xref: /linux/arch/arm64/Kconfig (revision 665db14d0712ac27f6a0081510bd811efb3faa3c)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
18	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
19	select ARCH_ENABLE_MEMORY_HOTPLUG
20	select ARCH_ENABLE_MEMORY_HOTREMOVE
21	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
22	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
23	select ARCH_HAS_CACHE_LINE_SIZE
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_PREP_COHERENT
28	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
29	select ARCH_HAS_FAST_MULTIPLIER
30	select ARCH_HAS_FORTIFY_SOURCE
31	select ARCH_HAS_GCOV_PROFILE_ALL
32	select ARCH_HAS_GIGANTIC_PAGE
33	select ARCH_HAS_KCOV
34	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
35	select ARCH_HAS_KEEPINITRD
36	select ARCH_HAS_MEMBARRIER_SYNC_CORE
37	select ARCH_HAS_MEM_ENCRYPT
38	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
39	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
40	select ARCH_HAS_PTE_DEVMAP
41	select ARCH_HAS_PTE_SPECIAL
42	select ARCH_HAS_HW_PTE_YOUNG
43	select ARCH_HAS_SETUP_DMA_OPS
44	select ARCH_HAS_SET_DIRECT_MAP
45	select ARCH_HAS_SET_MEMORY
46	select ARCH_STACKWALK
47	select ARCH_HAS_STRICT_KERNEL_RWX
48	select ARCH_HAS_STRICT_MODULE_RWX
49	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
50	select ARCH_HAS_SYNC_DMA_FOR_CPU
51	select ARCH_HAS_SYSCALL_WRAPPER
52	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
53	select ARCH_HAS_ZONE_DMA_SET if EXPERT
54	select ARCH_HAVE_ELF_PROT
55	select ARCH_HAVE_NMI_SAFE_CMPXCHG
56	select ARCH_HAVE_TRACE_MMIO_ACCESS
57	select ARCH_INLINE_READ_LOCK if !PREEMPTION
58	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
59	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
60	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
62	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
63	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
64	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
66	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
67	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
70	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
71	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
73	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
74	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
76	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
77	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
82	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
83	select ARCH_KEEP_MEMBLOCK
84	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
85	select ARCH_USE_CMPXCHG_LOCKREF
86	select ARCH_USE_GNU_PROPERTY
87	select ARCH_USE_MEMTEST
88	select ARCH_USE_QUEUED_RWLOCKS
89	select ARCH_USE_QUEUED_SPINLOCKS
90	select ARCH_USE_SYM_ANNOTATIONS
91	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
92	select ARCH_SUPPORTS_HUGETLBFS
93	select ARCH_SUPPORTS_MEMORY_FAILURE
94	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
95	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
96	select ARCH_SUPPORTS_LTO_CLANG_THIN
97	select ARCH_SUPPORTS_CFI_CLANG
98	select ARCH_SUPPORTS_ATOMIC_RMW
99	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
100	select ARCH_SUPPORTS_NUMA_BALANCING
101	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
102	select ARCH_SUPPORTS_PER_VMA_LOCK
103	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
104	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
105	select ARCH_WANT_DEFAULT_BPF_JIT
106	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
107	select ARCH_WANT_FRAME_POINTERS
108	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
109	select ARCH_WANT_LD_ORPHAN_WARN
110	select ARCH_WANTS_EXECMEM_LATE if EXECMEM
111	select ARCH_WANTS_NO_INSTR
112	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
113	select ARCH_HAS_UBSAN
114	select ARM_AMBA
115	select ARM_ARCH_TIMER
116	select ARM_GIC
117	select AUDIT_ARCH_COMPAT_GENERIC
118	select ARM_GIC_V2M if PCI
119	select ARM_GIC_V3
120	select ARM_GIC_V3_ITS if PCI
121	select ARM_PSCI_FW
122	select BUILDTIME_TABLE_SORT
123	select CLONE_BACKWARDS
124	select COMMON_CLK
125	select CPU_PM if (SUSPEND || CPU_IDLE)
126	select CPUMASK_OFFSTACK if NR_CPUS > 256
127	select CRC32
128	select DCACHE_WORD_ACCESS
129	select DYNAMIC_FTRACE if FUNCTION_TRACER
130	select DMA_BOUNCE_UNALIGNED_KMALLOC
131	select DMA_DIRECT_REMAP
132	select EDAC_SUPPORT
133	select FRAME_POINTER
134	select FUNCTION_ALIGNMENT_4B
135	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
136	select GENERIC_ALLOCATOR
137	select GENERIC_ARCH_TOPOLOGY
138	select GENERIC_CLOCKEVENTS_BROADCAST
139	select GENERIC_CPU_AUTOPROBE
140	select GENERIC_CPU_DEVICES
141	select GENERIC_CPU_VULNERABILITIES
142	select GENERIC_EARLY_IOREMAP
143	select GENERIC_IDLE_POLL_SETUP
144	select GENERIC_IOREMAP
145	select GENERIC_IRQ_IPI
146	select GENERIC_IRQ_PROBE
147	select GENERIC_IRQ_SHOW
148	select GENERIC_IRQ_SHOW_LEVEL
149	select GENERIC_LIB_DEVMEM_IS_ALLOWED
150	select GENERIC_PCI_IOMAP
151	select GENERIC_PTDUMP
152	select GENERIC_SCHED_CLOCK
153	select GENERIC_SMP_IDLE_THREAD
154	select GENERIC_TIME_VSYSCALL
155	select GENERIC_GETTIMEOFDAY
156	select GENERIC_VDSO_TIME_NS
157	select HARDIRQS_SW_RESEND
158	select HAS_IOPORT
159	select HAVE_MOVE_PMD
160	select HAVE_MOVE_PUD
161	select HAVE_PCI
162	select HAVE_ACPI_APEI if (ACPI && EFI)
163	select HAVE_ALIGNED_STRUCT_PAGE
164	select HAVE_ARCH_AUDITSYSCALL
165	select HAVE_ARCH_BITREVERSE
166	select HAVE_ARCH_COMPILER_H
167	select HAVE_ARCH_HUGE_VMALLOC
168	select HAVE_ARCH_HUGE_VMAP
169	select HAVE_ARCH_JUMP_LABEL
170	select HAVE_ARCH_JUMP_LABEL_RELATIVE
171	select HAVE_ARCH_KASAN
172	select HAVE_ARCH_KASAN_VMALLOC
173	select HAVE_ARCH_KASAN_SW_TAGS
174	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
175	# Some instrumentation may be unsound, hence EXPERT
176	select HAVE_ARCH_KCSAN if EXPERT
177	select HAVE_ARCH_KFENCE
178	select HAVE_ARCH_KGDB
179	select HAVE_ARCH_MMAP_RND_BITS
180	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
181	select HAVE_ARCH_PREL32_RELOCATIONS
182	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
183	select HAVE_ARCH_SECCOMP_FILTER
184	select HAVE_ARCH_STACKLEAK
185	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
186	select HAVE_ARCH_TRACEHOOK
187	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
188	select HAVE_ARCH_VMAP_STACK
189	select HAVE_ARM_SMCCC
190	select HAVE_ASM_MODVERSIONS
191	select HAVE_EBPF_JIT
192	select HAVE_C_RECORDMCOUNT
193	select HAVE_CMPXCHG_DOUBLE
194	select HAVE_CMPXCHG_LOCAL
195	select HAVE_CONTEXT_TRACKING_USER
196	select HAVE_DEBUG_KMEMLEAK
197	select HAVE_DMA_CONTIGUOUS
198	select HAVE_DYNAMIC_FTRACE
199	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
200		if $(cc-option,-fpatchable-function-entry=2)
201	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
202		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
203	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
204		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
205		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
206	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
207		if DYNAMIC_FTRACE_WITH_ARGS
208	select HAVE_SAMPLE_FTRACE_DIRECT
209	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
210	select HAVE_EFFICIENT_UNALIGNED_ACCESS
211	select HAVE_GUP_FAST
212	select HAVE_FTRACE_MCOUNT_RECORD
213	select HAVE_FUNCTION_TRACER
214	select HAVE_FUNCTION_ERROR_INJECTION
215	select HAVE_FUNCTION_GRAPH_TRACER
216	select HAVE_FUNCTION_GRAPH_RETVAL
217	select HAVE_GCC_PLUGINS
218	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
219		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
220	select HAVE_HW_BREAKPOINT if PERF_EVENTS
221	select HAVE_IOREMAP_PROT
222	select HAVE_IRQ_TIME_ACCOUNTING
223	select HAVE_MOD_ARCH_SPECIFIC
224	select HAVE_NMI
225	select HAVE_PERF_EVENTS
226	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
227	select HAVE_PERF_REGS
228	select HAVE_PERF_USER_STACK_DUMP
229	select HAVE_PREEMPT_DYNAMIC_KEY
230	select HAVE_REGS_AND_STACK_ACCESS_API
231	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
232	select HAVE_FUNCTION_ARG_ACCESS_API
233	select MMU_GATHER_RCU_TABLE_FREE
234	select HAVE_RSEQ
235	select HAVE_RUST if CPU_LITTLE_ENDIAN
236	select HAVE_STACKPROTECTOR
237	select HAVE_SYSCALL_TRACEPOINTS
238	select HAVE_KPROBES
239	select HAVE_KRETPROBES
240	select HAVE_GENERIC_VDSO
241	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
242	select IRQ_DOMAIN
243	select IRQ_FORCED_THREADING
244	select KASAN_VMALLOC if KASAN
245	select LOCK_MM_AND_FIND_VMA
246	select MODULES_USE_ELF_RELA
247	select NEED_DMA_MAP_STATE
248	select NEED_SG_DMA_LENGTH
249	select OF
250	select OF_EARLY_FLATTREE
251	select PCI_DOMAINS_GENERIC if PCI
252	select PCI_ECAM if (ACPI && PCI)
