xref: /linux/arch/arm64/Kconfig (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
18	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
19	select ARCH_ENABLE_MEMORY_HOTPLUG
20	select ARCH_ENABLE_MEMORY_HOTREMOVE
21	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
22	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
23	select ARCH_HAS_CACHE_LINE_SIZE
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_PREP_COHERENT
28	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
29	select ARCH_HAS_FAST_MULTIPLIER
30	select ARCH_HAS_FORTIFY_SOURCE
31	select ARCH_HAS_GCOV_PROFILE_ALL
32	select ARCH_HAS_GIGANTIC_PAGE
33	select ARCH_HAS_KCOV
34	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
35	select ARCH_HAS_KEEPINITRD
36	select ARCH_HAS_MEMBARRIER_SYNC_CORE
37	select ARCH_HAS_MEM_ENCRYPT
38	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
39	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
40	select ARCH_HAS_PTE_DEVMAP
41	select ARCH_HAS_PTE_SPECIAL
42	select ARCH_HAS_HW_PTE_YOUNG
43	select ARCH_HAS_SETUP_DMA_OPS
44	select ARCH_HAS_SET_DIRECT_MAP
45	select ARCH_HAS_SET_MEMORY
46	select ARCH_STACKWALK
47	select ARCH_HAS_STRICT_KERNEL_RWX
48	select ARCH_HAS_STRICT_MODULE_RWX
49	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
50	select ARCH_HAS_SYNC_DMA_FOR_CPU
51	select ARCH_HAS_SYSCALL_WRAPPER
52	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
53	select ARCH_HAS_ZONE_DMA_SET if EXPERT
54	select ARCH_HAVE_ELF_PROT
55	select ARCH_HAVE_NMI_SAFE_CMPXCHG
56	select ARCH_HAVE_TRACE_MMIO_ACCESS
57	select ARCH_INLINE_READ_LOCK if !PREEMPTION
58	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
59	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
60	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
62	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
63	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
64	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
66	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
67	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
68	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
70	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
71	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
73	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
74	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
76	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
77	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
82	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
83	select ARCH_KEEP_MEMBLOCK
84	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
85	select ARCH_USE_CMPXCHG_LOCKREF
86	select ARCH_USE_GNU_PROPERTY
87	select ARCH_USE_MEMTEST
88	select ARCH_USE_QUEUED_RWLOCKS
89	select ARCH_USE_QUEUED_SPINLOCKS
90	select ARCH_USE_SYM_ANNOTATIONS
91	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
92	select ARCH_SUPPORTS_HUGETLBFS
93	select ARCH_SUPPORTS_MEMORY_FAILURE
94	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
95	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
96	select ARCH_SUPPORTS_LTO_CLANG_THIN
97	select ARCH_SUPPORTS_CFI_CLANG
98	select ARCH_SUPPORTS_ATOMIC_RMW
99	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
100	select ARCH_SUPPORTS_NUMA_BALANCING
101	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
102	select ARCH_SUPPORTS_PER_VMA_LOCK
103	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
104	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
105	select ARCH_WANT_DEFAULT_BPF_JIT
106	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
107	select ARCH_WANT_FRAME_POINTERS
108	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
109	select ARCH_WANT_LD_ORPHAN_WARN
110	select ARCH_WANTS_EXECMEM_LATE if EXECMEM
111	select ARCH_WANTS_NO_INSTR
112	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
113	select ARCH_HAS_UBSAN
114	select ARM_AMBA
115	select ARM_ARCH_TIMER
116	select ARM_GIC
117	select AUDIT_ARCH_COMPAT_GENERIC
118	select ARM_GIC_V2M if PCI
119	select ARM_GIC_V3
120	select ARM_GIC_V3_ITS if PCI
121	select ARM_PSCI_FW
122	select BUILDTIME_TABLE_SORT
123	select CLONE_BACKWARDS
124	select COMMON_CLK
125	select CPU_PM if (SUSPEND || CPU_IDLE)
126	select CPUMASK_OFFSTACK if NR_CPUS > 256
127	select CRC32
128	select DCACHE_WORD_ACCESS
129	select DYNAMIC_FTRACE if FUNCTION_TRACER
130	select DMA_BOUNCE_UNALIGNED_KMALLOC
131	select DMA_DIRECT_REMAP
132	select EDAC_SUPPORT
133	select FRAME_POINTER
134	select FUNCTION_ALIGNMENT_4B
135	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
136	select GENERIC_ALLOCATOR
137	select GENERIC_ARCH_TOPOLOGY
138	select GENERIC_CLOCKEVENTS_BROADCAST
139	select GENERIC_CPU_AUTOPROBE
140	select GENERIC_CPU_DEVICES
141	select GENERIC_CPU_VULNERABILITIES
142	select GENERIC_EARLY_IOREMAP
143	select GENERIC_IDLE_POLL_SETUP
144	select GENERIC_IOREMAP
145	select GENERIC_IRQ_IPI
146	select GENERIC_IRQ_PROBE
147	select GENERIC_IRQ_SHOW
148	select GENERIC_IRQ_SHOW_LEVEL
149	select GENERIC_LIB_DEVMEM_IS_ALLOWED
150	select GENERIC_PCI_IOMAP
151	select GENERIC_PTDUMP
152	select GENERIC_SCHED_CLOCK
153	select GENERIC_SMP_IDLE_THREAD
154	select GENERIC_TIME_VSYSCALL
155	select GENERIC_GETTIMEOFDAY
156	select GENERIC_VDSO_TIME_NS
157	select HARDIRQS_SW_RESEND
158	select HAS_IOPORT
159	select HAVE_MOVE_PMD
160	select HAVE_MOVE_PUD
161	select HAVE_PCI
162	select HAVE_ACPI_APEI if (ACPI && EFI)
163	select HAVE_ALIGNED_STRUCT_PAGE
164	select HAVE_ARCH_AUDITSYSCALL
165	select HAVE_ARCH_BITREVERSE
166	select HAVE_ARCH_COMPILER_H
167	select HAVE_ARCH_HUGE_VMALLOC
168	select HAVE_ARCH_HUGE_VMAP
169	select HAVE_ARCH_JUMP_LABEL
170	select HAVE_ARCH_JUMP_LABEL_RELATIVE
171	select HAVE_ARCH_KASAN
172	select HAVE_ARCH_KASAN_VMALLOC
173	select HAVE_ARCH_KASAN_SW_TAGS
174	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
175	# Some instrumentation may be unsound, hence EXPERT
176	select HAVE_ARCH_KCSAN if EXPERT
177	select HAVE_ARCH_KFENCE
178	select HAVE_ARCH_KGDB
179	select HAVE_ARCH_MMAP_RND_BITS
180	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
181	select HAVE_ARCH_PREL32_RELOCATIONS
182	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
183	select HAVE_ARCH_SECCOMP_FILTER
184	select HAVE_ARCH_STACKLEAK
185	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
186	select HAVE_ARCH_TRACEHOOK
187	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
188	select HAVE_ARCH_VMAP_STACK
189	select HAVE_ARM_SMCCC
190	select HAVE_ASM_MODVERSIONS
191	select HAVE_EBPF_JIT
192	select HAVE_C_RECORDMCOUNT
193	select HAVE_CMPXCHG_DOUBLE
194	select HAVE_CMPXCHG_LOCAL
195	select HAVE_CONTEXT_TRACKING_USER
196	select HAVE_DEBUG_KMEMLEAK
197	select HAVE_DMA_CONTIGUOUS
198	select HAVE_DYNAMIC_FTRACE
199	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
200		if $(cc-option,-fpatchable-function-entry=2)
201	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
202		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
203	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
204		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
205		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
206	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
207		if DYNAMIC_FTRACE_WITH_ARGS
208	select HAVE_SAMPLE_FTRACE_DIRECT
209	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
210	select HAVE_EFFICIENT_UNALIGNED_ACCESS
211	select HAVE_GUP_FAST
212	select HAVE_FTRACE_MCOUNT_RECORD
213	select HAVE_FUNCTION_TRACER
214	select HAVE_FUNCTION_ERROR_INJECTION
215	select HAVE_FUNCTION_GRAPH_TRACER
216	select HAVE_FUNCTION_GRAPH_RETVAL
217	select HAVE_GCC_PLUGINS
218	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
219		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
220	select HAVE_HW_BREAKPOINT if PERF_EVENTS
221	select HAVE_IOREMAP_PROT
222	select HAVE_IRQ_TIME_ACCOUNTING
223	select HAVE_MOD_ARCH_SPECIFIC
224	select HAVE_NMI
225	select HAVE_PERF_EVENTS
226	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
227	select HAVE_PERF_REGS
228	select HAVE_PERF_USER_STACK_DUMP
229	select HAVE_PREEMPT_DYNAMIC_KEY
230	select HAVE_REGS_AND_STACK_ACCESS_API
231	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
232	select HAVE_FUNCTION_ARG_ACCESS_API
233	select MMU_GATHER_RCU_TABLE_FREE
234	select HAVE_RSEQ
235	select HAVE_RUST if CPU_LITTLE_ENDIAN
236	select HAVE_STACKPROTECTOR
237	select HAVE_SYSCALL_TRACEPOINTS
238	select HAVE_KPROBES
239	select HAVE_KRETPROBES
240	select HAVE_GENERIC_VDSO
241	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
242	select IRQ_DOMAIN
243	select IRQ_FORCED_THREADING
244	select KASAN_VMALLOC if KASAN
245	select LOCK_MM_AND_FIND_VMA
246	select MODULES_USE_ELF_RELA
247	select NEED_DMA_MAP_STATE
248	select NEED_SG_DMA_LENGTH
249	select OF
250	select OF_EARLY_FLATTREE
251	select PCI_DOMAINS_GENERIC if PCI
252	select PCI_ECAM if (ACPI && PCI)
