1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 9 select ACPI_IORT if ACPI 10 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 11 select ACPI_MCFG if (ACPI && PCI) 12 select ACPI_SPCR_TABLE if ACPI 13 select ACPI_PPTT if ACPI 14 select ARCH_HAS_DEBUG_WX 15 select ARCH_BINFMT_ELF_EXTRA_PHDRS 16 select ARCH_BINFMT_ELF_STATE 17 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 18 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 19 select ARCH_ENABLE_MEMORY_HOTPLUG 20 select ARCH_ENABLE_MEMORY_HOTREMOVE 21 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 22 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 23 select ARCH_HAS_CACHE_LINE_SIZE 24 select ARCH_HAS_CURRENT_STACK_POINTER 25 select ARCH_HAS_DEBUG_VIRTUAL 26 select ARCH_HAS_DEBUG_VM_PGTABLE 27 select ARCH_HAS_DMA_PREP_COHERENT 28 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 29 select ARCH_HAS_FAST_MULTIPLIER 30 select ARCH_HAS_FORTIFY_SOURCE 31 select ARCH_HAS_GCOV_PROFILE_ALL 32 select ARCH_HAS_GIGANTIC_PAGE 33 select ARCH_HAS_KCOV 34 select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON 35 select ARCH_HAS_KEEPINITRD 36 select ARCH_HAS_MEMBARRIER_SYNC_CORE 37 select ARCH_HAS_MEM_ENCRYPT 38 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 39 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 40 select ARCH_HAS_PTE_DEVMAP 41 select ARCH_HAS_PTE_SPECIAL 42 select ARCH_HAS_HW_PTE_YOUNG 43 select ARCH_HAS_SETUP_DMA_OPS 44 select ARCH_HAS_SET_DIRECT_MAP 45 select ARCH_HAS_SET_MEMORY 46 select ARCH_STACKWALK 47 select ARCH_HAS_STRICT_KERNEL_RWX 48 select ARCH_HAS_STRICT_MODULE_RWX 49 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 50 select ARCH_HAS_SYNC_DMA_FOR_CPU 51 select ARCH_HAS_SYSCALL_WRAPPER 52 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 53 select ARCH_HAS_ZONE_DMA_SET if EXPERT 54 select ARCH_HAVE_ELF_PROT 55 select ARCH_HAVE_NMI_SAFE_CMPXCHG 56 select ARCH_HAVE_TRACE_MMIO_ACCESS 57 select ARCH_INLINE_READ_LOCK if !PREEMPTION 58 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 59 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 60 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 62 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 63 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 64 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 66 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 67 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 68 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 70 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 71 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 72 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 73 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 74 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 76 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 77 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 78 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 80 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 81 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 82 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 83 select ARCH_KEEP_MEMBLOCK 84 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 85 select ARCH_USE_CMPXCHG_LOCKREF 86 select ARCH_USE_GNU_PROPERTY 87 select ARCH_USE_MEMTEST 88 select ARCH_USE_QUEUED_RWLOCKS 89 select ARCH_USE_QUEUED_SPINLOCKS 90 select ARCH_USE_SYM_ANNOTATIONS 91 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 92 select ARCH_SUPPORTS_HUGETLBFS 93 select ARCH_SUPPORTS_MEMORY_FAILURE 94 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 95 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 96 select ARCH_SUPPORTS_LTO_CLANG_THIN 97 select ARCH_SUPPORTS_CFI_CLANG 98 select ARCH_SUPPORTS_ATOMIC_RMW 99 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 100 select ARCH_SUPPORTS_NUMA_BALANCING 101 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 102 select ARCH_SUPPORTS_PER_VMA_LOCK 103 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 104 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 105 select ARCH_WANT_DEFAULT_BPF_JIT 106 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 107 select ARCH_WANT_FRAME_POINTERS 108 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 109 select ARCH_WANT_LD_ORPHAN_WARN 110 select ARCH_WANTS_EXECMEM_LATE if EXECMEM 111 select ARCH_WANTS_NO_INSTR 112 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 113 select ARCH_HAS_UBSAN 114 select ARM_AMBA 115 select ARM_ARCH_TIMER 116 select ARM_GIC 117 select AUDIT_ARCH_COMPAT_GENERIC 118 select ARM_GIC_V2M if PCI 119 select ARM_GIC_V3 120 select ARM_GIC_V3_ITS if PCI 121 select ARM_PSCI_FW 122 select BUILDTIME_TABLE_SORT 123 select CLONE_BACKWARDS 124 select COMMON_CLK 125 select CPU_PM if (SUSPEND || CPU_IDLE) 126 select CPUMASK_OFFSTACK if NR_CPUS > 256 127 select CRC32 128 select DCACHE_WORD_ACCESS 129 select DYNAMIC_FTRACE if FUNCTION_TRACER 130 select DMA_BOUNCE_UNALIGNED_KMALLOC 131 select DMA_DIRECT_REMAP 132 select EDAC_SUPPORT 133 select FRAME_POINTER 134 select FUNCTION_ALIGNMENT_4B 135 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 136 select GENERIC_ALLOCATOR 137 select GENERIC_ARCH_TOPOLOGY 138 select GENERIC_CLOCKEVENTS_BROADCAST 139 select GENERIC_CPU_AUTOPROBE 140 select GENERIC_CPU_DEVICES 141 select GENERIC_CPU_VULNERABILITIES 142 select GENERIC_EARLY_IOREMAP 143 select GENERIC_IDLE_POLL_SETUP 144 select GENERIC_IOREMAP 145 select GENERIC_IRQ_IPI 146 select GENERIC_IRQ_PROBE 147 select GENERIC_IRQ_SHOW 148 select GENERIC_IRQ_SHOW_LEVEL 149 select GENERIC_LIB_DEVMEM_IS_ALLOWED 150 select GENERIC_PCI_IOMAP 151 select GENERIC_PTDUMP 152 select GENERIC_SCHED_CLOCK 153 select GENERIC_SMP_IDLE_THREAD 154 select GENERIC_TIME_VSYSCALL 155 select GENERIC_GETTIMEOFDAY 156 select GENERIC_VDSO_TIME_NS 157 select HARDIRQS_SW_RESEND 158 select HAS_IOPORT 159 select HAVE_MOVE_PMD 160 select HAVE_MOVE_PUD 161 select HAVE_PCI 162 select HAVE_ACPI_APEI if (ACPI && EFI) 163 select HAVE_ALIGNED_STRUCT_PAGE 164 select HAVE_ARCH_AUDITSYSCALL 165 select HAVE_ARCH_BITREVERSE 166 select HAVE_ARCH_COMPILER_H 167 select HAVE_ARCH_HUGE_VMALLOC 168 select HAVE_ARCH_HUGE_VMAP 169 select HAVE_ARCH_JUMP_LABEL 170 select HAVE_ARCH_JUMP_LABEL_RELATIVE 171 select HAVE_ARCH_KASAN 172 select HAVE_ARCH_KASAN_VMALLOC 173 select HAVE_ARCH_KASAN_SW_TAGS 174 select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE 175 # Some instrumentation may be unsound, hence EXPERT 176 select HAVE_ARCH_KCSAN if EXPERT 177 select HAVE_ARCH_KFENCE 178 select HAVE_ARCH_KGDB 179 select HAVE_ARCH_MMAP_RND_BITS 180 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 181 select HAVE_ARCH_PREL32_RELOCATIONS 182 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 183 select HAVE_ARCH_SECCOMP_FILTER 184 select HAVE_ARCH_STACKLEAK 185 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 186 select HAVE_ARCH_TRACEHOOK 187 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 188 select HAVE_ARCH_VMAP_STACK 189 select HAVE_ARM_SMCCC 190 select HAVE_ASM_MODVERSIONS 191 select HAVE_EBPF_JIT 192 select HAVE_C_RECORDMCOUNT 193 select HAVE_CMPXCHG_DOUBLE 194 select HAVE_CMPXCHG_LOCAL 195 select HAVE_CONTEXT_TRACKING_USER 196 select HAVE_DEBUG_KMEMLEAK 197 select HAVE_DMA_CONTIGUOUS 198 select HAVE_DYNAMIC_FTRACE 199 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 200 if $(cc-option,-fpatchable-function-entry=2) 201 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 202 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 203 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 204 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 205 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE)) 206 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 207 if DYNAMIC_FTRACE_WITH_ARGS 208 select HAVE_SAMPLE_FTRACE_DIRECT 209 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 210 select HAVE_EFFICIENT_UNALIGNED_ACCESS 211 select HAVE_GUP_FAST 212 select HAVE_FTRACE_MCOUNT_RECORD 213 select HAVE_FUNCTION_TRACER 214 select HAVE_FUNCTION_ERROR_INJECTION 215 select HAVE_FUNCTION_GRAPH_TRACER 216 select HAVE_FUNCTION_GRAPH_RETVAL 217 select HAVE_GCC_PLUGINS 218 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 219 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 220 select HAVE_HW_BREAKPOINT if PERF_EVENTS 221 select HAVE_IOREMAP_PROT 222 select HAVE_IRQ_TIME_ACCOUNTING 223 select HAVE_MOD_ARCH_SPECIFIC 224 select HAVE_NMI 225 select HAVE_PERF_EVENTS 226 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 227 select HAVE_PERF_REGS 228 select HAVE_PERF_USER_STACK_DUMP 229 select HAVE_PREEMPT_DYNAMIC_KEY 230 select HAVE_REGS_AND_STACK_ACCESS_API 231 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 232 select HAVE_FUNCTION_ARG_ACCESS_API 233 select MMU_GATHER_RCU_TABLE_FREE 234 select HAVE_RSEQ 235 select HAVE_RUST if CPU_LITTLE_ENDIAN 236 select HAVE_STACKPROTECTOR 237 select HAVE_SYSCALL_TRACEPOINTS 238 select HAVE_KPROBES 239 select HAVE_KRETPROBES 240 select HAVE_GENERIC_VDSO 241 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 242 select IRQ_DOMAIN 243 select IRQ_FORCED_THREADING 244 select KASAN_VMALLOC if KASAN 245 select LOCK_MM_AND_FIND_VMA 246 select MODULES_USE_ELF_RELA 247 select NEED_DMA_MAP_STATE 248 select NEED_SG_DMA_LENGTH 249 select OF 250 select OF_EARLY_FLATTREE 251 select PCI_DOMAINS_GENERIC if PCI 252 select PCI_ECAM if (ACPI && PCI) 253 select PCI_SYSCALL if PCI 254 select POWER_RESET 255 select POWER_SUPPLY 256 select SPARSE_IRQ 257 select SWIOTLB 258 select SYSCTL_EXCEPTION_TRACE 259 select THREAD_INFO_IN_TASK 260 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 261 select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD 262 select TRACE_IRQFLAGS_SUPPORT 263 select TRACE_IRQFLAGS_NMI_SUPPORT 264 select HAVE_SOFTIRQ_ON_OWN_STACK 265 select USER_STACKTRACE_SUPPORT 266 select VDSO_GETRANDOM 267 help 268 ARM 64-bit (AArch64) Linux support. 