253	select PCI_SYSCALL if PCI
254	select POWER_RESET
255	select POWER_SUPPLY
256	select SPARSE_IRQ
257	select SWIOTLB
258	select SYSCTL_EXCEPTION_TRACE
259	select THREAD_INFO_IN_TASK
260	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
261	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
262	select TRACE_IRQFLAGS_SUPPORT
263	select TRACE_IRQFLAGS_NMI_SUPPORT
264	select HAVE_SOFTIRQ_ON_OWN_STACK
265	select USER_STACKTRACE_SUPPORT
266	select VDSO_GETRANDOM
267	help
268	  ARM 64-bit (AArch64) Linux support.
269
270config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
271	def_bool CC_IS_CLANG
272	# https://github.com/ClangBuiltLinux/linux/issues/1507
273	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
274	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
275
276config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
277	def_bool CC_IS_GCC
278	depends on $(cc-option,-fpatchable-function-entry=2)
279	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
280
281config 64BIT
282	def_bool y
283
284config MMU
285	def_bool y
286
287config ARM64_CONT_PTE_SHIFT
288	int
289	default 5 if PAGE_SIZE_64KB
290	default 7 if PAGE_SIZE_16KB
291	default 4
292
293config ARM64_CONT_PMD_SHIFT
294	int
295	default 5 if PAGE_SIZE_64KB
296	default 5 if PAGE_SIZE_16KB
297	default 4
298
299config ARCH_MMAP_RND_BITS_MIN
300	default 14 if PAGE_SIZE_64KB
301	default 16 if PAGE_SIZE_16KB
302	default 18
303
304# max bits determined by the following formula:
305#  VA_BITS - PAGE_SHIFT - 3
306config ARCH_MMAP_RND_BITS_MAX
307	default 19 if ARM64_VA_BITS=36
308	default 24 if ARM64_VA_BITS=39
309	default 27 if ARM64_VA_BITS=42
310	default 30 if ARM64_VA_BITS=47
311	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
312	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
313	default 33 if ARM64_VA_BITS=48
314	default 14 if ARM64_64K_PAGES
315	default 16 if ARM64_16K_PAGES
316	default 18
317
318config ARCH_MMAP_RND_COMPAT_BITS_MIN
319	default 7 if ARM64_64K_PAGES
320	default 9 if ARM64_16K_PAGES
321	default 11
322
323config ARCH_MMAP_RND_COMPAT_BITS_MAX
324	default 16
325
326config NO_IOPORT_MAP
327	def_bool y if !PCI
328
329config STACKTRACE_SUPPORT
330	def_bool y
331
332config ILLEGAL_POINTER_VALUE
333	hex
334	default 0xdead000000000000
335
336config LOCKDEP_SUPPORT
337	def_bool y
338
339config GENERIC_BUG
340	def_bool y
341	depends on BUG
342
343config GENERIC_BUG_RELATIVE_POINTERS
344	def_bool y
345	depends on GENERIC_BUG
346
347config GENERIC_HWEIGHT
348	def_bool y
349
350config GENERIC_CSUM
351	def_bool y
352
353config GENERIC_CALIBRATE_DELAY
354	def_bool y
355
356config SMP
357	def_bool y
358
359config KERNEL_MODE_NEON
360	def_bool y
361
362config FIX_EARLYCON_MEM
363	def_bool y
364
365config PGTABLE_LEVELS
366	int
367	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
368	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
369	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
370	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
371	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
372	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
373	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
374	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
375
376config ARCH_SUPPORTS_UPROBES
377	def_bool y
378
379config ARCH_PROC_KCORE_TEXT
380	def_bool y
381
382config BROKEN_GAS_INST
383	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
384
385config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
386	bool
387	# Clang's __builtin_return_address() strips the PAC since 12.0.0
388	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
389	default y if CC_IS_CLANG
390	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
391	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
392	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
393	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
394	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
395	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
396	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
397	default n
398
399config KASAN_SHADOW_OFFSET
400	hex
401	depends on KASAN_GENERIC || KASAN_SW_TAGS
402	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
403	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
404	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
405	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
406	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
407	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
408	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
409	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
410	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
411	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
412	default 0xffffffffffffffff
413
414config UNWIND_TABLES
415	bool
416
417source "arch/arm64/Kconfig.platforms"
418
419menu "Kernel Features"
420
421menu "ARM errata workarounds via the alternatives framework"
422
423config AMPERE_ERRATUM_AC03_CPU_38
424        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
425	default y
426	help
427	  This option adds an alternative code sequence to work around Ampere
428	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
429
430	  The affected design reports FEAT_HAFDBS as not implemented in
431	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
432	  as required by the architecture. The unadvertised HAFDBS
433	  implementation suffers from an additional erratum where hardware
434	  A/D updates can occur after a PTE has been marked invalid.
435
436	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
437	  which avoids enabling unadvertised hardware Access Flag management
438	  at stage-2.
439
440	  If unsure, say Y.
441
442config ARM64_WORKAROUND_CLEAN_CACHE
443	bool
444
445config ARM64_ERRATUM_826319
446	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
447	default y
448	select ARM64_WORKAROUND_CLEAN_CACHE
449	help
450	  This option adds an alternative code sequence to work around ARM
451	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
452	  AXI master interface and an L2 cache.
453
454	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
455	  and is unable to accept a certain write via this interface, it will
456	  not progress on read data presented on the read data channel and the
457	  system can deadlock.
458
459	  The workaround promotes data cache clean instructions to
460	  data cache clean-and-invalidate.
461	  Please note that this does not necessarily enable the workaround,
462	  as it depends on the alternative framework, which will only patch
463	  the kernel if an affected CPU is detected.
464
465	  If unsure, say Y.
466
467config ARM64_ERRATUM_827319
468	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
469	default y
470	select ARM64_WORKAROUND_CLEAN_CACHE
471	help
472	  This option adds an alternative code sequence to work around ARM
473	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
474	  master interface and an L2 cache.
475
476	  Under certain conditions this erratum can cause a clean line eviction
477	  to occur at the same time as another transaction to the same address
478	  on the AMBA 5 CHI interface, which can cause data corruption if the
479	  interconnect reorders the two transactions.
480
481	  The workaround promotes data cache clean instructions to
482	  data cache clean-and-invalidate.
483	  Please note that this does not necessarily enable the workaround,
484	  as it depends on the alternative framework, which will only patch
485	  the kernel if an affected CPU is detected.
486
487	  If unsure, say Y.
488
489config ARM64_ERRATUM_824069
490	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
491	default y
492	select ARM64_WORKAROUND_CLEAN_CACHE
493	help
494	  This option adds an alternative code sequence to work around ARM
495	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
496	  to a coherent interconnect.
497
498	  If a Cortex-A53 processor is executing a store or prefetch for
499	  write instruction at the same time as a processor in another
500	  cluster is executing a cache maintenance operation to the same
501	  address, then this erratum might cause a clean cache line to be
502	  incorrectly marked as dirty.
503
504	  The workaround promotes data cache clean instructions to
505	  data cache clean-and-invalidate.
506	  Please note that this option does not necessarily enable the
507	  workaround, as it depends on the alternative framework, which will
508	  only patch the kernel if an affected CPU is detected.
509
510	  If unsure, say Y.
511
512config ARM64_ERRATUM_819472
513	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
514	default y
515	select ARM64_WORKAROUND_CLEAN_CACHE
516	help
517	  This option adds an alternative code sequence to work around ARM
518	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
519	  present when it is connected to a coherent interconnect.
520
521	  If the processor is executing a load and store exclusive sequence at
522	  the same time as a processor in another cluster is executing a cache
523	  maintenance operation to the same address, then this erratum might
524	  cause data corruption.
525
526	  The workaround promotes data cache clean instructions to
527	  data cache clean-and-invalidate.
528	  Please note that this does not necessarily enable the workaround,
529	  as it depends on the alternative framework, which will only patch
530	  the kernel if an affected CPU is detected.
531
532	  If unsure, say Y.
533
534config ARM64_ERRATUM_832075
535	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
536	default y
537	help
538	  This option adds an alternative code sequence to work around ARM
539	  erratum 832075 on Cortex-A57 parts up to r1p2.
540
541	  Affected Cortex-A57 parts might deadlock when exclusive load/store
542	  instructions to Write-Back memory are mixed with Device loads.
543
544	  The workaround is to promote device loads to use Load-Acquire
545	  semantics.
546	  Please note that this does not necessarily enable the workaround,
547	  as it depends on the alternative framework, which will only patch
548	  the kernel if an affected CPU is detected.
549
550	  If unsure, say Y.
551
552config ARM64_ERRATUM_834220
553	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
554	depends on KVM
555	help
556	  This option adds an alternative code sequence to work around ARM
557	  erratum 834220 on Cortex-A57 parts up to r1p2.
558
559	  Affected Cortex-A57 parts might report a Stage 2 translation
560	  fault as the result of a Stage 1 fault for load crossing a
561	  page boundary when there is a permission or device memory
562	  alignment fault at Stage 1 and a translation fault at Stage 2.
563
564	  The workaround is to verify that the Stage 1 translation
565	  doesn't generate a fault before handling the Stage 2 fault.
566	  Please note that this does not necessarily enable the workaround,
567	  as it depends on the alternative framework, which will only patch
568	  the kernel if an affected CPU is detected.
569
570	  If unsure, say N.
571
572config ARM64_ERRATUM_1742098
573	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
574	depends on COMPAT
575	default y
576	help
577	  This option removes the AES hwcap for aarch32 user-space to
578	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
579
580	  Affected parts may corrupt the AES state if an interrupt is
581	  taken between a pair of AES instructions. These instructions
582	  are only present if the cryptography extensions are present.
583	  All software should have a fallback implementation for CPUs
584	  that don't implement the cryptography extensions.
585
586	  If unsure, say Y.
587
588config ARM64_ERRATUM_845719
589	bool "Cortex-A53: 845719: a load might read incorrect data"
590	depends on COMPAT
591	default y
592	help
593	  This option adds an alternative code sequence to work around ARM
594	  erratum 845719 on Cortex-A53 parts up to r0p4.