253	select PCI_SYSCALL if PCI
254	select POWER_RESET
255	select POWER_SUPPLY
256	select SPARSE_IRQ
257	select SWIOTLB
258	select SYSCTL_EXCEPTION_TRACE
259	select THREAD_INFO_IN_TASK
260	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
261	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
262	select TRACE_IRQFLAGS_SUPPORT
263	select TRACE_IRQFLAGS_NMI_SUPPORT
264	select HAVE_SOFTIRQ_ON_OWN_STACK
265	select USER_STACKTRACE_SUPPORT
266	help
267	  ARM 64-bit (AArch64) Linux support.
268
269config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
270	def_bool CC_IS_CLANG
271	# https://github.com/ClangBuiltLinux/linux/issues/1507
272	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
273	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
274
275config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
276	def_bool CC_IS_GCC
277	depends on $(cc-option,-fpatchable-function-entry=2)
278	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
279
280config 64BIT
281	def_bool y
282
283config MMU
284	def_bool y
285
286config ARM64_CONT_PTE_SHIFT
287	int
288	default 5 if PAGE_SIZE_64KB
289	default 7 if PAGE_SIZE_16KB
290	default 4
291
292config ARM64_CONT_PMD_SHIFT
293	int
294	default 5 if PAGE_SIZE_64KB
295	default 5 if PAGE_SIZE_16KB
296	default 4
297
298config ARCH_MMAP_RND_BITS_MIN
299	default 14 if PAGE_SIZE_64KB
300	default 16 if PAGE_SIZE_16KB
301	default 18
302
303# max bits determined by the following formula:
304#  VA_BITS - PAGE_SHIFT - 3
305config ARCH_MMAP_RND_BITS_MAX
306	default 19 if ARM64_VA_BITS=36
307	default 24 if ARM64_VA_BITS=39
308	default 27 if ARM64_VA_BITS=42
309	default 30 if ARM64_VA_BITS=47
310	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
311	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
312	default 33 if ARM64_VA_BITS=48
313	default 14 if ARM64_64K_PAGES
314	default 16 if ARM64_16K_PAGES
315	default 18
316
317config ARCH_MMAP_RND_COMPAT_BITS_MIN
318	default 7 if ARM64_64K_PAGES
319	default 9 if ARM64_16K_PAGES
320	default 11
321
322config ARCH_MMAP_RND_COMPAT_BITS_MAX
323	default 16
324
325config NO_IOPORT_MAP
326	def_bool y if !PCI
327
328config STACKTRACE_SUPPORT
329	def_bool y
330
331config ILLEGAL_POINTER_VALUE
332	hex
333	default 0xdead000000000000
334
335config LOCKDEP_SUPPORT
336	def_bool y
337
338config GENERIC_BUG
339	def_bool y
340	depends on BUG
341
342config GENERIC_BUG_RELATIVE_POINTERS
343	def_bool y
344	depends on GENERIC_BUG
345
346config GENERIC_HWEIGHT
347	def_bool y
348
349config GENERIC_CSUM
350	def_bool y
351
352config GENERIC_CALIBRATE_DELAY
353	def_bool y
354
355config SMP
356	def_bool y
357
358config KERNEL_MODE_NEON
359	def_bool y
360
361config FIX_EARLYCON_MEM
362	def_bool y
363
364config PGTABLE_LEVELS
365	int
366	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
367	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
368	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
369	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
370	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
371	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
372	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
373	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
374
375config ARCH_SUPPORTS_UPROBES
376	def_bool y
377
378config ARCH_PROC_KCORE_TEXT
379	def_bool y
380
381config BROKEN_GAS_INST
382	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
383
384config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
385	bool
386	# Clang's __builtin_return_address() strips the PAC since 12.0.0
387	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
388	default y if CC_IS_CLANG
389	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
390	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
391	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
392	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
393	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
394	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
395	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
396	default n
397
398config KASAN_SHADOW_OFFSET
399	hex
400	depends on KASAN_GENERIC || KASAN_SW_TAGS
401	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
402	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
403	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
404	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
405	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
406	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
407	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
408	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
409	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
410	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
411	default 0xffffffffffffffff
412
413config UNWIND_TABLES
414	bool
415
416source "arch/arm64/Kconfig.platforms"
417
418menu "Kernel Features"
419
420menu "ARM errata workarounds via the alternatives framework"
421
422config AMPERE_ERRATUM_AC03_CPU_38
423        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
424	default y
425	help
426	  This option adds an alternative code sequence to work around Ampere
427	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
428
429	  The affected design reports FEAT_HAFDBS as not implemented in
430	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
431	  as required by the architecture. The unadvertised HAFDBS
432	  implementation suffers from an additional erratum where hardware
433	  A/D updates can occur after a PTE has been marked invalid.
434
435	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
436	  which avoids enabling unadvertised hardware Access Flag management
437	  at stage-2.
438
439	  If unsure, say Y.
440
441config ARM64_WORKAROUND_CLEAN_CACHE
442	bool
443
444config ARM64_ERRATUM_826319
445	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
446	default y
447	select ARM64_WORKAROUND_CLEAN_CACHE
448	help
449	  This option adds an alternative code sequence to work around ARM
450	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
451	  AXI master interface and an L2 cache.
452
453	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
454	  and is unable to accept a certain write via this interface, it will
455	  not progress on read data presented on the read data channel and the
456	  system can deadlock.
457
458	  The workaround promotes data cache clean instructions to
459	  data cache clean-and-invalidate.
460	  Please note that this does not necessarily enable the workaround,
461	  as it depends on the alternative framework, which will only patch
462	  the kernel if an affected CPU is detected.
463
464	  If unsure, say Y.
465
466config ARM64_ERRATUM_827319
467	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
468	default y
469	select ARM64_WORKAROUND_CLEAN_CACHE
470	help
471	  This option adds an alternative code sequence to work around ARM
472	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
473	  master interface and an L2 cache.
474
475	  Under certain conditions this erratum can cause a clean line eviction
476	  to occur at the same time as another transaction to the same address
477	  on the AMBA 5 CHI interface, which can cause data corruption if the
478	  interconnect reorders the two transactions.
479
480	  The workaround promotes data cache clean instructions to
481	  data cache clean-and-invalidate.
482	  Please note that this does not necessarily enable the workaround,
483	  as it depends on the alternative framework, which will only patch
484	  the kernel if an affected CPU is detected.
485
486	  If unsure, say Y.
487
488config ARM64_ERRATUM_824069
489	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
490	default y
491	select ARM64_WORKAROUND_CLEAN_CACHE
492	help
493	  This option adds an alternative code sequence to work around ARM
494	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
495	  to a coherent interconnect.
496
497	  If a Cortex-A53 processor is executing a store or prefetch for
498	  write instruction at the same time as a processor in another
499	  cluster is executing a cache maintenance operation to the same
500	  address, then this erratum might cause a clean cache line to be
501	  incorrectly marked as dirty.
502
503	  The workaround promotes data cache clean instructions to
504	  data cache clean-and-invalidate.
505	  Please note that this option does not necessarily enable the
506	  workaround, as it depends on the alternative framework, which will
507	  only patch the kernel if an affected CPU is detected.
508
509	  If unsure, say Y.
510
511config ARM64_ERRATUM_819472
512	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
513	default y
514	select ARM64_WORKAROUND_CLEAN_CACHE
515	help
516	  This option adds an alternative code sequence to work around ARM
517	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
518	  present when it is connected to a coherent interconnect.
519
520	  If the processor is executing a load and store exclusive sequence at
521	  the same time as a processor in another cluster is executing a cache
522	  maintenance operation to the same address, then this erratum might
523	  cause data corruption.
524
525	  The workaround promotes data cache clean instructions to
526	  data cache clean-and-invalidate.
527	  Please note that this does not necessarily enable the workaround,
528	  as it depends on the alternative framework, which will only patch
529	  the kernel if an affected CPU is detected.
530
531	  If unsure, say Y.
532
533config ARM64_ERRATUM_832075
534	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
535	default y
536	help
537	  This option adds an alternative code sequence to work around ARM
538	  erratum 832075 on Cortex-A57 parts up to r1p2.
539
540	  Affected Cortex-A57 parts might deadlock when exclusive load/store
541	  instructions to Write-Back memory are mixed with Device loads.
542
543	  The workaround is to promote device loads to use Load-Acquire
544	  semantics.
545	  Please note that this does not necessarily enable the workaround,
546	  as it depends on the alternative framework, which will only patch
547	  the kernel if an affected CPU is detected.
548
549	  If unsure, say Y.
550
551config ARM64_ERRATUM_834220
552	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
553	depends on KVM
554	help
555	  This option adds an alternative code sequence to work around ARM
556	  erratum 834220 on Cortex-A57 parts up to r1p2.
557
558	  Affected Cortex-A57 parts might report a Stage 2 translation
559	  fault as the result of a Stage 1 fault for load crossing a
560	  page boundary when there is a permission or device memory
561	  alignment fault at Stage 1 and a translation fault at Stage 2.
562
563	  The workaround is to verify that the Stage 1 translation
564	  doesn't generate a fault before handling the Stage 2 fault.
565	  Please note that this does not necessarily enable the workaround,
566	  as it depends on the alternative framework, which will only patch
567	  the kernel if an affected CPU is detected.
568
569	  If unsure, say N.
570
571config ARM64_ERRATUM_1742098
572	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
573	depends on COMPAT
574	default y
575	help
576	  This option removes the AES hwcap for aarch32 user-space to
577	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
578
579	  Affected parts may corrupt the AES state if an interrupt is
580	  taken between a pair of AES instructions. These instructions
581	  are only present if the cryptography extensions are present.
582	  All software should have a fallback implementation for CPUs
583	  that don't implement the cryptography extensions.
584
585	  If unsure, say Y.
586
587config ARM64_ERRATUM_845719
588	bool "Cortex-A53: 845719: a load might read incorrect data"
589	depends on COMPAT
590	default y
591	help
592	  This option adds an alternative code sequence to work around ARM
593	  erratum 845719 on Cortex-A53 parts up to r0p4.