269 270config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 271 def_bool CC_IS_CLANG 272 # https://github.com/ClangBuiltLinux/linux/issues/1507 273 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 274 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 275 276config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 277 def_bool CC_IS_GCC 278 depends on $(cc-option,-fpatchable-function-entry=2) 279 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 280 281config 64BIT 282 def_bool y 283 284config MMU 285 def_bool y 286 287config ARM64_CONT_PTE_SHIFT 288 int 289 default 5 if PAGE_SIZE_64KB 290 default 7 if PAGE_SIZE_16KB 291 default 4 292 293config ARM64_CONT_PMD_SHIFT 294 int 295 default 5 if PAGE_SIZE_64KB 296 default 5 if PAGE_SIZE_16KB 297 default 4 298 299config ARCH_MMAP_RND_BITS_MIN 300 default 14 if PAGE_SIZE_64KB 301 default 16 if PAGE_SIZE_16KB 302 default 18 303 304# max bits determined by the following formula: 305# VA_BITS - PAGE_SHIFT - 3 306config ARCH_MMAP_RND_BITS_MAX 307 default 19 if ARM64_VA_BITS=36 308 default 24 if ARM64_VA_BITS=39 309 default 27 if ARM64_VA_BITS=42 310 default 30 if ARM64_VA_BITS=47 311 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 312 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 313 default 33 if ARM64_VA_BITS=48 314 default 14 if ARM64_64K_PAGES 315 default 16 if ARM64_16K_PAGES 316 default 18 317 318config ARCH_MMAP_RND_COMPAT_BITS_MIN 319 default 7 if ARM64_64K_PAGES 320 default 9 if ARM64_16K_PAGES 321 default 11 322 323config ARCH_MMAP_RND_COMPAT_BITS_MAX 324 default 16 325 326config NO_IOPORT_MAP 327 def_bool y if !PCI 328 329config STACKTRACE_SUPPORT 330 def_bool y 331 332config ILLEGAL_POINTER_VALUE 333 hex 334 default 0xdead000000000000 335 336config LOCKDEP_SUPPORT 337 def_bool y 338 339config GENERIC_BUG 340 def_bool y 341 depends on BUG 342 343config GENERIC_BUG_RELATIVE_POINTERS 344 def_bool y 345 depends on GENERIC_BUG 346 347config GENERIC_HWEIGHT 348 def_bool y 349 350config GENERIC_CSUM 351 def_bool y 352 353config GENERIC_CALIBRATE_DELAY 354 def_bool y 355 356config SMP 357 def_bool y 358 359config KERNEL_MODE_NEON 360 def_bool y 361 362config FIX_EARLYCON_MEM 363 def_bool y 364 365config PGTABLE_LEVELS 366 int 367 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 368 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 369 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 370 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 371 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 372 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 373 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 374 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52 375 376config ARCH_SUPPORTS_UPROBES 377 def_bool y 378 379config ARCH_PROC_KCORE_TEXT 380 def_bool y 381 382config BROKEN_GAS_INST 383 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 384 385config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 386 bool 387 # Clang's __builtin_return_address() strips the PAC since 12.0.0 388 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2 389 default y if CC_IS_CLANG 390 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 391 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 392 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 393 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 394 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 395 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 396 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 397 default n 398 399config KASAN_SHADOW_OFFSET 400 hex 401 depends on KASAN_GENERIC || KASAN_SW_TAGS 402 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS 403 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS 404 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 405 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 406 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 407 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS 408 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS 409 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 410 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 411 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 412 default 0xffffffffffffffff 413 414config UNWIND_TABLES 415 bool 416 417source "arch/arm64/Kconfig.platforms" 418 419menu "Kernel Features" 420 421menu "ARM errata workarounds via the alternatives framework" 422 423config AMPERE_ERRATUM_AC03_CPU_38 424 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 425 default y 426 help 427 This option adds an alternative code sequence to work around Ampere 428 errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne. 429 430 The affected design reports FEAT_HAFDBS as not implemented in 431 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 432 as required by the architecture. The unadvertised HAFDBS 433 implementation suffers from an additional erratum where hardware 434 A/D updates can occur after a PTE has been marked invalid. 435 436 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 437 which avoids enabling unadvertised hardware Access Flag management 438 at stage-2. 439 440 If unsure, say Y. 441 442config ARM64_WORKAROUND_CLEAN_CACHE 443 bool 444 445config ARM64_ERRATUM_826319 446 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 447 default y 448 select ARM64_WORKAROUND_CLEAN_CACHE 449 help 450 This option adds an alternative code sequence to work around ARM 451 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 452 AXI master interface and an L2 cache. 453 454 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 455 and is unable to accept a certain write via this interface, it will 456 not progress on read data presented on the read data channel and the 457 system can deadlock. 458 459 The workaround promotes data cache clean instructions to 460 data cache clean-and-invalidate. 461 Please note that this does not necessarily enable the workaround, 462 as it depends on the alternative framework, which will only patch 463 the kernel if an affected CPU is detected. 464 465 If unsure, say Y. 466 467config ARM64_ERRATUM_827319 468 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 469 default y 470 select ARM64_WORKAROUND_CLEAN_CACHE 471 help 472 This option adds an alternative code sequence to work around ARM 473 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 474 master interface and an L2 cache. 475 476 Under certain conditions this erratum can cause a clean line eviction 477 to occur at the same time as another transaction to the same address 478 on the AMBA 5 CHI interface, which can cause data corruption if the 479 interconnect reorders the two transactions. 480 481 The workaround promotes data cache clean instructions to 482 data cache clean-and-invalidate. 483 Please note that this does not necessarily enable the workaround, 484 as it depends on the alternative framework, which will only patch 485 the kernel if an affected CPU is detected. 486 487 If unsure, say Y. 488 489config ARM64_ERRATUM_824069 490 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 491 default y 492 select ARM64_WORKAROUND_CLEAN_CACHE 493 help 494 This option adds an alternative code sequence to work around ARM 495 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 496 to a coherent interconnect. 497 498 If a Cortex-A53 processor is executing a store or prefetch for 499 write instruction at the same time as a processor in another 500 cluster is executing a cache maintenance operation to the same 501 address, then this erratum might cause a clean cache line to be 502 incorrectly marked as dirty. 503 504 The workaround promotes data cache clean instructions to 505 data cache clean-and-invalidate. 506 Please note that this option does not necessarily enable the 507 workaround, as it depends on the alternative framework, which will 508 only patch the kernel if an affected CPU is detected. 509 510 If unsure, say Y. 511 512config ARM64_ERRATUM_819472 513 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 514 default y 515 select ARM64_WORKAROUND_CLEAN_CACHE 516 help 517 This option adds an alternative code sequence to work around ARM 518 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 519 present when it is connected to a coherent interconnect. 520 521 If the processor is executing a load and store exclusive sequence at 522 the same time as a processor in another cluster is executing a cache 523 maintenance operation to the same address, then this erratum might 524 cause data corruption. 525 526 The workaround promotes data cache clean instructions to 527 data cache clean-and-invalidate. 528 Please note that this does not necessarily enable the workaround, 529 as it depends on the alternative framework, which will only patch 530 the kernel if an affected CPU is detected. 531 532 If unsure, say Y. 533 534config ARM64_ERRATUM_832075 535 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 536 default y 537 help 538 This option adds an alternative code sequence to work around ARM 539 erratum 832075 on Cortex-A57 parts up to r1p2. 540 541 Affected Cortex-A57 parts might deadlock when exclusive load/store 542 instructions to Write-Back memory are mixed with Device loads. 543 544 The workaround is to promote device loads to use Load-Acquire 545 semantics. 546 Please note that this does not necessarily enable the workaround, 547 as it depends on the alternative framework, which will only patch 548 the kernel if an affected CPU is detected. 549 550 If unsure, say Y. 551 552config ARM64_ERRATUM_834220 553 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)" 554 depends on KVM 555 help 556 This option adds an alternative code sequence to work around ARM 557 erratum 834220 on Cortex-A57 parts up to r1p2. 558 559 Affected Cortex-A57 parts might report a Stage 2 translation 560 fault as the result of a Stage 1 fault for load crossing a 561 page boundary when there is a permission or device memory 562 alignment fault at Stage 1 and a translation fault at Stage 2. 563 564 The workaround is to verify that the Stage 1 translation 565 doesn't generate a fault before handling the Stage 2 fault. 566 Please note that this does not necessarily enable the workaround, 567 as it depends on the alternative framework, which will only patch 568 the kernel if an affected CPU is detected. 569 570 If unsure, say N. 571 572config ARM64_ERRATUM_1742098 573 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 574 depends on COMPAT 575 default y 576 help 577 This option removes the AES hwcap for aarch32 user-space to 578 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 579 580 Affected parts may corrupt the AES state if an interrupt is 581 taken between a pair of AES instructions. These instructions 582 are only present if the cryptography extensions are present. 583 All software should have a fallback implementation for CPUs 584 that don't implement the cryptography extensions. 585 586 If unsure, say Y. 587 588config ARM64_ERRATUM_845719 589 bool "Cortex-A53: 845719: a load might read incorrect data" 590 depends on COMPAT 591 default y 592 help 593 This option adds an alternative code sequence to work around ARM 594 erratum 845719 on Cortex-A53 parts up to r0p4. 595 596 When running a compat (AArch32) userspace on an affected Cortex-A53 597 part, a load at EL0 from a virtual address that matches the bottom 32 598 bits of the virtual address used by a recent load at (AArch64) EL1 599 might return incorrect data. 600 601 The workaround is to write the contextidr_el1 register on exception 602 return to a 32-bit task. 603 Please note that this does not necessarily enable the workaround, 604 as it depends on the alternative framework, which will only patch 605 the kernel if an affected CPU is detected. 606 607 If unsure, say Y. 608 609config ARM64_ERRATUM_843419 610 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 611 default y 612 help 613 This option links the kernel with '--fix-cortex-a53-843419' and 614 enables PLT support to replace certain ADRP instructions, which can 615 cause subsequent memory accesses to use an incorrect address on 616 Cortex-A53 parts up to r0p4. 