1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 9 select ACPI_IORT if ACPI 10 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 11 select ACPI_MCFG if (ACPI && PCI) 12 select ACPI_SPCR_TABLE if ACPI 13 select ACPI_PPTT if ACPI 14 select ARCH_HAS_DEBUG_WX 15 select ARCH_BINFMT_ELF_EXTRA_PHDRS 16 select ARCH_BINFMT_ELF_STATE 17 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 18 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 19 select ARCH_ENABLE_MEMORY_HOTPLUG 20 select ARCH_ENABLE_MEMORY_HOTREMOVE 21 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 22 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 23 select ARCH_HAS_CACHE_LINE_SIZE 24 select ARCH_HAS_CURRENT_STACK_POINTER 25 select ARCH_HAS_DEBUG_VIRTUAL 26 select ARCH_HAS_DEBUG_VM_PGTABLE 27 select ARCH_HAS_DMA_PREP_COHERENT 28 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 29 select ARCH_HAS_FAST_MULTIPLIER 30 select ARCH_HAS_FORTIFY_SOURCE 31 select ARCH_HAS_GCOV_PROFILE_ALL 32 select ARCH_HAS_GIGANTIC_PAGE 33 select ARCH_HAS_KCOV 34 select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON 35 select ARCH_HAS_KEEPINITRD 36 select ARCH_HAS_MEMBARRIER_SYNC_CORE 37 select ARCH_HAS_MEM_ENCRYPT 38 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 39 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 40 select ARCH_HAS_PTE_DEVMAP 41 select ARCH_HAS_PTE_SPECIAL 42 select ARCH_HAS_HW_PTE_YOUNG 43 select ARCH_HAS_SETUP_DMA_OPS 44 select ARCH_HAS_SET_DIRECT_MAP 45 select ARCH_HAS_SET_MEMORY 46 select ARCH_STACKWALK 47 select ARCH_HAS_STRICT_KERNEL_RWX 48 select ARCH_HAS_STRICT_MODULE_RWX 49 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 50 select ARCH_HAS_SYNC_DMA_FOR_CPU 51 select ARCH_HAS_SYSCALL_WRAPPER 52 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 53 select ARCH_HAS_ZONE_DMA_SET if EXPERT 54 select ARCH_HAVE_ELF_PROT 55 select ARCH_HAVE_NMI_SAFE_CMPXCHG 56 select ARCH_HAVE_TRACE_MMIO_ACCESS 57 select ARCH_INLINE_READ_LOCK if !PREEMPTION 58 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 59 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 60 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 62 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 63 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 64 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 66 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 67 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 68 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 70 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 71 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 72 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 73 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 74 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 76 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 77 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 78 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 80 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 81 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 82 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 83 select ARCH_KEEP_MEMBLOCK 84 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 85 select ARCH_USE_CMPXCHG_LOCKREF 86 select ARCH_USE_GNU_PROPERTY 87 select ARCH_USE_MEMTEST 88 select ARCH_USE_QUEUED_RWLOCKS 89 select ARCH_USE_QUEUED_SPINLOCKS 90 select ARCH_USE_SYM_ANNOTATIONS 91 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 92 select ARCH_SUPPORTS_HUGETLBFS 93 select ARCH_SUPPORTS_MEMORY_FAILURE 94 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 95 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 96 select ARCH_SUPPORTS_LTO_CLANG_THIN 97 select ARCH_SUPPORTS_CFI_CLANG 98 select ARCH_SUPPORTS_ATOMIC_RMW 99 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 100 select ARCH_SUPPORTS_NUMA_BALANCING 101 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 102 select ARCH_SUPPORTS_PER_VMA_LOCK 103 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 104 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 105 select ARCH_WANT_DEFAULT_BPF_JIT 106 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 107 select ARCH_WANT_FRAME_POINTERS 108 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 109 select ARCH_WANT_LD_ORPHAN_WARN 110 select ARCH_WANTS_EXECMEM_LATE if EXECMEM 111 select ARCH_WANTS_NO_INSTR 112 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 113 select ARCH_HAS_UBSAN 114 select ARM_AMBA 115 select ARM_ARCH_TIMER 116 select ARM_GIC 117 select AUDIT_ARCH_COMPAT_GENERIC 118 select ARM_GIC_V2M if PCI 119 select ARM_GIC_V3 120 select ARM_GIC_V3_ITS if PCI 121 select ARM_PSCI_FW 122 select BUILDTIME_TABLE_SORT 123 select CLONE_BACKWARDS 124 select COMMON_CLK 125 select CPU_PM if (SUSPEND || CPU_IDLE) 126 select CPUMASK_OFFSTACK if NR_CPUS > 256 127 select CRC32 128 select DCACHE_WORD_ACCESS 129 select DYNAMIC_FTRACE if FUNCTION_TRACER 130 select DMA_BOUNCE_UNALIGNED_KMALLOC 131 select DMA_DIRECT_REMAP 132 select EDAC_SUPPORT 133 select FRAME_POINTER 134 select FUNCTION_ALIGNMENT_4B 135 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 136 select GENERIC_ALLOCATOR 137 select GENERIC_ARCH_TOPOLOGY 138 select GENERIC_CLOCKEVENTS_BROADCAST 139 select GENERIC_CPU_AUTOPROBE 140 select GENERIC_CPU_DEVICES 141 select GENERIC_CPU_VULNERABILITIES 142 select GENERIC_EARLY_IOREMAP 143 select GENERIC_IDLE_POLL_SETUP 144 select GENERIC_IOREMAP 145 select GENERIC_IRQ_IPI 146 select GENERIC_IRQ_PROBE 147 select GENERIC_IRQ_SHOW 148 select GENERIC_IRQ_SHOW_LEVEL 149 select GENERIC_LIB_DEVMEM_IS_ALLOWED 150 select GENERIC_PCI_IOMAP 151 select GENERIC_PTDUMP 152 select GENERIC_SCHED_CLOCK 153 select GENERIC_SMP_IDLE_THREAD 154 select GENERIC_TIME_VSYSCALL 155 select GENERIC_GETTIMEOFDAY 156 select GENERIC_VDSO_TIME_NS 157 select HARDIRQS_SW_RESEND 158 select HAS_IOPORT 159 select HAVE_MOVE_PMD 160 select HAVE_MOVE_PUD 161 select HAVE_PCI 162 select HAVE_ACPI_APEI if (ACPI && EFI) 163 select HAVE_ALIGNED_STRUCT_PAGE 164 select HAVE_ARCH_AUDITSYSCALL 165 select HAVE_ARCH_BITREVERSE 166 select HAVE_ARCH_COMPILER_H 167 select HAVE_ARCH_HUGE_VMALLOC 168 select HAVE_ARCH_HUGE_VMAP 169 select HAVE_ARCH_JUMP_LABEL 170 select HAVE_ARCH_JUMP_LABEL_RELATIVE 171 select HAVE_ARCH_KASAN 172 select HAVE_ARCH_KASAN_VMALLOC 173 select HAVE_ARCH_KASAN_SW_TAGS 174 select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE 175 # Some instrumentation may be unsound, hence EXPERT 176 select HAVE_ARCH_KCSAN if EXPERT 177 select HAVE_ARCH_KFENCE 178 select HAVE_ARCH_KGDB 179 select HAVE_ARCH_MMAP_RND_BITS 180 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 181 select HAVE_ARCH_PREL32_RELOCATIONS 182 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 183 select HAVE_ARCH_SECCOMP_FILTER 184 select HAVE_ARCH_STACKLEAK 185 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 186 select HAVE_ARCH_TRACEHOOK 187 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 188 select HAVE_ARCH_VMAP_STACK 189 select HAVE_ARM_SMCCC 190 select HAVE_ASM_MODVERSIONS 191 select HAVE_EBPF_JIT 192 select HAVE_C_RECORDMCOUNT 193 select HAVE_CMPXCHG_DOUBLE 194 select HAVE_CMPXCHG_LOCAL 195 select HAVE_CONTEXT_TRACKING_USER 196 select HAVE_DEBUG_KMEMLEAK 197 select HAVE_DMA_CONTIGUOUS 198 select HAVE_DYNAMIC_FTRACE 199 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 200 if $(cc-option,-fpatchable-function-entry=2) 201 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 202 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 203 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 204 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 205 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE)) 206 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 207 if DYNAMIC_FTRACE_WITH_ARGS 208 select HAVE_SAMPLE_FTRACE_DIRECT 209 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 210 select HAVE_EFFICIENT_UNALIGNED_ACCESS 211 select HAVE_GUP_FAST 212 select HAVE_FTRACE_MCOUNT_RECORD 213 select HAVE_FUNCTION_TRACER 214 select HAVE_FUNCTION_ERROR_INJECTION 215 select HAVE_FUNCTION_GRAPH_TRACER 216 select HAVE_FUNCTION_GRAPH_RETVAL 217 select HAVE_GCC_PLUGINS 218 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 219 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 220 select HAVE_HW_BREAKPOINT if PERF_EVENTS 221 select HAVE_IOREMAP_PROT 222 select HAVE_IRQ_TIME_ACCOUNTING 223 select HAVE_MOD_ARCH_SPECIFIC 224 select HAVE_NMI 225 select HAVE_PERF_EVENTS 226 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 227 select HAVE_PERF_REGS 228 select HAVE_PERF_USER_STACK_DUMP 229 select HAVE_PREEMPT_DYNAMIC_KEY 230 select HAVE_REGS_AND_STACK_ACCESS_API 231 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 232 select HAVE_FUNCTION_ARG_ACCESS_API 233 select MMU_GATHER_RCU_TABLE_FREE 234 select HAVE_RSEQ 235 select HAVE_RUST if CPU_LITTLE_ENDIAN 236 select HAVE_STACKPROTECTOR 237 select HAVE_SYSCALL_TRACEPOINTS 238 select HAVE_KPROBES 239 select HAVE_KRETPROBES 240 select HAVE_GENERIC_VDSO 241 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 242 select IRQ_DOMAIN 243 select IRQ_FORCED_THREADING 244 select KASAN_VMALLOC if KASAN 245 select LOCK_MM_AND_FIND_VMA 246 select MODULES_USE_ELF_RELA 247 select NEED_DMA_MAP_STATE 248 select NEED_SG_DMA_LENGTH 249 select OF 250 select OF_EARLY_FLATTREE 251 select PCI_DOMAINS_GENERIC if PCI 252 select PCI_ECAM if (ACPI && PCI) 253 select PCI_SYSCALL if PCI 254 select POWER_RESET 255 select POWER_SUPPLY 256 select SPARSE_IRQ 257 select SWIOTLB 258 select SYSCTL_EXCEPTION_TRACE 259 select THREAD_INFO_IN_TASK 260 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 261 select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD 262 select TRACE_IRQFLAGS_SUPPORT 263 select TRACE_IRQFLAGS_NMI_SUPPORT 264 select HAVE_SOFTIRQ_ON_OWN_STACK 265 select USER_STACKTRACE_SUPPORT 266 help 267 ARM 64-bit (AArch64) Linux support. 