disabled. On such a system, this option should
1811	  not be selected.
1812
1813config ARM64_PTR_AUTH_KERNEL
1814	bool "Use pointer authentication for kernel"
1815	default y
1816	depends on ARM64_PTR_AUTH
1817	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1818	# Modern compilers insert a .note.gnu.property section note for PAC
1819	# which is only understood by binutils starting with version 2.33.1.
1820	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1821	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1822	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1823	help
1824	  If the compiler supports the -mbranch-protection or
1825	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1826	  will cause the kernel itself to be compiled with return address
1827	  protection. In this case, and if the target hardware is known to
1828	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1829	  disabled with minimal loss of protection.
1830
1831	  This feature works with FUNCTION_GRAPH_TRACER option only if
1832	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1833
1834config CC_HAS_BRANCH_PROT_PAC_RET
1835	# GCC 9 or later, clang 8 or later
1836	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1837
1838config CC_HAS_SIGN_RETURN_ADDRESS
1839	# GCC 7, 8
1840	def_bool $(cc-option,-msign-return-address=all)
1841
1842config AS_HAS_PAC
1843	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1844
1845config AS_HAS_CFI_NEGATE_RA_STATE
1846	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1847
1848endmenu # "ARMv8.3 architectural features"
1849
1850menu "ARMv8.4 architectural features"
1851
1852config ARM64_AMU_EXTN
1853	bool "Enable support for the Activity Monitors Unit CPU extension"
1854	default y
1855	help
1856	  The activity monitors extension is an optional extension introduced
1857	  by the ARMv8.4 CPU architecture. This enables support for version 1
1858	  of the activity monitors architecture, AMUv1.
1859
1860	  To enable the use of this extension on CPUs that implement it, say Y.
1861
1862	  Note that for architectural reasons, firmware _must_ implement AMU
1863	  support when running on CPUs that present the activity monitors
1864	  extension. The required support is present in:
1865	    * Version 1.5 and later of the ARM Trusted Firmware
1866
1867	  For kernels that have this configuration enabled but boot with broken
1868	  firmware, you may need to say N here until the firmware is fixed.
1869	  Otherwise you may experience firmware panics or lockups when
1870	  accessing the counter registers. Even if you are not observing these
1871	  symptoms, the values returned by the register reads might not
1872	  correctly reflect reality. Most commonly, the value read will be 0,
1873	  indicating that the counter is not enabled.
1874
1875config AS_HAS_ARMV8_4
1876	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1877
1878config ARM64_TLB_RANGE
1879	bool "Enable support for tlbi range feature"
1880	default y
1881	depends on AS_HAS_ARMV8_4
1882	help
1883	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1884	  range of input addresses.
1885
1886	  The feature introduces new assembly instructions, and they were
1887	  support when binutils >= 2.30.
1888
1889endmenu # "ARMv8.4 architectural features"
1890
1891menu "ARMv8.5 architectural features"
1892
1893config AS_HAS_ARMV8_5
1894	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1895
1896config ARM64_BTI
1897	bool "Branch Target Identification support"
1898	default y
1899	help
1900	  Branch Target Identification (part of the ARMv8.5 Extensions)
1901	  provides a mechanism to limit the set of locations to which computed
1902	  branch instructions such as BR or BLR can jump.
1903
1904	  To make use of BTI on CPUs that support it, say Y.
1905
1906	  BTI is intended to provide complementary protection to other control
1907	  flow integrity protection mechanisms, such as the Pointer
1908	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1909	  For this reason, it does not make sense to enable this option without
1910	  also enabling support for pointer authentication.  Thus, when
1911	  enabling this option you should also select ARM64_PTR_AUTH=y.
1912
1913	  Userspace binaries must also be specifically compiled to make use of
1914	  this mechanism.  If you say N here or the hardware does not support
1915	  BTI, such binaries can still run, but you get no additional
1916	  enforcement of branch destinations.
1917
1918config ARM64_BTI_KERNEL
1919	bool "Use Branch Target Identification for kernel"
1920	default y
1921	depends on ARM64_BTI
1922	depends on ARM64_PTR_AUTH_KERNEL
1923	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1924	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1925	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1926	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1927	depends on !CC_IS_GCC
1928	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1929	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1930	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1931	help
1932	  Build the kernel with Branch Target Identification annotations
1933	  and enable enforcement of this for kernel code. When this option
1934	  is enabled and the system supports BTI all kernel code including
1935	  modular code must have BTI enabled.
