xref: /linux/arch/arm64/Kconfig (revision 616355cc818c6ddadc393fdfd4491f94458cb715)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_DEBUG_VIRTUAL
23	select ARCH_HAS_DEBUG_VM_PGTABLE
24	select ARCH_HAS_DMA_PREP_COHERENT
25	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
26	select ARCH_HAS_FAST_MULTIPLIER
27	select ARCH_HAS_FORTIFY_SOURCE
28	select ARCH_HAS_GCOV_PROFILE_ALL
29	select ARCH_HAS_GIGANTIC_PAGE
30	select ARCH_HAS_KCOV
31	select ARCH_HAS_KEEPINITRD
32	select ARCH_HAS_MEMBARRIER_SYNC_CORE
33	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
34	select ARCH_HAS_PTE_DEVMAP
35	select ARCH_HAS_PTE_SPECIAL
36	select ARCH_HAS_SETUP_DMA_OPS
37	select ARCH_HAS_SET_DIRECT_MAP
38	select ARCH_HAS_SET_MEMORY
39	select ARCH_STACKWALK
40	select ARCH_HAS_STRICT_KERNEL_RWX
41	select ARCH_HAS_STRICT_MODULE_RWX
42	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
43	select ARCH_HAS_SYNC_DMA_FOR_CPU
44	select ARCH_HAS_SYSCALL_WRAPPER
45	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
46	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
47	select ARCH_HAS_ZONE_DMA_SET if EXPERT
48	select ARCH_HAVE_ELF_PROT
49	select ARCH_HAVE_NMI_SAFE_CMPXCHG
50	select ARCH_INLINE_READ_LOCK if !PREEMPTION
51	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
52	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
54	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
55	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
58	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
59	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
62	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
63	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
66	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
67	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
68	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
69	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
72	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
73	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
76	select ARCH_KEEP_MEMBLOCK
77	select ARCH_USE_CMPXCHG_LOCKREF
78	select ARCH_USE_GNU_PROPERTY
79	select ARCH_USE_MEMTEST
80	select ARCH_USE_QUEUED_RWLOCKS
81	select ARCH_USE_QUEUED_SPINLOCKS
82	select ARCH_USE_SYM_ANNOTATIONS
83	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
84	select ARCH_SUPPORTS_HUGETLBFS
85	select ARCH_SUPPORTS_MEMORY_FAILURE
86	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
87	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
88	select ARCH_SUPPORTS_LTO_CLANG_THIN
89	select ARCH_SUPPORTS_CFI_CLANG
90	select ARCH_SUPPORTS_ATOMIC_RMW
91	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
92	select ARCH_SUPPORTS_NUMA_BALANCING
93	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
94	select ARCH_WANT_DEFAULT_BPF_JIT
95	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
96	select ARCH_WANT_FRAME_POINTERS
97	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
98	select ARCH_WANT_LD_ORPHAN_WARN
99	select ARCH_WANTS_NO_INSTR
100	select ARCH_HAS_UBSAN_SANITIZE_ALL
101	select ARM_AMBA
102	select ARM_ARCH_TIMER
103	select ARM_GIC
104	select AUDIT_ARCH_COMPAT_GENERIC
105	select ARM_GIC_V2M if PCI
106	select ARM_GIC_V3
107	select ARM_GIC_V3_ITS if PCI
108	select ARM_PSCI_FW
109	select BUILDTIME_TABLE_SORT
110	select CLONE_BACKWARDS
111	select COMMON_CLK
112	select CPU_PM if (SUSPEND || CPU_IDLE)
113	select CRC32
114	select DCACHE_WORD_ACCESS
115	select DMA_DIRECT_REMAP
116	select EDAC_SUPPORT
117	select FRAME_POINTER