268 269config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 270 def_bool CC_IS_CLANG 271 # https://github.com/ClangBuiltLinux/linux/issues/1507 272 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 273 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 274 275config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 276 def_bool CC_IS_GCC 277 depends on $(cc-option,-fpatchable-function-entry=2) 278 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 279 280config 64BIT 281 def_bool y 282 283config MMU 284 def_bool y 285 286config ARM64_CONT_PTE_SHIFT 287 int 288 default 5 if PAGE_SIZE_64KB 289 default 7 if PAGE_SIZE_16KB 290 default 4 291 292config ARM64_CONT_PMD_SHIFT 293 int 294 default 5 if PAGE_SIZE_64KB 295 default 5 if PAGE_SIZE_16KB 296 default 4 297 298config ARCH_MMAP_RND_BITS_MIN 299 default 14 if PAGE_SIZE_64KB 300 default 16 if PAGE_SIZE_16KB 301 default 18 302 303# max bits determined by the following formula: 304# VA_BITS - PAGE_SHIFT - 3 305config ARCH_MMAP_RND_BITS_MAX 306 default 19 if ARM64_VA_BITS=36 307 default 24 if ARM64_VA_BITS=39 308 default 27 if ARM64_VA_BITS=42 309 default 30 if ARM64_VA_BITS=47 310 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 311 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 312 default 33 if ARM64_VA_BITS=48 313 default 14 if ARM64_64K_PAGES 314 default 16 if ARM64_16K_PAGES 315 default 18 316 317config ARCH_MMAP_RND_COMPAT_BITS_MIN 318 default 7 if ARM64_64K_PAGES 319 default 9 if ARM64_16K_PAGES 320 default 11 321 322config ARCH_MMAP_RND_COMPAT_BITS_MAX 323 default 16 324 325config NO_IOPORT_MAP 326 def_bool y if !PCI 327 328config STACKTRACE_SUPPORT 329 def_bool y 330 331config ILLEGAL_POINTER_VALUE 332 hex 333 default 0xdead000000000000 334 335config LOCKDEP_SUPPORT 336 def_bool y 337 338config GENERIC_BUG 339 def_bool y 340 depends on BUG 341 342config GENERIC_BUG_RELATIVE_POINTERS 343 def_bool y 344 depends on GENERIC_BUG 345 346config GENERIC_HWEIGHT 347 def_bool y 348 349config GENERIC_CSUM 350 def_bool y 351 352config GENERIC_CALIBRATE_DELAY 353 def_bool y 354 355config SMP 356 def_bool y 357 358config KERNEL_MODE_NEON 359 def_bool y 360 361config FIX_EARLYCON_MEM 362 def_bool y 363 364config PGTABLE_LEVELS 365 int 366 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 367 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 368 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 369 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 370 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 371 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 372 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 373 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52 374 375config ARCH_SUPPORTS_UPROBES 376 def_bool y 377 378config ARCH_PROC_KCORE_TEXT 379 def_bool y 380 381config BROKEN_GAS_INST 382 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 383 384config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 385 bool 386 # Clang's __builtin_return_address() strips the PAC since 12.0.0 387 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2 388 default y if CC_IS_CLANG 389 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 390 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 391 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 392 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 393 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 394 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 395 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 396 default n 397 398config KASAN_SHADOW_OFFSET 399 hex 400 depends on KASAN_GENERIC || KASAN_SW_TAGS 401 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS 402 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS 403 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 404 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 405 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 406 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS 407 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS 408 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 409 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 410 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 411 default 0xffffffffffffffff 412 413config UNWIND_TABLES 414 bool 415 416source "arch/arm64/Kconfig.platforms" 417 418menu "Kernel Features" 419 420menu "ARM errata workarounds via the alternatives framework" 421 422config AMPERE_ERRATUM_AC03_CPU_38 423 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 424 default y 425 help 426 This option adds an alternative code sequence to work around Ampere 427 errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne. 428 429 The affected design reports FEAT_HAFDBS as not implemented in 430 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 431 as required by the architecture. The unadvertised HAFDBS 432 implementation suffers from an additional erratum where hardware 433 A/D updates can occur after a PTE has been marked invalid. 434 435 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 436 which avoids enabling unadvertised hardware Access Flag management 437 at stage-2. 438 439 If unsure, say Y. 440 441config ARM64_WORKAROUND_CLEAN_CACHE 442 bool 443 444config ARM64_ERRATUM_826319 445 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 446 default y 447 select ARM64_WORKAROUND_CLEAN_CACHE 448 help 449 This option adds an alternative code sequence to work around ARM 450 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 451 AXI master interface and an L2 cache. 452 453 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 454 and is unable to accept a certain write via this interface, it will 455 not progress on read data presented on the read data channel and the 456 system can deadlock. 457 458 The workaround promotes data cache clean instructions to 459 data cache clean-and-invalidate. 460 Please note that this does not necessarily enable the workaround, 461 as it depends on the alternative framework, which will only patch 462 the kernel if an affected CPU is detected. 463 464 If unsure, say Y. 465 466config ARM64_ERRATUM_827319 467 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 468 default y 469 select ARM64_WORKAROUND_CLEAN_CACHE 470 help 471 This option adds an alternative code sequence to work around ARM 472 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 473 master interface and an L2 cache. 474 475 Under certain conditions this erratum can cause a clean line eviction 476 to occur at the same time as another transaction to the same address 477 on the AMBA 5 CHI interface, which can cause data corruption if the 478 interconnect reorders the two transactions. 479 480 The workaround promotes data cache clean instructions to 481 data cache clean-and-invalidate. 482 Please note that this does not necessarily enable the workaround, 483 as it depends on the alternative framework, which will only patch 484 the kernel if an affected CPU is detected. 485 486 If unsure, say Y. 487 488config ARM64_ERRATUM_824069 489 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 490 default y 491 select ARM64_WORKAROUND_CLEAN_CACHE 492 help 493 This option adds an alternative code sequence to work around ARM 494 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 495 to a coherent interconnect. 496 497 If a Cortex-A53 processor is executing a store or prefetch for 498 write instruction at the same time as a processor in another 499 cluster is executing a cache maintenance operation to the same 500 address, then this erratum might cause a clean cache line to be 501 incorrectly marked as dirty. 502 503 The workaround promotes data cache clean instructions to 504 data cache clean-and-invalidate. 505 Please note that this option does not necessarily enable the 506 workaround, as it depends on the alternative framework, which will 507 only patch the kernel if an affected CPU is detected. 508 509 If unsure, say Y. 510 511config ARM64_ERRATUM_819472 512 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 513 default y 514 select ARM64_WORKAROUND_CLEAN_CACHE 515 help 516 This option adds an alternative code sequence to work around ARM 517 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 518 present when it is connected to a coherent interconnect. 519 520 If the processor is executing a load and store exclusive sequence at 521 the same time as a processor in another cluster is executing a cache 522 maintenance operation to the same address, then this erratum might 523 cause data corruption. 524 525 The workaround promotes data cache clean instructions to 526 data cache clean-and-invalidate. 527 Please note that this does not necessarily enable the workaround, 528 as it depends on the alternative framework, which will only patch 529 the kernel if an affected CPU is detected. 530 531 If unsure, say Y. 532 533config ARM64_ERRATUM_832075 534 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 535 default y 536 help 537 This option adds an alternative code sequence to work around ARM 538 erratum 832075 on Cortex-A57 parts up to r1p2. 539 540 Affected Cortex-A57 parts might deadlock when exclusive load/store 541 instructions to Write-Back memory are mixed with Device loads. 542 543 The workaround is to promote device loads to use Load-Acquire 544 semantics. 545 Please note that this does not necessarily enable the workaround, 546 as it depends on the alternative framework, which will only patch 547 the kernel if an affected CPU is detected. 548 549 If unsure, say Y. 550 551config ARM64_ERRATUM_834220 552 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)" 553 depends on KVM 554 help 555 This option adds an alternative code sequence to work around ARM 556 erratum 834220 on Cortex-A57 parts up to r1p2. 557 558 Affected Cortex-A57 parts might report a Stage 2 translation 559 fault as the result of a Stage 1 fault for load crossing a 560 page boundary when there is a permission or device memory 561 alignment fault at Stage 1 and a translation fault at Stage 2. 562 563 The workaround is to verify that the Stage 1 translation 564 doesn't generate a fault before handling the Stage 2 fault. 565 Please note that this does not necessarily enable the workaround, 566 as it depends on the alternative framework, which will only patch 567 the kernel if an affected CPU is detected. 568 569 If unsure, say N. 570 571config ARM64_ERRATUM_1742098 572 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 573 depends on COMPAT 574 default y 575 help 576 This option removes the AES hwcap for aarch32 user-space to 577 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 578 579 Affected parts may corrupt the AES state if an interrupt is 580 taken between a pair of AES instructions. These instructions 581 are only present if the cryptography extensions are present. 582 All software should have a fallback implementation for CPUs 583 that don't implement the cryptography extensions. 584 585 If unsure, say Y. 586 587config ARM64_ERRATUM_845719 588 bool "Cortex-A53: 845719: a load might read incorrect data" 589 depends on COMPAT 590 default y 591 help 592 This option adds an alternative code sequence to work around ARM 593 erratum 845719 on Cortex-A53 parts up to r0p4. 594 595 When running a compat (AArch32) userspace on an affected Cortex-A53 596 part, a load at EL0 from a virtual address that matches the bottom 32 597 bits of the virtual address used by a recent load at (AArch64) EL1 598 might return incorrect data. 599 600 The workaround is to write the contextidr_el1 register on exception 601 return to a 32-bit task. 602 Please note that this does not necessarily enable the workaround, 603 as it depends on the alternative framework, which will only patch 604 the kernel if an affected CPU is detected. 605 606 If unsure, say Y. 607 608config ARM64_ERRATUM_843419 609 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 610 default y 611 help 612 This option links the kernel with '--fix-cortex-a53-843419' and 613 enables PLT support to replace certain ADRP instructions, which can 614 cause subsequent memory accesses to use an incorrect address on 615 Cortex-A53 parts up to r0p4. 