1936
1937config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1938	# GCC 9 or later, clang 8 or later
1939	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1940
1941config ARM64_E0PD
1942	bool "Enable support for E0PD"
1943	default y
1944	help
1945	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1946	  that EL0 accesses made via TTBR1 always fault in constant time,
1947	  providing similar benefits to KASLR as those provided by KPTI, but
1948	  with lower overhead and without disrupting legitimate access to
1949	  kernel memory such as SPE.
1950
1951	  This option enables E0PD for TTBR1 where available.
1952
1953config ARM64_AS_HAS_MTE
1954	# Initial support for MTE went in binutils 2.32.0, checked with
1955	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1956	# as a late addition to the final architecture spec (LDGM/STGM)
1957	# is only supported in the newer 2.32.x and 2.33 binutils
1958	# versions, hence the extra "stgm" instruction check below.
1959	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1960
1961config ARM64_MTE
1962	bool "Memory Tagging Extension support"
1963	default y
1964	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1965	depends on AS_HAS_ARMV8_5
1966	depends on AS_HAS_LSE_ATOMICS
1967	# Required for tag checking in the uaccess routines
1968	depends on ARM64_PAN
1969	select ARCH_HAS_SUBPAGE_FAULTS
1970	select ARCH_USES_HIGH_VMA_FLAGS
1971	help
1972	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1973	  architectural support for run-time, always-on detection of
1974	  various classes of memory error to aid with software debugging
1975	  to eliminate vulnerabilities arising from memory-unsafe
1976	  languages.
1977
1978	  This option enables the support for the Memory Tagging
1979	  Extension at EL0 (i.e. for userspace).
1980
1981	  Selecting this option allows the feature to be detected at
1982	  runtime. Any secondary CPU not implementing this feature will
1983	  not be allowed a late bring-up.
1984
1985	  Userspace binaries that want to use this feature must
1986	  explicitly opt in. The mechanism for the userspace is
1987	  described in:
1988
1989	  Documentation/arm64/memory-tagging-extension.rst.
1990
1991endmenu # "ARMv8.5 architectural features"
1992
1993menu "ARMv8.7 architectural features"
1994
1995config ARM64_EPAN
1996	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1997	default y
1998	depends on ARM64_PAN
1999	help
2000	  Enhanced Privileged Access Never (EPAN) allows Privileged
2001	  Access Never to be used with Execute-only mappings.
2002
2003	  The feature is detected at runtime, and will remain disabled
2004	  if the cpu does not implement the feature.
2005endmenu # "ARMv8.7 architectural features"
2006
2007config ARM64_SVE
2008	bool "ARM Scalable Vector Extension support"
2009	default y
2010	help
2011	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2012	  execution state which complements and extends the SIMD functionality
2013	  of the base architecture to support much larger vectors and to enable
2014	  additional vectorisation opportunities.
2015
2016	  To enable use of this extension on CPUs that implement it, say Y.
2017
2018	  On CPUs that support the SVE2 extensions, this option will enable
2019	  those too.
2020
2021	  Note that for architectural reasons, firmware _must_ implement SVE
2022	  support when running on SVE capable hardware.  The required support
2023	  is present in:
2024
2025	    * version 1.5 and later of the ARM Trusted Firmware
2026	    * the AArch64 boot wrapper since commit 5e1261e08abf
2027	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2028
2029	  For other firmware implementations, consult the firmware documentation
2030	  or vendor.
2031
2032	  If you need the kernel to boot on SVE-capable hardware with broken
2033	  firmware, you may need to say N here until you get your firmware
2034	  fixed.  Otherwise, you may experience firmware panics or lockups when
2035	  booting the kernel.  If unsure and you are not observing these
2036	  symptoms, you should assume that it is safe to say Y.
2037
2038config ARM64_SME
2039	bool "ARM Scalable Matrix Extension support"
2040	default y
2041	depends on ARM64_SVE
2042	help
2043	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2044	  execution state which utilises a substantial subset of the SVE
2045	  instruction set, together with the addition of new architectural
2046	  register state capable of holding two dimensional matrix tiles to
2047	  enable various matrix operations.