118	select GENERIC_ALLOCATOR
119	select GENERIC_ARCH_TOPOLOGY
120	select GENERIC_CLOCKEVENTS_BROADCAST
121	select GENERIC_CPU_AUTOPROBE
122	select GENERIC_CPU_VULNERABILITIES
123	select GENERIC_EARLY_IOREMAP
124	select GENERIC_IDLE_POLL_SETUP
125	select GENERIC_IRQ_IPI
126	select GENERIC_IRQ_PROBE
127	select GENERIC_IRQ_SHOW
128	select GENERIC_IRQ_SHOW_LEVEL
129	select GENERIC_LIB_DEVMEM_IS_ALLOWED
130	select GENERIC_PCI_IOMAP
131	select GENERIC_PTDUMP
132	select GENERIC_SCHED_CLOCK
133	select GENERIC_SMP_IDLE_THREAD
134	select GENERIC_TIME_VSYSCALL
135	select GENERIC_GETTIMEOFDAY
136	select GENERIC_VDSO_TIME_NS
137	select HARDIRQS_SW_RESEND
138	select HAVE_MOVE_PMD
139	select HAVE_MOVE_PUD
140	select HAVE_PCI
141	select HAVE_ACPI_APEI if (ACPI && EFI)
142	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
143	select HAVE_ARCH_AUDITSYSCALL
144	select HAVE_ARCH_BITREVERSE
145	select HAVE_ARCH_COMPILER_H
146	select HAVE_ARCH_HUGE_VMAP
147	select HAVE_ARCH_JUMP_LABEL
148	select HAVE_ARCH_JUMP_LABEL_RELATIVE
149	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
150	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
151	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
152	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
153	# Some instrumentation may be unsound, hence EXPERT
154	select HAVE_ARCH_KCSAN if EXPERT
155	select HAVE_ARCH_KFENCE
156	select HAVE_ARCH_KGDB
157	select HAVE_ARCH_MMAP_RND_BITS
158	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
159	select HAVE_ARCH_PREL32_RELOCATIONS
160	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
161	select HAVE_ARCH_SECCOMP_FILTER
162	select HAVE_ARCH_STACKLEAK
163	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
164	select HAVE_ARCH_TRACEHOOK
165	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
166	select HAVE_ARCH_VMAP_STACK
167	select HAVE_ARM_SMCCC
168	select HAVE_ASM_MODVERSIONS
169	select HAVE_EBPF_JIT
170	select HAVE_C_RECORDMCOUNT
171	select HAVE_CMPXCHG_DOUBLE
172	select HAVE_CMPXCHG_LOCAL
173	select HAVE_CONTEXT_TRACKING
174	select HAVE_DEBUG_KMEMLEAK
175	select HAVE_DMA_CONTIGUOUS
176	select HAVE_DYNAMIC_FTRACE
177	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
178		if $(cc-option,-fpatchable-function-entry=2)
179	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
180		if DYNAMIC_FTRACE_WITH_REGS
181	select HAVE_EFFICIENT_UNALIGNED_ACCESS
182	select HAVE_FAST_GUP
183	select HAVE_FTRACE_MCOUNT_RECORD
184	select HAVE_FUNCTION_TRACER
185	select HAVE_FUNCTION_ERROR_INJECTION
186	select HAVE_FUNCTION_GRAPH_TRACER
187	select HAVE_GCC_PLUGINS
188	select HAVE_HW_BREAKPOINT if PERF_EVENTS
189	select HAVE_IRQ_TIME_ACCOUNTING
190	select HAVE_KVM
191	select HAVE_NMI
192	select HAVE_PATA_PLATFORM
193	select HAVE_PERF_EVENTS
194	select HAVE_PERF_REGS
195	select HAVE_PERF_USER_STACK_DUMP
196	select HAVE_REGS_AND_STACK_ACCESS_API
197	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
198	select HAVE_FUNCTION_ARG_ACCESS_API
199	select MMU_GATHER_RCU_TABLE_FREE
200	select HAVE_RSEQ
201	select HAVE_STACKPROTECTOR
202	select HAVE_SYSCALL_TRACEPOINTS
203	select HAVE_KPROBES
204	select HAVE_KRETPROBES
205	select HAVE_GENERIC_VDSO
206	select IOMMU_DMA if IOMMU_SUPPORT
207	select IRQ_DOMAIN
208	select IRQ_FORCED_THREADING
209	select KASAN_VMALLOC if KASAN_GENERIC
210	select MODULES_USE_ELF_RELA
211	select NEED_DMA_MAP_STATE
212	select NEED_SG_DMA_LENGTH
213	select OF
214	select OF_EARLY_FLATTREE
215	select PCI_DOMAINS_GENERIC if PCI
216	select PCI_ECAM if (ACPI && PCI)