595
596	  When running a compat (AArch32) userspace on an affected Cortex-A53
597	  part, a load at EL0 from a virtual address that matches the bottom 32
598	  bits of the virtual address used by a recent load at (AArch64) EL1
599	  might return incorrect data.
600
601	  The workaround is to write the contextidr_el1 register on exception
602	  return to a 32-bit task.
603	  Please note that this does not necessarily enable the workaround,
604	  as it depends on the alternative framework, which will only patch
605	  the kernel if an affected CPU is detected.
606
607	  If unsure, say Y.
608
609config ARM64_ERRATUM_843419
610	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
611	default y
612	help
613	  This option links the kernel with '--fix-cortex-a53-843419' and
614	  enables PLT support to replace certain ADRP instructions, which can
615	  cause subsequent memory accesses to use an incorrect address on
616	  Cortex-A53 parts up to r0p4.
617
618	  If unsure, say Y.
619
620config ARM64_LD_HAS_FIX_ERRATUM_843419
621	def_bool $(ld-option,--fix-cortex-a53-843419)
622
623config ARM64_ERRATUM_1024718
624	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
625	default y
626	help
627	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
628
629	  Affected Cortex-A55 cores (all revisions) could cause incorrect
630	  update of the hardware dirty bit when the DBM/AP bits are updated
631	  without a break-before-make. The workaround is to disable the usage
632	  of hardware DBM locally on the affected cores. CPUs not affected by
633	  this erratum will continue to use the feature.
634
635	  If unsure, say Y.
636
637config ARM64_ERRATUM_1418040
638	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
639	default y
640	depends on COMPAT
641	help
642	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
643	  errata 1188873 and 1418040.
644
645	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
646	  cause register corruption when accessing the timer registers
647	  from AArch32 userspace.
648
649	  If unsure, say Y.
650
651config ARM64_WORKAROUND_SPECULATIVE_AT
652	bool
653
654config ARM64_ERRATUM_1165522
655	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
656	default y
657	select ARM64_WORKAROUND_SPECULATIVE_AT
658	help
659	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
660
661	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
662	  corrupted TLBs by speculating an AT instruction during a guest
663	  context switch.
664
665	  If unsure, say Y.
666
667config ARM64_ERRATUM_1319367
668	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
669	default y
670	select ARM64_WORKAROUND_SPECULATIVE_AT
671	help
672	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
673	  and A72 erratum 1319367
674
675	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
676	  speculating an AT instruction during a guest context switch.
677
678	  If unsure, say Y.
679
680config ARM64_ERRATUM_1530923
681	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
682	default y
683	select ARM64_WORKAROUND_SPECULATIVE_AT
684	help
685	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
686
687	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
688	  corrupted TLBs by speculating an AT instruction during a guest
689	  context switch.
690
691	  If unsure, say Y.
692
693config ARM64_WORKAROUND_REPEAT_TLBI
694	bool
695
696config ARM64_ERRATUM_2441007
697	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
698	select ARM64_WORKAROUND_REPEAT_TLBI
699	help
700	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
701
702	  Under very rare circumstances, affected Cortex-A55 CPUs
703	  may not handle a race between a break-before-make sequence on one
704	  CPU, and another CPU accessing the same page. This could allow a
705	  store to a page that has been unmapped.
706
707	  Work around this by adding the affected CPUs to the list that needs
708	  TLB sequences to be done twice.
709
710	  If unsure, say N.
711
712config ARM64_ERRATUM_1286807
713	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
714	select ARM64_WORKAROUND_REPEAT_TLBI
715	help
716	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
717
718	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
719	  address for a cacheable mapping of a location is being
720	  accessed by a core while another core is remapping the virtual
721	  address to a new physical page using the recommended
722	  break-before-make sequence, then under very rare circumstances
723	  TLBI+DSB completes before a read using the translation being
724	  invalidated has been observed by other observers. The
725	  workaround repeats the TLBI+DSB operation.
726
727	  If unsure, say N.
728
729config ARM64_ERRATUM_1463225
730	bool "Cortex-A76: Software Step might prevent interrupt recognition"
731	default y
732	help
733	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
734
735	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
736	  of a system call instruction (SVC) can prevent recognition of
737	  subsequent interrupts when software stepping is disabled in the
738	  exception handler of the system call and either kernel debugging
739	  is enabled or VHE is in use.
740
741	  Work around the erratum by triggering a dummy step exception
742	  when handling a system call from a task that is being stepped
743	  in a VHE configuration of the kernel.
744
745	  If unsure, say Y.
746
747config ARM64_ERRATUM_1542419
748	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
749	help
750	  This option adds a workaround for ARM Neoverse-N1 erratum
751	  1542419.
752
753	  Affected Neoverse-N1 cores could execute a stale instruction when
754	  modified by another CPU. The workaround depends on a firmware
755	  counterpart.
756
757	  Workaround the issue by hiding the DIC feature from EL0. This
758	  forces user-space to perform cache maintenance.
759
760	  If unsure, say N.
761
762config ARM64_ERRATUM_1508412
763	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
764	default y
765	help
766	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
767
768	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
769	  of a store-exclusive or read of PAR_EL1 and a load with device or
770	  non-cacheable memory attributes. The workaround depends on a firmware
771	  counterpart.
772
773	  KVM guests must also have the workaround implemented or they can
774	  deadlock the system.
775
776	  Work around the issue by inserting DMB SY barriers around PAR_EL1
777	  register reads and warning KVM users. The DMB barrier is sufficient
778	  to prevent a speculative PAR_EL1 read.
779
780	  If unsure, say Y.
781
782config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
783	bool
784
785config ARM64_ERRATUM_2051678
786	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
787	default y
788	help
789	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
790	  Affected Cortex-A510 might not respect the ordering rules for
791	  hardware update of the page table's dirty bit. The workaround
792	  is to not enable the feature on affected CPUs.
793
794	  If unsure, say Y.
795
796config ARM64_ERRATUM_2077057
797	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
798	default y
799	help
800	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
801	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
802	  expected, but a Pointer Authentication trap is taken instead. The
803	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
804	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
805
806	  This can only happen when EL2 is stepping EL1.
807
808	  When these conditions occur, the SPSR_EL2 value is unchanged from the
809	  previous guest entry, and can be restored from the in-memory copy.
810
811	  If unsure, say Y.
812
813config ARM64_ERRATUM_2658417
814	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
815	default y
816	help
817	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
818	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
819	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
820	  A510 CPUs are using shared neon hardware. As the sharing is not
821	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
822	  user-space should not be using these instructions.
823
824	  If unsure, say Y.
825
826config ARM64_ERRATUM_2119858
827	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
828	default y
829	depends on CORESIGHT_TRBE
830	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
831	help
832	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
833
834	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
835	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
836	  the event of a WRAP event.
837
838	  Work around the issue by always making sure we move the TRBPTR_EL1 by
839	  256 bytes before enabling the buffer and filling the first 256 bytes of
840	  the buffer with ETM ignore packets upon disabling.
841
842	  If unsure, say Y.
843
844config ARM64_ERRATUM_2139208
845	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
846	default y
847	depends on CORESIGHT_TRBE
848	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
849	help
850	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
851
852	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
853	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
854	  the event of a WRAP event.
855
856	  Work around the issue by always making sure we move the TRBPTR_EL1 by
857	  256 bytes before enabling the buffer and filling the first 256 bytes of
858	  the buffer with ETM ignore packets upon disabling.
859
860	  If unsure, say Y.
861
862config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
863	bool
864
865config ARM64_ERRATUM_2054223
866	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
867	default y
868	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
869	help
870	  Enable workaround for ARM Cortex-A710 erratum 2054223
871
872	  Affected cores may fail to flush the trace data on a TSB instruction, when
873	  the PE is in trace prohibited state. This will cause losing a few bytes
874	  of the trace cached.
875
876	  Workaround is to issue two TSB consecutively on affected cores.
877
878	  If unsure, say Y.
879
880config ARM64_ERRATUM_2067961
881	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
882	default y
883	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
884	help
885	  Enable workaround for ARM Neoverse-N2 erratum 2067961
886
887	  Affected cores may fail to flush the trace data on a TSB instruction, when
888	  the PE is in trace prohibited state. This will cause losing a few bytes
889	  of the trace cached.
890
891	  Workaround is to issue two TSB consecutively on affected cores.
892
893	  If unsure, say Y.
894
895config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
896	bool
897
898config ARM64_ERRATUM_2253138
899	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
900	depends on CORESIGHT_TRBE
901	default y
902	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
903	help
904	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
905
906	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
907	  for TRBE. Under some conditions, the TRBE might generate a write to the next
908	  virtually addressed page following the last page of the TRBE address space
909	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
910
911	  Work around this in the driver by always making sure that there is a
912	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
913
914	  If unsure, say Y.
915
916config ARM64_ERRATUM_2224489
917	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
918	depends on CORESIGHT_TRBE
919	default y
920	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
921	help
922	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
923
924	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
925	  for TRBE. Under some conditions, the TRBE might generate a write to the next
926	  virtually addressed page following the last page of the TRBE address space
927	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
928
929	  Work around this in the driver by always making sure that there is a
930	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
931
932	  If unsure, say Y.
933
934config ARM64_ERRATUM_2441009
935	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
936	select ARM64_WORKAROUND_REPEAT_TLBI
937	help
938	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
939
940	  Under very rare circumstances, affected Cortex-A510 CPUs
941	  may not handle a race between a break-before-make sequence on one
942	  CPU, and another CPU accessing the same page. This could allow a
943	  store to a page that has been unmapped.
944
945	  Work around this by adding the affected CPUs to the list that needs
946	  TLB sequences to be done twice.
947
948	  If unsure, say N.
949
950config ARM64_ERRATUM_2064142
951	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
952	depends on CORESIGHT_TRBE
953	default y
954	help
955	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
956
957	  Affected Cortex-A510 core might fail to write into system registers after the
958	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
959	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
960	  and TRBTRG_EL1 will be ignored and will not be effected.