616 617 If unsure, say Y. 618 619config ARM64_LD_HAS_FIX_ERRATUM_843419 620 def_bool $(ld-option,--fix-cortex-a53-843419) 621 622config ARM64_ERRATUM_1024718 623 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 624 default y 625 help 626 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 627 628 Affected Cortex-A55 cores (all revisions) could cause incorrect 629 update of the hardware dirty bit when the DBM/AP bits are updated 630 without a break-before-make. The workaround is to disable the usage 631 of hardware DBM locally on the affected cores. CPUs not affected by 632 this erratum will continue to use the feature. 633 634 If unsure, say Y. 635 636config ARM64_ERRATUM_1418040 637 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 638 default y 639 depends on COMPAT 640 help 641 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 642 errata 1188873 and 1418040. 643 644 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 645 cause register corruption when accessing the timer registers 646 from AArch32 userspace. 647 648 If unsure, say Y. 649 650config ARM64_WORKAROUND_SPECULATIVE_AT 651 bool 652 653config ARM64_ERRATUM_1165522 654 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 655 default y 656 select ARM64_WORKAROUND_SPECULATIVE_AT 657 help 658 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 659 660 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 661 corrupted TLBs by speculating an AT instruction during a guest 662 context switch. 663 664 If unsure, say Y. 665 666config ARM64_ERRATUM_1319367 667 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 668 default y 669 select ARM64_WORKAROUND_SPECULATIVE_AT 670 help 671 This option adds work arounds for ARM Cortex-A57 erratum 1319537 672 and A72 erratum 1319367 673 674 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 675 speculating an AT instruction during a guest context switch. 676 677 If unsure, say Y. 678 679config ARM64_ERRATUM_1530923 680 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 681 default y 682 select ARM64_WORKAROUND_SPECULATIVE_AT 683 help 684 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 685 686 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 687 corrupted TLBs by speculating an AT instruction during a guest 688 context switch. 689 690 If unsure, say Y. 691 692config ARM64_WORKAROUND_REPEAT_TLBI 693 bool 694 695config ARM64_ERRATUM_2441007 696 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 697 select ARM64_WORKAROUND_REPEAT_TLBI 698 help 699 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 700 701 Under very rare circumstances, affected Cortex-A55 CPUs 702 may not handle a race between a break-before-make sequence on one 703 CPU, and another CPU accessing the same page. This could allow a 704 store to a page that has been unmapped. 705 706 Work around this by adding the affected CPUs to the list that needs 707 TLB sequences to be done twice. 708 709 If unsure, say N. 710 711config ARM64_ERRATUM_1286807 712 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)" 713 select ARM64_WORKAROUND_REPEAT_TLBI 714 help 715 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 716 717 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 718 address for a cacheable mapping of a location is being 719 accessed by a core while another core is remapping the virtual 720 address to a new physical page using the recommended 721 break-before-make sequence, then under very rare circumstances 722 TLBI+DSB completes before a read using the translation being 723 invalidated has been observed by other observers. The 724 workaround repeats the TLBI+DSB operation. 725 726 If unsure, say N. 727 728config ARM64_ERRATUM_1463225 729 bool "Cortex-A76: Software Step might prevent interrupt recognition" 730 default y 731 help 732 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 733 734 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 735 of a system call instruction (SVC) can prevent recognition of 736 subsequent interrupts when software stepping is disabled in the 737 exception handler of the system call and either kernel debugging 738 is enabled or VHE is in use. 739 740 Work around the erratum by triggering a dummy step exception 741 when handling a system call from a task that is being stepped 742 in a VHE configuration of the kernel. 743 744 If unsure, say Y. 745 746config ARM64_ERRATUM_1542419 747 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)" 748 help 749 This option adds a workaround for ARM Neoverse-N1 erratum 750 1542419. 751 752 Affected Neoverse-N1 cores could execute a stale instruction when 753 modified by another CPU. The workaround depends on a firmware 754 counterpart. 755 756 Workaround the issue by hiding the DIC feature from EL0. This 757 forces user-space to perform cache maintenance. 758 759 If unsure, say N. 760 761config ARM64_ERRATUM_1508412 762 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 763 default y 764 help 765 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 766 767 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 768 of a store-exclusive or read of PAR_EL1 and a load with device or 769 non-cacheable memory attributes. The workaround depends on a firmware 770 counterpart. 771 772 KVM guests must also have the workaround implemented or they can 773 deadlock the system. 774 775 Work around the issue by inserting DMB SY barriers around PAR_EL1 776 register reads and warning KVM users. The DMB barrier is sufficient 777 to prevent a speculative PAR_EL1 read. 778 779 If unsure, say Y. 780 781config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 782 bool 783 784config ARM64_ERRATUM_2051678 785 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 786 default y 787 help 788 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 789 Affected Cortex-A510 might not respect the ordering rules for 790 hardware update of the page table's dirty bit. The workaround 791 is to not enable the feature on affected CPUs. 792 793 If unsure, say Y. 794 795config ARM64_ERRATUM_2077057 796 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 797 default y 798 help 799 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 800 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 801 expected, but a Pointer Authentication trap is taken instead. The 802 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 803 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 804 805 This can only happen when EL2 is stepping EL1. 806 807 When these conditions occur, the SPSR_EL2 value is unchanged from the 808 previous guest entry, and can be restored from the in-memory copy. 809 810 If unsure, say Y. 811 812config ARM64_ERRATUM_2658417 813 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 814 default y 815 help 816 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 817 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 818 BFMMLA or VMMLA instructions in rare circumstances when a pair of 819 A510 CPUs are using shared neon hardware. As the sharing is not 820 discoverable by the kernel, hide the BF16 HWCAP to indicate that 821 user-space should not be using these instructions. 822 823 If unsure, say Y. 824 825config ARM64_ERRATUM_2119858 826 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 827 default y 828 depends on CORESIGHT_TRBE 829 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 830 help 831 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 832 833 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 834 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 835 the event of a WRAP event. 836 837 Work around the issue by always making sure we move the TRBPTR_EL1 by 838 256 bytes before enabling the buffer and filling the first 256 bytes of 839 the buffer with ETM ignore packets upon disabling. 840 841 If unsure, say Y. 842 843config ARM64_ERRATUM_2139208 844 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 845 default y 846 depends on CORESIGHT_TRBE 847 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 848 help 849 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 850 851 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 852 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 853 the event of a WRAP event. 854 855 Work around the issue by always making sure we move the TRBPTR_EL1 by 856 256 bytes before enabling the buffer and filling the first 256 bytes of 857 the buffer with ETM ignore packets upon disabling. 858 859 If unsure, say Y. 860 861config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 862 bool 863 864config ARM64_ERRATUM_2054223 865 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 866 default y 867 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 868 help 869 Enable workaround for ARM Cortex-A710 erratum 2054223 870 871 Affected cores may fail to flush the trace data on a TSB instruction, when 872 the PE is in trace prohibited state. This will cause losing a few bytes 873 of the trace cached. 874 875 Workaround is to issue two TSB consecutively on affected cores. 876 877 If unsure, say Y. 878 879config ARM64_ERRATUM_2067961 880 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 881 default y 882 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 883 help 884 Enable workaround for ARM Neoverse-N2 erratum 2067961 885 886 Affected cores may fail to flush the trace data on a TSB instruction, when 887 the PE is in trace prohibited state. This will cause losing a few bytes 888 of the trace cached. 889 890 Workaround is to issue two TSB consecutively on affected cores. 891 892 If unsure, say Y. 893 894config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 895 bool 896 897config ARM64_ERRATUM_2253138 898 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 899 depends on CORESIGHT_TRBE 900 default y 901 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 902 help 903 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 904 905 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 906 for TRBE. Under some conditions, the TRBE might generate a write to the next 907 virtually addressed page following the last page of the TRBE address space 908 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 909 910 Work around this in the driver by always making sure that there is a 911 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 912 913 If unsure, say Y. 914 915config ARM64_ERRATUM_2224489 916 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 917 depends on CORESIGHT_TRBE 918 default y 919 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 920 help 921 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 922 923 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 924 for TRBE. Under some conditions, the TRBE might generate a write to the next 925 virtually addressed page following the last page of the TRBE address space 926 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 927 928 Work around this in the driver by always making sure that there is a 929 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 930 931 If unsure, say Y. 932 933config ARM64_ERRATUM_2441009 934 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 935 select ARM64_WORKAROUND_REPEAT_TLBI 936 help 937 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 938 939 Under very rare circumstances, affected Cortex-A510 CPUs 940 may not handle a race between a break-before-make sequence on one 941 CPU, and another CPU accessing the same page. This could allow a 942 store to a page that has been unmapped. 