217	select PCI_SYSCALL if PCI
218	select POWER_RESET
219	select POWER_SUPPLY
220	select SPARSE_IRQ
221	select SWIOTLB
222	select SYSCTL_EXCEPTION_TRACE
223	select THREAD_INFO_IN_TASK
224	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
225	select TRACE_IRQFLAGS_SUPPORT
226	help
227	  ARM 64-bit (AArch64) Linux support.
228
229config 64BIT
230	def_bool y
231
232config MMU
233	def_bool y
234
235config ARM64_PAGE_SHIFT
236	int
237	default 16 if ARM64_64K_PAGES
238	default 14 if ARM64_16K_PAGES
239	default 12
240
241config ARM64_CONT_PTE_SHIFT
242	int
243	default 5 if ARM64_64K_PAGES
244	default 7 if ARM64_16K_PAGES
245	default 4
246
247config ARM64_CONT_PMD_SHIFT
248	int
249	default 5 if ARM64_64K_PAGES
250	default 5 if ARM64_16K_PAGES
251	default 4
252
253config ARCH_MMAP_RND_BITS_MIN
254       default 14 if ARM64_64K_PAGES
255       default 16 if ARM64_16K_PAGES
256       default 18
257
258# max bits determined by the following formula:
259#  VA_BITS - PAGE_SHIFT - 3
260config ARCH_MMAP_RND_BITS_MAX
261       default 19 if ARM64_VA_BITS=36
262       default 24 if ARM64_VA_BITS=39
263       default 27 if ARM64_VA_BITS=42
264       default 30 if ARM64_VA_BITS=47
265       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
266       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
267       default 33 if ARM64_VA_BITS=48
268       default 14 if ARM64_64K_PAGES
269       default 16 if ARM64_16K_PAGES
270       default 18
271
272config ARCH_MMAP_RND_COMPAT_BITS_MIN
273       default 7 if ARM64_64K_PAGES
274       default 9 if ARM64_16K_PAGES
275       default 11
276
277config ARCH_MMAP_RND_COMPAT_BITS_MAX
278       default 16
279
280config NO_IOPORT_MAP
281	def_bool y if !PCI
282
283config STACKTRACE_SUPPORT
284	def_bool y
285
286config ILLEGAL_POINTER_VALUE
287	hex
288	default 0xdead000000000000
289
290config LOCKDEP_SUPPORT
291	def_bool y
292
293config GENERIC_BUG
294	def_bool y
295	depends on BUG
296
297config GENERIC_BUG_RELATIVE_POINTERS
298	def_bool y
299	depends on GENERIC_BUG
300
301config GENERIC_HWEIGHT
302	def_bool y
303
304config GENERIC_CSUM
305        def_bool y
306
307config GENERIC_CALIBRATE_DELAY
308	def_bool y
309
310config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
311	def_bool y
312
313config SMP
314	def_bool y
315
316config KERNEL_MODE_NEON
317	def_bool y
318
319config FIX_EARLYCON_MEM
320	def_bool y
321
322config PGTABLE_LEVELS
323	int
324	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
325	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
326	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
327	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
328	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
329	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
330
331config ARCH_SUPPORTS_UPROBES
332	def_bool y
333
334config ARCH_PROC_KCORE_TEXT
335	def_bool y
336
337config BROKEN_GAS_INST
338	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
339
340config KASAN_SHADOW_OFFSET
341	hex
342	depends on KASAN_GENERIC || KASAN_SW_TAGS
343	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
344	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
345	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
346	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
347	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
348	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
349	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
350	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
351	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
352	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
353	default 0xffffffffffffffff
354
355source "arch/arm64/Kconfig.platforms"
356
357menu "Kernel Features"
358
359menu "ARM errata workarounds via the alternatives framework"
360
361config ARM64_WORKAROUND_CLEAN_CACHE
362	bool
363
364config ARM64_ERRATUM_826319
365	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
366	default y
367	select ARM64_WORKAROUND_CLEAN_CACHE
368	help
369	  This option adds an alternative code sequence to work around ARM
370	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
371	  AXI master interface and an L2 cache.
372
373	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
374	  and is unable to accept a certain write via this interface, it will
375	  not progress on read data presented on the read data channel and the
376	  system can deadlock.