961
962	  Work around this in the driver by executing TSB CSYNC and DSB after collection
963	  is stopped and before performing a system register write to one of the affected
964	  registers.
965
966	  If unsure, say Y.
967
968config ARM64_ERRATUM_2038923
969	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
970	depends on CORESIGHT_TRBE
971	default y
972	help
973	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
974
975	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
976	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
977	  might be corrupted. This happens after TRBE buffer has been enabled by setting
978	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
979	  execution changes from a context, in which trace is prohibited to one where it
980	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
981	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
982	  the trace buffer state might be corrupted.
983
984	  Work around this in the driver by preventing an inconsistent view of whether the
985	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
986	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
987	  two ISB instructions if no ERET is to take place.
988
989	  If unsure, say Y.
990
991config ARM64_ERRATUM_1902691
992	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
993	depends on CORESIGHT_TRBE
994	default y
995	help
996	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
997
998	  Affected Cortex-A510 core might cause trace data corruption, when being written
999	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1000	  trace data.
1001
1002	  Work around this problem in the driver by just preventing TRBE initialization on
1003	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1004	  on such implementations. This will cover the kernel for any firmware that doesn't
1005	  do this already.
1006
1007	  If unsure, say Y.
1008
1009config ARM64_ERRATUM_2457168
1010	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1011	depends on ARM64_AMU_EXTN
1012	default y
1013	help
1014	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1015
1016	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1017	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1018	  incorrectly giving a significantly higher output value.
1019
1020	  Work around this problem by returning 0 when reading the affected counter in
1021	  key locations that results in disabling all users of this counter. This effect
1022	  is the same to firmware disabling affected counters.
1023
1024	  If unsure, say Y.
1025
1026config ARM64_ERRATUM_2645198
1027	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1028	default y
1029	help
1030	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1031
1032	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1033	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1034	  next instruction abort caused by permission fault.
1035
1036	  Only user-space does executable to non-executable permission transition via
1037	  mprotect() system call. Workaround the problem by doing a break-before-make
1038	  TLB invalidation, for all changes to executable user space mappings.
1039
1040	  If unsure, say Y.
1041
1042config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1043	bool
1044
1045config ARM64_ERRATUM_2966298
1046	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1047	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1048	default y
1049	help
1050	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1051
1052	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1053	  load might leak data from a privileged level via a cache side channel.
1054
1055	  Work around this problem by executing a TLBI before returning to EL0.
1056
1057	  If unsure, say Y.
1058
1059config ARM64_ERRATUM_3117295
1060	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1061	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1062	default y
1063	help
1064	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1065
1066	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1067	  load might leak data from a privileged level via a cache side channel.
1068
1069	  Work around this problem by executing a TLBI before returning to EL0.
1070
1071	  If unsure, say Y.
1072
1073config ARM64_ERRATUM_3194386
1074	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1075	default y
1076	help
1077	  This option adds the workaround for the following errata:
1078
1079	  * ARM Cortex-A76 erratum 3324349
1080	  * ARM Cortex-A77 erratum 3324348
1081	  * ARM Cortex-A78 erratum 3324344
1082	  * ARM Cortex-A78C erratum 3324346
1083	  * ARM Cortex-A78C erratum 3324347
1084	  * ARM Cortex-A710 erratam 3324338
1085	  * ARM Cortex-A720 erratum 3456091
1086	  * ARM Cortex-A725 erratum 3456106
1087	  * ARM Cortex-X1 erratum 3324344
1088	  * ARM Cortex-X1C erratum 3324346
1089	  * ARM Cortex-X2 erratum 3324338
1090	  * ARM Cortex-X3 erratum 3324335
1091	  * ARM Cortex-X4 erratum 3194386
1092	  * ARM Cortex-X925 erratum 3324334
1093	  * ARM Neoverse-N1 erratum 3324349
1094	  * ARM Neoverse N2 erratum 3324339
1095	  * ARM Neoverse-V1 erratum 3324341
1096	  * ARM Neoverse V2 erratum 3324336
1097	  * ARM Neoverse-V3 erratum 3312417
1098
1099	  On affected cores "MSR SSBS, #0" instructions may not affect
1100	  subsequent speculative instructions, which may permit unexepected
1101	  speculative store bypassing.
1102
1103	  Work around this problem by placing a Speculation Barrier (SB) or
1104	  Instruction Synchronization Barrier (ISB) after kernel changes to
1105	  SSBS. The presence of the SSBS special-purpose register is hidden
1106	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1107	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1108
1109	  If unsure, say Y.
1110
1111config CAVIUM_ERRATUM_22375
1112	bool "Cavium erratum 22375, 24313"
1113	default y
1114	help
1115	  Enable workaround for errata 22375 and 24313.
1116
1117	  This implements two gicv3-its errata workarounds for ThunderX. Both
1118	  with a small impact affecting only ITS table allocation.
1119
1120	    erratum 22375: only alloc 8MB table size
1121	    erratum 24313: ignore memory access type
1122
1123	  The fixes are in ITS initialization and basically ignore memory access
1124	  type and table size provided by the TYPER and BASER registers.
1125
1126	  If unsure, say Y.
1127
1128config CAVIUM_ERRATUM_23144
1129	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1130	depends on NUMA
1131	default y
1132	help
1133	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1134
1135	  If unsure, say Y.
1136
1137config CAVIUM_ERRATUM_23154
1138	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1139	default y
1140	help
1141	  The ThunderX GICv3 implementation requires a modified version for
1142	  reading the IAR status to ensure data synchronization
1143	  (access to icc_iar1_el1 is not sync'ed before and after).
1144
1145	  It also suffers from erratum 38545 (also present on Marvell's
1146	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1147	  spuriously presented to the CPU interface.
1148
1149	  If unsure, say Y.
1150
1151config CAVIUM_ERRATUM_27456
1152	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1153	default y
1154	help
1155	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1156	  instructions may cause the icache to become corrupted if it
1157	  contains data for a non-current ASID.  The fix is to
1158	  invalidate the icache when changing the mm context.
1159
1160	  If unsure, say Y.
1161
1162config CAVIUM_ERRATUM_30115
1163	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1164	default y
1165	help
1166	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1167	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1168	  interrupts in host. Trapping both GICv3 group-0 and group-1
1169	  accesses sidesteps the issue.
1170
1171	  If unsure, say Y.
1172
1173config CAVIUM_TX2_ERRATUM_219
1174	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1175	default y
1176	help
1177	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1178	  TTBR update and the corresponding context synchronizing operation can
1179	  cause a spurious Data Abort to be delivered to any hardware thread in
1180	  the CPU core.
1181
1182	  Work around the issue by avoiding the problematic code sequence and
1183	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1184	  trap handler performs the corresponding register access, skips the
1185	  instruction and ensures context synchronization by virtue of the
1186	  exception return.
1187
1188	  If unsure, say Y.
1189
1190config FUJITSU_ERRATUM_010001
1191	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1192	default y
1193	help
1194	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1195	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1196	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1197	  This fault occurs under a specific hardware condition when a
1198	  load/store instruction performs an address translation using:
1199	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1200	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1201	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1202	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1203
1204	  The workaround is to ensure these bits are clear in TCR_ELx.
1205	  The workaround only affects the Fujitsu-A64FX.
1206
1207	  If unsure, say Y.
1208
1209config HISILICON_ERRATUM_161600802
1210	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1211	default y
1212	help
1213	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1214	  when issued ITS commands such as VMOVP and VMAPP, and requires
1215	  a 128kB offset to be applied to the target address in this commands.
1216
1217	  If unsure, say Y.
1218
1219config QCOM_FALKOR_ERRATUM_1003
1220	bool "Falkor E1003: Incorrect translation due to ASID change"
1221	default y
1222	help
1223	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1224	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1225	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1226	  then only for entries in the walk cache, since the leaf translation
1227	  is unchanged. Work around the erratum by invalidating the walk cache
1228	  entries for the trampoline before entering the kernel proper.
1229
1230config QCOM_FALKOR_ERRATUM_1009
1231	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1232	default y
1233	select ARM64_WORKAROUND_REPEAT_TLBI
1234	help
1235	  On Falkor v1, the CPU may prematurely complete a DSB following a
1236	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1237	  one more time to fix the issue.
1238
1239	  If unsure, say Y.
1240
1241config QCOM_QDF2400_ERRATUM_0065
1242	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1243	default y
1244	help
1245	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1246	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1247	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1248
1249	  If unsure, say Y.
1250
1251config QCOM_FALKOR_ERRATUM_E1041
1252	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1253	default y
1254	help
1255	  Falkor CPU may speculatively fetch instructions from an improper
1256	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1257	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1258
1259	  If unsure, say Y.
1260
1261config NVIDIA_CARMEL_CNP_ERRATUM
1262	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1263	default y
1264	help
1265	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1266	  invalidate shared TLB entries installed by a different core, as it would
1267	  on standard ARM cores.
1268
1269	  If unsure, say Y.
1270
1271config ROCKCHIP_ERRATUM_3588001
1272	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1273	default y
1274	help
1275	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1276	  This means, that its sharability feature may not be used, even though it
1277	  is supported by the IP itself.
1278
1279	  If unsure, say Y.
1280
1281config SOCIONEXT_SYNQUACER_PREITS
1282	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1283	default y
1284	help
1285	  Socionext Synquacer SoCs implement a separate h/w block to generate
1286	  MSI doorbell writes with non-zero values for the device ID.
1287
1288	  If unsure, say Y.
1289
1290endmenu # "ARM errata workarounds via the alternatives framework"
1291
1292choice
1293	prompt "Page size"
1294	default ARM64_4K_PAGES
1295	help
1296	  Page size (translation granule) configuration.
1297
1298config ARM64_4K_PAGES
1299	bool "4KB"
1300	select HAVE_PAGE_SIZE_4KB
1301	help
1302	  This feature enables 4KB pages support.
1303
1304config ARM64_16K_PAGES
1305	bool "16KB"
1306	select HAVE_PAGE_SIZE_16KB
1307	help
1308	  The system will use 16KB pages support. AArch32 emulation
1309	  requires applications compiled with 16K (or a multiple of 16K)
1310	  aligned segments.