594
595	  When running a compat (AArch32) userspace on an affected Cortex-A53
596	  part, a load at EL0 from a virtual address that matches the bottom 32
597	  bits of the virtual address used by a recent load at (AArch64) EL1
598	  might return incorrect data.
599
600	  The workaround is to write the contextidr_el1 register on exception
601	  return to a 32-bit task.
602	  Please note that this does not necessarily enable the workaround,
603	  as it depends on the alternative framework, which will only patch
604	  the kernel if an affected CPU is detected.
605
606	  If unsure, say Y.
607
608config ARM64_ERRATUM_843419
609	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
610	default y
611	help
612	  This option links the kernel with '--fix-cortex-a53-843419' and
613	  enables PLT support to replace certain ADRP instructions, which can
614	  cause subsequent memory accesses to use an incorrect address on
615	  Cortex-A53 parts up to r0p4.
616
617	  If unsure, say Y.
618
619config ARM64_LD_HAS_FIX_ERRATUM_843419
620	def_bool $(ld-option,--fix-cortex-a53-843419)
621
622config ARM64_ERRATUM_1024718
623	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
624	default y
625	help
626	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
627
628	  Affected Cortex-A55 cores (all revisions) could cause incorrect
629	  update of the hardware dirty bit when the DBM/AP bits are updated
630	  without a break-before-make. The workaround is to disable the usage
631	  of hardware DBM locally on the affected cores. CPUs not affected by
632	  this erratum will continue to use the feature.
633
634	  If unsure, say Y.
635
636config ARM64_ERRATUM_1418040
637	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
638	default y
639	depends on COMPAT
640	help
641	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
642	  errata 1188873 and 1418040.
643
644	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
645	  cause register corruption when accessing the timer registers
646	  from AArch32 userspace.
647
648	  If unsure, say Y.
649
650config ARM64_WORKAROUND_SPECULATIVE_AT
651	bool
652
653config ARM64_ERRATUM_1165522
654	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
655	default y
656	select ARM64_WORKAROUND_SPECULATIVE_AT
657	help
658	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
659
660	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
661	  corrupted TLBs by speculating an AT instruction during a guest
662	  context switch.
663
664	  If unsure, say Y.
665
666config ARM64_ERRATUM_1319367
667	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
668	default y
669	select ARM64_WORKAROUND_SPECULATIVE_AT
670	help
671	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
672	  and A72 erratum 1319367
673
674	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
675	  speculating an AT instruction during a guest context switch.
676
677	  If unsure, say Y.
678
679config ARM64_ERRATUM_1530923
680	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
681	default y
682	select ARM64_WORKAROUND_SPECULATIVE_AT
683	help
684	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
685
686	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
687	  corrupted TLBs by speculating an AT instruction during a guest
688	  context switch.
689
690	  If unsure, say Y.
691
692config ARM64_WORKAROUND_REPEAT_TLBI
693	bool
694
695config ARM64_ERRATUM_2441007
696	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
697	select ARM64_WORKAROUND_REPEAT_TLBI
698	help
699	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
700
701	  Under very rare circumstances, affected Cortex-A55 CPUs
702	  may not handle a race between a break-before-make sequence on one
703	  CPU, and another CPU accessing the same page. This could allow a
704	  store to a page that has been unmapped.
705
706	  Work around this by adding the affected CPUs to the list that needs
707	  TLB sequences to be done twice.
708
709	  If unsure, say N.
710
711config ARM64_ERRATUM_1286807
712	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
713	select ARM64_WORKAROUND_REPEAT_TLBI
714	help
715	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
716
717	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
718	  address for a cacheable mapping of a location is being
719	  accessed by a core while another core is remapping the virtual
720	  address to a new physical page using the recommended
721	  break-before-make sequence, then under very rare circumstances
722	  TLBI+DSB completes before a read using the translation being
723	  invalidated has been observed by other observers. The
724	  workaround repeats the TLBI+DSB operation.
725
726	  If unsure, say N.
727
728config ARM64_ERRATUM_1463225
729	bool "Cortex-A76: Software Step might prevent interrupt recognition"
730	default y
731	help
732	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
733
734	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
735	  of a system call instruction (SVC) can prevent recognition of
736	  subsequent interrupts when software stepping is disabled in the
737	  exception handler of the system call and either kernel debugging
738	  is enabled or VHE is in use.
739
740	  Work around the erratum by triggering a dummy step exception
741	  when handling a system call from a task that is being stepped
742	  in a VHE configuration of the kernel.
743
744	  If unsure, say Y.
745
746config ARM64_ERRATUM_1542419
747	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
748	help
749	  This option adds a workaround for ARM Neoverse-N1 erratum
750	  1542419.
751
752	  Affected Neoverse-N1 cores could execute a stale instruction when
753	  modified by another CPU. The workaround depends on a firmware
754	  counterpart.
755
756	  Workaround the issue by hiding the DIC feature from EL0. This
757	  forces user-space to perform cache maintenance.
758
759	  If unsure, say N.
760
761config ARM64_ERRATUM_1508412
762	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
763	default y
764	help
765	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
766
767	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
768	  of a store-exclusive or read of PAR_EL1 and a load with device or
769	  non-cacheable memory attributes. The workaround depends on a firmware
770	  counterpart.
771
772	  KVM guests must also have the workaround implemented or they can
773	  deadlock the system.
774
775	  Work around the issue by inserting DMB SY barriers around PAR_EL1
776	  register reads and warning KVM users. The DMB barrier is sufficient
777	  to prevent a speculative PAR_EL1 read.
778
779	  If unsure, say Y.
780
781config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
782	bool
783
784config ARM64_ERRATUM_2051678
785	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
786	default y
787	help
788	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
789	  Affected Cortex-A510 might not respect the ordering rules for
790	  hardware update of the page table's dirty bit. The workaround
791	  is to not enable the feature on affected CPUs.
792
793	  If unsure, say Y.
794
795config ARM64_ERRATUM_2077057
796	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
797	default y
798	help
799	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
800	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
801	  expected, but a Pointer Authentication trap is taken instead. The
802	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
803	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
804
805	  This can only happen when EL2 is stepping EL1.
806
807	  When these conditions occur, the SPSR_EL2 value is unchanged from the
808	  previous guest entry, and can be restored from the in-memory copy.
809
810	  If unsure, say Y.
811
812config ARM64_ERRATUM_2658417
813	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
814	default y
815	help
816	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
817	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
818	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
819	  A510 CPUs are using shared neon hardware. As the sharing is not
820	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
821	  user-space should not be using these instructions.
822
823	  If unsure, say Y.
824
825config ARM64_ERRATUM_2119858
826	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
827	default y
828	depends on CORESIGHT_TRBE
829	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
830	help
831	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
832
833	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
834	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
835	  the event of a WRAP event.
836
837	  Work around the issue by always making sure we move the TRBPTR_EL1 by
838	  256 bytes before enabling the buffer and filling the first 256 bytes of
839	  the buffer with ETM ignore packets upon disabling.
840
841	  If unsure, say Y.
842
843config ARM64_ERRATUM_2139208
844	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
845	default y
846	depends on CORESIGHT_TRBE
847	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
848	help
849	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
850
851	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
852	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
853	  the event of a WRAP event.
854
855	  Work around the issue by always making sure we move the TRBPTR_EL1 by
856	  256 bytes before enabling the buffer and filling the first 256 bytes of
857	  the buffer with ETM ignore packets upon disabling.
858
859	  If unsure, say Y.
860
861config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
862	bool
863
864config ARM64_ERRATUM_2054223
865	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
866	default y
867	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
868	help
869	  Enable workaround for ARM Cortex-A710 erratum 2054223
870
871	  Affected cores may fail to flush the trace data on a TSB instruction, when
872	  the PE is in trace prohibited state. This will cause losing a few bytes
873	  of the trace cached.
874
875	  Workaround is to issue two TSB consecutively on affected cores.
876
877	  If unsure, say Y.
878
879config ARM64_ERRATUM_2067961
880	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
881	default y
882	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
883	help
884	  Enable workaround for ARM Neoverse-N2 erratum 2067961
885
886	  Affected cores may fail to flush the trace data on a TSB instruction, when
887	  the PE is in trace prohibited state. This will cause losing a few bytes
888	  of the trace cached.
889
890	  Workaround is to issue two TSB consecutively on affected cores.
891
892	  If unsure, say Y.
893
894config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
895	bool
896
897config ARM64_ERRATUM_2253138
898	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
899	depends on CORESIGHT_TRBE
900	default y
901	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
902	help
903	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
904
905	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
906	  for TRBE. Under some conditions, the TRBE might generate a write to the next
907	  virtually addressed page following the last page of the TRBE address space
908	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
909
910	  Work around this in the driver by always making sure that there is a
911	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
912
913	  If unsure, say Y.
914
915config ARM64_ERRATUM_2224489
916	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
917	depends on CORESIGHT_TRBE
918	default y
919	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
920	help
921	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
922
923	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
924	  for TRBE. Under some conditions, the TRBE might generate a write to the next
925	  virtually addressed page following the last page of the TRBE address space
926	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
927
928	  Work around this in the driver by always making sure that there is a
929	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
930
931	  If unsure, say Y.
932
933config ARM64_ERRATUM_2441009
934	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
935	select ARM64_WORKAROUND_REPEAT_TLBI
936	help
937	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
938
939	  Under very rare circumstances, affected Cortex-A510 CPUs
940	  may not handle a race between a break-before-make sequence on one
941	  CPU, and another CPU accessing the same page. This could allow a
942	  store to a page that has been unmapped.
943
944	  Work around this by adding the affected CPUs to the list that needs
945	  TLB sequences to be done twice.
946
947	  If unsure, say N.
948
949config ARM64_ERRATUM_2064142
950	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
951	depends on CORESIGHT_TRBE
952	default y
953	help
954	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
955
956	  Affected Cortex-A510 core might fail to write into system registers after the
957	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
958	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
959	  and TRBTRG_EL1 will be ignored and will not be effected.