377
378	  The workaround promotes data cache clean instructions to
379	  data cache clean-and-invalidate.
380	  Please note that this does not necessarily enable the workaround,
381	  as it depends on the alternative framework, which will only patch
382	  the kernel if an affected CPU is detected.
383
384	  If unsure, say Y.
385
386config ARM64_ERRATUM_827319
387	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
388	default y
389	select ARM64_WORKAROUND_CLEAN_CACHE
390	help
391	  This option adds an alternative code sequence to work around ARM
392	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
393	  master interface and an L2 cache.
394
395	  Under certain conditions this erratum can cause a clean line eviction
396	  to occur at the same time as another transaction to the same address
397	  on the AMBA 5 CHI interface, which can cause data corruption if the
398	  interconnect reorders the two transactions.
399
400	  The workaround promotes data cache clean instructions to
401	  data cache clean-and-invalidate.
402	  Please note that this does not necessarily enable the workaround,
403	  as it depends on the alternative framework, which will only patch
404	  the kernel if an affected CPU is detected.
405
406	  If unsure, say Y.
407
408config ARM64_ERRATUM_824069
409	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
410	default y
411	select ARM64_WORKAROUND_CLEAN_CACHE
412	help
413	  This option adds an alternative code sequence to work around ARM
414	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
415	  to a coherent interconnect.
416
417	  If a Cortex-A53 processor is executing a store or prefetch for
418	  write instruction at the same time as a processor in another
419	  cluster is executing a cache maintenance operation to the same
420	  address, then this erratum might cause a clean cache line to be
421	  incorrectly marked as dirty.
422
423	  The workaround promotes data cache clean instructions to
424	  data cache clean-and-invalidate.
425	  Please note that this option does not necessarily enable the
426	  workaround, as it depends on the alternative framework, which will
427	  only patch the kernel if an affected CPU is detected.
428
429	  If unsure, say Y.
430
431config ARM64_ERRATUM_819472
432	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
433	default y
434	select ARM64_WORKAROUND_CLEAN_CACHE
435	help
436	  This option adds an alternative code sequence to work around ARM
437	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
438	  present when it is connected to a coherent interconnect.
439
440	  If the processor is executing a load and store exclusive sequence at
441	  the same time as a processor in another cluster is executing a cache
442	  maintenance operation to the same address, then this erratum might
443	  cause data corruption.
444
445	  The workaround promotes data cache clean instructions to
446	  data cache clean-and-invalidate.
447	  Please note that this does not necessarily enable the workaround,
448	  as it depends on the alternative framework, which will only patch
449	  the kernel if an affected CPU is detected.
450
451	  If unsure, say Y.
452
453config ARM64_ERRATUM_832075
454	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
455	default y
456	help
457	  This option adds an alternative code sequence to work around ARM
458	  erratum 832075 on Cortex-A57 parts up to r1p2.
459
460	  Affected Cortex-A57 parts might deadlock when exclusive load/store
461	  instructions to Write-Back memory are mixed with Device loads.
462
463	  The workaround is to promote device loads to use Load-Acquire
464	  semantics.
465	  Please note that this does not necessarily enable the workaround,
466	  as it depends on the alternative framework, which will only patch
467	  the kernel if an affected CPU is detected.
468
469	  If unsure, say Y.
470
471config ARM64_ERRATUM_834220
472	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
473	depends on KVM
474	default y
475	help
476	  This option adds an alternative code sequence to work around ARM
477	  erratum 834220 on Cortex-A57 parts up to r1p2.
478
479	  Affected Cortex-A57 parts might report a Stage 2 translation
480	  fault as the result of a Stage 1 fault for load crossing a
481	  page boundary when there is a permission or device memory
482	  alignment fault at Stage 1 and a translation fault at Stage 2.