617 618 If unsure, say Y. 619 620config ARM64_LD_HAS_FIX_ERRATUM_843419 621 def_bool $(ld-option,--fix-cortex-a53-843419) 622 623config ARM64_ERRATUM_1024718 624 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 625 default y 626 help 627 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 628 629 Affected Cortex-A55 cores (all revisions) could cause incorrect 630 update of the hardware dirty bit when the DBM/AP bits are updated 631 without a break-before-make. The workaround is to disable the usage 632 of hardware DBM locally on the affected cores. CPUs not affected by 633 this erratum will continue to use the feature. 634 635 If unsure, say Y. 636 637config ARM64_ERRATUM_1418040 638 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 639 default y 640 depends on COMPAT 641 help 642 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 643 errata 1188873 and 1418040. 644 645 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 646 cause register corruption when accessing the timer registers 647 from AArch32 userspace. 648 649 If unsure, say Y. 650 651config ARM64_WORKAROUND_SPECULATIVE_AT 652 bool 653 654config ARM64_ERRATUM_1165522 655 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 656 default y 657 select ARM64_WORKAROUND_SPECULATIVE_AT 658 help 659 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 660 661 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 662 corrupted TLBs by speculating an AT instruction during a guest 663 context switch. 664 665 If unsure, say Y. 666 667config ARM64_ERRATUM_1319367 668 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 669 default y 670 select ARM64_WORKAROUND_SPECULATIVE_AT 671 help 672 This option adds work arounds for ARM Cortex-A57 erratum 1319537 673 and A72 erratum 1319367 674 675 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 676 speculating an AT instruction during a guest context switch. 677 678 If unsure, say Y. 679 680config ARM64_ERRATUM_1530923 681 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 682 default y 683 select ARM64_WORKAROUND_SPECULATIVE_AT 684 help 685 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 686 687 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 688 corrupted TLBs by speculating an AT instruction during a guest 689 context switch. 690 691 If unsure, say Y. 692 693config ARM64_WORKAROUND_REPEAT_TLBI 694 bool 695 696config ARM64_ERRATUM_2441007 697 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 698 select ARM64_WORKAROUND_REPEAT_TLBI 699 help 700 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 701 702 Under very rare circumstances, affected Cortex-A55 CPUs 703 may not handle a race between a break-before-make sequence on one 704 CPU, and another CPU accessing the same page. This could allow a 705 store to a page that has been unmapped. 706 707 Work around this by adding the affected CPUs to the list that needs 708 TLB sequences to be done twice. 709 710 If unsure, say N. 711 712config ARM64_ERRATUM_1286807 713 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)" 714 select ARM64_WORKAROUND_REPEAT_TLBI 715 help 716 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 717 718 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 719 address for a cacheable mapping of a location is being 720 accessed by a core while another core is remapping the virtual 721 address to a new physical page using the recommended 722 break-before-make sequence, then under very rare circumstances 723 TLBI+DSB completes before a read using the translation being 724 invalidated has been observed by other observers. The 725 workaround repeats the TLBI+DSB operation. 726 727 If unsure, say N. 728 729config ARM64_ERRATUM_1463225 730 bool "Cortex-A76: Software Step might prevent interrupt recognition" 731 default y 732 help 733 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 734 735 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 736 of a system call instruction (SVC) can prevent recognition of 737 subsequent interrupts when software stepping is disabled in the 738 exception handler of the system call and either kernel debugging 739 is enabled or VHE is in use. 740 741 Work around the erratum by triggering a dummy step exception 742 when handling a system call from a task that is being stepped 743 in a VHE configuration of the kernel. 744 745 If unsure, say Y. 746 747config ARM64_ERRATUM_1542419 748 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)" 749 help 750 This option adds a workaround for ARM Neoverse-N1 erratum 751 1542419. 752 753 Affected Neoverse-N1 cores could execute a stale instruction when 754 modified by another CPU. The workaround depends on a firmware 755 counterpart. 756 757 Workaround the issue by hiding the DIC feature from EL0. This 758 forces user-space to perform cache maintenance. 759 760 If unsure, say N. 761 762config ARM64_ERRATUM_1508412 763 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 764 default y 765 help 766 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 767 768 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 769 of a store-exclusive or read of PAR_EL1 and a load with device or 770 non-cacheable memory attributes. The workaround depends on a firmware 771 counterpart. 772 773 KVM guests must also have the workaround implemented or they can 774 deadlock the system. 775 776 Work around the issue by inserting DMB SY barriers around PAR_EL1 777 register reads and warning KVM users. The DMB barrier is sufficient 778 to prevent a speculative PAR_EL1 read. 779 780 If unsure, say Y. 781 782config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 783 bool 784 785config ARM64_ERRATUM_2051678 786 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 787 default y 788 help 789 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 790 Affected Cortex-A510 might not respect the ordering rules for 791 hardware update of the page table's dirty bit. The workaround 792 is to not enable the feature on affected CPUs. 793 794 If unsure, say Y. 795 796config ARM64_ERRATUM_2077057 797 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 798 default y 799 help 800 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 801 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 802 expected, but a Pointer Authentication trap is taken instead. The 803 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 804 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 805 806 This can only happen when EL2 is stepping EL1. 807 808 When these conditions occur, the SPSR_EL2 value is unchanged from the 809 previous guest entry, and can be restored from the in-memory copy. 810 811 If unsure, say Y. 812 813config ARM64_ERRATUM_2658417 814 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 815 default y 816 help 817 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 818 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 819 BFMMLA or VMMLA instructions in rare circumstances when a pair of 820 A510 CPUs are using shared neon hardware. As the sharing is not 821 discoverable by the kernel, hide the BF16 HWCAP to indicate that 822 user-space should not be using these instructions. 823 824 If unsure, say Y. 825 826config ARM64_ERRATUM_2119858 827 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 828 default y 829 depends on CORESIGHT_TRBE 830 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 831 help 832 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 833 834 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 835 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 836 the event of a WRAP event. 837 838 Work around the issue by always making sure we move the TRBPTR_EL1 by 839 256 bytes before enabling the buffer and filling the first 256 bytes of 840 the buffer with ETM ignore packets upon disabling. 841 842 If unsure, say Y. 843 844config ARM64_ERRATUM_2139208 845 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 846 default y 847 depends on CORESIGHT_TRBE 848 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 849 help 850 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 851 852 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 853 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 854 the event of a WRAP event. 855 856 Work around the issue by always making sure we move the TRBPTR_EL1 by 857 256 bytes before enabling the buffer and filling the first 256 bytes of 858 the buffer with ETM ignore packets upon disabling. 859 860 If unsure, say Y. 861 862config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 863 bool 864 865config ARM64_ERRATUM_2054223 866 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 867 default y 868 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 869 help 870 Enable workaround for ARM Cortex-A710 erratum 2054223 871 872 Affected cores may fail to flush the trace data on a TSB instruction, when 873 the PE is in trace prohibited state. This will cause losing a few bytes 874 of the trace cached. 875 876 Workaround is to issue two TSB consecutively on affected cores. 877 878 If unsure, say Y. 879 880config ARM64_ERRATUM_2067961 881 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 882 default y 883 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 884 help 885 Enable workaround for ARM Neoverse-N2 erratum 2067961 886 887 Affected cores may fail to flush the trace data on a TSB instruction, when 888 the PE is in trace prohibited state. This will cause losing a few bytes 889 of the trace cached. 890 891 Workaround is to issue two TSB consecutively on affected cores. 892 893 If unsure, say Y. 894 895config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 896 bool 897 898config ARM64_ERRATUM_2253138 899 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 900 depends on CORESIGHT_TRBE 901 default y 902 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 903 help 904 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 905 906 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 907 for TRBE. Under some conditions, the TRBE might generate a write to the next 908 virtually addressed page following the last page of the TRBE address space 909 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 910 911 Work around this in the driver by always making sure that there is a 912 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 913 914 If unsure, say Y. 915 916config ARM64_ERRATUM_2224489 917 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 918 depends on CORESIGHT_TRBE 919 default y 920 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 921 help 922 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 923 924 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 925 for TRBE. Under some conditions, the TRBE might generate a write to the next 926 virtually addressed page following the last page of the TRBE address space 927 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 928 929 Work around this in the driver by always making sure that there is a 930 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 931 932 If unsure, say Y. 933 934config ARM64_ERRATUM_2441009 935 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 936 select ARM64_WORKAROUND_REPEAT_TLBI 937 help 938 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 939 940 Under very rare circumstances, affected Cortex-A510 CPUs 941 may not handle a race between a break-before-make sequence on one 942 CPU, and another CPU accessing the same page. This could allow a 943 store to a page that has been unmapped. 