960
961	  Work around this in the driver by executing TSB CSYNC and DSB after collection
962	  is stopped and before performing a system register write to one of the affected
963	  registers.
964
965	  If unsure, say Y.
966
967config ARM64_ERRATUM_2038923
968	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
969	depends on CORESIGHT_TRBE
970	default y
971	help
972	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
973
974	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
975	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
976	  might be corrupted. This happens after TRBE buffer has been enabled by setting
977	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
978	  execution changes from a context, in which trace is prohibited to one where it
979	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
980	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
981	  the trace buffer state might be corrupted.
982
983	  Work around this in the driver by preventing an inconsistent view of whether the
984	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
985	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
986	  two ISB instructions if no ERET is to take place.
987
988	  If unsure, say Y.
989
990config ARM64_ERRATUM_1902691
991	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
992	depends on CORESIGHT_TRBE
993	default y
994	help
995	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
996
997	  Affected Cortex-A510 core might cause trace data corruption, when being written
998	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
999	  trace data.
1000
1001	  Work around this problem in the driver by just preventing TRBE initialization on
1002	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1003	  on such implementations. This will cover the kernel for any firmware that doesn't
1004	  do this already.
1005
1006	  If unsure, say Y.
1007
1008config ARM64_ERRATUM_2457168
1009	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1010	depends on ARM64_AMU_EXTN
1011	default y
1012	help
1013	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1014
1015	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1016	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1017	  incorrectly giving a significantly higher output value.
1018
1019	  Work around this problem by returning 0 when reading the affected counter in
1020	  key locations that results in disabling all users of this counter. This effect
1021	  is the same to firmware disabling affected counters.
1022
1023	  If unsure, say Y.
1024
1025config ARM64_ERRATUM_2645198
1026	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1027	default y
1028	help
1029	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1030
1031	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1032	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1033	  next instruction abort caused by permission fault.
1034
1035	  Only user-space does executable to non-executable permission transition via
1036	  mprotect() system call. Workaround the problem by doing a break-before-make
1037	  TLB invalidation, for all changes to executable user space mappings.
1038
1039	  If unsure, say Y.
1040
1041config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1042	bool
1043
1044config ARM64_ERRATUM_2966298
1045	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1046	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1047	default y
1048	help
1049	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1050
1051	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1052	  load might leak data from a privileged level via a cache side channel.
1053
1054	  Work around this problem by executing a TLBI before returning to EL0.
1055
1056	  If unsure, say Y.
1057
1058config ARM64_ERRATUM_3117295
1059	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1060	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1061	default y
1062	help
1063	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1064
1065	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1066	  load might leak data from a privileged level via a cache side channel.
1067
1068	  Work around this problem by executing a TLBI before returning to EL0.
1069
1070	  If unsure, say Y.
1071
1072config ARM64_ERRATUM_3194386
1073	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1074	default y
1075	help
1076	  This option adds the workaround for the following errata:
1077
1078	  * ARM Cortex-A76 erratum 3324349
1079	  * ARM Cortex-A77 erratum 3324348
1080	  * ARM Cortex-A78 erratum 3324344
1081	  * ARM Cortex-A78C erratum 3324346
1082	  * ARM Cortex-A78C erratum 3324347
1083	  * ARM Cortex-A710 erratam 3324338
1084	  * ARM Cortex-A720 erratum 3456091
1085	  * ARM Cortex-A725 erratum 3456106
1086	  * ARM Cortex-X1 erratum 3324344
1087	  * ARM Cortex-X1C erratum 3324346
1088	  * ARM Cortex-X2 erratum 3324338
1089	  * ARM Cortex-X3 erratum 3324335
1090	  * ARM Cortex-X4 erratum 3194386
1091	  * ARM Cortex-X925 erratum 3324334
1092	  * ARM Neoverse-N1 erratum 3324349
1093	  * ARM Neoverse N2 erratum 3324339
1094	  * ARM Neoverse-V1 erratum 3324341
1095	  * ARM Neoverse V2 erratum 3324336
1096	  * ARM Neoverse-V3 erratum 3312417
1097
1098	  On affected cores "MSR SSBS, #0" instructions may not affect
1099	  subsequent speculative instructions, which may permit unexepected
1100	  speculative store bypassing.
1101
1102	  Work around this problem by placing a Speculation Barrier (SB) or
1103	  Instruction Synchronization Barrier (ISB) after kernel changes to
1104	  SSBS. The presence of the SSBS special-purpose register is hidden
1105	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1106	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1107
1108	  If unsure, say Y.
1109
1110config CAVIUM_ERRATUM_22375
1111	bool "Cavium erratum 22375, 24313"
1112	default y
1113	help
1114	  Enable workaround for errata 22375 and 24313.
1115
1116	  This implements two gicv3-its errata workarounds for ThunderX. Both
1117	  with a small impact affecting only ITS table allocation.
1118
1119	    erratum 22375: only alloc 8MB table size
1120	    erratum 24313: ignore memory access type
1121
1122	  The fixes are in ITS initialization and basically ignore memory access
1123	  type and table size provided by the TYPER and BASER registers.
1124
1125	  If unsure, say Y.
1126
1127config CAVIUM_ERRATUM_23144
1128	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1129	depends on NUMA
1130	default y
1131	help
1132	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1133
1134	  If unsure, say Y.
1135
1136config CAVIUM_ERRATUM_23154
1137	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1138	default y
1139	help
1140	  The ThunderX GICv3 implementation requires a modified version for
1141	  reading the IAR status to ensure data synchronization
1142	  (access to icc_iar1_el1 is not sync'ed before and after).
1143
1144	  It also suffers from erratum 38545 (also present on Marvell's
1145	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1146	  spuriously presented to the CPU interface.
1147
1148	  If unsure, say Y.
1149
1150config CAVIUM_ERRATUM_27456
1151	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1152	default y
1153	help
1154	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1155	  instructions may cause the icache to become corrupted if it
1156	  contains data for a non-current ASID.  The fix is to
1157	  invalidate the icache when changing the mm context.
1158
1159	  If unsure, say Y.
1160
1161config CAVIUM_ERRATUM_30115
1162	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1163	default y
1164	help
1165	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1166	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1167	  interrupts in host. Trapping both GICv3 group-0 and group-1
1168	  accesses sidesteps the issue.
1169
1170	  If unsure, say Y.
1171
1172config CAVIUM_TX2_ERRATUM_219
1173	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1174	default y
1175	help
1176	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1177	  TTBR update and the corresponding context synchronizing operation can
1178	  cause a spurious Data Abort to be delivered to any hardware thread in
1179	  the CPU core.
1180
1181	  Work around the issue by avoiding the problematic code sequence and
1182	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1183	  trap handler performs the corresponding register access, skips the
1184	  instruction and ensures context synchronization by virtue of the
1185	  exception return.
1186
1187	  If unsure, say Y.
1188
1189config FUJITSU_ERRATUM_010001
1190	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1191	default y
1192	help
1193	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1194	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1195	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1196	  This fault occurs under a specific hardware condition when a
1197	  load/store instruction performs an address translation using:
1198	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1199	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1200	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1201	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1202
1203	  The workaround is to ensure these bits are clear in TCR_ELx.
1204	  The workaround only affects the Fujitsu-A64FX.
1205
1206	  If unsure, say Y.
1207
1208config HISILICON_ERRATUM_161600802
1209	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1210	default y
1211	help
1212	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1213	  when issued ITS commands such as VMOVP and VMAPP, and requires
1214	  a 128kB offset to be applied to the target address in this commands.
1215
1216	  If unsure, say Y.
1217
1218config QCOM_FALKOR_ERRATUM_1003
1219	bool "Falkor E1003: Incorrect translation due to ASID change"
1220	default y
1221	help
1222	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1223	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1224	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1225	  then only for entries in the walk cache, since the leaf translation
1226	  is unchanged. Work around the erratum by invalidating the walk cache
1227	  entries for the trampoline before entering the kernel proper.
1228
1229config QCOM_FALKOR_ERRATUM_1009
1230	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1231	default y
1232	select ARM64_WORKAROUND_REPEAT_TLBI
1233	help
1234	  On Falkor v1, the CPU may prematurely complete a DSB following a
1235	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1236	  one more time to fix the issue.
1237
1238	  If unsure, say Y.
1239
1240config QCOM_QDF2400_ERRATUM_0065
1241	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1242	default y
1243	help
1244	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1245	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1246	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1247
1248	  If unsure, say Y.
1249
1250config QCOM_FALKOR_ERRATUM_E1041
1251	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1252	default y
1253	help
1254	  Falkor CPU may speculatively fetch instructions from an improper
1255	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1256	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1257
1258	  If unsure, say Y.
1259
1260config NVIDIA_CARMEL_CNP_ERRATUM
1261	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1262	default y
1263	help
1264	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1265	  invalidate shared TLB entries installed by a different core, as it would
1266	  on standard ARM cores.
1267
1268	  If unsure, say Y.
1269
1270config ROCKCHIP_ERRATUM_3588001
1271	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1272	default y
1273	help
1274	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1275	  This means, that its sharability feature may not be used, even though it
1276	  is supported by the IP itself.
1277
1278	  If unsure, say Y.
1279
1280config SOCIONEXT_SYNQUACER_PREITS
1281	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1282	default y
1283	help
1284	  Socionext Synquacer SoCs implement a separate h/w block to generate
1285	  MSI doorbell writes with non-zero values for the device ID.
1286
1287	  If unsure, say Y.
1288
1289endmenu # "ARM errata workarounds via the alternatives framework"
1290
1291choice
1292	prompt "Page size"
1293	default ARM64_4K_PAGES
1294	help
1295	  Page size (translation granule) configuration.
1296
1297config ARM64_4K_PAGES
1298	bool "4KB"
1299	select HAVE_PAGE_SIZE_4KB
1300	help
1301	  This feature enables 4KB pages support.
1302
1303config ARM64_16K_PAGES
1304	bool "16KB"
1305	select HAVE_PAGE_SIZE_16KB
1306	help
1307	  The system will use 16KB pages support. AArch32 emulation
1308	  requires applications compiled with 16K (or a multiple of 16K)
1309	  aligned segments.