483
484	  The workaround is to verify that the Stage 1 translation
485	  doesn't generate a fault before handling the Stage 2 fault.
486	  Please note that this does not necessarily enable the workaround,
487	  as it depends on the alternative framework, which will only patch
488	  the kernel if an affected CPU is detected.
489
490	  If unsure, say Y.
491
492config ARM64_ERRATUM_845719
493	bool "Cortex-A53: 845719: a load might read incorrect data"
494	depends on COMPAT
495	default y
496	help
497	  This option adds an alternative code sequence to work around ARM
498	  erratum 845719 on Cortex-A53 parts up to r0p4.
499
500	  When running a compat (AArch32) userspace on an affected Cortex-A53
501	  part, a load at EL0 from a virtual address that matches the bottom 32
502	  bits of the virtual address used by a recent load at (AArch64) EL1
503	  might return incorrect data.
504
505	  The workaround is to write the contextidr_el1 register on exception
506	  return to a 32-bit task.
507	  Please note that this does not necessarily enable the workaround,
508	  as it depends on the alternative framework, which will only patch
509	  the kernel if an affected CPU is detected.
510
511	  If unsure, say Y.
512
513config ARM64_ERRATUM_843419
514	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
515	default y
516	select ARM64_MODULE_PLTS if MODULES
517	help
518	  This option links the kernel with '--fix-cortex-a53-843419' and
519	  enables PLT support to replace certain ADRP instructions, which can
520	  cause subsequent memory accesses to use an incorrect address on
521	  Cortex-A53 parts up to r0p4.
522
523	  If unsure, say Y.
524
525config ARM64_LD_HAS_FIX_ERRATUM_843419
526	def_bool $(ld-option,--fix-cortex-a53-843419)
527
528config ARM64_ERRATUM_1024718
529	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
530	default y
531	help
532	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
533
534	  Affected Cortex-A55 cores (all revisions) could cause incorrect
535	  update of the hardware dirty bit when the DBM/AP bits are updated
536	  without a break-before-make. The workaround is to disable the usage
537	  of hardware DBM locally on the affected cores. CPUs not affected by
538	  this erratum will continue to use the feature.
539
540	  If unsure, say Y.
541
542config ARM64_ERRATUM_1418040
543	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
544	default y
545	depends on COMPAT
546	help
547	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
548	  errata 1188873 and 1418040.
549
550	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
551	  cause register corruption when accessing the timer registers
552	  from AArch32 userspace.
553
554	  If unsure, say Y.
555
556config ARM64_WORKAROUND_SPECULATIVE_AT
557	bool
558
559config ARM64_ERRATUM_1165522
560	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
561	default y
562	select ARM64_WORKAROUND_SPECULATIVE_AT
563	help
564	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
565
566	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
567	  corrupted TLBs by speculating an AT instruction during a guest
568	  context switch.
569
570	  If unsure, say Y.
571
572config ARM64_ERRATUM_1319367
573	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
574	default y
575	select ARM64_WORKAROUND_SPECULATIVE_AT
576	help
577	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
578	  and A72 erratum 1319367
579
580	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
581	  speculating an AT instruction during a guest context switch.
582
583	  If unsure, say Y.
584
585config ARM64_ERRATUM_1530923
586	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
587	default y
588	select ARM64_WORKAROUND_SPECULATIVE_AT
589	help
590	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
591
592	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
593	  corrupted TLBs by speculating an AT instruction during a guest
594	  context switch.
595
596	  If unsure, say Y.
597
598config ARM64_WORKAROUND_REPEAT_TLBI
599	bool
600
601config ARM64_ERRATUM_1286807
602	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
603	default y
604	select ARM64_WORKAROUND_REPEAT_TLBI
605	help
606	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
607
608	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
609	  address for a cacheable mapping of a location is being
610	  accessed by a core while another core is remapping the virtual
611	  address to a new physical page using the recommended
612	  break-before-make sequence, then under very rare circumstances
613	  TLBI+DSB completes before a read using the translation being
614	  invalidated has been observed by other observers. The
615	  workaround repeats the TLBI+DSB operation.