944 945 Work around this by adding the affected CPUs to the list that needs 946 TLB sequences to be done twice. 947 948 If unsure, say N. 949 950config ARM64_ERRATUM_2064142 951 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 952 depends on CORESIGHT_TRBE 953 default y 954 help 955 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 956 957 Affected Cortex-A510 core might fail to write into system registers after the 958 TRBE has been disabled. Under some conditions after the TRBE has been disabled 959 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 960 and TRBTRG_EL1 will be ignored and will not be effected. 961 962 Work around this in the driver by executing TSB CSYNC and DSB after collection 963 is stopped and before performing a system register write to one of the affected 964 registers. 965 966 If unsure, say Y. 967 968config ARM64_ERRATUM_2038923 969 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 970 depends on CORESIGHT_TRBE 971 default y 972 help 973 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 974 975 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 976 prohibited within the CPU. As a result, the trace buffer or trace buffer state 977 might be corrupted. This happens after TRBE buffer has been enabled by setting 978 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 979 execution changes from a context, in which trace is prohibited to one where it 980 isn't, or vice versa. In these mentioned conditions, the view of whether trace 981 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 982 the trace buffer state might be corrupted. 983 984 Work around this in the driver by preventing an inconsistent view of whether the 985 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 986 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 987 two ISB instructions if no ERET is to take place. 988 989 If unsure, say Y. 990 991config ARM64_ERRATUM_1902691 992 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 993 depends on CORESIGHT_TRBE 994 default y 995 help 996 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 997 998 Affected Cortex-A510 core might cause trace data corruption, when being written 999 into the memory. Effectively TRBE is broken and hence cannot be used to capture 1000 trace data. 1001 1002 Work around this problem in the driver by just preventing TRBE initialization on 1003 affected cpus. The firmware must have disabled the access to TRBE for the kernel 1004 on such implementations. This will cover the kernel for any firmware that doesn't 1005 do this already. 1006 1007 If unsure, say Y. 1008 1009config ARM64_ERRATUM_2457168 1010 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1011 depends on ARM64_AMU_EXTN 1012 default y 1013 help 1014 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1015 1016 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1017 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1018 incorrectly giving a significantly higher output value. 1019 1020 Work around this problem by returning 0 when reading the affected counter in 1021 key locations that results in disabling all users of this counter. This effect 1022 is the same to firmware disabling affected counters. 1023 1024 If unsure, say Y. 1025 1026config ARM64_ERRATUM_2645198 1027 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1028 default y 1029 help 1030 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1031 1032 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1033 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1034 next instruction abort caused by permission fault. 1035 1036 Only user-space does executable to non-executable permission transition via 1037 mprotect() system call. Workaround the problem by doing a break-before-make 1038 TLB invalidation, for all changes to executable user space mappings. 1039 1040 If unsure, say Y. 1041 1042config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1043 bool 1044 1045config ARM64_ERRATUM_2966298 1046 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1047 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1048 default y 1049 help 1050 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1051 1052 On an affected Cortex-A520 core, a speculatively executed unprivileged 1053 load might leak data from a privileged level via a cache side channel. 1054 1055 Work around this problem by executing a TLBI before returning to EL0. 1056 1057 If unsure, say Y. 1058 1059config ARM64_ERRATUM_3117295 1060 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1061 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1062 default y 1063 help 1064 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1065 1066 On an affected Cortex-A510 core, a speculatively executed unprivileged 1067 load might leak data from a privileged level via a cache side channel. 1068 1069 Work around this problem by executing a TLBI before returning to EL0. 1070 1071 If unsure, say Y. 1072 1073config ARM64_ERRATUM_3194386 1074 bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing" 1075 default y 1076 help 1077 This option adds the workaround for the following errata: 1078 1079 * ARM Cortex-A76 erratum 3324349 1080 * ARM Cortex-A77 erratum 3324348 1081 * ARM Cortex-A78 erratum 3324344 1082 * ARM Cortex-A78C erratum 3324346 1083 * ARM Cortex-A78C erratum 3324347 1084 * ARM Cortex-A710 erratam 3324338 1085 * ARM Cortex-A720 erratum 3456091 1086 * ARM Cortex-A725 erratum 3456106 1087 * ARM Cortex-X1 erratum 3324344 1088 * ARM Cortex-X1C erratum 3324346 1089 * ARM Cortex-X2 erratum 3324338 1090 * ARM Cortex-X3 erratum 3324335 1091 * ARM Cortex-X4 erratum 3194386 1092 * ARM Cortex-X925 erratum 3324334 1093 * ARM Neoverse-N1 erratum 3324349 1094 * ARM Neoverse N2 erratum 3324339 1095 * ARM Neoverse-V1 erratum 3324341 1096 * ARM Neoverse V2 erratum 3324336 1097 * ARM Neoverse-V3 erratum 3312417 1098 1099 On affected cores "MSR SSBS, #0" instructions may not affect 1100 subsequent speculative instructions, which may permit unexepected 1101 speculative store bypassing. 1102 1103 Work around this problem by placing a Speculation Barrier (SB) or 1104 Instruction Synchronization Barrier (ISB) after kernel changes to 1105 SSBS. The presence of the SSBS special-purpose register is hidden 1106 from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace 1107 will use the PR_SPEC_STORE_BYPASS prctl to change SSBS. 1108 1109 If unsure, say Y. 1110 1111config CAVIUM_ERRATUM_22375 1112 bool "Cavium erratum 22375, 24313" 1113 default y 1114 help 1115 Enable workaround for errata 22375 and 24313. 1116 1117 This implements two gicv3-its errata workarounds for ThunderX. Both 1118 with a small impact affecting only ITS table allocation. 1119 1120 erratum 22375: only alloc 8MB table size 1121 erratum 24313: ignore memory access type 1122 1123 The fixes are in ITS initialization and basically ignore memory access 1124 type and table size provided by the TYPER and BASER registers. 1125 1126 If unsure, say Y. 1127 1128config CAVIUM_ERRATUM_23144 1129 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1130 depends on NUMA 1131 default y 1132 help 1133 ITS SYNC command hang for cross node io and collections/cpu mapping. 1134 1135 If unsure, say Y. 1136 1137config CAVIUM_ERRATUM_23154 1138 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1139 default y 1140 help 1141 The ThunderX GICv3 implementation requires a modified version for 1142 reading the IAR status to ensure data synchronization 1143 (access to icc_iar1_el1 is not sync'ed before and after). 1144 1145 It also suffers from erratum 38545 (also present on Marvell's 1146 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1147 spuriously presented to the CPU interface. 1148 1149 If unsure, say Y. 1150 1151config CAVIUM_ERRATUM_27456 1152 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1153 default y 1154 help 1155 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1156 instructions may cause the icache to become corrupted if it 1157 contains data for a non-current ASID. The fix is to 1158 invalidate the icache when changing the mm context. 1159 1160 If unsure, say Y. 1161 1162config CAVIUM_ERRATUM_30115 1163 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1164 default y 1165 help 1166 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1167 1.2, and T83 Pass 1.0, KVM guest execution may disable 1168 interrupts in host. Trapping both GICv3 group-0 and group-1 1169 accesses sidesteps the issue. 1170 1171 If unsure, say Y. 1172 1173config CAVIUM_TX2_ERRATUM_219 1174 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1175 default y 1176 help 1177 On Cavium ThunderX2, a load, store or prefetch instruction between a 1178 TTBR update and the corresponding context synchronizing operation can 1179 cause a spurious Data Abort to be delivered to any hardware thread in 1180 the CPU core. 1181 1182 Work around the issue by avoiding the problematic code sequence and 1183 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1184 trap handler performs the corresponding register access, skips the 1185 instruction and ensures context synchronization by virtue of the 1186 exception return. 1187 1188 If unsure, say Y. 1189 1190config FUJITSU_ERRATUM_010001 1191 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1192 default y 1193 help 1194 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1195 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1196 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1197 This fault occurs under a specific hardware condition when a 1198 load/store instruction performs an address translation using: 1199 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1200 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1201 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1202 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1203 1204 The workaround is to ensure these bits are clear in TCR_ELx. 1205 The workaround only affects the Fujitsu-A64FX. 1206 1207 If unsure, say Y. 1208 1209config HISILICON_ERRATUM_161600802 1210 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1211 default y 1212 help 1213 The HiSilicon Hip07 SoC uses the wrong redistributor base 1214 when issued ITS commands such as VMOVP and VMAPP, and requires 1215 a 128kB offset to be applied to the target address in this commands. 