1310
1311config ARM64_64K_PAGES
1312	bool "64KB"
1313	select HAVE_PAGE_SIZE_64KB
1314	help
1315	  This feature enables 64KB pages support (4KB by default)
1316	  allowing only two levels of page tables and faster TLB
1317	  look-up. AArch32 emulation requires applications compiled
1318	  with 64K aligned segments.
1319
1320endchoice
1321
1322choice
1323	prompt "Virtual address space size"
1324	default ARM64_VA_BITS_52
1325	help
1326	  Allows choosing one of multiple possible virtual address
1327	  space sizes. The level of translation table is determined by
1328	  a combination of page size and virtual address space size.
1329
1330config ARM64_VA_BITS_36
1331	bool "36-bit" if EXPERT
1332	depends on PAGE_SIZE_16KB
1333
1334config ARM64_VA_BITS_39
1335	bool "39-bit"
1336	depends on PAGE_SIZE_4KB
1337
1338config ARM64_VA_BITS_42
1339	bool "42-bit"
1340	depends on PAGE_SIZE_64KB
1341
1342config ARM64_VA_BITS_47
1343	bool "47-bit"
1344	depends on PAGE_SIZE_16KB
1345
1346config ARM64_VA_BITS_48
1347	bool "48-bit"
1348
1349config ARM64_VA_BITS_52
1350	bool "52-bit"
1351	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1352	help
1353	  Enable 52-bit virtual addressing for userspace when explicitly
1354	  requested via a hint to mmap(). The kernel will also use 52-bit
1355	  virtual addresses for its own mappings (provided HW support for
1356	  this feature is available, otherwise it reverts to 48-bit).
1357
1358	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1359	  ARMv8.3 Pointer Authentication will result in the PAC being
1360	  reduced from 7 bits to 3 bits, which may have a significant
1361	  impact on its susceptibility to brute-force attacks.
1362
1363	  If unsure, select 48-bit virtual addressing instead.
1364
1365endchoice
1366
1367config ARM64_FORCE_52BIT
1368	bool "Force 52-bit virtual addresses for userspace"
1369	depends on ARM64_VA_BITS_52 && EXPERT
1370	help
1371	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1372	  to maintain compatibility with older software by providing 48-bit VAs
1373	  unless a hint is supplied to mmap.
1374
1375	  This configuration option disables the 48-bit compatibility logic, and
1376	  forces all userspace addresses to be 52-bit on HW that supports it. One
1377	  should only enable this configuration option for stress testing userspace
1378	  memory management code. If unsure say N here.
1379
1380config ARM64_VA_BITS
1381	int
1382	default 36 if ARM64_VA_BITS_36
1383	default 39 if ARM64_VA_BITS_39
1384	default 42 if ARM64_VA_BITS_42
1385	default 47 if ARM64_VA_BITS_47
1386	default 48 if ARM64_VA_BITS_48
1387	default 52 if ARM64_VA_BITS_52
1388
1389choice
1390	prompt "Physical address space size"
1391	default ARM64_PA_BITS_48
1392	help
1393	  Choose the maximum physical address range that the kernel will
1394	  support.
1395
1396config ARM64_PA_BITS_48
1397	bool "48-bit"
1398	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1399
1400config ARM64_PA_BITS_52
1401	bool "52-bit"
1402	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1403	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1404	help
1405	  Enable support for a 52-bit physical address space, introduced as
1406	  part of the ARMv8.2-LPA extension.
1407
1408	  With this enabled, the kernel will also continue to work on CPUs that
1409	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1410	  minor performance overhead).
1411
1412endchoice
1413
1414config ARM64_PA_BITS
1415	int
1416	default 48 if ARM64_PA_BITS_48
1417	default 52 if ARM64_PA_BITS_52
1418
1419config ARM64_LPA2
1420	def_bool y
1421	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1422
1423choice
1424	prompt "Endianness"
1425	default CPU_LITTLE_ENDIAN
1426	help
1427	  Select the endianness of data accesses performed by the CPU. Userspace
1428	  applications will need to be compiled and linked for the endianness
1429	  that is selected here.
1430
1431config CPU_BIG_ENDIAN
1432	bool "Build big-endian kernel"
1433	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1434	depends on AS_IS_GNU || AS_VERSION >= 150000
1435	help
1436	  Say Y if you plan on running a kernel with a big-endian userspace.
1437
1438config CPU_LITTLE_ENDIAN
1439	bool "Build little-endian kernel"
1440	help
1441	  Say Y if you plan on running a kernel with a little-endian userspace.
1442	  This is usually the case for distributions targeting arm64.
1443
1444endchoice
1445
1446config SCHED_MC
1447	bool "Multi-core scheduler support"
1448	help
1449	  Multi-core scheduler support improves the CPU scheduler's decision
1450	  making when dealing with multi-core CPU chips at a cost of slightly
1451	  increased overhead in some places. If unsure say N here.
1452
1453config SCHED_CLUSTER
1454	bool "Cluster scheduler support"
1455	help
1456	  Cluster scheduler support improves the CPU scheduler's decision
1457	  making when dealing with machines that have clusters of CPUs.
1458	  Cluster usually means a couple of CPUs which are placed closely
1459	  by sharing mid-level caches, last-level cache tags or internal
1460	  busses.
1461
1462config SCHED_SMT
1463	bool "SMT scheduler support"
1464	help
1465	  Improves the CPU scheduler's decision making when dealing with
1466	  MultiThreading at a cost of slightly increased overhead in some
1467	  places. If unsure say N here.
1468
1469config NR_CPUS
1470	int "Maximum number of CPUs (2-4096)"
1471	range 2 4096
1472	default "512"
1473
1474config HOTPLUG_CPU
1475	bool "Support for hot-pluggable CPUs"
1476	select GENERIC_IRQ_MIGRATION
1477	help
1478	  Say Y here to experiment with turning CPUs off and on.  CPUs
1479	  can be controlled through /sys/devices/system/cpu.
1480
1481# Common NUMA Features
1482config NUMA
1483	bool "NUMA Memory Allocation and Scheduler Support"
1484	select GENERIC_ARCH_NUMA
1485	select OF_NUMA
1486	select HAVE_SETUP_PER_CPU_AREA
1487	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1488	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1489	select USE_PERCPU_NUMA_NODE_ID
1490	help
1491	  Enable NUMA (Non-Uniform Memory Access) support.
1492
1493	  The kernel will try to allocate memory used by a CPU on the
1494	  local memory of the CPU and add some more
1495	  NUMA awareness to the kernel.
1496
1497config NODES_SHIFT
1498	int "Maximum NUMA Nodes (as a power of 2)"
1499	range 1 10
1500	default "4"
1501	depends on NUMA
1502	help
1503	  Specify the maximum number of NUMA Nodes available on the target
1504	  system.  Increases memory reserved to accommodate various tables.
1505
1506source "kernel/Kconfig.hz"
1507
1508config ARCH_SPARSEMEM_ENABLE
1509	def_bool y
1510	select SPARSEMEM_VMEMMAP_ENABLE
1511	select SPARSEMEM_VMEMMAP
1512
1513config HW_PERF_EVENTS
1514	def_bool y
1515	depends on ARM_PMU
1516
1517# Supported by clang >= 7.0 or GCC >= 12.0.0
1518config CC_HAVE_SHADOW_CALL_STACK
1519	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1520
1521config PARAVIRT
1522	bool "Enable paravirtualization code"
1523	help
1524	  This changes the kernel so it can modify itself when it is run
1525	  under a hypervisor, potentially improving performance significantly
1526	  over full virtualization.
1527
1528config PARAVIRT_TIME_ACCOUNTING
1529	bool "Paravirtual steal time accounting"
1530	select PARAVIRT
1531	help
1532	  Select this option to enable fine granularity task steal time
1533	  accounting. Time spent executing other tasks in parallel with
1534	  the current vCPU is discounted from the vCPU power. To account for
1535	  that, there can be a small performance impact.
1536
1537	  If in doubt, say N here.
1538
1539config ARCH_SUPPORTS_KEXEC
1540	def_bool PM_SLEEP_SMP
1541
1542config ARCH_SUPPORTS_KEXEC_FILE
1543	def_bool y
1544
1545config ARCH_SELECTS_KEXEC_FILE
1546	def_bool y
1547	depends on KEXEC_FILE
1548	select HAVE_IMA_KEXEC if IMA
1549
1550config ARCH_SUPPORTS_KEXEC_SIG
1551	def_bool y
1552
1553config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1554	def_bool y
1555
1556config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1557	def_bool y
1558
1559config ARCH_SUPPORTS_CRASH_DUMP
1560	def_bool y
1561
1562config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1563	def_bool CRASH_RESERVE
1564
1565config TRANS_TABLE
1566	def_bool y
1567	depends on HIBERNATION || KEXEC_CORE
1568
1569config XEN_DOM0
1570	def_bool y
1571	depends on XEN
1572
1573config XEN
1574	bool "Xen guest support on ARM64"
1575	depends on ARM64 && OF
1576	select SWIOTLB_XEN
1577	select PARAVIRT
1578	help
1579	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1580
1581# include/linux/mmzone.h requires the following to be true:
1582#
1583#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1584#
1585# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1586#
1587#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1588# ----+-------------------+--------------+----------------------+-------------------------+
1589# 4K  |       27          |      12      |       15             |         10              |
1590# 16K |       27          |      14      |       13             |         11              |
1591# 64K |       29          |      16      |       13             |         13              |
1592config ARCH_FORCE_MAX_ORDER
1593	int
1594	default "13" if ARM64_64K_PAGES
1595	default "11" if ARM64_16K_PAGES
1596	default "10"
1597	help
1598	  The kernel page allocator limits the size of maximal physically
1599	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1600	  defines the maximal power of two of number of pages that can be
1601	  allocated as a single contiguous block. This option allows
1602	  overriding the default setting when ability to allocate very
1603	  large blocks of physically contiguous memory is required.