2048
2049config ARM64_MODULE_PLTS
2050	bool "Use PLTs to allow module memory to spill over into vmalloc area"
2051	depends on MODULES
2052	select HAVE_MOD_ARCH_SPECIFIC
2053	help
2054	  Allocate PLTs when loading modules so that jumps and calls whose
2055	  targets are too far away for their relative offsets to be encoded
2056	  in the instructions themselves can be bounced via veneers in the
2057	  module's PLT. This allows modules to be allocated in the generic
2058	  vmalloc area after the dedicated module memory area has been
2059	  exhausted.
2060
2061	  When running with address space randomization (KASLR), the module
2062	  region itself may be too far away for ordinary relative jumps and
2063	  calls, and so in that case, module PLTs are required and cannot be
2064	  disabled.
2065
2066	  Specific errata workaround(s) might also force module PLTs to be
2067	  enabled (ARM64_ERRATUM_843419).
2068
2069config ARM64_PSEUDO_NMI
2070	bool "Support for NMI-like interrupts"
2071	select ARM_GIC_V3
2072	help
2073	  Adds support for mimicking Non-Maskable Interrupts through the use of
2074	  GIC interrupt priority. This support requires version 3 or later of
2075	  ARM GIC.
2076
2077	  This high priority configuration for interrupts needs to be
2078	  explicitly enabled by setting the kernel parameter
2079	  "irqchip.gicv3_pseudo_nmi" to 1.
2080
2081	  If unsure, say N
2082
2083if ARM64_PSEUDO_NMI
2084config ARM64_DEBUG_PRIORITY_MASKING
2085	bool "Debug interrupt priority masking"
2086	help
2087	  This adds runtime checks to functions enabling/disabling
2088	  interrupts when using priority masking. The additional checks verify
2089	  the validity of ICC_PMR_EL1 when calling concerned functions.
2090
2091	  If unsure, say N
2092endif # ARM64_PSEUDO_NMI
2093
2094config RELOCATABLE
2095	bool "Build a relocatable kernel image" if EXPERT
2096	select ARCH_HAS_RELR
2097	default y
2098	help
2099	  This builds the kernel as a Position Independent Executable (PIE),
2100	  which retains all relocation metadata required to relocate the
2101	  kernel binary at runtime to a different virtual address than the
2102	  address it was linked at.
2103	  Since AArch64 uses the RELA relocation format, this requires a
2104	  relocation pass at runtime even if the kernel is loaded at the
2105	  same address it was linked at.
2106
2107config RANDOMIZE_BASE
2108	bool "Randomize the address of the kernel image"
2109	select ARM64_MODULE_PLTS if MODULES
2110	select RELOCATABLE
2111	help
2112	  Randomizes the virtual address at which the kernel image is
2113	  loaded, as a security feature that deters exploit attempts
2114	  relying on knowledge of the location of kernel internals.
2115
2116	  It is the bootloader's job to provide entropy, by passing a
2117	  random u64 value in /chosen/kaslr-seed at kernel entry.
2118
2119	  When booting via the UEFI stub, it will invoke the firmware's
2120	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2121	  to the kernel proper. In addition, it will randomise the physical
2122	  location of the kernel Image as well.
2123
2124	  If unsure, say N.
2125
2126config RANDOMIZE_MODULE_REGION_FULL
2127	bool "Randomize the module region over a 2 GB range"
2128	depends on RANDOMIZE_BASE
2129	default y
2130	help
2131	  Randomizes the location of the module region inside a 2 GB window
2132	  covering the core kernel. This way, it is less likely for modules
2133	  to leak information about the location of core kernel data structures
2134	  but it does imply that function calls between modules and the core
2135	  kernel will need to be resolved via veneers in the module PLT.
2136
2137	  When this option is not set, the module region will be randomized over
2138	  a limited range that contains the [_stext, _etext] interval of the
2139	  core kernel, so branch relocations are almost always in range unless
2140	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2141	  particular case of region exhaustion, modules might be able to fall
2142	  back to a larger 2GB area.