1311
1312config ARM64_64K_PAGES
1313	bool "64KB"
1314	select HAVE_PAGE_SIZE_64KB
1315	help
1316	  This feature enables 64KB pages support (4KB by default)
1317	  allowing only two levels of page tables and faster TLB
1318	  look-up. AArch32 emulation requires applications compiled
1319	  with 64K aligned segments.
1320
1321endchoice
1322
1323choice
1324	prompt "Virtual address space size"
1325	default ARM64_VA_BITS_52
1326	help
1327	  Allows choosing one of multiple possible virtual address
1328	  space sizes. The level of translation table is determined by
1329	  a combination of page size and virtual address space size.
1330
1331config ARM64_VA_BITS_36
1332	bool "36-bit" if EXPERT
1333	depends on PAGE_SIZE_16KB
1334
1335config ARM64_VA_BITS_39
1336	bool "39-bit"
1337	depends on PAGE_SIZE_4KB
1338
1339config ARM64_VA_BITS_42
1340	bool "42-bit"
1341	depends on PAGE_SIZE_64KB
1342
1343config ARM64_VA_BITS_47
1344	bool "47-bit"
1345	depends on PAGE_SIZE_16KB
1346
1347config ARM64_VA_BITS_48
1348	bool "48-bit"
1349
1350config ARM64_VA_BITS_52
1351	bool "52-bit"
1352	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1353	help
1354	  Enable 52-bit virtual addressing for userspace when explicitly
1355	  requested via a hint to mmap(). The kernel will also use 52-bit
1356	  virtual addresses for its own mappings (provided HW support for
1357	  this feature is available, otherwise it reverts to 48-bit).
1358
1359	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1360	  ARMv8.3 Pointer Authentication will result in the PAC being
1361	  reduced from 7 bits to 3 bits, which may have a significant
1362	  impact on its susceptibility to brute-force attacks.
1363
1364	  If unsure, select 48-bit virtual addressing instead.
1365
1366endchoice
1367
1368config ARM64_FORCE_52BIT
1369	bool "Force 52-bit virtual addresses for userspace"
1370	depends on ARM64_VA_BITS_52 && EXPERT
1371	help
1372	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1373	  to maintain compatibility with older software by providing 48-bit VAs
1374	  unless a hint is supplied to mmap.
1375
1376	  This configuration option disables the 48-bit compatibility logic, and
1377	  forces all userspace addresses to be 52-bit on HW that supports it. One
1378	  should only enable this configuration option for stress testing userspace
1379	  memory management code. If unsure say N here.
1380
1381config ARM64_VA_BITS
1382	int
1383	default 36 if ARM64_VA_BITS_36
1384	default 39 if ARM64_VA_BITS_39
1385	default 42 if ARM64_VA_BITS_42
1386	default 47 if ARM64_VA_BITS_47
1387	default 48 if ARM64_VA_BITS_48
1388	default 52 if ARM64_VA_BITS_52
1389
1390choice
1391	prompt "Physical address space size"
1392	default ARM64_PA_BITS_48
1393	help
1394	  Choose the maximum physical address range that the kernel will
1395	  support.
1396
1397config ARM64_PA_BITS_48
1398	bool "48-bit"
1399	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1400
1401config ARM64_PA_BITS_52
1402	bool "52-bit"
1403	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1404	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1405	help
1406	  Enable support for a 52-bit physical address space, introduced as
1407	  part of the ARMv8.2-LPA extension.
1408
1409	  With this enabled, the kernel will also continue to work on CPUs that
1410	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1411	  minor performance overhead).
1412
1413endchoice
1414
1415config ARM64_PA_BITS
1416	int
1417	default 48 if ARM64_PA_BITS_48
1418	default 52 if ARM64_PA_BITS_52
1419
1420config ARM64_LPA2
1421	def_bool y
1422	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1423
1424choice
1425	prompt "Endianness"
1426	default CPU_LITTLE_ENDIAN
1427	help
1428	  Select the endianness of data accesses performed by the CPU. Userspace
1429	  applications will need to be compiled and linked for the endianness
1430	  that is selected here.
1431
1432config CPU_BIG_ENDIAN
1433	bool "Build big-endian kernel"
1434	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1435	depends on AS_IS_GNU || AS_VERSION >= 150000
1436	help
1437	  Say Y if you plan on running a kernel with a big-endian userspace.
1438
1439config CPU_LITTLE_ENDIAN
1440	bool "Build little-endian kernel"
1441	help
1442	  Say Y if you plan on running a kernel with a little-endian userspace.
1443	  This is usually the case for distributions targeting arm64.
1444
1445endchoice
1446
1447config SCHED_MC
1448	bool "Multi-core scheduler support"
1449	help
1450	  Multi-core scheduler support improves the CPU scheduler's decision
1451	  making when dealing with multi-core CPU chips at a cost of slightly
1452	  increased overhead in some places. If unsure say N here.
1453
1454config SCHED_CLUSTER
1455	bool "Cluster scheduler support"
1456	help
1457	  Cluster scheduler support improves the CPU scheduler's decision
1458	  making when dealing with machines that have clusters of CPUs.
1459	  Cluster usually means a couple of CPUs which are placed closely
1460	  by sharing mid-level caches, last-level cache tags or internal
1461	  busses.
1462
1463config SCHED_SMT
1464	bool "SMT scheduler support"
1465	help
1466	  Improves the CPU scheduler's decision making when dealing with
1467	  MultiThreading at a cost of slightly increased overhead in some
1468	  places. If unsure say N here.
1469
1470config NR_CPUS
1471	int "Maximum number of CPUs (2-4096)"
1472	range 2 4096
1473	default "512"
1474
1475config HOTPLUG_CPU
1476	bool "Support for hot-pluggable CPUs"
1477	select GENERIC_IRQ_MIGRATION
1478	help
1479	  Say Y here to experiment with turning CPUs off and on.  CPUs
1480	  can be controlled through /sys/devices/system/cpu.
1481
1482# Common NUMA Features
1483config NUMA
1484	bool "NUMA Memory Allocation and Scheduler Support"
1485	select GENERIC_ARCH_NUMA
1486	select OF_NUMA
1487	select HAVE_SETUP_PER_CPU_AREA
1488	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1489	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1490	select USE_PERCPU_NUMA_NODE_ID
1491	help
1492	  Enable NUMA (Non-Uniform Memory Access) support.
1493
1494	  The kernel will try to allocate memory used by a CPU on the
1495	  local memory of the CPU and add some more
1496	  NUMA awareness to the kernel.
1497
1498config NODES_SHIFT
1499	int "Maximum NUMA Nodes (as a power of 2)"
1500	range 1 10
1501	default "4"
1502	depends on NUMA
1503	help
1504	  Specify the maximum number of NUMA Nodes available on the target
1505	  system.  Increases memory reserved to accommodate various tables.
1506
1507source "kernel/Kconfig.hz"
1508
1509config ARCH_SPARSEMEM_ENABLE
1510	def_bool y
1511	select SPARSEMEM_VMEMMAP_ENABLE
1512	select SPARSEMEM_VMEMMAP
1513
1514config HW_PERF_EVENTS
1515	def_bool y
1516	depends on ARM_PMU
1517
1518# Supported by clang >= 7.0 or GCC >= 12.0.0
1519config CC_HAVE_SHADOW_CALL_STACK
1520	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1521
1522config PARAVIRT
1523	bool "Enable paravirtualization code"
1524	help
1525	  This changes the kernel so it can modify itself when it is run
1526	  under a hypervisor, potentially improving performance significantly
1527	  over full virtualization.
1528
1529config PARAVIRT_TIME_ACCOUNTING
1530	bool "Paravirtual steal time accounting"
1531	select PARAVIRT
1532	help
1533	  Select this option to enable fine granularity task steal time
1534	  accounting. Time spent executing other tasks in parallel with
1535	  the current vCPU is discounted from the vCPU power. To account for
1536	  that, there can be a small performance impact.
1537
1538	  If in doubt, say N here.
1539
1540config ARCH_SUPPORTS_KEXEC
1541	def_bool PM_SLEEP_SMP
1542
1543config ARCH_SUPPORTS_KEXEC_FILE
1544	def_bool y
1545
1546config ARCH_SELECTS_KEXEC_FILE
1547	def_bool y
1548	depends on KEXEC_FILE
1549	select HAVE_IMA_KEXEC if IMA
1550
1551config ARCH_SUPPORTS_KEXEC_SIG
1552	def_bool y
1553
1554config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1555	def_bool y
1556
1557config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1558	def_bool y
1559
1560config ARCH_SUPPORTS_CRASH_DUMP
1561	def_bool y
1562
1563config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1564	def_bool CRASH_RESERVE
1565
1566config TRANS_TABLE
1567	def_bool y
1568	depends on HIBERNATION || KEXEC_CORE
1569
1570config XEN_DOM0
1571	def_bool y
1572	depends on XEN
1573
1574config XEN
1575	bool "Xen guest support on ARM64"
1576	depends on ARM64 && OF
1577	select SWIOTLB_XEN
1578	select PARAVIRT
1579	help
1580	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1581
1582# include/linux/mmzone.h requires the following to be true:
1583#
1584#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1585#
1586# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1587#
1588#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1589# ----+-------------------+--------------+----------------------+-------------------------+
1590# 4K  |       27          |      12      |       15             |         10              |
1591# 16K |       27          |      14      |       13             |         11              |
1592# 64K |       29          |      16      |       13             |         13              |
1593config ARCH_FORCE_MAX_ORDER
1594	int
1595	default "13" if ARM64_64K_PAGES
1596	default "11" if ARM64_16K_PAGES
1597	default "10"
1598	help
1599	  The kernel page allocator limits the size of maximal physically
1600	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1601	  defines the maximal power of two of number of pages that can be
1602	  allocated as a single contiguous block. This option allows
1603	  overriding the default setting when ability to allocate very
1604	  large blocks of physically contiguous memory is required.