1604
1605	  The maximal size of allocation cannot exceed the size of the
1606	  section, so the value of MAX_PAGE_ORDER should satisfy
1607
1608	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1609
1610	  Don't change if unsure.
1611
1612config UNMAP_KERNEL_AT_EL0
1613	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1614	default y
1615	help
1616	  Speculation attacks against some high-performance processors can
1617	  be used to bypass MMU permission checks and leak kernel data to
1618	  userspace. This can be defended against by unmapping the kernel
1619	  when running in userspace, mapping it back in on exception entry
1620	  via a trampoline page in the vector table.
1621
1622	  If unsure, say Y.
1623
1624config MITIGATE_SPECTRE_BRANCH_HISTORY
1625	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1626	default y
1627	help
1628	  Speculation attacks against some high-performance processors can
1629	  make use of branch history to influence future speculation.
1630	  When taking an exception from user-space, a sequence of branches
1631	  or a firmware call overwrites the branch history.
1632
1633config RODATA_FULL_DEFAULT_ENABLED
1634	bool "Apply r/o permissions of VM areas also to their linear aliases"
1635	default y
1636	help
1637	  Apply read-only attributes of VM areas to the linear alias of
1638	  the backing pages as well. This prevents code or read-only data
1639	  from being modified (inadvertently or intentionally) via another
1640	  mapping of the same memory page. This additional enhancement can
1641	  be turned off at runtime by passing rodata=[off|on] (and turned on
1642	  with rodata=full if this option is set to 'n')
1643
1644	  This requires the linear region to be mapped down to pages,
1645	  which may adversely affect performance in some cases.
1646
1647config ARM64_SW_TTBR0_PAN
1648	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1649	depends on !KCSAN
1650	help
1651	  Enabling this option prevents the kernel from accessing
1652	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1653	  zeroed area and reserved ASID. The user access routines
1654	  restore the valid TTBR0_EL1 temporarily.
1655
1656config ARM64_TAGGED_ADDR_ABI
1657	bool "Enable the tagged user addresses syscall ABI"
1658	default y
1659	help
1660	  When this option is enabled, user applications can opt in to a
1661	  relaxed ABI via prctl() allowing tagged addresses to be passed
1662	  to system calls as pointer arguments. For details, see
1663	  Documentation/arch/arm64/tagged-address-abi.rst.
1664
1665menuconfig COMPAT
1666	bool "Kernel support for 32-bit EL0"
1667	depends on ARM64_4K_PAGES || EXPERT
1668	select HAVE_UID16
1669	select OLD_SIGSUSPEND3
1670	select COMPAT_OLD_SIGACTION
1671	help
1672	  This option enables support for a 32-bit EL0 running under a 64-bit
1673	  kernel at EL1. AArch32-specific components such as system calls,
1674	  the user helper functions, VFP support and the ptrace interface are
1675	  handled appropriately by the kernel.
1676
1677	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1678	  that you will only be able to execute AArch32 binaries that were compiled
1679	  with page size aligned segments.
1680
1681	  If you want to execute 32-bit userspace applications, say Y.
1682
1683if COMPAT
1684
1685config KUSER_HELPERS
1686	bool "Enable kuser helpers page for 32-bit applications"
1687	default y
1688	help
1689	  Warning: disabling this option may break 32-bit user programs.
1690
1691	  Provide kuser helpers to compat tasks. The kernel provides
1692	  helper code to userspace in read only form at a fixed location
1693	  to allow userspace to be independent of the CPU type fitted to
1694	  the system. This permits binaries to be run on ARMv4 through
1695	  to ARMv8 without modification.
1696
1697	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1698
1699	  However, the fixed address nature of these helpers can be used
1700	  by ROP (return orientated programming) authors when creating
1701	  exploits.
1702
1703	  If all of the binaries and libraries which run on your platform
1704	  are built specifically for your platform, and make no use of
1705	  these helpers, then you can turn this option off to hinder
1706	  such exploits. However, in that case, if a binary or library
1707	  relying on those helpers is run, it will not function correctly.
1708
1709	  Say N here only if you are absolutely certain that you do not
1710	  need these helpers; otherwise, the safe option is to say Y.
1711
1712config COMPAT_VDSO
1713	bool "Enable vDSO for 32-bit applications"
1714	depends on !CPU_BIG_ENDIAN
1715	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1716	select GENERIC_COMPAT_VDSO
1717	default y
1718	help
1719	  Place in the process address space of 32-bit applications an
1720	  ELF shared object providing fast implementations of gettimeofday
1721	  and clock_gettime.
1722
1723	  You must have a 32-bit build of glibc 2.22 or later for programs
1724	  to seamlessly take advantage of this.
1725
1726config THUMB2_COMPAT_VDSO
1727	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1728	depends on COMPAT_VDSO
1729	default y
1730	help
1731	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1732	  otherwise with '-marm'.
1733
1734config COMPAT_ALIGNMENT_FIXUPS
1735	bool "Fix up misaligned multi-word loads and stores in user space"
1736
1737menuconfig ARMV8_DEPRECATED
1738	bool "Emulate deprecated/obsolete ARMv8 instructions"
1739	depends on SYSCTL
1740	help
1741	  Legacy software support may require certain instructions
1742	  that have been deprecated or obsoleted in the architecture.
1743
1744	  Enable this config to enable selective emulation of these
1745	  features.
1746
1747	  If unsure, say Y
1748
1749if ARMV8_DEPRECATED
1750
1751config SWP_EMULATION
1752	bool "Emulate SWP/SWPB instructions"
1753	help
1754	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1755	  they are always undefined. Say Y here to enable software
1756	  emulation of these instructions for userspace using LDXR/STXR.
1757	  This feature can be controlled at runtime with the abi.swp
1758	  sysctl which is disabled by default.
1759
1760	  In some older versions of glibc [<=2.8] SWP is used during futex
1761	  trylock() operations with the assumption that the code will not
1762	  be preempted. This invalid assumption may be more likely to fail
1763	  with SWP emulation enabled, leading to deadlock of the user
1764	  application.
1765
1766	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1767	  on an external transaction monitoring block called a global
1768	  monitor to maintain update atomicity. If your system does not
1769	  implement a global monitor, this option can cause programs that
1770	  perform SWP operations to uncached memory to deadlock.
1771
1772	  If unsure, say Y
1773
1774config CP15_BARRIER_EMULATION
1775	bool "Emulate CP15 Barrier instructions"
1776	help
1777	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1778	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1779	  strongly recommended to use the ISB, DSB, and DMB
1780	  instructions instead.
1781
1782	  Say Y here to enable software emulation of these
1783	  instructions for AArch32 userspace code. When this option is
1784	  enabled, CP15 barrier usage is traced which can help
1785	  identify software that needs updating. This feature can be
1786	  controlled at runtime with the abi.cp15_barrier sysctl.
1787
1788	  If unsure, say Y
1789
1790config SETEND_EMULATION
1791	bool "Emulate SETEND instruction"
1792	help
1793	  The SETEND instruction alters the data-endianness of the
1794	  AArch32 EL0, and is deprecated in ARMv8.
1795
1796	  Say Y here to enable software emulation of the instruction
1797	  for AArch32 userspace code. This feature can be controlled
1798	  at runtime with the abi.setend sysctl.
1799
1800	  Note: All the cpus on the system must have mixed endian support at EL0
1801	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1802	  endian - is hotplugged in after this feature has been enabled, there could
1803	  be unexpected results in the applications.
1804
1805	  If unsure, say Y
1806endif # ARMV8_DEPRECATED
1807
1808endif # COMPAT
1809
1810menu "ARMv8.1 architectural features"
1811
1812config ARM64_HW_AFDBM
1813	bool "Support for hardware updates of the Access and Dirty page flags"
1814	default y
1815	help
1816	  The ARMv8.1 architecture extensions introduce support for
1817	  hardware updates of the access and dirty information in page
1818	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1819	  capable processors, accesses to pages with PTE_AF cleared will
1820	  set this bit instead of raising an access flag fault.
1821	  Similarly, writes to read-only pages with the DBM bit set will
1822	  clear the read-only bit (AP[2]) instead of raising a
1823	  permission fault.
1824
1825	  Kernels built with this configuration option enabled continue
1826	  to work on pre-ARMv8.1 hardware and the performance impact is
1827	  minimal. If unsure, say Y.
1828
1829config ARM64_PAN
1830	bool "Enable support for Privileged Access Never (PAN)"
1831	default y
1832	help
1833	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1834	  prevents the kernel or hypervisor from accessing user-space (EL0)
1835	  memory directly.
1836
1837	  Choosing this option will cause any unprotected (not using
1838	  copy_to_user et al) memory access to fail with a permission fault.
1839
1840	  The feature is detected at runtime, and will remain as a 'nop'
1841	  instruction if the cpu does not implement the feature.
1842
1843config AS_HAS_LSE_ATOMICS
1844	def_bool $(as-instr,.arch_extension lse)
1845
1846config ARM64_LSE_ATOMICS
1847	bool
1848	default ARM64_USE_LSE_ATOMICS
1849	depends on AS_HAS_LSE_ATOMICS
1850
1851config ARM64_USE_LSE_ATOMICS
1852	bool "Atomic instructions"
1853	default y
1854	help
1855	  As part of the Large System Extensions, ARMv8.1 introduces new
1856	  atomic instructions that are designed specifically to scale in
1857	  very large systems.
1858
1859	  Say Y here to make use of these instructions for the in-kernel
1860	  atomic routines. This incurs a small overhead on CPUs that do
1861	  not support these instructions and requires the kernel to be
1862	  built with binutils >= 2.25 in order for the new instructions
1863	  to be used.