616
617config ARM64_ERRATUM_1463225
618	bool "Cortex-A76: Software Step might prevent interrupt recognition"
619	default y
620	help
621	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
622
623	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
624	  of a system call instruction (SVC) can prevent recognition of
625	  subsequent interrupts when software stepping is disabled in the
626	  exception handler of the system call and either kernel debugging
627	  is enabled or VHE is in use.
628
629	  Work around the erratum by triggering a dummy step exception
630	  when handling a system call from a task that is being stepped
631	  in a VHE configuration of the kernel.
632
633	  If unsure, say Y.
634
635config ARM64_ERRATUM_1542419
636	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
637	default y
638	help
639	  This option adds a workaround for ARM Neoverse-N1 erratum
640	  1542419.
641
642	  Affected Neoverse-N1 cores could execute a stale instruction when
643	  modified by another CPU. The workaround depends on a firmware
644	  counterpart.
645
646	  Workaround the issue by hiding the DIC feature from EL0. This
647	  forces user-space to perform cache maintenance.
648
649	  If unsure, say Y.
650
651config ARM64_ERRATUM_1508412
652	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
653	default y
654	help
655	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
656
657	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
658	  of a store-exclusive or read of PAR_EL1 and a load with device or
659	  non-cacheable memory attributes. The workaround depends on a firmware
660	  counterpart.
661
662	  KVM guests must also have the workaround implemented or they can
663	  deadlock the system.
664
665	  Work around the issue by inserting DMB SY barriers around PAR_EL1
666	  register reads and warning KVM users. The DMB barrier is sufficient
667	  to prevent a speculative PAR_EL1 read.
668
669	  If unsure, say Y.
670
671config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
672	bool
673
674config ARM64_ERRATUM_2051678
675	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
676	default y
677	help
678	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
679	  Affected Coretex-A510 might not respect the ordering rules for
680	  hardware update of the page table's dirty bit. The workaround
681	  is to not enable the feature on affected CPUs.
682
683	  If unsure, say Y.
684
685config ARM64_ERRATUM_2077057
686	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
687	help
688	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
689	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
690	  expected, but a Pointer Authentication trap is taken instead. The
691	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
692	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
693
694	  This can only happen when EL2 is stepping EL1.
695
696	  When these conditions occur, the SPSR_EL2 value is unchanged from the
697	  previous guest entry, and can be restored from the in-memory copy.
698
699	  If unsure, say Y.
700
701config ARM64_ERRATUM_2119858
702	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
703	default y
704	depends on CORESIGHT_TRBE
705	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
706	help
707	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
708
709	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
710	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
711	  the event of a WRAP event.
712
713	  Work around the issue by always making sure we move the TRBPTR_EL1 by
714	  256 bytes before enabling the buffer and filling the first 256 bytes of
715	  the buffer with ETM ignore packets upon disabling.
716
717	  If unsure, say Y.
718
719config ARM64_ERRATUM_2139208
720	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
721	default y
722	depends on CORESIGHT_TRBE
723	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
724	help
725	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
726
727	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
728	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
729	  the event of a WRAP event.
730
731	  Work around the issue by always making sure we move the TRBPTR_EL1 by
732	  256 bytes before enabling the buffer and filling the first 256 bytes of
733	  the buffer with ETM ignore packets upon disabling.
734
735	  If unsure, say Y.
736
737config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
738	bool
739
740config ARM64_ERRATUM_2054223
741	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
742	default y
743	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
744	help
745	  Enable workaround for ARM Cortex-A710 erratum 2054223
746
747	  Affected cores may fail to flush the trace data on a TSB instruction, when
748	  the PE is in trace prohibited state. This will cause losing a few bytes
749	  of the trace cached.
750
751	  Workaround is to issue two TSB consecutively on affected cores.
752
753	  If unsure, say Y.
754
755config ARM64_ERRATUM_2067961
756	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
757	default y
758	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
759	help
760	  Enable workaround for ARM Neoverse-N2 erratum 2067961
761
762	  Affected cores may fail to flush the trace data on a TSB instruction, when
763	  the PE is in trace prohibited state. This will cause losing a few bytes
764	  of the trace cached.