943 944 Work around this by adding the affected CPUs to the list that needs 945 TLB sequences to be done twice. 946 947 If unsure, say N. 948 949config ARM64_ERRATUM_2064142 950 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 951 depends on CORESIGHT_TRBE 952 default y 953 help 954 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 955 956 Affected Cortex-A510 core might fail to write into system registers after the 957 TRBE has been disabled. Under some conditions after the TRBE has been disabled 958 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 959 and TRBTRG_EL1 will be ignored and will not be effected. 960 961 Work around this in the driver by executing TSB CSYNC and DSB after collection 962 is stopped and before performing a system register write to one of the affected 963 registers. 964 965 If unsure, say Y. 966 967config ARM64_ERRATUM_2038923 968 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 969 depends on CORESIGHT_TRBE 970 default y 971 help 972 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 973 974 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 975 prohibited within the CPU. As a result, the trace buffer or trace buffer state 976 might be corrupted. This happens after TRBE buffer has been enabled by setting 977 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 978 execution changes from a context, in which trace is prohibited to one where it 979 isn't, or vice versa. In these mentioned conditions, the view of whether trace 980 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 981 the trace buffer state might be corrupted. 982 983 Work around this in the driver by preventing an inconsistent view of whether the 984 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 985 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 986 two ISB instructions if no ERET is to take place. 987 988 If unsure, say Y. 989 990config ARM64_ERRATUM_1902691 991 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 992 depends on CORESIGHT_TRBE 993 default y 994 help 995 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 996 997 Affected Cortex-A510 core might cause trace data corruption, when being written 998 into the memory. Effectively TRBE is broken and hence cannot be used to capture 999 trace data. 1000 1001 Work around this problem in the driver by just preventing TRBE initialization on 1002 affected cpus. The firmware must have disabled the access to TRBE for the kernel 1003 on such implementations. This will cover the kernel for any firmware that doesn't 1004 do this already. 1005 1006 If unsure, say Y. 1007 1008config ARM64_ERRATUM_2457168 1009 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1010 depends on ARM64_AMU_EXTN 1011 default y 1012 help 1013 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1014 1015 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1016 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1017 incorrectly giving a significantly higher output value. 1018 1019 Work around this problem by returning 0 when reading the affected counter in 1020 key locations that results in disabling all users of this counter. This effect 1021 is the same to firmware disabling affected counters. 1022 1023 If unsure, say Y. 1024 1025config ARM64_ERRATUM_2645198 1026 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1027 default y 1028 help 1029 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1030 1031 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1032 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1033 next instruction abort caused by permission fault. 1034 1035 Only user-space does executable to non-executable permission transition via 1036 mprotect() system call. Workaround the problem by doing a break-before-make 1037 TLB invalidation, for all changes to executable user space mappings. 1038 1039 If unsure, say Y. 1040 1041config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1042 bool 1043 1044config ARM64_ERRATUM_2966298 1045 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1046 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1047 default y 1048 help 1049 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1050 1051 On an affected Cortex-A520 core, a speculatively executed unprivileged 1052 load might leak data from a privileged level via a cache side channel. 1053 1054 Work around this problem by executing a TLBI before returning to EL0. 1055 1056 If unsure, say Y. 1057 1058config ARM64_ERRATUM_3117295 1059 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1060 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1061 default y 1062 help 1063 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1064 1065 On an affected Cortex-A510 core, a speculatively executed unprivileged 1066 load might leak data from a privileged level via a cache side channel. 1067 1068 Work around this problem by executing a TLBI before returning to EL0. 1069 1070 If unsure, say Y. 1071 1072config ARM64_ERRATUM_3194386 1073 bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing" 1074 default y 1075 help 1076 This option adds the workaround for the following errata: 1077 1078 * ARM Cortex-A76 erratum 3324349 1079 * ARM Cortex-A77 erratum 3324348 1080 * ARM Cortex-A78 erratum 3324344 1081 * ARM Cortex-A78C erratum 3324346 1082 * ARM Cortex-A78C erratum 3324347 1083 * ARM Cortex-A710 erratam 3324338 1084 * ARM Cortex-A720 erratum 3456091 1085 * ARM Cortex-A725 erratum 3456106 1086 * ARM Cortex-X1 erratum 3324344 1087 * ARM Cortex-X1C erratum 3324346 1088 * ARM Cortex-X2 erratum 3324338 1089 * ARM Cortex-X3 erratum 3324335 1090 * ARM Cortex-X4 erratum 3194386 1091 * ARM Cortex-X925 erratum 3324334 1092 * ARM Neoverse-N1 erratum 3324349 1093 * ARM Neoverse N2 erratum 3324339 1094 * ARM Neoverse-V1 erratum 3324341 1095 * ARM Neoverse V2 erratum 3324336 1096 * ARM Neoverse-V3 erratum 3312417 1097 1098 On affected cores "MSR SSBS, #0" instructions may not affect 1099 subsequent speculative instructions, which may permit unexepected 1100 speculative store bypassing. 1101 1102 Work around this problem by placing a Speculation Barrier (SB) or 1103 Instruction Synchronization Barrier (ISB) after kernel changes to 1104 SSBS. The presence of the SSBS special-purpose register is hidden 1105 from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace 1106 will use the PR_SPEC_STORE_BYPASS prctl to change SSBS. 1107 1108 If unsure, say Y. 1109 1110config CAVIUM_ERRATUM_22375 1111 bool "Cavium erratum 22375, 24313" 1112 default y 1113 help 1114 Enable workaround for errata 22375 and 24313. 1115 1116 This implements two gicv3-its errata workarounds for ThunderX. Both 1117 with a small impact affecting only ITS table allocation. 1118 1119 erratum 22375: only alloc 8MB table size 1120 erratum 24313: ignore memory access type 1121 1122 The fixes are in ITS initialization and basically ignore memory access 1123 type and table size provided by the TYPER and BASER registers. 1124 1125 If unsure, say Y. 1126 1127config CAVIUM_ERRATUM_23144 1128 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1129 depends on NUMA 1130 default y 1131 help 1132 ITS SYNC command hang for cross node io and collections/cpu mapping. 1133 1134 If unsure, say Y. 1135 1136config CAVIUM_ERRATUM_23154 1137 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1138 default y 1139 help 1140 The ThunderX GICv3 implementation requires a modified version for 1141 reading the IAR status to ensure data synchronization 1142 (access to icc_iar1_el1 is not sync'ed before and after). 1143 1144 It also suffers from erratum 38545 (also present on Marvell's 1145 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1146 spuriously presented to the CPU interface. 1147 1148 If unsure, say Y. 1149 1150config CAVIUM_ERRATUM_27456 1151 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1152 default y 1153 help 1154 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1155 instructions may cause the icache to become corrupted if it 1156 contains data for a non-current ASID. The fix is to 1157 invalidate the icache when changing the mm context. 1158 1159 If unsure, say Y. 1160 1161config CAVIUM_ERRATUM_30115 1162 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1163 default y 1164 help 1165 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1166 1.2, and T83 Pass 1.0, KVM guest execution may disable 1167 interrupts in host. Trapping both GICv3 group-0 and group-1 1168 accesses sidesteps the issue. 1169 1170 If unsure, say Y. 1171 1172config CAVIUM_TX2_ERRATUM_219 1173 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1174 default y 1175 help 1176 On Cavium ThunderX2, a load, store or prefetch instruction between a 1177 TTBR update and the corresponding context synchronizing operation can 1178 cause a spurious Data Abort to be delivered to any hardware thread in 1179 the CPU core. 1180 1181 Work around the issue by avoiding the problematic code sequence and 1182 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1183 trap handler performs the corresponding register access, skips the 1184 instruction and ensures context synchronization by virtue of the 1185 exception return. 1186 1187 If unsure, say Y. 1188 1189config FUJITSU_ERRATUM_010001 1190 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1191 default y 1192 help 1193 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1194 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1195 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1196 This fault occurs under a specific hardware condition when a 1197 load/store instruction performs an address translation using: 1198 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1199 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1200 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1201 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1202 1203 The workaround is to ensure these bits are clear in TCR_ELx. 1204 The workaround only affects the Fujitsu-A64FX. 1205 1206 If unsure, say Y. 1207 1208config HISILICON_ERRATUM_161600802 1209 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1210 default y 1211 help 1212 The HiSilicon Hip07 SoC uses the wrong redistributor base 1213 when issued ITS commands such as VMOVP and VMAPP, and requires 1214 a 128kB offset to be applied to the target address in this commands. 