1216 1217 If unsure, say Y. 1218 1219config QCOM_FALKOR_ERRATUM_1003 1220 bool "Falkor E1003: Incorrect translation due to ASID change" 1221 default y 1222 help 1223 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1224 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1225 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1226 then only for entries in the walk cache, since the leaf translation 1227 is unchanged. Work around the erratum by invalidating the walk cache 1228 entries for the trampoline before entering the kernel proper. 1229 1230config QCOM_FALKOR_ERRATUM_1009 1231 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1232 default y 1233 select ARM64_WORKAROUND_REPEAT_TLBI 1234 help 1235 On Falkor v1, the CPU may prematurely complete a DSB following a 1236 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1237 one more time to fix the issue. 1238 1239 If unsure, say Y. 1240 1241config QCOM_QDF2400_ERRATUM_0065 1242 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1243 default y 1244 help 1245 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1246 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1247 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1248 1249 If unsure, say Y. 1250 1251config QCOM_FALKOR_ERRATUM_E1041 1252 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1253 default y 1254 help 1255 Falkor CPU may speculatively fetch instructions from an improper 1256 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1257 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1258 1259 If unsure, say Y. 1260 1261config NVIDIA_CARMEL_CNP_ERRATUM 1262 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1263 default y 1264 help 1265 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1266 invalidate shared TLB entries installed by a different core, as it would 1267 on standard ARM cores. 1268 1269 If unsure, say Y. 1270 1271config ROCKCHIP_ERRATUM_3588001 1272 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1273 default y 1274 help 1275 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1276 This means, that its sharability feature may not be used, even though it 1277 is supported by the IP itself. 1278 1279 If unsure, say Y. 1280 1281config SOCIONEXT_SYNQUACER_PREITS 1282 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1283 default y 1284 help 1285 Socionext Synquacer SoCs implement a separate h/w block to generate 1286 MSI doorbell writes with non-zero values for the device ID. 1287 1288 If unsure, say Y. 1289 1290endmenu # "ARM errata workarounds via the alternatives framework" 1291 1292choice 1293 prompt "Page size" 1294 default ARM64_4K_PAGES 1295 help 1296 Page size (translation granule) configuration. 1297 1298config ARM64_4K_PAGES 1299 bool "4KB" 1300 select HAVE_PAGE_SIZE_4KB 1301 help 1302 This feature enables 4KB pages support. 1303 1304config ARM64_16K_PAGES 1305 bool "16KB" 1306 select HAVE_PAGE_SIZE_16KB 1307 help 1308 The system will use 16KB pages support. AArch32 emulation 1309 requires applications compiled with 16K (or a multiple of 16K) 1310 aligned segments. 1311 1312config ARM64_64K_PAGES 1313 bool "64KB" 1314 select HAVE_PAGE_SIZE_64KB 1315 help 1316 This feature enables 64KB pages support (4KB by default) 1317 allowing only two levels of page tables and faster TLB 1318 look-up. AArch32 emulation requires applications compiled 1319 with 64K aligned segments. 1320 1321endchoice 1322 1323choice 1324 prompt "Virtual address space size" 1325 default ARM64_VA_BITS_52 1326 help 1327 Allows choosing one of multiple possible virtual address 1328 space sizes. The level of translation table is determined by 1329 a combination of page size and virtual address space size. 1330 1331config ARM64_VA_BITS_36 1332 bool "36-bit" if EXPERT 1333 depends on PAGE_SIZE_16KB 1334 1335config ARM64_VA_BITS_39 1336 bool "39-bit" 1337 depends on PAGE_SIZE_4KB 1338 1339config ARM64_VA_BITS_42 1340 bool "42-bit" 1341 depends on PAGE_SIZE_64KB 1342 1343config ARM64_VA_BITS_47 1344 bool "47-bit" 1345 depends on PAGE_SIZE_16KB 1346 1347config ARM64_VA_BITS_48 1348 bool "48-bit" 1349 1350config ARM64_VA_BITS_52 1351 bool "52-bit" 1352 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1353 help 1354 Enable 52-bit virtual addressing for userspace when explicitly 1355 requested via a hint to mmap(). The kernel will also use 52-bit 1356 virtual addresses for its own mappings (provided HW support for 1357 this feature is available, otherwise it reverts to 48-bit). 1358 1359 NOTE: Enabling 52-bit virtual addressing in conjunction with 1360 ARMv8.3 Pointer Authentication will result in the PAC being 1361 reduced from 7 bits to 3 bits, which may have a significant 1362 impact on its susceptibility to brute-force attacks. 1363 1364 If unsure, select 48-bit virtual addressing instead. 1365 1366endchoice 1367 1368config ARM64_FORCE_52BIT 1369 bool "Force 52-bit virtual addresses for userspace" 1370 depends on ARM64_VA_BITS_52 && EXPERT 1371 help 1372 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1373 to maintain compatibility with older software by providing 48-bit VAs 1374 unless a hint is supplied to mmap. 1375 1376 This configuration option disables the 48-bit compatibility logic, and 1377 forces all userspace addresses to be 52-bit on HW that supports it. One 1378 should only enable this configuration option for stress testing userspace 1379 memory management code. If unsure say N here. 1380 1381config ARM64_VA_BITS 1382 int 1383 default 36 if ARM64_VA_BITS_36 1384 default 39 if ARM64_VA_BITS_39 1385 default 42 if ARM64_VA_BITS_42 1386 default 47 if ARM64_VA_BITS_47 1387 default 48 if ARM64_VA_BITS_48 1388 default 52 if ARM64_VA_BITS_52 1389 1390choice 1391 prompt "Physical address space size" 1392 default ARM64_PA_BITS_48 1393 help 1394 Choose the maximum physical address range that the kernel will 1395 support. 1396 1397config ARM64_PA_BITS_48 1398 bool "48-bit" 1399 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52 1400 1401config ARM64_PA_BITS_52 1402 bool "52-bit" 1403 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52 1404 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1405 help 1406 Enable support for a 52-bit physical address space, introduced as 1407 part of the ARMv8.2-LPA extension. 1408 1409 With this enabled, the kernel will also continue to work on CPUs that 1410 do not support ARMv8.2-LPA, but with some added memory overhead (and 1411 minor performance overhead). 1412 1413endchoice 1414 1415config ARM64_PA_BITS 1416 int 1417 default 48 if ARM64_PA_BITS_48 1418 default 52 if ARM64_PA_BITS_52 1419 1420config ARM64_LPA2 1421 def_bool y 1422 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES 1423 1424choice 1425 prompt "Endianness" 1426 default CPU_LITTLE_ENDIAN 1427 help 1428 Select the endianness of data accesses performed by the CPU. Userspace 1429 applications will need to be compiled and linked for the endianness 1430 that is selected here. 1431 1432config CPU_BIG_ENDIAN 1433 bool "Build big-endian kernel" 1434 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c 1435 depends on AS_IS_GNU || AS_VERSION >= 150000 1436 help 1437 Say Y if you plan on running a kernel with a big-endian userspace. 1438 1439config CPU_LITTLE_ENDIAN 1440 bool "Build little-endian kernel" 1441 help 1442 Say Y if you plan on running a kernel with a little-endian userspace. 1443 This is usually the case for distributions targeting arm64. 1444 1445endchoice 1446 1447config SCHED_MC 1448 bool "Multi-core scheduler support" 1449 help 1450 Multi-core scheduler support improves the CPU scheduler's decision 1451 making when dealing with multi-core CPU chips at a cost of slightly 1452 increased overhead in some places. If unsure say N here. 1453 1454config SCHED_CLUSTER 1455 bool "Cluster scheduler support" 1456 help 1457 Cluster scheduler support improves the CPU scheduler's decision 1458 making when dealing with machines that have clusters of CPUs. 1459 Cluster usually means a couple of CPUs which are placed closely 1460 by sharing mid-level caches, last-level cache tags or internal 1461 busses. 1462 1463config SCHED_SMT 1464 bool "SMT scheduler support" 1465 help 1466 Improves the CPU scheduler's decision making when dealing with 1467 MultiThreading at a cost of slightly increased overhead in some 1468 places. If unsure say N here. 1469 1470config NR_CPUS 1471 int "Maximum number of CPUs (2-4096)" 1472 range 2 4096 1473 default "512" 1474 1475config HOTPLUG_CPU 1476 bool "Support for hot-pluggable CPUs" 1477 select GENERIC_IRQ_MIGRATION 1478 help 1479 Say Y here to experiment with turning CPUs off and on. CPUs 1480 can be controlled through /sys/devices/system/cpu. 1481 1482# Common NUMA Features 1483config NUMA 1484 bool "NUMA Memory Allocation and Scheduler Support" 1485 select GENERIC_ARCH_NUMA 1486 select OF_NUMA 1487 select HAVE_SETUP_PER_CPU_AREA 1488 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1489 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1490 select USE_PERCPU_NUMA_NODE_ID 1491 help 1492 Enable NUMA (Non-Uniform Memory Access) support. 1493 1494 The kernel will try to allocate memory used by a CPU on the 1495 local memory of the CPU and add some more 1496 NUMA awareness to the kernel. 1497 1498config NODES_SHIFT 1499 int "Maximum NUMA Nodes (as a power of 2)" 1500 range 1 10 1501 default "4" 1502 depends on NUMA 1503 help 1504 Specify the maximum number of NUMA Nodes available on the target 1505 system. Increases memory reserved to accommodate various tables. 1506 1507source "kernel/Kconfig.hz" 1508 1509config ARCH_SPARSEMEM_ENABLE 1510 def_bool y 1511 select SPARSEMEM_VMEMMAP_ENABLE 1512 select SPARSEMEM_VMEMMAP 1513 1514config HW_PERF_EVENTS 1515 def_bool y 1516 depends on ARM_PMU 1517 1518# Supported by clang >= 7.0 or GCC >= 12.0.0 1519config CC_HAVE_SHADOW_CALL_STACK 1520 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1521 1522config PARAVIRT 1523 bool "Enable paravirtualization code" 1524 help 1525 This changes the kernel so it can modify itself when it is run 1526 under a hypervisor, potentially improving performance significantly 1527 over full virtualization. 1528 1529config PARAVIRT_TIME_ACCOUNTING 1530 bool "Paravirtual steal time accounting" 1531 select PARAVIRT 1532 help 1533 Select this option to enable fine granularity task steal time 1534 accounting. Time spent executing other tasks in parallel with 1535 the current vCPU is discounted from the vCPU power. To account for 1536 that, there can be a small performance impact. 