1605
1606	  The maximal size of allocation cannot exceed the size of the
1607	  section, so the value of MAX_PAGE_ORDER should satisfy
1608
1609	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1610
1611	  Don't change if unsure.
1612
1613config UNMAP_KERNEL_AT_EL0
1614	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1615	default y
1616	help
1617	  Speculation attacks against some high-performance processors can
1618	  be used to bypass MMU permission checks and leak kernel data to
1619	  userspace. This can be defended against by unmapping the kernel
1620	  when running in userspace, mapping it back in on exception entry
1621	  via a trampoline page in the vector table.
1622
1623	  If unsure, say Y.
1624
1625config MITIGATE_SPECTRE_BRANCH_HISTORY
1626	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1627	default y
1628	help
1629	  Speculation attacks against some high-performance processors can
1630	  make use of branch history to influence future speculation.
1631	  When taking an exception from user-space, a sequence of branches
1632	  or a firmware call overwrites the branch history.
1633
1634config RODATA_FULL_DEFAULT_ENABLED
1635	bool "Apply r/o permissions of VM areas also to their linear aliases"
1636	default y
1637	help
1638	  Apply read-only attributes of VM areas to the linear alias of
1639	  the backing pages as well. This prevents code or read-only data
1640	  from being modified (inadvertently or intentionally) via another
1641	  mapping of the same memory page. This additional enhancement can
1642	  be turned off at runtime by passing rodata=[off|on] (and turned on
1643	  with rodata=full if this option is set to 'n')
1644
1645	  This requires the linear region to be mapped down to pages,
1646	  which may adversely affect performance in some cases.
1647
1648config ARM64_SW_TTBR0_PAN
1649	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1650	depends on !KCSAN
1651	help
1652	  Enabling this option prevents the kernel from accessing
1653	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1654	  zeroed area and reserved ASID. The user access routines
1655	  restore the valid TTBR0_EL1 temporarily.
1656
1657config ARM64_TAGGED_ADDR_ABI
1658	bool "Enable the tagged user addresses syscall ABI"
1659	default y
1660	help
1661	  When this option is enabled, user applications can opt in to a
1662	  relaxed ABI via prctl() allowing tagged addresses to be passed
1663	  to system calls as pointer arguments. For details, see
1664	  Documentation/arch/arm64/tagged-address-abi.rst.
1665
1666menuconfig COMPAT
1667	bool "Kernel support for 32-bit EL0"
1668	depends on ARM64_4K_PAGES || EXPERT
1669	select HAVE_UID16
1670	select OLD_SIGSUSPEND3
1671	select COMPAT_OLD_SIGACTION
1672	help
1673	  This option enables support for a 32-bit EL0 running under a 64-bit
1674	  kernel at EL1. AArch32-specific components such as system calls,
1675	  the user helper functions, VFP support and the ptrace interface are
1676	  handled appropriately by the kernel.
1677
1678	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1679	  that you will only be able to execute AArch32 binaries that were compiled
1680	  with page size aligned segments.
1681
1682	  If you want to execute 32-bit userspace applications, say Y.
1683
1684if COMPAT
1685
1686config KUSER_HELPERS
1687	bool "Enable kuser helpers page for 32-bit applications"
1688	default y
1689	help
1690	  Warning: disabling this option may break 32-bit user programs.
1691
1692	  Provide kuser helpers to compat tasks. The kernel provides
1693	  helper code to userspace in read only form at a fixed location
1694	  to allow userspace to be independent of the CPU type fitted to
1695	  the system. This permits binaries to be run on ARMv4 through
1696	  to ARMv8 without modification.
1697
1698	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1699
1700	  However, the fixed address nature of these helpers can be used
1701	  by ROP (return orientated programming) authors when creating
1702	  exploits.
1703
1704	  If all of the binaries and libraries which run on your platform
1705	  are built specifically for your platform, and make no use of
1706	  these helpers, then you can turn this option off to hinder
1707	  such exploits. However, in that case, if a binary or library
1708	  relying on those helpers is run, it will not function correctly.
1709
1710	  Say N here only if you are absolutely certain that you do not
1711	  need these helpers; otherwise, the safe option is to say Y.
1712
1713config COMPAT_VDSO
1714	bool "Enable vDSO for 32-bit applications"
1715	depends on !CPU_BIG_ENDIAN
1716	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1717	select GENERIC_COMPAT_VDSO
1718	default y
1719	help
1720	  Place in the process address space of 32-bit applications an
1721	  ELF shared object providing fast implementations of gettimeofday
1722	  and clock_gettime.
1723
1724	  You must have a 32-bit build of glibc 2.22 or later for programs
1725	  to seamlessly take advantage of this.
1726
1727config THUMB2_COMPAT_VDSO
1728	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1729	depends on COMPAT_VDSO
1730	default y
1731	help
1732	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1733	  otherwise with '-marm'.
1734
1735config COMPAT_ALIGNMENT_FIXUPS
1736	bool "Fix up misaligned multi-word loads and stores in user space"
1737
1738menuconfig ARMV8_DEPRECATED
1739	bool "Emulate deprecated/obsolete ARMv8 instructions"
1740	depends on SYSCTL
1741	help
1742	  Legacy software support may require certain instructions
1743	  that have been deprecated or obsoleted in the architecture.
1744
1745	  Enable this config to enable selective emulation of these
1746	  features.
1747
1748	  If unsure, say Y
1749
1750if ARMV8_DEPRECATED
1751
1752config SWP_EMULATION
1753	bool "Emulate SWP/SWPB instructions"
1754	help
1755	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1756	  they are always undefined. Say Y here to enable software
1757	  emulation of these instructions for userspace using LDXR/STXR.
1758	  This feature can be controlled at runtime with the abi.swp
1759	  sysctl which is disabled by default.
1760
1761	  In some older versions of glibc [<=2.8] SWP is used during futex
1762	  trylock() operations with the assumption that the code will not
1763	  be preempted. This invalid assumption may be more likely to fail
1764	  with SWP emulation enabled, leading to deadlock of the user
1765	  application.
1766
1767	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1768	  on an external transaction monitoring block called a global
1769	  monitor to maintain update atomicity. If your system does not
1770	  implement a global monitor, this option can cause programs that
1771	  perform SWP operations to uncached memory to deadlock.
1772
1773	  If unsure, say Y
1774
1775config CP15_BARRIER_EMULATION
1776	bool "Emulate CP15 Barrier instructions"
1777	help
1778	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1779	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1780	  strongly recommended to use the ISB, DSB, and DMB
1781	  instructions instead.
1782
1783	  Say Y here to enable software emulation of these
1784	  instructions for AArch32 userspace code. When this option is
1785	  enabled, CP15 barrier usage is traced which can help
1786	  identify software that needs updating. This feature can be
1787	  controlled at runtime with the abi.cp15_barrier sysctl.
1788
1789	  If unsure, say Y
1790
1791config SETEND_EMULATION
1792	bool "Emulate SETEND instruction"
1793	help
1794	  The SETEND instruction alters the data-endianness of the
1795	  AArch32 EL0, and is deprecated in ARMv8.
1796
1797	  Say Y here to enable software emulation of the instruction
1798	  for AArch32 userspace code. This feature can be controlled
1799	  at runtime with the abi.setend sysctl.
1800
1801	  Note: All the cpus on the system must have mixed endian support at EL0
1802	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1803	  endian - is hotplugged in after this feature has been enabled, there could
1804	  be unexpected results in the applications.
1805
1806	  If unsure, say Y
1807endif # ARMV8_DEPRECATED
1808
1809endif # COMPAT
1810
1811menu "ARMv8.1 architectural features"
1812
1813config ARM64_HW_AFDBM
1814	bool "Support for hardware updates of the Access and Dirty page flags"
1815	default y
1816	help
1817	  The ARMv8.1 architecture extensions introduce support for
1818	  hardware updates of the access and dirty information in page
1819	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1820	  capable processors, accesses to pages with PTE_AF cleared will
1821	  set this bit instead of raising an access flag fault.
1822	  Similarly, writes to read-only pages with the DBM bit set will
1823	  clear the read-only bit (AP[2]) instead of raising a
1824	  permission fault.
1825
1826	  Kernels built with this configuration option enabled continue
1827	  to work on pre-ARMv8.1 hardware and the performance impact is
1828	  minimal. If unsure, say Y.
1829
1830config ARM64_PAN
1831	bool "Enable support for Privileged Access Never (PAN)"
1832	default y
1833	help
1834	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1835	  prevents the kernel or hypervisor from accessing user-space (EL0)
1836	  memory directly.
1837
1838	  Choosing this option will cause any unprotected (not using
1839	  copy_to_user et al) memory access to fail with a permission fault.
1840
1841	  The feature is detected at runtime, and will remain as a 'nop'
1842	  instruction if the cpu does not implement the feature.
1843
1844config AS_HAS_LSE_ATOMICS
1845	def_bool $(as-instr,.arch_extension lse)
1846
1847config ARM64_LSE_ATOMICS
1848	bool
1849	default ARM64_USE_LSE_ATOMICS
1850	depends on AS_HAS_LSE_ATOMICS
1851
1852config ARM64_USE_LSE_ATOMICS
1853	bool "Atomic instructions"
1854	default y
1855	help
1856	  As part of the Large System Extensions, ARMv8.1 introduces new
1857	  atomic instructions that are designed specifically to scale in
1858	  very large systems.
1859
1860	  Say Y here to make use of these instructions for the in-kernel
1861	  atomic routines. This incurs a small overhead on CPUs that do
1862	  not support these instructions and requires the kernel to be
1863	  built with binutils >= 2.25 in order for the new instructions
1864	  to be used.