1864
1865endmenu # "ARMv8.1 architectural features"
1866
1867menu "ARMv8.2 architectural features"
1868
1869config AS_HAS_ARMV8_2
1870	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1871
1872config AS_HAS_SHA3
1873	def_bool $(as-instr,.arch armv8.2-a+sha3)
1874
1875config ARM64_PMEM
1876	bool "Enable support for persistent memory"
1877	select ARCH_HAS_PMEM_API
1878	select ARCH_HAS_UACCESS_FLUSHCACHE
1879	help
1880	  Say Y to enable support for the persistent memory API based on the
1881	  ARMv8.2 DCPoP feature.
1882
1883	  The feature is detected at runtime, and the kernel will use DC CVAC
1884	  operations if DC CVAP is not supported (following the behaviour of
1885	  DC CVAP itself if the system does not define a point of persistence).
1886
1887config ARM64_RAS_EXTN
1888	bool "Enable support for RAS CPU Extensions"
1889	default y
1890	help
1891	  CPUs that support the Reliability, Availability and Serviceability
1892	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1893	  errors, classify them and report them to software.
1894
1895	  On CPUs with these extensions system software can use additional
1896	  barriers to determine if faults are pending and read the
1897	  classification from a new set of registers.
1898
1899	  Selecting this feature will allow the kernel to use these barriers
1900	  and access the new registers if the system supports the extension.
1901	  Platform RAS features may additionally depend on firmware support.
1902
1903config ARM64_CNP
1904	bool "Enable support for Common Not Private (CNP) translations"
1905	default y
1906	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1907	help
1908	  Common Not Private (CNP) allows translation table entries to
1909	  be shared between different PEs in the same inner shareable
1910	  domain, so the hardware can use this fact to optimise the
1911	  caching of such entries in the TLB.
1912
1913	  Selecting this option allows the CNP feature to be detected
1914	  at runtime, and does not affect PEs that do not implement
1915	  this feature.
1916
1917endmenu # "ARMv8.2 architectural features"
1918
1919menu "ARMv8.3 architectural features"
1920
1921config ARM64_PTR_AUTH
1922	bool "Enable support for pointer authentication"
1923	default y
1924	help
1925	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1926	  instructions for signing and authenticating pointers against secret
1927	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1928	  and other attacks.
1929
1930	  This option enables these instructions at EL0 (i.e. for userspace).
1931	  Choosing this option will cause the kernel to initialise secret keys
1932	  for each process at exec() time, with these keys being
1933	  context-switched along with the process.
1934
1935	  The feature is detected at runtime. If the feature is not present in
1936	  hardware it will not be advertised to userspace/KVM guest nor will it
1937	  be enabled.
1938
1939	  If the feature is present on the boot CPU but not on a late CPU, then
1940	  the late CPU will be parked. Also, if the boot CPU does not have
1941	  address auth and the late CPU has then the late CPU will still boot
1942	  but with the feature disabled. On such a system, this option should
1943	  not be selected.
1944
1945config ARM64_PTR_AUTH_KERNEL
1946	bool "Use pointer authentication for kernel"
1947	default y
1948	depends on ARM64_PTR_AUTH
1949	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1950	# Modern compilers insert a .note.gnu.property section note for PAC
1951	# which is only understood by binutils starting with version 2.33.1.
1952	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1953	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1954	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1955	help
1956	  If the compiler supports the -mbranch-protection or
1957	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1958	  will cause the kernel itself to be compiled with return address
1959	  protection. In this case, and if the target hardware is known to
1960	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1961	  disabled with minimal loss of protection.
1962
1963	  This feature works with FUNCTION_GRAPH_TRACER option only if
1964	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1965
1966config CC_HAS_BRANCH_PROT_PAC_RET
1967	# GCC 9 or later, clang 8 or later
1968	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1969
1970config CC_HAS_SIGN_RETURN_ADDRESS
1971	# GCC 7, 8
1972	def_bool $(cc-option,-msign-return-address=all)
1973
1974config AS_HAS_ARMV8_3
1975	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1976
1977config AS_HAS_CFI_NEGATE_RA_STATE
1978	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1979
1980config AS_HAS_LDAPR
1981	def_bool $(as-instr,.arch_extension rcpc)
1982
1983endmenu # "ARMv8.3 architectural features"
1984
1985menu "ARMv8.4 architectural features"
1986
1987config ARM64_AMU_EXTN
1988	bool "Enable support for the Activity Monitors Unit CPU extension"
1989	default y
1990	help
1991	  The activity monitors extension is an optional extension introduced
1992	  by the ARMv8.4 CPU architecture. This enables support for version 1
1993	  of the activity monitors architecture, AMUv1.
1994
1995	  To enable the use of this extension on CPUs that implement it, say Y.
1996
1997	  Note that for architectural reasons, firmware _must_ implement AMU
1998	  support when running on CPUs that present the activity monitors
1999	  extension. The required support is present in:
2000	    * Version 1.5 and later of the ARM Trusted Firmware
2001
2002	  For kernels that have this configuration enabled but boot with broken
2003	  firmware, you may need to say N here until the firmware is fixed.
2004	  Otherwise you may experience firmware panics or lockups when
2005	  accessing the counter registers. Even if you are not observing these
2006	  symptoms, the values returned by the register reads might not
2007	  correctly reflect reality. Most commonly, the value read will be 0,
2008	  indicating that the counter is not enabled.
2009
2010config AS_HAS_ARMV8_4
2011	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2012
2013config ARM64_TLB_RANGE
2014	bool "Enable support for tlbi range feature"
2015	default y
2016	depends on AS_HAS_ARMV8_4
2017	help
2018	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2019	  range of input addresses.
2020
2021	  The feature introduces new assembly instructions, and they were
2022	  support when binutils >= 2.30.
2023
2024endmenu # "ARMv8.4 architectural features"
2025
2026menu "ARMv8.5 architectural features"
2027
2028config AS_HAS_ARMV8_5
2029	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2030
2031config ARM64_BTI
2032	bool "Branch Target Identification support"
2033	default y
2034	help
2035	  Branch Target Identification (part of the ARMv8.5 Extensions)
2036	  provides a mechanism to limit the set of locations to which computed
2037	  branch instructions such as BR or BLR can jump.
2038
2039	  To make use of BTI on CPUs that support it, say Y.
2040
2041	  BTI is intended to provide complementary protection to other control
2042	  flow integrity protection mechanisms, such as the Pointer
2043	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2044	  For this reason, it does not make sense to enable this option without
2045	  also enabling support for pointer authentication.  Thus, when
2046	  enabling this option you should also select ARM64_PTR_AUTH=y.
2047
2048	  Userspace binaries must also be specifically compiled to make use of
2049	  this mechanism.  If you say N here or the hardware does not support
2050	  BTI, such binaries can still run, but you get no additional
2051	  enforcement of branch destinations.
2052
2053config ARM64_BTI_KERNEL
2054	bool "Use Branch Target Identification for kernel"
2055	default y
2056	depends on ARM64_BTI
2057	depends on ARM64_PTR_AUTH_KERNEL
2058	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2059	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2060	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2061	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2062	depends on !CC_IS_GCC
2063	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2064	help
2065	  Build the kernel with Branch Target Identification annotations
2066	  and enable enforcement of this for kernel code. When this option
2067	  is enabled and the system supports BTI all kernel code including
2068	  modular code must have BTI enabled.
2069
2070config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2071	# GCC 9 or later, clang 8 or later
2072	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2073
2074config ARM64_E0PD
2075	bool "Enable support for E0PD"
2076	default y
2077	help
2078	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2079	  that EL0 accesses made via TTBR1 always fault in constant time,
2080	  providing similar benefits to KASLR as those provided by KPTI, but
2081	  with lower overhead and without disrupting legitimate access to
2082	  kernel memory such as SPE.
2083
2084	  This option enables E0PD for TTBR1 where available.
2085
2086config ARM64_AS_HAS_MTE
2087	# Initial support for MTE went in binutils 2.32.0, checked with
2088	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2089	# as a late addition to the final architecture spec (LDGM/STGM)
2090	# is only supported in the newer 2.32.x and 2.33 binutils
2091	# versions, hence the extra "stgm" instruction check below.
2092	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2093
2094config ARM64_MTE
2095	bool "Memory Tagging Extension support"
2096	default y
2097	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2098	depends on AS_HAS_ARMV8_5
2099	depends on AS_HAS_LSE_ATOMICS
2100	# Required for tag checking in the uaccess routines
2101	depends on ARM64_PAN
2102	select ARCH_HAS_SUBPAGE_FAULTS
2103	select ARCH_USES_HIGH_VMA_FLAGS
2104	select ARCH_USES_PG_ARCH_X
2105	help
2106	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2107	  architectural support for run-time, always-on detection of
2108	  various classes of memory error to aid with software debugging
2109	  to eliminate vulnerabilities arising from memory-unsafe
2110	  languages.
2111
2112	  This option enables the support for the Memory Tagging
2113	  Extension at EL0 (i.e. for userspace).
2114
2115	  Selecting this option allows the feature to be detected at
2116	  runtime. Any secondary CPU not implementing this feature will
2117	  not be allowed a late bring-up.
2118
2119	  Userspace binaries that want to use this feature must
2120	  explicitly opt in. The mechanism for the userspace is
2121	  described in:
2122
2123	  Documentation/arch/arm64/memory-tagging-extension.rst.
2124
2125endmenu # "ARMv8.5 architectural features"
2126
2127menu "ARMv8.7 architectural features"
2128
2129config ARM64_EPAN
2130	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2131	default y
2132	depends on ARM64_PAN
2133	help
2134	  Enhanced Privileged Access Never (EPAN) allows Privileged
2135	  Access Never to be used with Execute-only mappings.
2136
2137	  The feature is detected at runtime, and will remain disabled
2138	  if the cpu does not implement the feature.
2139endmenu # "ARMv8.7 architectural features"
2140
2141menu "ARMv8.9 architectural features"
2142
2143config ARM64_POE
2144	prompt "Permission Overlay Extension"
2145	def_bool y
2146	select ARCH_USES_HIGH_VMA_FLAGS
2147	select ARCH_HAS_PKEYS
2148	help
2149	  The Permission Overlay Extension is used to implement Memory
2150	  Protection Keys. Memory Protection Keys provides a mechanism for
2151	  enforcing page-based protections, but without requiring modification
2152	  of the page tables when an application changes protection domains.