1215 1216 If unsure, say Y. 1217 1218config QCOM_FALKOR_ERRATUM_1003 1219 bool "Falkor E1003: Incorrect translation due to ASID change" 1220 default y 1221 help 1222 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1223 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1224 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1225 then only for entries in the walk cache, since the leaf translation 1226 is unchanged. Work around the erratum by invalidating the walk cache 1227 entries for the trampoline before entering the kernel proper. 1228 1229config QCOM_FALKOR_ERRATUM_1009 1230 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1231 default y 1232 select ARM64_WORKAROUND_REPEAT_TLBI 1233 help 1234 On Falkor v1, the CPU may prematurely complete a DSB following a 1235 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1236 one more time to fix the issue. 1237 1238 If unsure, say Y. 1239 1240config QCOM_QDF2400_ERRATUM_0065 1241 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1242 default y 1243 help 1244 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1245 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1246 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1247 1248 If unsure, say Y. 1249 1250config QCOM_FALKOR_ERRATUM_E1041 1251 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1252 default y 1253 help 1254 Falkor CPU may speculatively fetch instructions from an improper 1255 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1256 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1257 1258 If unsure, say Y. 1259 1260config NVIDIA_CARMEL_CNP_ERRATUM 1261 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1262 default y 1263 help 1264 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1265 invalidate shared TLB entries installed by a different core, as it would 1266 on standard ARM cores. 1267 1268 If unsure, say Y. 1269 1270config ROCKCHIP_ERRATUM_3588001 1271 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1272 default y 1273 help 1274 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1275 This means, that its sharability feature may not be used, even though it 1276 is supported by the IP itself. 1277 1278 If unsure, say Y. 1279 1280config SOCIONEXT_SYNQUACER_PREITS 1281 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1282 default y 1283 help 1284 Socionext Synquacer SoCs implement a separate h/w block to generate 1285 MSI doorbell writes with non-zero values for the device ID. 1286 1287 If unsure, say Y. 1288 1289endmenu # "ARM errata workarounds via the alternatives framework" 1290 1291choice 1292 prompt "Page size" 1293 default ARM64_4K_PAGES 1294 help 1295 Page size (translation granule) configuration. 1296 1297config ARM64_4K_PAGES 1298 bool "4KB" 1299 select HAVE_PAGE_SIZE_4KB 1300 help 1301 This feature enables 4KB pages support. 1302 1303config ARM64_16K_PAGES 1304 bool "16KB" 1305 select HAVE_PAGE_SIZE_16KB 1306 help 1307 The system will use 16KB pages support. AArch32 emulation 1308 requires applications compiled with 16K (or a multiple of 16K) 1309 aligned segments. 1310 1311config ARM64_64K_PAGES 1312 bool "64KB" 1313 select HAVE_PAGE_SIZE_64KB 1314 help 1315 This feature enables 64KB pages support (4KB by default) 1316 allowing only two levels of page tables and faster TLB 1317 look-up. AArch32 emulation requires applications compiled 1318 with 64K aligned segments. 1319 1320endchoice 1321 1322choice 1323 prompt "Virtual address space size" 1324 default ARM64_VA_BITS_52 1325 help 1326 Allows choosing one of multiple possible virtual address 1327 space sizes. The level of translation table is determined by 1328 a combination of page size and virtual address space size. 1329 1330config ARM64_VA_BITS_36 1331 bool "36-bit" if EXPERT 1332 depends on PAGE_SIZE_16KB 1333 1334config ARM64_VA_BITS_39 1335 bool "39-bit" 1336 depends on PAGE_SIZE_4KB 1337 1338config ARM64_VA_BITS_42 1339 bool "42-bit" 1340 depends on PAGE_SIZE_64KB 1341 1342config ARM64_VA_BITS_47 1343 bool "47-bit" 1344 depends on PAGE_SIZE_16KB 1345 1346config ARM64_VA_BITS_48 1347 bool "48-bit" 1348 1349config ARM64_VA_BITS_52 1350 bool "52-bit" 1351 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1352 help 1353 Enable 52-bit virtual addressing for userspace when explicitly 1354 requested via a hint to mmap(). The kernel will also use 52-bit 1355 virtual addresses for its own mappings (provided HW support for 1356 this feature is available, otherwise it reverts to 48-bit). 1357 1358 NOTE: Enabling 52-bit virtual addressing in conjunction with 1359 ARMv8.3 Pointer Authentication will result in the PAC being 1360 reduced from 7 bits to 3 bits, which may have a significant 1361 impact on its susceptibility to brute-force attacks. 1362 1363 If unsure, select 48-bit virtual addressing instead. 1364 1365endchoice 1366 1367config ARM64_FORCE_52BIT 1368 bool "Force 52-bit virtual addresses for userspace" 1369 depends on ARM64_VA_BITS_52 && EXPERT 1370 help 1371 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1372 to maintain compatibility with older software by providing 48-bit VAs 1373 unless a hint is supplied to mmap. 1374 1375 This configuration option disables the 48-bit compatibility logic, and 1376 forces all userspace addresses to be 52-bit on HW that supports it. One 1377 should only enable this configuration option for stress testing userspace 1378 memory management code. If unsure say N here. 1379 1380config ARM64_VA_BITS 1381 int 1382 default 36 if ARM64_VA_BITS_36 1383 default 39 if ARM64_VA_BITS_39 1384 default 42 if ARM64_VA_BITS_42 1385 default 47 if ARM64_VA_BITS_47 1386 default 48 if ARM64_VA_BITS_48 1387 default 52 if ARM64_VA_BITS_52 1388 1389choice 1390 prompt "Physical address space size" 1391 default ARM64_PA_BITS_48 1392 help 1393 Choose the maximum physical address range that the kernel will 1394 support. 1395 1396config ARM64_PA_BITS_48 1397 bool "48-bit" 1398 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52 1399 1400config ARM64_PA_BITS_52 1401 bool "52-bit" 1402 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52 1403 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1404 help 1405 Enable support for a 52-bit physical address space, introduced as 1406 part of the ARMv8.2-LPA extension. 1407 1408 With this enabled, the kernel will also continue to work on CPUs that 1409 do not support ARMv8.2-LPA, but with some added memory overhead (and 1410 minor performance overhead). 1411 1412endchoice 1413 1414config ARM64_PA_BITS 1415 int 1416 default 48 if ARM64_PA_BITS_48 1417 default 52 if ARM64_PA_BITS_52 1418 1419config ARM64_LPA2 1420 def_bool y 1421 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES 1422 1423choice 1424 prompt "Endianness" 1425 default CPU_LITTLE_ENDIAN 1426 help 1427 Select the endianness of data accesses performed by the CPU. Userspace 1428 applications will need to be compiled and linked for the endianness 1429 that is selected here. 1430 1431config CPU_BIG_ENDIAN 1432 bool "Build big-endian kernel" 1433 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c 1434 depends on AS_IS_GNU || AS_VERSION >= 150000 1435 help 1436 Say Y if you plan on running a kernel with a big-endian userspace. 1437 1438config CPU_LITTLE_ENDIAN 1439 bool "Build little-endian kernel" 1440 help 1441 Say Y if you plan on running a kernel with a little-endian userspace. 1442 This is usually the case for distributions targeting arm64. 1443 1444endchoice 1445 1446config SCHED_MC 1447 bool "Multi-core scheduler support" 1448 help 1449 Multi-core scheduler support improves the CPU scheduler's decision 1450 making when dealing with multi-core CPU chips at a cost of slightly 1451 increased overhead in some places. If unsure say N here. 1452 1453config SCHED_CLUSTER 1454 bool "Cluster scheduler support" 1455 help 1456 Cluster scheduler support improves the CPU scheduler's decision 1457 making when dealing with machines that have clusters of CPUs. 1458 Cluster usually means a couple of CPUs which are placed closely 1459 by sharing mid-level caches, last-level cache tags or internal 1460 busses. 1461 1462config SCHED_SMT 1463 bool "SMT scheduler support" 1464 help 1465 Improves the CPU scheduler's decision making when dealing with 1466 MultiThreading at a cost of slightly increased overhead in some 1467 places. If unsure say N here. 1468 1469config NR_CPUS 1470 int "Maximum number of CPUs (2-4096)" 1471 range 2 4096 1472 default "512" 1473 1474config HOTPLUG_CPU 1475 bool "Support for hot-pluggable CPUs" 1476 select GENERIC_IRQ_MIGRATION 1477 help 1478 Say Y here to experiment with turning CPUs off and on. CPUs 1479 can be controlled through /sys/devices/system/cpu. 1480 1481# Common NUMA Features 1482config NUMA 1483 bool "NUMA Memory Allocation and Scheduler Support" 1484 select GENERIC_ARCH_NUMA 1485 select OF_NUMA 1486 select HAVE_SETUP_PER_CPU_AREA 1487 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1488 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1489 select USE_PERCPU_NUMA_NODE_ID 1490 help 1491 Enable NUMA (Non-Uniform Memory Access) support. 1492 1493 The kernel will try to allocate memory used by a CPU on the 1494 local memory of the CPU and add some more 1495 NUMA awareness to the kernel. 1496 1497config NODES_SHIFT 1498 int "Maximum NUMA Nodes (as a power of 2)" 1499 range 1 10 1500 default "4" 1501 depends on NUMA 1502 help 1503 Specify the maximum number of NUMA Nodes available on the target 1504 system. Increases memory reserved to accommodate various tables. 1505 1506source "kernel/Kconfig.hz" 1507 1508config ARCH_SPARSEMEM_ENABLE 1509 def_bool y 1510 select SPARSEMEM_VMEMMAP_ENABLE 1511 select SPARSEMEM_VMEMMAP 1512 1513config HW_PERF_EVENTS 1514 def_bool y 1515 depends on ARM_PMU 1516 1517# Supported by clang >= 7.0 or GCC >= 12.0.0 1518config CC_HAVE_SHADOW_CALL_STACK 1519 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1520 1521config PARAVIRT 1522 bool "Enable paravirtualization code" 1523 help 1524 This changes the kernel so it can modify itself when it is run 1525 under a hypervisor, potentially improving performance significantly 1526 over full virtualization. 1527 1528config PARAVIRT_TIME_ACCOUNTING 1529 bool "Paravirtual steal time accounting" 1530 select PARAVIRT 1531 help 1532 Select this option to enable fine granularity task steal time 1533 accounting. Time spent executing other tasks in parallel with 1534 the current vCPU is discounted from the vCPU power. To account for 1535 that, there can be a small performance impact. 