1865
1866endmenu # "ARMv8.1 architectural features"
1867
1868menu "ARMv8.2 architectural features"
1869
1870config AS_HAS_ARMV8_2
1871	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1872
1873config AS_HAS_SHA3
1874	def_bool $(as-instr,.arch armv8.2-a+sha3)
1875
1876config ARM64_PMEM
1877	bool "Enable support for persistent memory"
1878	select ARCH_HAS_PMEM_API
1879	select ARCH_HAS_UACCESS_FLUSHCACHE
1880	help
1881	  Say Y to enable support for the persistent memory API based on the
1882	  ARMv8.2 DCPoP feature.
1883
1884	  The feature is detected at runtime, and the kernel will use DC CVAC
1885	  operations if DC CVAP is not supported (following the behaviour of
1886	  DC CVAP itself if the system does not define a point of persistence).
1887
1888config ARM64_RAS_EXTN
1889	bool "Enable support for RAS CPU Extensions"
1890	default y
1891	help
1892	  CPUs that support the Reliability, Availability and Serviceability
1893	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1894	  errors, classify them and report them to software.
1895
1896	  On CPUs with these extensions system software can use additional
1897	  barriers to determine if faults are pending and read the
1898	  classification from a new set of registers.
1899
1900	  Selecting this feature will allow the kernel to use these barriers
1901	  and access the new registers if the system supports the extension.
1902	  Platform RAS features may additionally depend on firmware support.
1903
1904config ARM64_CNP
1905	bool "Enable support for Common Not Private (CNP) translations"
1906	default y
1907	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1908	help
1909	  Common Not Private (CNP) allows translation table entries to
1910	  be shared between different PEs in the same inner shareable
1911	  domain, so the hardware can use this fact to optimise the
1912	  caching of such entries in the TLB.
1913
1914	  Selecting this option allows the CNP feature to be detected
1915	  at runtime, and does not affect PEs that do not implement
1916	  this feature.
1917
1918endmenu # "ARMv8.2 architectural features"
1919
1920menu "ARMv8.3 architectural features"
1921
1922config ARM64_PTR_AUTH
1923	bool "Enable support for pointer authentication"
1924	default y
1925	help
1926	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1927	  instructions for signing and authenticating pointers against secret
1928	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1929	  and other attacks.
1930
1931	  This option enables these instructions at EL0 (i.e. for userspace).
1932	  Choosing this option will cause the kernel to initialise secret keys
1933	  for each process at exec() time, with these keys being
1934	  context-switched along with the process.
1935
1936	  The feature is detected at runtime. If the feature is not present in
1937	  hardware it will not be advertised to userspace/KVM guest nor will it
1938	  be enabled.
1939
1940	  If the feature is present on the boot CPU but not on a late CPU, then
1941	  the late CPU will be parked. Also, if the boot CPU does not have
1942	  address auth and the late CPU has then the late CPU will still boot
1943	  but with the feature disabled. On such a system, this option should
1944	  not be selected.
1945
1946config ARM64_PTR_AUTH_KERNEL
1947	bool "Use pointer authentication for kernel"
1948	default y
1949	depends on ARM64_PTR_AUTH
1950	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1951	# Modern compilers insert a .note.gnu.property section note for PAC
1952	# which is only understood by binutils starting with version 2.33.1.
1953	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1954	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1955	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1956	help
1957	  If the compiler supports the -mbranch-protection or
1958	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1959	  will cause the kernel itself to be compiled with return address
1960	  protection. In this case, and if the target hardware is known to
1961	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1962	  disabled with minimal loss of protection.
1963
1964	  This feature works with FUNCTION_GRAPH_TRACER option only if
1965	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1966
1967config CC_HAS_BRANCH_PROT_PAC_RET
1968	# GCC 9 or later, clang 8 or later
1969	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1970
1971config CC_HAS_SIGN_RETURN_ADDRESS
1972	# GCC 7, 8
1973	def_bool $(cc-option,-msign-return-address=all)
1974
1975config AS_HAS_ARMV8_3
1976	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1977
1978config AS_HAS_CFI_NEGATE_RA_STATE
1979	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1980
1981config AS_HAS_LDAPR
1982	def_bool $(as-instr,.arch_extension rcpc)
1983
1984endmenu # "ARMv8.3 architectural features"
1985
1986menu "ARMv8.4 architectural features"
1987
1988config ARM64_AMU_EXTN
1989	bool "Enable support for the Activity Monitors Unit CPU extension"
1990	default y
1991	help
1992	  The activity monitors extension is an optional extension introduced
1993	  by the ARMv8.4 CPU architecture. This enables support for version 1
1994	  of the activity monitors architecture, AMUv1.
1995
1996	  To enable the use of this extension on CPUs that implement it, say Y.
1997
1998	  Note that for architectural reasons, firmware _must_ implement AMU
1999	  support when running on CPUs that present the activity monitors
2000	  extension. The required support is present in:
2001	    * Version 1.5 and later of the ARM Trusted Firmware
2002
2003	  For kernels that have this configuration enabled but boot with broken
2004	  firmware, you may need to say N here until the firmware is fixed.
2005	  Otherwise you may experience firmware panics or lockups when
2006	  accessing the counter registers. Even if you are not observing these
2007	  symptoms, the values returned by the register reads might not
2008	  correctly reflect reality. Most commonly, the value read will be 0,
2009	  indicating that the counter is not enabled.
2010
2011config AS_HAS_ARMV8_4
2012	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2013
2014config ARM64_TLB_RANGE
2015	bool "Enable support for tlbi range feature"
2016	default y
2017	depends on AS_HAS_ARMV8_4
2018	help
2019	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2020	  range of input addresses.
2021
2022	  The feature introduces new assembly instructions, and they were
2023	  support when binutils >= 2.30.
2024
2025endmenu # "ARMv8.4 architectural features"
2026
2027menu "ARMv8.5 architectural features"
2028
2029config AS_HAS_ARMV8_5
2030	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2031
2032config ARM64_BTI
2033	bool "Branch Target Identification support"
2034	default y
2035	help
2036	  Branch Target Identification (part of the ARMv8.5 Extensions)
2037	  provides a mechanism to limit the set of locations to which computed
2038	  branch instructions such as BR or BLR can jump.
2039
2040	  To make use of BTI on CPUs that support it, say Y.
2041
2042	  BTI is intended to provide complementary protection to other control
2043	  flow integrity protection mechanisms, such as the Pointer
2044	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2045	  For this reason, it does not make sense to enable this option without
2046	  also enabling support for pointer authentication.  Thus, when
2047	  enabling this option you should also select ARM64_PTR_AUTH=y.
2048
2049	  Userspace binaries must also be specifically compiled to make use of
2050	  this mechanism.  If you say N here or the hardware does not support
2051	  BTI, such binaries can still run, but you get no additional
2052	  enforcement of branch destinations.
2053
2054config ARM64_BTI_KERNEL
2055	bool "Use Branch Target Identification for kernel"
2056	default y
2057	depends on ARM64_BTI
2058	depends on ARM64_PTR_AUTH_KERNEL
2059	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2060	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2061	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2062	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2063	depends on !CC_IS_GCC
2064	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2065	help
2066	  Build the kernel with Branch Target Identification annotations
2067	  and enable enforcement of this for kernel code. When this option
2068	  is enabled and the system supports BTI all kernel code including
2069	  modular code must have BTI enabled.
2070
2071config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2072	# GCC 9 or later, clang 8 or later
2073	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2074
2075config ARM64_E0PD
2076	bool "Enable support for E0PD"
2077	default y
2078	help
2079	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2080	  that EL0 accesses made via TTBR1 always fault in constant time,
2081	  providing similar benefits to KASLR as those provided by KPTI, but
2082	  with lower overhead and without disrupting legitimate access to
2083	  kernel memory such as SPE.
2084
2085	  This option enables E0PD for TTBR1 where available.
2086
2087config ARM64_AS_HAS_MTE
2088	# Initial support for MTE went in binutils 2.32.0, checked with
2089	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2090	# as a late addition to the final architecture spec (LDGM/STGM)
2091	# is only supported in the newer 2.32.x and 2.33 binutils
2092	# versions, hence the extra "stgm" instruction check below.
2093	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2094
2095config ARM64_MTE
2096	bool "Memory Tagging Extension support"
2097	default y
2098	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2099	depends on AS_HAS_ARMV8_5
2100	depends on AS_HAS_LSE_ATOMICS
2101	# Required for tag checking in the uaccess routines
2102	depends on ARM64_PAN
2103	select ARCH_HAS_SUBPAGE_FAULTS
2104	select ARCH_USES_HIGH_VMA_FLAGS
2105	select ARCH_USES_PG_ARCH_X
2106	help
2107	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2108	  architectural support for run-time, always-on detection of
2109	  various classes of memory error to aid with software debugging
2110	  to eliminate vulnerabilities arising from memory-unsafe
2111	  languages.
2112
2113	  This option enables the support for the Memory Tagging
2114	  Extension at EL0 (i.e. for userspace).
2115
2116	  Selecting this option allows the feature to be detected at
2117	  runtime. Any secondary CPU not implementing this feature will
2118	  not be allowed a late bring-up.
2119
2120	  Userspace binaries that want to use this feature must
2121	  explicitly opt in. The mechanism for the userspace is
2122	  described in:
2123
2124	  Documentation/arch/arm64/memory-tagging-extension.rst.
2125
2126endmenu # "ARMv8.5 architectural features"
2127
2128menu "ARMv8.7 architectural features"
2129
2130config ARM64_EPAN
2131	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2132	default y
2133	depends on ARM64_PAN
2134	help
2135	  Enhanced Privileged Access Never (EPAN) allows Privileged
2136	  Access Never to be used with Execute-only mappings.
2137
2138	  The feature is detected at runtime, and will remain disabled
2139	  if the cpu does not implement the feature.
2140endmenu # "ARMv8.7 architectural features"
2141
2142menu "ARMv8.9 architectural features"
2143
2144config ARM64_POE
2145	prompt "Permission Overlay Extension"
2146	def_bool y
2147	select ARCH_USES_HIGH_VMA_FLAGS
2148	select ARCH_HAS_PKEYS
2149	help
2150	  The Permission Overlay Extension is used to implement Memory
2151	  Protection Keys. Memory Protection Keys provides a mechanism for
2152	  enforcing page-based protections, but without requiring modification
2153	  of the page tables when an application changes protection domains.