1537 1538 If in doubt, say N here. 1539 1540config ARCH_SUPPORTS_KEXEC 1541 def_bool PM_SLEEP_SMP 1542 1543config ARCH_SUPPORTS_KEXEC_FILE 1544 def_bool y 1545 1546config ARCH_SELECTS_KEXEC_FILE 1547 def_bool y 1548 depends on KEXEC_FILE 1549 select HAVE_IMA_KEXEC if IMA 1550 1551config ARCH_SUPPORTS_KEXEC_SIG 1552 def_bool y 1553 1554config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1555 def_bool y 1556 1557config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1558 def_bool y 1559 1560config ARCH_SUPPORTS_CRASH_DUMP 1561 def_bool y 1562 1563config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1564 def_bool CRASH_RESERVE 1565 1566config TRANS_TABLE 1567 def_bool y 1568 depends on HIBERNATION || KEXEC_CORE 1569 1570config XEN_DOM0 1571 def_bool y 1572 depends on XEN 1573 1574config XEN 1575 bool "Xen guest support on ARM64" 1576 depends on ARM64 && OF 1577 select SWIOTLB_XEN 1578 select PARAVIRT 1579 help 1580 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1581 1582# include/linux/mmzone.h requires the following to be true: 1583# 1584# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1585# 1586# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1587# 1588# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1589# ----+-------------------+--------------+----------------------+-------------------------+ 1590# 4K | 27 | 12 | 15 | 10 | 1591# 16K | 27 | 14 | 13 | 11 | 1592# 64K | 29 | 16 | 13 | 13 | 1593config ARCH_FORCE_MAX_ORDER 1594 int 1595 default "13" if ARM64_64K_PAGES 1596 default "11" if ARM64_16K_PAGES 1597 default "10" 1598 help 1599 The kernel page allocator limits the size of maximal physically 1600 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1601 defines the maximal power of two of number of pages that can be 1602 allocated as a single contiguous block. This option allows 1603 overriding the default setting when ability to allocate very 1604 large blocks of physically contiguous memory is required. 1605 1606 The maximal size of allocation cannot exceed the size of the 1607 section, so the value of MAX_PAGE_ORDER should satisfy 1608 1609 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1610 1611 Don't change if unsure. 1612 1613config UNMAP_KERNEL_AT_EL0 1614 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1615 default y 1616 help 1617 Speculation attacks against some high-performance processors can 1618 be used to bypass MMU permission checks and leak kernel data to 1619 userspace. This can be defended against by unmapping the kernel 1620 when running in userspace, mapping it back in on exception entry 1621 via a trampoline page in the vector table. 1622 1623 If unsure, say Y. 1624 1625config MITIGATE_SPECTRE_BRANCH_HISTORY 1626 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1627 default y 1628 help 1629 Speculation attacks against some high-performance processors can 1630 make use of branch history to influence future speculation. 1631 When taking an exception from user-space, a sequence of branches 1632 or a firmware call overwrites the branch history. 1633 1634config RODATA_FULL_DEFAULT_ENABLED 1635 bool "Apply r/o permissions of VM areas also to their linear aliases" 1636 default y 1637 help 1638 Apply read-only attributes of VM areas to the linear alias of 1639 the backing pages as well. This prevents code or read-only data 1640 from being modified (inadvertently or intentionally) via another 1641 mapping of the same memory page. This additional enhancement can 1642 be turned off at runtime by passing rodata=[off|on] (and turned on 1643 with rodata=full if this option is set to 'n') 1644 1645 This requires the linear region to be mapped down to pages, 1646 which may adversely affect performance in some cases. 1647 1648config ARM64_SW_TTBR0_PAN 1649 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1650 depends on !KCSAN 1651 help 1652 Enabling this option prevents the kernel from accessing 1653 user-space memory directly by pointing TTBR0_EL1 to a reserved 1654 zeroed area and reserved ASID. The user access routines 1655 restore the valid TTBR0_EL1 temporarily. 1656 1657config ARM64_TAGGED_ADDR_ABI 1658 bool "Enable the tagged user addresses syscall ABI" 1659 default y 1660 help 1661 When this option is enabled, user applications can opt in to a 1662 relaxed ABI via prctl() allowing tagged addresses to be passed 1663 to system calls as pointer arguments. For details, see 1664 Documentation/arch/arm64/tagged-address-abi.rst. 1665 1666menuconfig COMPAT 1667 bool "Kernel support for 32-bit EL0" 1668 depends on ARM64_4K_PAGES || EXPERT 1669 select HAVE_UID16 1670 select OLD_SIGSUSPEND3 1671 select COMPAT_OLD_SIGACTION 1672 help 1673 This option enables support for a 32-bit EL0 running under a 64-bit 1674 kernel at EL1. AArch32-specific components such as system calls, 1675 the user helper functions, VFP support and the ptrace interface are 1676 handled appropriately by the kernel. 1677 1678 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1679 that you will only be able to execute AArch32 binaries that were compiled 1680 with page size aligned segments. 1681 1682 If you want to execute 32-bit userspace applications, say Y. 1683 1684if COMPAT 1685 1686config KUSER_HELPERS 1687 bool "Enable kuser helpers page for 32-bit applications" 1688 default y 1689 help 1690 Warning: disabling this option may break 32-bit user programs. 1691 1692 Provide kuser helpers to compat tasks. The kernel provides 1693 helper code to userspace in read only form at a fixed location 1694 to allow userspace to be independent of the CPU type fitted to 1695 the system. This permits binaries to be run on ARMv4 through 1696 to ARMv8 without modification. 1697 1698 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1699 1700 However, the fixed address nature of these helpers can be used 1701 by ROP (return orientated programming) authors when creating 1702 exploits. 1703 1704 If all of the binaries and libraries which run on your platform 1705 are built specifically for your platform, and make no use of 1706 these helpers, then you can turn this option off to hinder 1707 such exploits. However, in that case, if a binary or library 1708 relying on those helpers is run, it will not function correctly. 1709 1710 Say N here only if you are absolutely certain that you do not 1711 need these helpers; otherwise, the safe option is to say Y. 1712 1713config COMPAT_VDSO 1714 bool "Enable vDSO for 32-bit applications" 1715 depends on !CPU_BIG_ENDIAN 1716 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1717 select GENERIC_COMPAT_VDSO 1718 default y 1719 help 1720 Place in the process address space of 32-bit applications an 1721 ELF shared object providing fast implementations of gettimeofday 1722 and clock_gettime. 1723 1724 You must have a 32-bit build of glibc 2.22 or later for programs 1725 to seamlessly take advantage of this. 1726 1727config THUMB2_COMPAT_VDSO 1728 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1729 depends on COMPAT_VDSO 1730 default y 1731 help 1732 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1733 otherwise with '-marm'. 1734 1735config COMPAT_ALIGNMENT_FIXUPS 1736 bool "Fix up misaligned multi-word loads and stores in user space" 1737 1738menuconfig ARMV8_DEPRECATED 1739 bool "Emulate deprecated/obsolete ARMv8 instructions" 1740 depends on SYSCTL 1741 help 1742 Legacy software support may require certain instructions 1743 that have been deprecated or obsoleted in the architecture. 1744 1745 Enable this config to enable selective emulation of these 1746 features. 1747 1748 If unsure, say Y 1749 1750if ARMV8_DEPRECATED 1751 1752config SWP_EMULATION 1753 bool "Emulate SWP/SWPB instructions" 1754 help 1755 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1756 they are always undefined. Say Y here to enable software 1757 emulation of these instructions for userspace using LDXR/STXR. 1758 This feature can be controlled at runtime with the abi.swp 1759 sysctl which is disabled by default. 1760 1761 In some older versions of glibc [<=2.8] SWP is used during futex 1762 trylock() operations with the assumption that the code will not 1763 be preempted. This invalid assumption may be more likely to fail 1764 with SWP emulation enabled, leading to deadlock of the user 1765 application. 1766 1767 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1768 on an external transaction monitoring block called a global 1769 monitor to maintain update atomicity. If your system does not 1770 implement a global monitor, this option can cause programs that 1771 perform SWP operations to uncached memory to deadlock. 1772 1773 If unsure, say Y 1774 1775config CP15_BARRIER_EMULATION 1776 bool "Emulate CP15 Barrier instructions" 1777 help 1778 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1779 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1780 strongly recommended to use the ISB, DSB, and DMB 1781 instructions instead. 1782 1783 Say Y here to enable software emulation of these 1784 instructions for AArch32 userspace code. When this option is 1785 enabled, CP15 barrier usage is traced which can help 1786 identify software that needs updating. This feature can be 1787 controlled at runtime with the abi.cp15_barrier sysctl. 1788 1789 If unsure, say Y 1790 1791config SETEND_EMULATION 1792 bool "Emulate SETEND instruction" 1793 help 1794 The SETEND instruction alters the data-endianness of the 1795 AArch32 EL0, and is deprecated in ARMv8. 1796 1797 Say Y here to enable software emulation of the instruction 1798 for AArch32 userspace code. This feature can be controlled 1799 at runtime with the abi.setend sysctl. 1800 1801 Note: All the cpus on the system must have mixed endian support at EL0 1802 for this feature to be enabled. If a new CPU - which doesn't support mixed 1803 endian - is hotplugged in after this feature has been enabled, there could 1804 be unexpected results in the applications. 1805 1806 If unsure, say Y 1807endif # ARMV8_DEPRECATED 1808 1809endif # COMPAT 1810 1811menu "ARMv8.1 architectural features" 1812 1813config ARM64_HW_AFDBM 1814 bool "Support for hardware updates of the Access and Dirty page flags" 1815 default y 1816 help 1817 The ARMv8.1 architecture extensions introduce support for 1818 hardware updates of the access and dirty information in page 1819 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1820 capable processors, accesses to pages with PTE_AF cleared will 1821 set this bit instead of raising an access flag fault. 1822 Similarly, writes to read-only pages with the DBM bit set will 1823 clear the read-only bit (AP[2]) instead of raising a 1824 permission fault. 1825 1826 Kernels built with this configuration option enabled continue 1827 to work on pre-ARMv8.1 hardware and the performance impact is 1828 minimal. If unsure, say Y. 1829 1830config ARM64_PAN 1831 bool "Enable support for Privileged Access Never (PAN)" 1832 default y 1833 help 1834 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1835 prevents the kernel or hypervisor from accessing user-space (EL0) 1836 memory directly. 1837 1838 Choosing this option will cause any unprotected (not using 1839 copy_to_user et al) memory access to fail with a permission fault. 1840 1841 The feature is detected at runtime, and will remain as a 'nop' 1842 instruction if the cpu does not implement the feature. 