1536 1537 If in doubt, say N here. 1538 1539config ARCH_SUPPORTS_KEXEC 1540 def_bool PM_SLEEP_SMP 1541 1542config ARCH_SUPPORTS_KEXEC_FILE 1543 def_bool y 1544 1545config ARCH_SELECTS_KEXEC_FILE 1546 def_bool y 1547 depends on KEXEC_FILE 1548 select HAVE_IMA_KEXEC if IMA 1549 1550config ARCH_SUPPORTS_KEXEC_SIG 1551 def_bool y 1552 1553config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1554 def_bool y 1555 1556config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1557 def_bool y 1558 1559config ARCH_SUPPORTS_CRASH_DUMP 1560 def_bool y 1561 1562config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1563 def_bool CRASH_RESERVE 1564 1565config TRANS_TABLE 1566 def_bool y 1567 depends on HIBERNATION || KEXEC_CORE 1568 1569config XEN_DOM0 1570 def_bool y 1571 depends on XEN 1572 1573config XEN 1574 bool "Xen guest support on ARM64" 1575 depends on ARM64 && OF 1576 select SWIOTLB_XEN 1577 select PARAVIRT 1578 help 1579 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1580 1581# include/linux/mmzone.h requires the following to be true: 1582# 1583# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1584# 1585# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1586# 1587# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1588# ----+-------------------+--------------+----------------------+-------------------------+ 1589# 4K | 27 | 12 | 15 | 10 | 1590# 16K | 27 | 14 | 13 | 11 | 1591# 64K | 29 | 16 | 13 | 13 | 1592config ARCH_FORCE_MAX_ORDER 1593 int 1594 default "13" if ARM64_64K_PAGES 1595 default "11" if ARM64_16K_PAGES 1596 default "10" 1597 help 1598 The kernel page allocator limits the size of maximal physically 1599 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1600 defines the maximal power of two of number of pages that can be 1601 allocated as a single contiguous block. This option allows 1602 overriding the default setting when ability to allocate very 1603 large blocks of physically contiguous memory is required. 1604 1605 The maximal size of allocation cannot exceed the size of the 1606 section, so the value of MAX_PAGE_ORDER should satisfy 1607 1608 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1609 1610 Don't change if unsure. 1611 1612config UNMAP_KERNEL_AT_EL0 1613 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1614 default y 1615 help 1616 Speculation attacks against some high-performance processors can 1617 be used to bypass MMU permission checks and leak kernel data to 1618 userspace. This can be defended against by unmapping the kernel 1619 when running in userspace, mapping it back in on exception entry 1620 via a trampoline page in the vector table. 1621 1622 If unsure, say Y. 1623 1624config MITIGATE_SPECTRE_BRANCH_HISTORY 1625 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1626 default y 1627 help 1628 Speculation attacks against some high-performance processors can 1629 make use of branch history to influence future speculation. 1630 When taking an exception from user-space, a sequence of branches 1631 or a firmware call overwrites the branch history. 1632 1633config RODATA_FULL_DEFAULT_ENABLED 1634 bool "Apply r/o permissions of VM areas also to their linear aliases" 1635 default y 1636 help 1637 Apply read-only attributes of VM areas to the linear alias of 1638 the backing pages as well. This prevents code or read-only data 1639 from being modified (inadvertently or intentionally) via another 1640 mapping of the same memory page. This additional enhancement can 1641 be turned off at runtime by passing rodata=[off|on] (and turned on 1642 with rodata=full if this option is set to 'n') 1643 1644 This requires the linear region to be mapped down to pages, 1645 which may adversely affect performance in some cases. 1646 1647config ARM64_SW_TTBR0_PAN 1648 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1649 depends on !KCSAN 1650 help 1651 Enabling this option prevents the kernel from accessing 1652 user-space memory directly by pointing TTBR0_EL1 to a reserved 1653 zeroed area and reserved ASID. The user access routines 1654 restore the valid TTBR0_EL1 temporarily. 1655 1656config ARM64_TAGGED_ADDR_ABI 1657 bool "Enable the tagged user addresses syscall ABI" 1658 default y 1659 help 1660 When this option is enabled, user applications can opt in to a 1661 relaxed ABI via prctl() allowing tagged addresses to be passed 1662 to system calls as pointer arguments. For details, see 1663 Documentation/arch/arm64/tagged-address-abi.rst. 1664 1665menuconfig COMPAT 1666 bool "Kernel support for 32-bit EL0" 1667 depends on ARM64_4K_PAGES || EXPERT 1668 select HAVE_UID16 1669 select OLD_SIGSUSPEND3 1670 select COMPAT_OLD_SIGACTION 1671 help 1672 This option enables support for a 32-bit EL0 running under a 64-bit 1673 kernel at EL1. AArch32-specific components such as system calls, 1674 the user helper functions, VFP support and the ptrace interface are 1675 handled appropriately by the kernel. 1676 1677 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1678 that you will only be able to execute AArch32 binaries that were compiled 1679 with page size aligned segments. 1680 1681 If you want to execute 32-bit userspace applications, say Y. 1682 1683if COMPAT 1684 1685config KUSER_HELPERS 1686 bool "Enable kuser helpers page for 32-bit applications" 1687 default y 1688 help 1689 Warning: disabling this option may break 32-bit user programs. 1690 1691 Provide kuser helpers to compat tasks. The kernel provides 1692 helper code to userspace in read only form at a fixed location 1693 to allow userspace to be independent of the CPU type fitted to 1694 the system. This permits binaries to be run on ARMv4 through 1695 to ARMv8 without modification. 1696 1697 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1698 1699 However, the fixed address nature of these helpers can be used 1700 by ROP (return orientated programming) authors when creating 1701 exploits. 1702 1703 If all of the binaries and libraries which run on your platform 1704 are built specifically for your platform, and make no use of 1705 these helpers, then you can turn this option off to hinder 1706 such exploits. However, in that case, if a binary or library 1707 relying on those helpers is run, it will not function correctly. 1708 1709 Say N here only if you are absolutely certain that you do not 1710 need these helpers; otherwise, the safe option is to say Y. 1711 1712config COMPAT_VDSO 1713 bool "Enable vDSO for 32-bit applications" 1714 depends on !CPU_BIG_ENDIAN 1715 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1716 select GENERIC_COMPAT_VDSO 1717 default y 1718 help 1719 Place in the process address space of 32-bit applications an 1720 ELF shared object providing fast implementations of gettimeofday 1721 and clock_gettime. 1722 1723 You must have a 32-bit build of glibc 2.22 or later for programs 1724 to seamlessly take advantage of this. 1725 1726config THUMB2_COMPAT_VDSO 1727 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1728 depends on COMPAT_VDSO 1729 default y 1730 help 1731 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1732 otherwise with '-marm'. 1733 1734config COMPAT_ALIGNMENT_FIXUPS 1735 bool "Fix up misaligned multi-word loads and stores in user space" 1736 1737menuconfig ARMV8_DEPRECATED 1738 bool "Emulate deprecated/obsolete ARMv8 instructions" 1739 depends on SYSCTL 1740 help 1741 Legacy software support may require certain instructions 1742 that have been deprecated or obsoleted in the architecture. 1743 1744 Enable this config to enable selective emulation of these 1745 features. 1746 1747 If unsure, say Y 1748 1749if ARMV8_DEPRECATED 1750 1751config SWP_EMULATION 1752 bool "Emulate SWP/SWPB instructions" 1753 help 1754 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1755 they are always undefined. Say Y here to enable software 1756 emulation of these instructions for userspace using LDXR/STXR. 1757 This feature can be controlled at runtime with the abi.swp 1758 sysctl which is disabled by default. 1759 1760 In some older versions of glibc [<=2.8] SWP is used during futex 1761 trylock() operations with the assumption that the code will not 1762 be preempted. This invalid assumption may be more likely to fail 1763 with SWP emulation enabled, leading to deadlock of the user 1764 application. 1765 1766 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1767 on an external transaction monitoring block called a global 1768 monitor to maintain update atomicity. If your system does not 1769 implement a global monitor, this option can cause programs that 1770 perform SWP operations to uncached memory to deadlock. 1771 1772 If unsure, say Y 1773 1774config CP15_BARRIER_EMULATION 1775 bool "Emulate CP15 Barrier instructions" 1776 help 1777 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1778 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1779 strongly recommended to use the ISB, DSB, and DMB 1780 instructions instead. 1781 1782 Say Y here to enable software emulation of these 1783 instructions for AArch32 userspace code. When this option is 1784 enabled, CP15 barrier usage is traced which can help 1785 identify software that needs updating. This feature can be 1786 controlled at runtime with the abi.cp15_barrier sysctl. 1787 1788 If unsure, say Y 1789 1790config SETEND_EMULATION 1791 bool "Emulate SETEND instruction" 1792 help 1793 The SETEND instruction alters the data-endianness of the 1794 AArch32 EL0, and is deprecated in ARMv8. 1795 1796 Say Y here to enable software emulation of the instruction 1797 for AArch32 userspace code. This feature can be controlled 1798 at runtime with the abi.setend sysctl. 1799 1800 Note: All the cpus on the system must have mixed endian support at EL0 1801 for this feature to be enabled. If a new CPU - which doesn't support mixed 1802 endian - is hotplugged in after this feature has been enabled, there could 1803 be unexpected results in the applications. 1804 1805 If unsure, say Y 1806endif # ARMV8_DEPRECATED 1807 1808endif # COMPAT 1809 1810menu "ARMv8.1 architectural features" 1811 1812config ARM64_HW_AFDBM 1813 bool "Support for hardware updates of the Access and Dirty page flags" 1814 default y 1815 help 1816 The ARMv8.1 architecture extensions introduce support for 1817 hardware updates of the access and dirty information in page 1818 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1819 capable processors, accesses to pages with PTE_AF cleared will 1820 set this bit instead of raising an access flag fault. 1821 Similarly, writes to read-only pages with the DBM bit set will 1822 clear the read-only bit (AP[2]) instead of raising a 1823 permission fault. 1824 1825 Kernels built with this configuration option enabled continue 1826 to work on pre-ARMv8.1 hardware and the performance impact is 1827 minimal. If unsure, say Y. 1828 1829config ARM64_PAN 1830 bool "Enable support for Privileged Access Never (PAN)" 1831 default y 1832 help 1833 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1834 prevents the kernel or hypervisor from accessing user-space (EL0) 1835 memory directly. 1836 1837 Choosing this option will cause any unprotected (not using 1838 copy_to_user et al) memory access to fail with a permission fault. 1839 1840 The feature is detected at runtime, and will remain as a 'nop' 1841 instruction if the cpu does not implement the feature. 