765
766	  Workaround is to issue two TSB consecutively on affected cores.
767
768	  If unsure, say Y.
769
770config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
771	bool
772
773config ARM64_ERRATUM_2253138
774	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
775	depends on CORESIGHT_TRBE
776	default y
777	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
778	help
779	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
780
781	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
782	  for TRBE. Under some conditions, the TRBE might generate a write to the next
783	  virtually addressed page following the last page of the TRBE address space
784	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
785
786	  Work around this in the driver by always making sure that there is a
787	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
788
789	  If unsure, say Y.
790
791config ARM64_ERRATUM_2224489
792	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
793	depends on CORESIGHT_TRBE
794	default y
795	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
796	help
797	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
798
799	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
800	  for TRBE. Under some conditions, the TRBE might generate a write to the next
801	  virtually addressed page following the last page of the TRBE address space
802	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
803
804	  Work around this in the driver by always making sure that there is a
805	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
806
807	  If unsure, say Y.
808
809config ARM64_ERRATUM_2064142
810	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
811	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
812	default y
813	help
814	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
815
816	  Affected Cortex-A510 core might fail to write into system registers after the
817	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
818	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
819	  and TRBTRG_EL1 will be ignored and will not be effected.
820
821	  Work around this in the driver by executing TSB CSYNC and DSB after collection
822	  is stopped and before performing a system register write to one of the affected
823	  registers.
824
825	  If unsure, say Y.
826
827config ARM64_ERRATUM_2038923
828	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
829	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
830	default y
831	help
832	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
833
834	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
835	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
836	  might be corrupted. This happens after TRBE buffer has been enabled by setting
837	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
838	  execution changes from a context, in which trace is prohibited to one where it
839	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
840	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
841	  the trace buffer state might be corrupted.
842
843	  Work around this in the driver by preventing an inconsistent view of whether the
844	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
845	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
846	  two ISB instructions if no ERET is to take place.
847
848	  If unsure, say Y.
849
850config ARM64_ERRATUM_1902691
851	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
852	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
853	default y
854	help
855	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
856
857	  Affected Cortex-A510 core might cause trace data corruption, when being written
858	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
859	  trace data.
860
861	  Work around this problem in the driver by just preventing TRBE initialization on
862	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
863	  on such implementations. This will cover the kernel for any firmware that doesn't
864	  do this already.
865
866	  If unsure, say Y.
867
868config CAVIUM_ERRATUM_22375
869	bool "Cavium erratum 22375, 24313"
870	default y
871	help
872	  Enable workaround for errata 22375 and 24313.
873
874	  This implements two gicv3-its errata workarounds for ThunderX. Both
875	  with a small impact affecting only ITS table allocation.
876
877	    erratum 22375: only alloc 8MB table size
878	    erratum 24313: ignore memory access type
879
880	  The fixes are in ITS initialization and basically ignore memory access
881	  type and table size provided by the TYPER and BASER registers.
882
883	  If unsure, say Y.
884
885config CAVIUM_ERRATUM_23144
886	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
887	depends on NUMA
888	default y
889	help
890	  ITS SYNC command hang for cross node io and collections/cpu mapping.
891
892	  If unsure, say Y.
893
894config CAVIUM_ERRATUM_23154
895	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
896	default y
897	help
898	  The ThunderX GICv3 implementation requires a modified version for
899	  reading the IAR status to ensure data synchronization
900	  (access to icc_iar1_el1 is not sync'ed before and after).
901
902	  It also suffers from erratum 38545 (also present on Marvell's
903	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
904	  spuriously presented to the CPU interface.
905
906	  If unsure, say Y.
907
908config CAVIUM_ERRATUM_27456
909	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
910	default y
911	help
912	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
913	  instructions may cause the icache to become corrupted if it
914	  contains data for a non-current ASID.  The fix is to
915	  invalidate the icache when changing the mm context.
916
917	  If unsure, say Y.
918
919config CAVIUM_ERRATUM_30115
920	bool "Cavium erratum 30115: Guest may disable interrupts in host"
921	default y
922	help
923	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
924	  1.2, and T83 Pass 1.0, KVM guest execution may disable
925	  interrupts in host. Trapping both GICv3 group-0 and group-1
926	  accesses sidesteps the issue.