1843 1844config AS_HAS_LSE_ATOMICS 1845 def_bool $(as-instr,.arch_extension lse) 1846 1847config ARM64_LSE_ATOMICS 1848 bool 1849 default ARM64_USE_LSE_ATOMICS 1850 depends on AS_HAS_LSE_ATOMICS 1851 1852config ARM64_USE_LSE_ATOMICS 1853 bool "Atomic instructions" 1854 default y 1855 help 1856 As part of the Large System Extensions, ARMv8.1 introduces new 1857 atomic instructions that are designed specifically to scale in 1858 very large systems. 1859 1860 Say Y here to make use of these instructions for the in-kernel 1861 atomic routines. This incurs a small overhead on CPUs that do 1862 not support these instructions and requires the kernel to be 1863 built with binutils >= 2.25 in order for the new instructions 1864 to be used. 1865 1866endmenu # "ARMv8.1 architectural features" 1867 1868menu "ARMv8.2 architectural features" 1869 1870config AS_HAS_ARMV8_2 1871 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1872 1873config AS_HAS_SHA3 1874 def_bool $(as-instr,.arch armv8.2-a+sha3) 1875 1876config ARM64_PMEM 1877 bool "Enable support for persistent memory" 1878 select ARCH_HAS_PMEM_API 1879 select ARCH_HAS_UACCESS_FLUSHCACHE 1880 help 1881 Say Y to enable support for the persistent memory API based on the 1882 ARMv8.2 DCPoP feature. 1883 1884 The feature is detected at runtime, and the kernel will use DC CVAC 1885 operations if DC CVAP is not supported (following the behaviour of 1886 DC CVAP itself if the system does not define a point of persistence). 1887 1888config ARM64_RAS_EXTN 1889 bool "Enable support for RAS CPU Extensions" 1890 default y 1891 help 1892 CPUs that support the Reliability, Availability and Serviceability 1893 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1894 errors, classify them and report them to software. 1895 1896 On CPUs with these extensions system software can use additional 1897 barriers to determine if faults are pending and read the 1898 classification from a new set of registers. 1899 1900 Selecting this feature will allow the kernel to use these barriers 1901 and access the new registers if the system supports the extension. 1902 Platform RAS features may additionally depend on firmware support. 1903 1904config ARM64_CNP 1905 bool "Enable support for Common Not Private (CNP) translations" 1906 default y 1907 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1908 help 1909 Common Not Private (CNP) allows translation table entries to 1910 be shared between different PEs in the same inner shareable 1911 domain, so the hardware can use this fact to optimise the 1912 caching of such entries in the TLB. 1913 1914 Selecting this option allows the CNP feature to be detected 1915 at runtime, and does not affect PEs that do not implement 1916 this feature. 1917 1918endmenu # "ARMv8.2 architectural features" 1919 1920menu "ARMv8.3 architectural features" 1921 1922config ARM64_PTR_AUTH 1923 bool "Enable support for pointer authentication" 1924 default y 1925 help 1926 Pointer authentication (part of the ARMv8.3 Extensions) provides 1927 instructions for signing and authenticating pointers against secret 1928 keys, which can be used to mitigate Return Oriented Programming (ROP) 1929 and other attacks. 1930 1931 This option enables these instructions at EL0 (i.e. for userspace). 1932 Choosing this option will cause the kernel to initialise secret keys 1933 for each process at exec() time, with these keys being 1934 context-switched along with the process. 1935 1936 The feature is detected at runtime. If the feature is not present in 1937 hardware it will not be advertised to userspace/KVM guest nor will it 1938 be enabled. 1939 1940 If the feature is present on the boot CPU but not on a late CPU, then 1941 the late CPU will be parked. Also, if the boot CPU does not have 1942 address auth and the late CPU has then the late CPU will still boot 1943 but with the feature disabled. On such a system, this option should 1944 not be selected. 1945 1946config ARM64_PTR_AUTH_KERNEL 1947 bool "Use pointer authentication for kernel" 1948 default y 1949 depends on ARM64_PTR_AUTH 1950 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1951 # Modern compilers insert a .note.gnu.property section note for PAC 1952 # which is only understood by binutils starting with version 2.33.1. 1953 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1954 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1955 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1956 help 1957 If the compiler supports the -mbranch-protection or 1958 -msign-return-address flag (e.g. GCC 7 or later), then this option 1959 will cause the kernel itself to be compiled with return address 1960 protection. In this case, and if the target hardware is known to 1961 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1962 disabled with minimal loss of protection. 1963 1964 This feature works with FUNCTION_GRAPH_TRACER option only if 1965 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1966 1967config CC_HAS_BRANCH_PROT_PAC_RET 1968 # GCC 9 or later, clang 8 or later 1969 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1970 1971config CC_HAS_SIGN_RETURN_ADDRESS 1972 # GCC 7, 8 1973 def_bool $(cc-option,-msign-return-address=all) 1974 1975config AS_HAS_ARMV8_3 1976 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1977 1978config AS_HAS_CFI_NEGATE_RA_STATE 1979 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1980 1981config AS_HAS_LDAPR 1982 def_bool $(as-instr,.arch_extension rcpc) 1983 1984endmenu # "ARMv8.3 architectural features" 1985 1986menu "ARMv8.4 architectural features" 1987 1988config ARM64_AMU_EXTN 1989 bool "Enable support for the Activity Monitors Unit CPU extension" 1990 default y 1991 help 1992 The activity monitors extension is an optional extension introduced 1993 by the ARMv8.4 CPU architecture. This enables support for version 1 1994 of the activity monitors architecture, AMUv1. 1995 1996 To enable the use of this extension on CPUs that implement it, say Y. 1997 1998 Note that for architectural reasons, firmware _must_ implement AMU 1999 support when running on CPUs that present the activity monitors 2000 extension. The required support is present in: 2001 * Version 1.5 and later of the ARM Trusted Firmware 2002 2003 For kernels that have this configuration enabled but boot with broken 2004 firmware, you may need to say N here until the firmware is fixed. 2005 Otherwise you may experience firmware panics or lockups when 2006 accessing the counter registers. Even if you are not observing these 2007 symptoms, the values returned by the register reads might not 2008 correctly reflect reality. Most commonly, the value read will be 0, 2009 indicating that the counter is not enabled. 2010 2011config AS_HAS_ARMV8_4 2012 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 2013 2014config ARM64_TLB_RANGE 2015 bool "Enable support for tlbi range feature" 2016 default y 2017 depends on AS_HAS_ARMV8_4 2018 help 2019 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 2020 range of input addresses. 2021 2022 The feature introduces new assembly instructions, and they were 2023 support when binutils >= 2.30. 2024 2025endmenu # "ARMv8.4 architectural features" 2026 2027menu "ARMv8.5 architectural features" 2028 2029config AS_HAS_ARMV8_5 2030 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 2031 2032config ARM64_BTI 2033 bool "Branch Target Identification support" 2034 default y 2035 help 2036 Branch Target Identification (part of the ARMv8.5 Extensions) 2037 provides a mechanism to limit the set of locations to which computed 2038 branch instructions such as BR or BLR can jump. 2039 2040 To make use of BTI on CPUs that support it, say Y. 2041 2042 BTI is intended to provide complementary protection to other control 2043 flow integrity protection mechanisms, such as the Pointer 2044 authentication mechanism provided as part of the ARMv8.3 Extensions. 2045 For this reason, it does not make sense to enable this option without 2046 also enabling support for pointer authentication. Thus, when 2047 enabling this option you should also select ARM64_PTR_AUTH=y. 2048 2049 Userspace binaries must also be specifically compiled to make use of 2050 this mechanism. If you say N here or the hardware does not support 2051 BTI, such binaries can still run, but you get no additional 2052 enforcement of branch destinations. 2053 2054config ARM64_BTI_KERNEL 2055 bool "Use Branch Target Identification for kernel" 2056 default y 2057 depends on ARM64_BTI 2058 depends on ARM64_PTR_AUTH_KERNEL 2059 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2060 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2061 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2062 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2063 depends on !CC_IS_GCC 2064 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2065 help 2066 Build the kernel with Branch Target Identification annotations 2067 and enable enforcement of this for kernel code. When this option 2068 is enabled and the system supports BTI all kernel code including 2069 modular code must have BTI enabled. 2070 2071config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2072 # GCC 9 or later, clang 8 or later 2073 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2074 2075config ARM64_E0PD 2076 bool "Enable support for E0PD" 2077 default y 2078 help 2079 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2080 that EL0 accesses made via TTBR1 always fault in constant time, 2081 providing similar benefits to KASLR as those provided by KPTI, but 2082 with lower overhead and without disrupting legitimate access to 2083 kernel memory such as SPE. 2084 2085 This option enables E0PD for TTBR1 where available. 2086 2087config ARM64_AS_HAS_MTE 2088 # Initial support for MTE went in binutils 2.32.0, checked with 2089 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2090 # as a late addition to the final architecture spec (LDGM/STGM) 2091 # is only supported in the newer 2.32.x and 2.33 binutils 2092 # versions, hence the extra "stgm" instruction check below. 2093 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2094 2095config ARM64_MTE 2096 bool "Memory Tagging Extension support" 2097 default y 2098 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2099 depends on AS_HAS_ARMV8_5 2100 depends on AS_HAS_LSE_ATOMICS 2101 # Required for tag checking in the uaccess routines 2102 depends on ARM64_PAN 2103 select ARCH_HAS_SUBPAGE_FAULTS 2104 select ARCH_USES_HIGH_VMA_FLAGS 2105 select ARCH_USES_PG_ARCH_X 2106 help 2107 Memory Tagging (part of the ARMv8.5 Extensions) provides 2108 architectural support for run-time, always-on detection of 2109 various classes of memory error to aid with software debugging 2110 to eliminate vulnerabilities arising from memory-unsafe 2111 languages. 2112 2113 This option enables the support for the Memory Tagging 2114 Extension at EL0 (i.e. for userspace). 