2143
2144config CC_HAVE_STACKPROTECTOR_SYSREG
2145	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2146
2147config STACKPROTECTOR_PER_TASK
2148	def_bool y
2149	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2150
2151# The GPIO number here must be sorted by descending number. In case of
2152# a multiplatform kernel, we just want the highest value required by the
2153# selected platforms.
2154config ARCH_NR_GPIO
2155        int
2156        default 2048 if ARCH_APPLE
2157        default 0
2158        help
2159          Maximum number of GPIOs in the system.
2160
2161          If unsure, leave the default value.
2162
2163endmenu # "Kernel Features"
2164
2165menu "Boot options"
2166
2167config ARM64_ACPI_PARKING_PROTOCOL
2168	bool "Enable support for the ARM64 ACPI parking protocol"
2169	depends on ACPI
2170	help
2171	  Enable support for the ARM64 ACPI parking protocol. If disabled
2172	  the kernel will not allow booting through the ARM64 ACPI parking
2173	  protocol even if the corresponding data is present in the ACPI
2174	  MADT table.
2175
2176config CMDLINE
2177	string "Default kernel command string"
2178	default ""
2179	help
2180	  Provide a set of default command-line options at build time by
2181	  entering them here. As a minimum, you should specify the the
2182	  root device (e.g. root=/dev/nfs).
2183
2184choice
2185	prompt "Kernel command line type" if CMDLINE != ""
2186	default CMDLINE_FROM_BOOTLOADER
2187	help
2188	  Choose how the kernel will handle the provided default kernel
2189	  command line string.
2190
2191config CMDLINE_FROM_BOOTLOADER
2192	bool "Use bootloader kernel arguments if available"
2193	help
2194	  Uses the command-line options passed by the boot loader. If
2195	  the boot loader doesn't provide any, the default kernel command
2196	  string provided in CMDLINE will be used.
2197
2198config CMDLINE_FORCE
2199	bool "Always use the default kernel command string"
2200	help
2201	  Always use the default kernel command string, even if the boot
2202	  loader passes other arguments to the kernel.
2203	  This is useful if you cannot or don't want to change the
2204	  command-line options your boot loader passes to the kernel.
2205
2206endchoice
2207
2208config EFI_STUB
2209	bool
2210
2211config EFI
2212	bool "UEFI runtime support"
2213	depends on OF && !CPU_BIG_ENDIAN
2214	depends on KERNEL_MODE_NEON
2215	select ARCH_SUPPORTS_ACPI
2216	select LIBFDT
2217	select UCS2_STRING
2218	select EFI_PARAMS_FROM_FDT
2219	select EFI_RUNTIME_WRAPPERS
2220	select EFI_STUB
2221	select EFI_GENERIC_STUB
2222	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2223	default y
2224	help
2225	  This option provides support for runtime services provided
2226	  by UEFI firmware (such as non-volatile variables, realtime
2227	  clock, and platform reset). A UEFI stub is also provided to
2228	  allow the kernel to be booted as an EFI application. This
2229	  is only useful on systems that have UEFI firmware.
2230
2231config DMI
2232	bool "Enable support for SMBIOS (DMI) tables"
2233	depends on EFI
2234	default y
2235	help
2236	  This enables SMBIOS/DMI feature for systems.
2237
2238	  This option is only useful on systems that have UEFI firmware.
2239	  However, even with this option, the resultant kernel should
2240	  continue to boot on existing non-UEFI platforms.
2241
2242endmenu # "Boot options"
2243
2244menu "Power management options"
2245
2246source "kernel/power/Kconfig"
2247
2248config ARCH_HIBERNATION_POSSIBLE
2249	def_bool y
2250	depends on CPU_PM
2251
2252config ARCH_HIBERNATION_HEADER
2253	def_bool y
2254	depends on HIBERNATION
2255
2256config ARCH_SUSPEND_POSSIBLE
2257	def_bool y
2258
2259endmenu # "Power management options"
2260
2261menu "CPU Power Management"
2262
2263source "drivers/cpuidle/Kconfig"
2264
2265source "drivers/cpufreq/Kconfig"
2266
2267endmenu # "CPU Power Management"
2268
2269source "drivers/acpi/Kconfig"
2270
2271source "arch/arm64/kvm/Kconfig"
2272
2273