2153
2154	  For details, see Documentation/core-api/protection-keys.rst
2155
2156	  If unsure, say y.
2157
2158config ARCH_PKEY_BITS
2159	int
2160	default 3
2161
2162endmenu # "ARMv8.9 architectural features"
2163
2164config ARM64_SVE
2165	bool "ARM Scalable Vector Extension support"
2166	default y
2167	help
2168	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2169	  execution state which complements and extends the SIMD functionality
2170	  of the base architecture to support much larger vectors and to enable
2171	  additional vectorisation opportunities.
2172
2173	  To enable use of this extension on CPUs that implement it, say Y.
2174
2175	  On CPUs that support the SVE2 extensions, this option will enable
2176	  those too.
2177
2178	  Note that for architectural reasons, firmware _must_ implement SVE
2179	  support when running on SVE capable hardware.  The required support
2180	  is present in:
2181
2182	    * version 1.5 and later of the ARM Trusted Firmware
2183	    * the AArch64 boot wrapper since commit 5e1261e08abf
2184	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2185
2186	  For other firmware implementations, consult the firmware documentation
2187	  or vendor.
2188
2189	  If you need the kernel to boot on SVE-capable hardware with broken
2190	  firmware, you may need to say N here until you get your firmware
2191	  fixed.  Otherwise, you may experience firmware panics or lockups when
2192	  booting the kernel.  If unsure and you are not observing these
2193	  symptoms, you should assume that it is safe to say Y.
2194
2195config ARM64_SME
2196	bool "ARM Scalable Matrix Extension support"
2197	default y
2198	depends on ARM64_SVE
2199	help
2200	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2201	  execution state which utilises a substantial subset of the SVE
2202	  instruction set, together with the addition of new architectural
2203	  register state capable of holding two dimensional matrix tiles to
2204	  enable various matrix operations.
2205
2206config ARM64_PSEUDO_NMI
2207	bool "Support for NMI-like interrupts"
2208	select ARM_GIC_V3
2209	help
2210	  Adds support for mimicking Non-Maskable Interrupts through the use of
2211	  GIC interrupt priority. This support requires version 3 or later of
2212	  ARM GIC.
2213
2214	  This high priority configuration for interrupts needs to be
2215	  explicitly enabled by setting the kernel parameter
2216	  "irqchip.gicv3_pseudo_nmi" to 1.
2217
2218	  If unsure, say N
2219
2220if ARM64_PSEUDO_NMI
2221config ARM64_DEBUG_PRIORITY_MASKING
2222	bool "Debug interrupt priority masking"
2223	help
2224	  This adds runtime checks to functions enabling/disabling
2225	  interrupts when using priority masking. The additional checks verify
2226	  the validity of ICC_PMR_EL1 when calling concerned functions.
2227
2228	  If unsure, say N
2229endif # ARM64_PSEUDO_NMI
2230
2231config RELOCATABLE
2232	bool "Build a relocatable kernel image" if EXPERT
2233	select ARCH_HAS_RELR
2234	default y
2235	help
2236	  This builds the kernel as a Position Independent Executable (PIE),
2237	  which retains all relocation metadata required to relocate the
2238	  kernel binary at runtime to a different virtual address than the
2239	  address it was linked at.
2240	  Since AArch64 uses the RELA relocation format, this requires a
2241	  relocation pass at runtime even if the kernel is loaded at the
2242	  same address it was linked at.
2243
2244config RANDOMIZE_BASE
2245	bool "Randomize the address of the kernel image"
2246	select RELOCATABLE
2247	help
2248	  Randomizes the virtual address at which the kernel image is
2249	  loaded, as a security feature that deters exploit attempts
2250	  relying on knowledge of the location of kernel internals.
2251
2252	  It is the bootloader's job to provide entropy, by passing a
2253	  random u64 value in /chosen/kaslr-seed at kernel entry.
2254
2255	  When booting via the UEFI stub, it will invoke the firmware's
2256	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2257	  to the kernel proper. In addition, it will randomise the physical
2258	  location of the kernel Image as well.
2259
2260	  If unsure, say N.
2261
2262config RANDOMIZE_MODULE_REGION_FULL
2263	bool "Randomize the module region over a 2 GB range"
2264	depends on RANDOMIZE_BASE
2265	default y
2266	help
2267	  Randomizes the location of the module region inside a 2 GB window
2268	  covering the core kernel. This way, it is less likely for modules
2269	  to leak information about the location of core kernel data structures
2270	  but it does imply that function calls between modules and the core
2271	  kernel will need to be resolved via veneers in the module PLT.
2272
2273	  When this option is not set, the module region will be randomized over
2274	  a limited range that contains the [_stext, _etext] interval of the
2275	  core kernel, so branch relocations are almost always in range unless
2276	  the region is exhausted. In this particular case of region
2277	  exhaustion, modules might be able to fall back to a larger 2GB area.
2278
2279config CC_HAVE_STACKPROTECTOR_SYSREG
2280	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2281
2282config STACKPROTECTOR_PER_TASK
2283	def_bool y
2284	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2285
2286config UNWIND_PATCH_PAC_INTO_SCS
2287	bool "Enable shadow call stack dynamically using code patching"
2288	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2289	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2290	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2291	depends on SHADOW_CALL_STACK
2292	select UNWIND_TABLES
2293	select DYNAMIC_SCS
2294
2295config ARM64_CONTPTE
2296	bool "Contiguous PTE mappings for user memory" if EXPERT
2297	depends on TRANSPARENT_HUGEPAGE
2298	default y
2299	help
2300	  When enabled, user mappings are configured using the PTE contiguous
2301	  bit, for any mappings that meet the size and alignment requirements.
2302	  This reduces TLB pressure and improves performance.
2303
2304endmenu # "Kernel Features"
2305
2306menu "Boot options"
2307
2308config ARM64_ACPI_PARKING_PROTOCOL
2309	bool "Enable support for the ARM64 ACPI parking protocol"
2310	depends on ACPI
2311	help
2312	  Enable support for the ARM64 ACPI parking protocol. If disabled
2313	  the kernel will not allow booting through the ARM64 ACPI parking
2314	  protocol even if the corresponding data is present in the ACPI
2315	  MADT table.
2316
2317config CMDLINE
2318	string "Default kernel command string"
2319	default ""
2320	help
2321	  Provide a set of default command-line options at build time by
2322	  entering them here. As a minimum, you should specify the the
2323	  root device (e.g. root=/dev/nfs).
2324
2325choice
2326	prompt "Kernel command line type"
2327	depends on CMDLINE != ""
2328	default CMDLINE_FROM_BOOTLOADER
2329	help
2330	  Choose how the kernel will handle the provided default kernel
2331	  command line string.
2332
2333config CMDLINE_FROM_BOOTLOADER
2334	bool "Use bootloader kernel arguments if available"
2335	help
2336	  Uses the command-line options passed by the boot loader. If
2337	  the boot loader doesn't provide any, the default kernel command
2338	  string provided in CMDLINE will be used.
2339
2340config CMDLINE_FORCE
2341	bool "Always use the default kernel command string"
2342	help
2343	  Always use the default kernel command string, even if the boot
2344	  loader passes other arguments to the kernel.
2345	  This is useful if you cannot or don't want to change the
2346	  command-line options your boot loader passes to the kernel.
2347
2348endchoice
2349
2350config EFI_STUB
2351	bool
2352
2353config EFI
2354	bool "UEFI runtime support"
2355	depends on OF && !CPU_BIG_ENDIAN
2356	depends on KERNEL_MODE_NEON
2357	select ARCH_SUPPORTS_ACPI
2358	select LIBFDT
2359	select UCS2_STRING
2360	select EFI_PARAMS_FROM_FDT
2361	select EFI_RUNTIME_WRAPPERS
2362	select EFI_STUB
2363	select EFI_GENERIC_STUB
2364	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2365	default y
2366	help
2367	  This option provides support for runtime services provided
2368	  by UEFI firmware (such as non-volatile variables, realtime
2369	  clock, and platform reset). A UEFI stub is also provided to
2370	  allow the kernel to be booted as an EFI application. This
2371	  is only useful on systems that have UEFI firmware.
2372
2373config COMPRESSED_INSTALL
2374	bool "Install compressed image by default"
2375	help
2376	  This makes the regular "make install" install the compressed
2377	  image we built, not the legacy uncompressed one.
2378
2379	  You can check that a compressed image works for you by doing
2380	  "make zinstall" first, and verifying that everything is fine
2381	  in your environment before making "make install" do this for
2382	  you.
2383
2384config DMI
2385	bool "Enable support for SMBIOS (DMI) tables"
2386	depends on EFI
2387	default y
2388	help
2389	  This enables SMBIOS/DMI feature for systems.
2390
2391	  This option is only useful on systems that have UEFI firmware.
2392	  However, even with this option, the resultant kernel should
2393	  continue to boot on existing non-UEFI platforms.
2394
2395endmenu # "Boot options"
2396
2397menu "Power management options"
2398
2399source "kernel/power/Kconfig"
2400
2401config ARCH_HIBERNATION_POSSIBLE
2402	def_bool y
2403	depends on CPU_PM
2404
2405config ARCH_HIBERNATION_HEADER
2406	def_bool y
2407	depends on HIBERNATION
2408
2409config ARCH_SUSPEND_POSSIBLE
2410	def_bool y
2411
2412endmenu # "Power management options"
2413
2414menu "CPU Power Management"
2415
2416source "drivers/cpuidle/Kconfig"
2417
2418source "drivers/cpufreq/Kconfig"
2419
2420endmenu # "CPU Power Management"
2421
2422source "drivers/acpi/Kconfig"
2423
2424source "arch/arm64/kvm/Kconfig"
2425
2426