2115 2116 Selecting this option allows the feature to be detected at 2117 runtime. Any secondary CPU not implementing this feature will 2118 not be allowed a late bring-up. 2119 2120 Userspace binaries that want to use this feature must 2121 explicitly opt in. The mechanism for the userspace is 2122 described in: 2123 2124 Documentation/arch/arm64/memory-tagging-extension.rst. 2125 2126endmenu # "ARMv8.5 architectural features" 2127 2128menu "ARMv8.7 architectural features" 2129 2130config ARM64_EPAN 2131 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2132 default y 2133 depends on ARM64_PAN 2134 help 2135 Enhanced Privileged Access Never (EPAN) allows Privileged 2136 Access Never to be used with Execute-only mappings. 2137 2138 The feature is detected at runtime, and will remain disabled 2139 if the cpu does not implement the feature. 2140endmenu # "ARMv8.7 architectural features" 2141 2142menu "ARMv8.9 architectural features" 2143 2144config ARM64_POE 2145 prompt "Permission Overlay Extension" 2146 def_bool y 2147 select ARCH_USES_HIGH_VMA_FLAGS 2148 select ARCH_HAS_PKEYS 2149 help 2150 The Permission Overlay Extension is used to implement Memory 2151 Protection Keys. Memory Protection Keys provides a mechanism for 2152 enforcing page-based protections, but without requiring modification 2153 of the page tables when an application changes protection domains. 2154 2155 For details, see Documentation/core-api/protection-keys.rst 2156 2157 If unsure, say y. 2158 2159config ARCH_PKEY_BITS 2160 int 2161 default 3 2162 2163endmenu # "ARMv8.9 architectural features" 2164 2165config ARM64_SVE 2166 bool "ARM Scalable Vector Extension support" 2167 default y 2168 help 2169 The Scalable Vector Extension (SVE) is an extension to the AArch64 2170 execution state which complements and extends the SIMD functionality 2171 of the base architecture to support much larger vectors and to enable 2172 additional vectorisation opportunities. 2173 2174 To enable use of this extension on CPUs that implement it, say Y. 2175 2176 On CPUs that support the SVE2 extensions, this option will enable 2177 those too. 2178 2179 Note that for architectural reasons, firmware _must_ implement SVE 2180 support when running on SVE capable hardware. The required support 2181 is present in: 2182 2183 * version 1.5 and later of the ARM Trusted Firmware 2184 * the AArch64 boot wrapper since commit 5e1261e08abf 2185 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2186 2187 For other firmware implementations, consult the firmware documentation 2188 or vendor. 2189 2190 If you need the kernel to boot on SVE-capable hardware with broken 2191 firmware, you may need to say N here until you get your firmware 2192 fixed. Otherwise, you may experience firmware panics or lockups when 2193 booting the kernel. If unsure and you are not observing these 2194 symptoms, you should assume that it is safe to say Y. 2195 2196config ARM64_SME 2197 bool "ARM Scalable Matrix Extension support" 2198 default y 2199 depends on ARM64_SVE 2200 help 2201 The Scalable Matrix Extension (SME) is an extension to the AArch64 2202 execution state which utilises a substantial subset of the SVE 2203 instruction set, together with the addition of new architectural 2204 register state capable of holding two dimensional matrix tiles to 2205 enable various matrix operations. 2206 2207config ARM64_PSEUDO_NMI 2208 bool "Support for NMI-like interrupts" 2209 select ARM_GIC_V3 2210 help 2211 Adds support for mimicking Non-Maskable Interrupts through the use of 2212 GIC interrupt priority. This support requires version 3 or later of 2213 ARM GIC. 2214 2215 This high priority configuration for interrupts needs to be 2216 explicitly enabled by setting the kernel parameter 2217 "irqchip.gicv3_pseudo_nmi" to 1. 2218 2219 If unsure, say N 2220 2221if ARM64_PSEUDO_NMI 2222config ARM64_DEBUG_PRIORITY_MASKING 2223 bool "Debug interrupt priority masking" 2224 help 2225 This adds runtime checks to functions enabling/disabling 2226 interrupts when using priority masking. The additional checks verify 2227 the validity of ICC_PMR_EL1 when calling concerned functions. 2228 2229 If unsure, say N 2230endif # ARM64_PSEUDO_NMI 2231 2232config RELOCATABLE 2233 bool "Build a relocatable kernel image" if EXPERT 2234 select ARCH_HAS_RELR 2235 default y 2236 help 2237 This builds the kernel as a Position Independent Executable (PIE), 2238 which retains all relocation metadata required to relocate the 2239 kernel binary at runtime to a different virtual address than the 2240 address it was linked at. 2241 Since AArch64 uses the RELA relocation format, this requires a 2242 relocation pass at runtime even if the kernel is loaded at the 2243 same address it was linked at. 2244 2245config RANDOMIZE_BASE 2246 bool "Randomize the address of the kernel image" 2247 select RELOCATABLE 2248 help 2249 Randomizes the virtual address at which the kernel image is 2250 loaded, as a security feature that deters exploit attempts 2251 relying on knowledge of the location of kernel internals. 2252 2253 It is the bootloader's job to provide entropy, by passing a 2254 random u64 value in /chosen/kaslr-seed at kernel entry. 2255 2256 When booting via the UEFI stub, it will invoke the firmware's 2257 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2258 to the kernel proper. In addition, it will randomise the physical 2259 location of the kernel Image as well. 2260 2261 If unsure, say N. 2262 2263config RANDOMIZE_MODULE_REGION_FULL 2264 bool "Randomize the module region over a 2 GB range" 2265 depends on RANDOMIZE_BASE 2266 default y 2267 help 2268 Randomizes the location of the module region inside a 2 GB window 2269 covering the core kernel. This way, it is less likely for modules 2270 to leak information about the location of core kernel data structures 2271 but it does imply that function calls between modules and the core 2272 kernel will need to be resolved via veneers in the module PLT. 2273 2274 When this option is not set, the module region will be randomized over 2275 a limited range that contains the [_stext, _etext] interval of the 2276 core kernel, so branch relocations are almost always in range unless 2277 the region is exhausted. In this particular case of region 2278 exhaustion, modules might be able to fall back to a larger 2GB area. 2279 2280config CC_HAVE_STACKPROTECTOR_SYSREG 2281 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2282 2283config STACKPROTECTOR_PER_TASK 2284 def_bool y 2285 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2286 2287config UNWIND_PATCH_PAC_INTO_SCS 2288 bool "Enable shadow call stack dynamically using code patching" 2289 # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated 2290 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2291 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2292 depends on SHADOW_CALL_STACK 2293 select UNWIND_TABLES 2294 select DYNAMIC_SCS 2295 2296config ARM64_CONTPTE 2297 bool "Contiguous PTE mappings for user memory" if EXPERT 2298 depends on TRANSPARENT_HUGEPAGE 2299 default y 2300 help 2301 When enabled, user mappings are configured using the PTE contiguous 2302 bit, for any mappings that meet the size and alignment requirements. 2303 This reduces TLB pressure and improves performance. 2304 2305endmenu # "Kernel Features" 2306 2307menu "Boot options" 2308 2309config ARM64_ACPI_PARKING_PROTOCOL 2310 bool "Enable support for the ARM64 ACPI parking protocol" 2311 depends on ACPI 2312 help 2313 Enable support for the ARM64 ACPI parking protocol. If disabled 2314 the kernel will not allow booting through the ARM64 ACPI parking 2315 protocol even if the corresponding data is present in the ACPI 2316 MADT table. 2317 2318config CMDLINE 2319 string "Default kernel command string" 2320 default "" 2321 help 2322 Provide a set of default command-line options at build time by 2323 entering them here. As a minimum, you should specify the the 2324 root device (e.g. root=/dev/nfs). 2325 2326choice 2327 prompt "Kernel command line type" 2328 depends on CMDLINE != "" 2329 default CMDLINE_FROM_BOOTLOADER 2330 help 2331 Choose how the kernel will handle the provided default kernel 2332 command line string. 2333 2334config CMDLINE_FROM_BOOTLOADER 2335 bool "Use bootloader kernel arguments if available" 2336 help 2337 Uses the command-line options passed by the boot loader. If 2338 the boot loader doesn't provide any, the default kernel command 2339 string provided in CMDLINE will be used. 2340 2341config CMDLINE_FORCE 2342 bool "Always use the default kernel command string" 2343 help 2344 Always use the default kernel command string, even if the boot 2345 loader passes other arguments to the kernel. 2346 This is useful if you cannot or don't want to change the 2347 command-line options your boot loader passes to the kernel. 2348 2349endchoice 2350 2351config EFI_STUB 2352 bool 2353 2354config EFI 2355 bool "UEFI runtime support" 2356 depends on OF && !CPU_BIG_ENDIAN 2357 depends on KERNEL_MODE_NEON 2358 select ARCH_SUPPORTS_ACPI 2359 select LIBFDT 2360 select UCS2_STRING 2361 select EFI_PARAMS_FROM_FDT 2362 select EFI_RUNTIME_WRAPPERS 2363 select EFI_STUB 2364 select EFI_GENERIC_STUB 2365 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2366 default y 2367 help 2368 This option provides support for runtime services provided 2369 by UEFI firmware (such as non-volatile variables, realtime 2370 clock, and platform reset). A UEFI stub is also provided to 2371 allow the kernel to be booted as an EFI application. This 2372 is only useful on systems that have UEFI firmware. 2373 2374config COMPRESSED_INSTALL 2375 bool "Install compressed image by default" 2376 help 2377 This makes the regular "make install" install the compressed 2378 image we built, not the legacy uncompressed one. 2379 2380 You can check that a compressed image works for you by doing 2381 "make zinstall" first, and verifying that everything is fine 2382 in your environment before making "make install" do this for 2383 you. 2384 2385config DMI 2386 bool "Enable support for SMBIOS (DMI) tables" 2387 depends on EFI 2388 default y 2389 help 2390 This enables SMBIOS/DMI feature for systems. 2391 2392 This option is only useful on systems that have UEFI firmware. 2393 However, even with this option, the resultant kernel should 2394 continue to boot on existing non-UEFI platforms. 2395 2396endmenu # "Boot options" 2397 2398menu "Power management options" 2399 2400source "kernel/power/Kconfig" 2401 2402config ARCH_HIBERNATION_POSSIBLE 2403 def_bool y 2404 depends on CPU_PM 2405 2406config ARCH_HIBERNATION_HEADER 2407 def_bool y 2408 depends on HIBERNATION 2409 2410config ARCH_SUSPEND_POSSIBLE 2411 def_bool y 2412 2413endmenu # "Power management options" 2414 2415menu "CPU Power Management" 2416 2417source "drivers/cpuidle/Kconfig" 2418 2419source "drivers/cpufreq/Kconfig" 2420 2421endmenu # "CPU Power Management" 2422 2423source "drivers/acpi/Kconfig" 2424 2425source "arch/arm64/kvm/Kconfig" 2426 2427