1842 1843config AS_HAS_LSE_ATOMICS 1844 def_bool $(as-instr,.arch_extension lse) 1845 1846config ARM64_LSE_ATOMICS 1847 bool 1848 default ARM64_USE_LSE_ATOMICS 1849 depends on AS_HAS_LSE_ATOMICS 1850 1851config ARM64_USE_LSE_ATOMICS 1852 bool "Atomic instructions" 1853 default y 1854 help 1855 As part of the Large System Extensions, ARMv8.1 introduces new 1856 atomic instructions that are designed specifically to scale in 1857 very large systems. 1858 1859 Say Y here to make use of these instructions for the in-kernel 1860 atomic routines. This incurs a small overhead on CPUs that do 1861 not support these instructions and requires the kernel to be 1862 built with binutils >= 2.25 in order for the new instructions 1863 to be used. 1864 1865endmenu # "ARMv8.1 architectural features" 1866 1867menu "ARMv8.2 architectural features" 1868 1869config AS_HAS_ARMV8_2 1870 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1871 1872config AS_HAS_SHA3 1873 def_bool $(as-instr,.arch armv8.2-a+sha3) 1874 1875config ARM64_PMEM 1876 bool "Enable support for persistent memory" 1877 select ARCH_HAS_PMEM_API 1878 select ARCH_HAS_UACCESS_FLUSHCACHE 1879 help 1880 Say Y to enable support for the persistent memory API based on the 1881 ARMv8.2 DCPoP feature. 1882 1883 The feature is detected at runtime, and the kernel will use DC CVAC 1884 operations if DC CVAP is not supported (following the behaviour of 1885 DC CVAP itself if the system does not define a point of persistence). 1886 1887config ARM64_RAS_EXTN 1888 bool "Enable support for RAS CPU Extensions" 1889 default y 1890 help 1891 CPUs that support the Reliability, Availability and Serviceability 1892 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1893 errors, classify them and report them to software. 1894 1895 On CPUs with these extensions system software can use additional 1896 barriers to determine if faults are pending and read the 1897 classification from a new set of registers. 1898 1899 Selecting this feature will allow the kernel to use these barriers 1900 and access the new registers if the system supports the extension. 1901 Platform RAS features may additionally depend on firmware support. 1902 1903config ARM64_CNP 1904 bool "Enable support for Common Not Private (CNP) translations" 1905 default y 1906 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1907 help 1908 Common Not Private (CNP) allows translation table entries to 1909 be shared between different PEs in the same inner shareable 1910 domain, so the hardware can use this fact to optimise the 1911 caching of such entries in the TLB. 1912 1913 Selecting this option allows the CNP feature to be detected 1914 at runtime, and does not affect PEs that do not implement 1915 this feature. 1916 1917endmenu # "ARMv8.2 architectural features" 1918 1919menu "ARMv8.3 architectural features" 1920 1921config ARM64_PTR_AUTH 1922 bool "Enable support for pointer authentication" 1923 default y 1924 help 1925 Pointer authentication (part of the ARMv8.3 Extensions) provides 1926 instructions for signing and authenticating pointers against secret 1927 keys, which can be used to mitigate Return Oriented Programming (ROP) 1928 and other attacks. 1929 1930 This option enables these instructions at EL0 (i.e. for userspace). 1931 Choosing this option will cause the kernel to initialise secret keys 1932 for each process at exec() time, with these keys being 1933 context-switched along with the process. 1934 1935 The feature is detected at runtime. If the feature is not present in 1936 hardware it will not be advertised to userspace/KVM guest nor will it 1937 be enabled. 1938 1939 If the feature is present on the boot CPU but not on a late CPU, then 1940 the late CPU will be parked. Also, if the boot CPU does not have 1941 address auth and the late CPU has then the late CPU will still boot 1942 but with the feature disabled. On such a system, this option should 1943 not be selected. 1944 1945config ARM64_PTR_AUTH_KERNEL 1946 bool "Use pointer authentication for kernel" 1947 default y 1948 depends on ARM64_PTR_AUTH 1949 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1950 # Modern compilers insert a .note.gnu.property section note for PAC 1951 # which is only understood by binutils starting with version 2.33.1. 1952 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1953 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1954 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1955 help 1956 If the compiler supports the -mbranch-protection or 1957 -msign-return-address flag (e.g. GCC 7 or later), then this option 1958 will cause the kernel itself to be compiled with return address 1959 protection. In this case, and if the target hardware is known to 1960 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1961 disabled with minimal loss of protection. 1962 1963 This feature works with FUNCTION_GRAPH_TRACER option only if 1964 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1965 1966config CC_HAS_BRANCH_PROT_PAC_RET 1967 # GCC 9 or later, clang 8 or later 1968 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1969 1970config CC_HAS_SIGN_RETURN_ADDRESS 1971 # GCC 7, 8 1972 def_bool $(cc-option,-msign-return-address=all) 1973 1974config AS_HAS_ARMV8_3 1975 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1976 1977config AS_HAS_CFI_NEGATE_RA_STATE 1978 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1979 1980config AS_HAS_LDAPR 1981 def_bool $(as-instr,.arch_extension rcpc) 1982 1983endmenu # "ARMv8.3 architectural features" 1984 1985menu "ARMv8.4 architectural features" 1986 1987config ARM64_AMU_EXTN 1988 bool "Enable support for the Activity Monitors Unit CPU extension" 1989 default y 1990 help 1991 The activity monitors extension is an optional extension introduced 1992 by the ARMv8.4 CPU architecture. This enables support for version 1 1993 of the activity monitors architecture, AMUv1. 1994 1995 To enable the use of this extension on CPUs that implement it, say Y. 1996 1997 Note that for architectural reasons, firmware _must_ implement AMU 1998 support when running on CPUs that present the activity monitors 1999 extension. The required support is present in: 2000 * Version 1.5 and later of the ARM Trusted Firmware 2001 2002 For kernels that have this configuration enabled but boot with broken 2003 firmware, you may need to say N here until the firmware is fixed. 2004 Otherwise you may experience firmware panics or lockups when 2005 accessing the counter registers. Even if you are not observing these 2006 symptoms, the values returned by the register reads might not 2007 correctly reflect reality. Most commonly, the value read will be 0, 2008 indicating that the counter is not enabled. 2009 2010config AS_HAS_ARMV8_4 2011 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 2012 2013config ARM64_TLB_RANGE 2014 bool "Enable support for tlbi range feature" 2015 default y 2016 depends on AS_HAS_ARMV8_4 2017 help 2018 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 2019 range of input addresses. 2020 2021 The feature introduces new assembly instructions, and they were 2022 support when binutils >= 2.30. 2023 2024endmenu # "ARMv8.4 architectural features" 2025 2026menu "ARMv8.5 architectural features" 2027 2028config AS_HAS_ARMV8_5 2029 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 2030 2031config ARM64_BTI 2032 bool "Branch Target Identification support" 2033 default y 2034 help 2035 Branch Target Identification (part of the ARMv8.5 Extensions) 2036 provides a mechanism to limit the set of locations to which computed 2037 branch instructions such as BR or BLR can jump. 2038 2039 To make use of BTI on CPUs that support it, say Y. 2040 2041 BTI is intended to provide complementary protection to other control 2042 flow integrity protection mechanisms, such as the Pointer 2043 authentication mechanism provided as part of the ARMv8.3 Extensions. 2044 For this reason, it does not make sense to enable this option without 2045 also enabling support for pointer authentication. Thus, when 2046 enabling this option you should also select ARM64_PTR_AUTH=y. 2047 2048 Userspace binaries must also be specifically compiled to make use of 2049 this mechanism. If you say N here or the hardware does not support 2050 BTI, such binaries can still run, but you get no additional 2051 enforcement of branch destinations. 2052 2053config ARM64_BTI_KERNEL 2054 bool "Use Branch Target Identification for kernel" 2055 default y 2056 depends on ARM64_BTI 2057 depends on ARM64_PTR_AUTH_KERNEL 2058 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2059 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2060 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2061 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2062 depends on !CC_IS_GCC 2063 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2064 help 2065 Build the kernel with Branch Target Identification annotations 2066 and enable enforcement of this for kernel code. When this option 2067 is enabled and the system supports BTI all kernel code including 2068 modular code must have BTI enabled. 2069 2070config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2071 # GCC 9 or later, clang 8 or later 2072 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2073 2074config ARM64_E0PD 2075 bool "Enable support for E0PD" 2076 default y 2077 help 2078 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2079 that EL0 accesses made via TTBR1 always fault in constant time, 2080 providing similar benefits to KASLR as those provided by KPTI, but 2081 with lower overhead and without disrupting legitimate access to 2082 kernel memory such as SPE. 2083 2084 This option enables E0PD for TTBR1 where available. 2085 2086config ARM64_AS_HAS_MTE 2087 # Initial support for MTE went in binutils 2.32.0, checked with 2088 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2089 # as a late addition to the final architecture spec (LDGM/STGM) 2090 # is only supported in the newer 2.32.x and 2.33 binutils 2091 # versions, hence the extra "stgm" instruction check below. 2092 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2093 2094config ARM64_MTE 2095 bool "Memory Tagging Extension support" 2096 default y 2097 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2098 depends on AS_HAS_ARMV8_5 2099 depends on AS_HAS_LSE_ATOMICS 2100 # Required for tag checking in the uaccess routines 2101 depends on ARM64_PAN 2102 select ARCH_HAS_SUBPAGE_FAULTS 2103 select ARCH_USES_HIGH_VMA_FLAGS 2104 select ARCH_USES_PG_ARCH_X 2105 help 2106 Memory Tagging (part of the ARMv8.5 Extensions) provides 2107 architectural support for run-time, always-on detection of 2108 various classes of memory error to aid with software debugging 2109 to eliminate vulnerabilities arising from memory-unsafe 2110 languages. 2111 2112 This option enables the support for the Memory Tagging 2113 Extension at EL0 (i.e. for userspace). 