2154
2155	  For details, see Documentation/core-api/protection-keys.rst
2156
2157	  If unsure, say y.
2158
2159config ARCH_PKEY_BITS
2160	int
2161	default 3
2162
2163endmenu # "ARMv8.9 architectural features"
2164
2165config ARM64_SVE
2166	bool "ARM Scalable Vector Extension support"
2167	default y
2168	help
2169	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2170	  execution state which complements and extends the SIMD functionality
2171	  of the base architecture to support much larger vectors and to enable
2172	  additional vectorisation opportunities.
2173
2174	  To enable use of this extension on CPUs that implement it, say Y.
2175
2176	  On CPUs that support the SVE2 extensions, this option will enable
2177	  those too.
2178
2179	  Note that for architectural reasons, firmware _must_ implement SVE
2180	  support when running on SVE capable hardware.  The required support
2181	  is present in:
2182
2183	    * version 1.5 and later of the ARM Trusted Firmware
2184	    * the AArch64 boot wrapper since commit 5e1261e08abf
2185	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2186
2187	  For other firmware implementations, consult the firmware documentation
2188	  or vendor.
2189
2190	  If you need the kernel to boot on SVE-capable hardware with broken
2191	  firmware, you may need to say N here until you get your firmware
2192	  fixed.  Otherwise, you may experience firmware panics or lockups when
2193	  booting the kernel.  If unsure and you are not observing these
2194	  symptoms, you should assume that it is safe to say Y.
2195
2196config ARM64_SME
2197	bool "ARM Scalable Matrix Extension support"
2198	default y
2199	depends on ARM64_SVE
2200	help
2201	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2202	  execution state which utilises a substantial subset of the SVE
2203	  instruction set, together with the addition of new architectural
2204	  register state capable of holding two dimensional matrix tiles to
2205	  enable various matrix operations.
2206
2207config ARM64_PSEUDO_NMI
2208	bool "Support for NMI-like interrupts"
2209	select ARM_GIC_V3
2210	help
2211	  Adds support for mimicking Non-Maskable Interrupts through the use of
2212	  GIC interrupt priority. This support requires version 3 or later of
2213	  ARM GIC.
2214
2215	  This high priority configuration for interrupts needs to be
2216	  explicitly enabled by setting the kernel parameter
2217	  "irqchip.gicv3_pseudo_nmi" to 1.
2218
2219	  If unsure, say N
2220
2221if ARM64_PSEUDO_NMI
2222config ARM64_DEBUG_PRIORITY_MASKING
2223	bool "Debug interrupt priority masking"
2224	help
2225	  This adds runtime checks to functions enabling/disabling
2226	  interrupts when using priority masking. The additional checks verify
2227	  the validity of ICC_PMR_EL1 when calling concerned functions.
2228
2229	  If unsure, say N
2230endif # ARM64_PSEUDO_NMI
2231
2232config RELOCATABLE
2233	bool "Build a relocatable kernel image" if EXPERT
2234	select ARCH_HAS_RELR
2235	default y
2236	help
2237	  This builds the kernel as a Position Independent Executable (PIE),
2238	  which retains all relocation metadata required to relocate the
2239	  kernel binary at runtime to a different virtual address than the
2240	  address it was linked at.
2241	  Since AArch64 uses the RELA relocation format, this requires a
2242	  relocation pass at runtime even if the kernel is loaded at the
2243	  same address it was linked at.
2244
2245config RANDOMIZE_BASE
2246	bool "Randomize the address of the kernel image"
2247	select RELOCATABLE
2248	help
2249	  Randomizes the virtual address at which the kernel image is
2250	  loaded, as a security feature that deters exploit attempts
2251	  relying on knowledge of the location of kernel internals.
2252
2253	  It is the bootloader's job to provide entropy, by passing a
2254	  random u64 value in /chosen/kaslr-seed at kernel entry.
2255
2256	  When booting via the UEFI stub, it will invoke the firmware's
2257	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2258	  to the kernel proper. In addition, it will randomise the physical
2259	  location of the kernel Image as well.
2260
2261	  If unsure, say N.
2262
2263config RANDOMIZE_MODULE_REGION_FULL
2264	bool "Randomize the module region over a 2 GB range"
2265	depends on RANDOMIZE_BASE
2266	default y
2267	help
2268	  Randomizes the location of the module region inside a 2 GB window
2269	  covering the core kernel. This way, it is less likely for modules
2270	  to leak information about the location of core kernel data structures
2271	  but it does imply that function calls between modules and the core
2272	  kernel will need to be resolved via veneers in the module PLT.
2273
2274	  When this option is not set, the module region will be randomized over
2275	  a limited range that contains the [_stext, _etext] interval of the
2276	  core kernel, so branch relocations are almost always in range unless
2277	  the region is exhausted. In this particular case of region
2278	  exhaustion, modules might be able to fall back to a larger 2GB area.
2279
2280config CC_HAVE_STACKPROTECTOR_SYSREG
2281	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2282
2283config STACKPROTECTOR_PER_TASK
2284	def_bool y
2285	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2286
2287config UNWIND_PATCH_PAC_INTO_SCS
2288	bool "Enable shadow call stack dynamically using code patching"
2289	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2290	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2291	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2292	depends on SHADOW_CALL_STACK
2293	select UNWIND_TABLES
2294	select DYNAMIC_SCS
2295
2296config ARM64_CONTPTE
2297	bool "Contiguous PTE mappings for user memory" if EXPERT
2298	depends on TRANSPARENT_HUGEPAGE
2299	default y
2300	help
2301	  When enabled, user mappings are configured using the PTE contiguous
2302	  bit, for any mappings that meet the size and alignment requirements.
2303	  This reduces TLB pressure and improves performance.
2304
2305endmenu # "Kernel Features"
2306
2307menu "Boot options"
2308
2309config ARM64_ACPI_PARKING_PROTOCOL
2310	bool "Enable support for the ARM64 ACPI parking protocol"
2311	depends on ACPI
2312	help
2313	  Enable support for the ARM64 ACPI parking protocol. If disabled
2314	  the kernel will not allow booting through the ARM64 ACPI parking
2315	  protocol even if the corresponding data is present in the ACPI
2316	  MADT table.
2317
2318config CMDLINE
2319	string "Default kernel command string"
2320	default ""
2321	help
2322	  Provide a set of default command-line options at build time by
2323	  entering them here. As a minimum, you should specify the the
2324	  root device (e.g. root=/dev/nfs).
2325
2326choice
2327	prompt "Kernel command line type"
2328	depends on CMDLINE != ""
2329	default CMDLINE_FROM_BOOTLOADER
2330	help
2331	  Choose how the kernel will handle the provided default kernel
2332	  command line string.
2333
2334config CMDLINE_FROM_BOOTLOADER
2335	bool "Use bootloader kernel arguments if available"
2336	help
2337	  Uses the command-line options passed by the boot loader. If
2338	  the boot loader doesn't provide any, the default kernel command
2339	  string provided in CMDLINE will be used.
2340
2341config CMDLINE_FORCE
2342	bool "Always use the default kernel command string"
2343	help
2344	  Always use the default kernel command string, even if the boot
2345	  loader passes other arguments to the kernel.
2346	  This is useful if you cannot or don't want to change the
2347	  command-line options your boot loader passes to the kernel.
2348
2349endchoice
2350
2351config EFI_STUB
2352	bool
2353
2354config EFI
2355	bool "UEFI runtime support"
2356	depends on OF && !CPU_BIG_ENDIAN
2357	depends on KERNEL_MODE_NEON
2358	select ARCH_SUPPORTS_ACPI
2359	select LIBFDT
2360	select UCS2_STRING
2361	select EFI_PARAMS_FROM_FDT
2362	select EFI_RUNTIME_WRAPPERS
2363	select EFI_STUB
2364	select EFI_GENERIC_STUB
2365	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2366	default y
2367	help
2368	  This option provides support for runtime services provided
2369	  by UEFI firmware (such as non-volatile variables, realtime
2370	  clock, and platform reset). A UEFI stub is also provided to
2371	  allow the kernel to be booted as an EFI application. This
2372	  is only useful on systems that have UEFI firmware.
2373
2374config COMPRESSED_INSTALL
2375	bool "Install compressed image by default"
2376	help
2377	  This makes the regular "make install" install the compressed
2378	  image we built, not the legacy uncompressed one.
2379
2380	  You can check that a compressed image works for you by doing
2381	  "make zinstall" first, and verifying that everything is fine
2382	  in your environment before making "make install" do this for
2383	  you.
2384
2385config DMI
2386	bool "Enable support for SMBIOS (DMI) tables"
2387	depends on EFI
2388	default y
2389	help
2390	  This enables SMBIOS/DMI feature for systems.
2391
2392	  This option is only useful on systems that have UEFI firmware.
2393	  However, even with this option, the resultant kernel should
2394	  continue to boot on existing non-UEFI platforms.
2395
2396endmenu # "Boot options"
2397
2398menu "Power management options"
2399
2400source "kernel/power/Kconfig"
2401
2402config ARCH_HIBERNATION_POSSIBLE
2403	def_bool y
2404	depends on CPU_PM
2405
2406config ARCH_HIBERNATION_HEADER
2407	def_bool y
2408	depends on HIBERNATION
2409
2410config ARCH_SUSPEND_POSSIBLE
2411	def_bool y
2412
2413endmenu # "Power management options"
2414
2415menu "CPU Power Management"
2416
2417source "drivers/cpuidle/Kconfig"
2418
2419source "drivers/cpufreq/Kconfig"
2420
2421endmenu # "CPU Power Management"
2422
2423source "drivers/acpi/Kconfig"
2424
2425source "arch/arm64/kvm/Kconfig"
2426
2427