2114 2115 Selecting this option allows the feature to be detected at 2116 runtime. Any secondary CPU not implementing this feature will 2117 not be allowed a late bring-up. 2118 2119 Userspace binaries that want to use this feature must 2120 explicitly opt in. The mechanism for the userspace is 2121 described in: 2122 2123 Documentation/arch/arm64/memory-tagging-extension.rst. 2124 2125endmenu # "ARMv8.5 architectural features" 2126 2127menu "ARMv8.7 architectural features" 2128 2129config ARM64_EPAN 2130 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2131 default y 2132 depends on ARM64_PAN 2133 help 2134 Enhanced Privileged Access Never (EPAN) allows Privileged 2135 Access Never to be used with Execute-only mappings. 2136 2137 The feature is detected at runtime, and will remain disabled 2138 if the cpu does not implement the feature. 2139endmenu # "ARMv8.7 architectural features" 2140 2141menu "ARMv8.9 architectural features" 2142 2143config ARM64_POE 2144 prompt "Permission Overlay Extension" 2145 def_bool y 2146 select ARCH_USES_HIGH_VMA_FLAGS 2147 select ARCH_HAS_PKEYS 2148 help 2149 The Permission Overlay Extension is used to implement Memory 2150 Protection Keys. Memory Protection Keys provides a mechanism for 2151 enforcing page-based protections, but without requiring modification 2152 of the page tables when an application changes protection domains. 2153 2154 For details, see Documentation/core-api/protection-keys.rst 2155 2156 If unsure, say y. 2157 2158config ARCH_PKEY_BITS 2159 int 2160 default 3 2161 2162endmenu # "ARMv8.9 architectural features" 2163 2164config ARM64_SVE 2165 bool "ARM Scalable Vector Extension support" 2166 default y 2167 help 2168 The Scalable Vector Extension (SVE) is an extension to the AArch64 2169 execution state which complements and extends the SIMD functionality 2170 of the base architecture to support much larger vectors and to enable 2171 additional vectorisation opportunities. 2172 2173 To enable use of this extension on CPUs that implement it, say Y. 2174 2175 On CPUs that support the SVE2 extensions, this option will enable 2176 those too. 2177 2178 Note that for architectural reasons, firmware _must_ implement SVE 2179 support when running on SVE capable hardware. The required support 2180 is present in: 2181 2182 * version 1.5 and later of the ARM Trusted Firmware 2183 * the AArch64 boot wrapper since commit 5e1261e08abf 2184 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2185 2186 For other firmware implementations, consult the firmware documentation 2187 or vendor. 2188 2189 If you need the kernel to boot on SVE-capable hardware with broken 2190 firmware, you may need to say N here until you get your firmware 2191 fixed. Otherwise, you may experience firmware panics or lockups when 2192 booting the kernel. If unsure and you are not observing these 2193 symptoms, you should assume that it is safe to say Y. 2194 2195config ARM64_SME 2196 bool "ARM Scalable Matrix Extension support" 2197 default y 2198 depends on ARM64_SVE 2199 help 2200 The Scalable Matrix Extension (SME) is an extension to the AArch64 2201 execution state which utilises a substantial subset of the SVE 2202 instruction set, together with the addition of new architectural 2203 register state capable of holding two dimensional matrix tiles to 2204 enable various matrix operations. 2205 2206config ARM64_PSEUDO_NMI 2207 bool "Support for NMI-like interrupts" 2208 select ARM_GIC_V3 2209 help 2210 Adds support for mimicking Non-Maskable Interrupts through the use of 2211 GIC interrupt priority. This support requires version 3 or later of 2212 ARM GIC. 2213 2214 This high priority configuration for interrupts needs to be 2215 explicitly enabled by setting the kernel parameter 2216 "irqchip.gicv3_pseudo_nmi" to 1. 2217 2218 If unsure, say N 2219 2220if ARM64_PSEUDO_NMI 2221config ARM64_DEBUG_PRIORITY_MASKING 2222 bool "Debug interrupt priority masking" 2223 help 2224 This adds runtime checks to functions enabling/disabling 2225 interrupts when using priority masking. The additional checks verify 2226 the validity of ICC_PMR_EL1 when calling concerned functions. 2227 2228 If unsure, say N 2229endif # ARM64_PSEUDO_NMI 2230 2231config RELOCATABLE 2232 bool "Build a relocatable kernel image" if EXPERT 2233 select ARCH_HAS_RELR 2234 default y 2235 help 2236 This builds the kernel as a Position Independent Executable (PIE), 2237 which retains all relocation metadata required to relocate the 2238 kernel binary at runtime to a different virtual address than the 2239 address it was linked at. 2240 Since AArch64 uses the RELA relocation format, this requires a 2241 relocation pass at runtime even if the kernel is loaded at the 2242 same address it was linked at. 2243 2244config RANDOMIZE_BASE 2245 bool "Randomize the address of the kernel image" 2246 select RELOCATABLE 2247 help 2248 Randomizes the virtual address at which the kernel image is 2249 loaded, as a security feature that deters exploit attempts 2250 relying on knowledge of the location of kernel internals. 2251 2252 It is the bootloader's job to provide entropy, by passing a 2253 random u64 value in /chosen/kaslr-seed at kernel entry. 2254 2255 When booting via the UEFI stub, it will invoke the firmware's 2256 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2257 to the kernel proper. In addition, it will randomise the physical 2258 location of the kernel Image as well. 2259 2260 If unsure, say N. 2261 2262config RANDOMIZE_MODULE_REGION_FULL 2263 bool "Randomize the module region over a 2 GB range" 2264 depends on RANDOMIZE_BASE 2265 default y 2266 help 2267 Randomizes the location of the module region inside a 2 GB window 2268 covering the core kernel. This way, it is less likely for modules 2269 to leak information about the location of core kernel data structures 2270 but it does imply that function calls between modules and the core 2271 kernel will need to be resolved via veneers in the module PLT. 2272 2273 When this option is not set, the module region will be randomized over 2274 a limited range that contains the [_stext, _etext] interval of the 2275 core kernel, so branch relocations are almost always in range unless 2276 the region is exhausted. In this particular case of region 2277 exhaustion, modules might be able to fall back to a larger 2GB area. 2278 2279config CC_HAVE_STACKPROTECTOR_SYSREG 2280 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2281 2282config STACKPROTECTOR_PER_TASK 2283 def_bool y 2284 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2285 2286config UNWIND_PATCH_PAC_INTO_SCS 2287 bool "Enable shadow call stack dynamically using code patching" 2288 # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated 2289 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2290 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2291 depends on SHADOW_CALL_STACK 2292 select UNWIND_TABLES 2293 select DYNAMIC_SCS 2294 2295config ARM64_CONTPTE 2296 bool "Contiguous PTE mappings for user memory" if EXPERT 2297 depends on TRANSPARENT_HUGEPAGE 2298 default y 2299 help 2300 When enabled, user mappings are configured using the PTE contiguous 2301 bit, for any mappings that meet the size and alignment requirements. 2302 This reduces TLB pressure and improves performance. 2303 2304endmenu # "Kernel Features" 2305 2306menu "Boot options" 2307 2308config ARM64_ACPI_PARKING_PROTOCOL 2309 bool "Enable support for the ARM64 ACPI parking protocol" 2310 depends on ACPI 2311 help 2312 Enable support for the ARM64 ACPI parking protocol. If disabled 2313 the kernel will not allow booting through the ARM64 ACPI parking 2314 protocol even if the corresponding data is present in the ACPI 2315 MADT table. 2316 2317config CMDLINE 2318 string "Default kernel command string" 2319 default "" 2320 help 2321 Provide a set of default command-line options at build time by 2322 entering them here. As a minimum, you should specify the the 2323 root device (e.g. root=/dev/nfs). 2324 2325choice 2326 prompt "Kernel command line type" 2327 depends on CMDLINE != "" 2328 default CMDLINE_FROM_BOOTLOADER 2329 help 2330 Choose how the kernel will handle the provided default kernel 2331 command line string. 2332 2333config CMDLINE_FROM_BOOTLOADER 2334 bool "Use bootloader kernel arguments if available" 2335 help 2336 Uses the command-line options passed by the boot loader. If 2337 the boot loader doesn't provide any, the default kernel command 2338 string provided in CMDLINE will be used. 2339 2340config CMDLINE_FORCE 2341 bool "Always use the default kernel command string" 2342 help 2343 Always use the default kernel command string, even if the boot 2344 loader passes other arguments to the kernel. 2345 This is useful if you cannot or don't want to change the 2346 command-line options your boot loader passes to the kernel. 2347 2348endchoice 2349 2350config EFI_STUB 2351 bool 2352 2353config EFI 2354 bool "UEFI runtime support" 2355 depends on OF && !CPU_BIG_ENDIAN 2356 depends on KERNEL_MODE_NEON 2357 select ARCH_SUPPORTS_ACPI 2358 select LIBFDT 2359 select UCS2_STRING 2360 select EFI_PARAMS_FROM_FDT 2361 select EFI_RUNTIME_WRAPPERS 2362 select EFI_STUB 2363 select EFI_GENERIC_STUB 2364 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2365 default y 2366 help 2367 This option provides support for runtime services provided 2368 by UEFI firmware (such as non-volatile variables, realtime 2369 clock, and platform reset). A UEFI stub is also provided to 2370 allow the kernel to be booted as an EFI application. This 2371 is only useful on systems that have UEFI firmware. 2372 2373config COMPRESSED_INSTALL 2374 bool "Install compressed image by default" 2375 help 2376 This makes the regular "make install" install the compressed 2377 image we built, not the legacy uncompressed one. 2378 2379 You can check that a compressed image works for you by doing 2380 "make zinstall" first, and verifying that everything is fine 2381 in your environment before making "make install" do this for 2382 you. 2383 2384config DMI 2385 bool "Enable support for SMBIOS (DMI) tables" 2386 depends on EFI 2387 default y 2388 help 2389 This enables SMBIOS/DMI feature for systems. 2390 2391 This option is only useful on systems that have UEFI firmware. 2392 However, even with this option, the resultant kernel should 2393 continue to boot on existing non-UEFI platforms. 2394 2395endmenu # "Boot options" 2396 2397menu "Power management options" 2398 2399source "kernel/power/Kconfig" 2400 2401config ARCH_HIBERNATION_POSSIBLE 2402 def_bool y 2403 depends on CPU_PM 2404 2405config ARCH_HIBERNATION_HEADER 2406 def_bool y 2407 depends on HIBERNATION 2408 2409config ARCH_SUSPEND_POSSIBLE 2410 def_bool y 2411 2412endmenu # "Power management options" 2413 2414menu "CPU Power Management" 2415 2416source "drivers/cpuidle/Kconfig" 2417 2418source "drivers/cpufreq/Kconfig" 2419 2420endmenu # "CPU Power Management" 2421 2422source "drivers/acpi/Kconfig" 2423 2424source "arch/arm64/kvm/Kconfig" 2425 2426