927
928	  If unsure, say Y.
929
930config CAVIUM_TX2_ERRATUM_219
931	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
932	default y
933	help
934	  On Cavium ThunderX2, a load, store or prefetch instruction between a
935	  TTBR update and the corresponding context synchronizing operation can
936	  cause a spurious Data Abort to be delivered to any hardware thread in
937	  the CPU core.
938
939	  Work around the issue by avoiding the problematic code sequence and
940	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
941	  trap handler performs the corresponding register access, skips the
942	  instruction and ensures context synchronization by virtue of the
943	  exception return.
944
945	  If unsure, say Y.
946
947config FUJITSU_ERRATUM_010001
948	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
949	default y
950	help
951	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
952	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
953	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
954	  This fault occurs under a specific hardware condition when a
955	  load/store instruction performs an address translation using:
956	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
957	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
958	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
959	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
960
961	  The workaround is to ensure these bits are clear in TCR_ELx.
962	  The workaround only affects the Fujitsu-A64FX.
963
964	  If unsure, say Y.
965
966config HISILICON_ERRATUM_161600802
967	bool "Hip07 161600802: Erroneous redistributor VLPI base"
968	default y
969	help
970	  The HiSilicon Hip07 SoC uses the wrong redistributor base
971	  when issued ITS commands such as VMOVP and VMAPP, and requires
972	  a 128kB offset to be applied to the target address in this commands.
973
974	  If unsure, say Y.
975
976config QCOM_FALKOR_ERRATUM_1003
977	bool "Falkor E1003: Incorrect translation due to ASID change"
978	default y
979	help
980	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
981	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
982	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
983	  then only for entries in the walk cache, since the leaf translation
984	  is unchanged. Work around the erratum by invalidating the walk cache
985	  entries for the trampoline before entering the kernel proper.
986
987config QCOM_FALKOR_ERRATUM_1009
988	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
989	default y
990	select ARM64_WORKAROUND_REPEAT_TLBI
991	help
992	  On Falkor v1, the CPU may prematurely complete a DSB following a
993	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
994	  one more time to fix the issue.
995
996	  If unsure, say Y.
997
998config QCOM_QDF2400_ERRATUM_0065
999	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1000	default y
1001	help
1002	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1003	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1004	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1005
1006	  If unsure, say Y.
1007
1008config QCOM_FALKOR_ERRATUM_E1041
1009	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1010	default y
1011	help
1012	  Falkor CPU may speculatively fetch instructions from an improper
1013	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1014	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1015
1016	  If unsure, say Y.
1017
1018config NVIDIA_CARMEL_CNP_ERRATUM
1019	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1020	default y
1021	help
1022	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1023	  invalidate shared TLB entries installed by a different core, as it would
1024	  on standard ARM cores.
1025
1026	  If unsure, say Y.
1027
1028config SOCIONEXT_SYNQUACER_PREITS
1029	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1030	default y
1031	help
1032	  Socionext Synquacer SoCs implement a separate h/w block to generate
1033	  MSI doorbell writes with non-zero values for the device ID.
1034
1035	  If unsure, say Y.
1036
1037endmenu
1038
1039
1040choice
1041	prompt "Page size"
1042	default ARM64_4K_PAGES
1043	help
1044	  Page size (translation granule) configuration.
1045
1046config ARM64_4K_PAGES
1047	bool "4KB"
1048	help
1049	  This feature enables 4KB pages support.
1050
1051config ARM64_16K_PAGES
1052	bool "16KB"
1053	help
1054	  The system will use 16KB pages support. AArch32 emulation
1055	  requires applications compiled with 16K (or a multiple of 16K)
1056	  aligned segments.
1057
1058config ARM64_64K_PAGES
1059	bool "64KB"
1060	help
1061	  This feature enables 64KB pages support (4KB by default)
1062	  allowing only two levels of page tables and faster TLB
1063	  look-up. AArch32 emulation requires applications compiled
1064	  with 64K aligned segments.
1065
1066endchoice
1067
1068choice
1069	prompt "Virtual address space size"
1070	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1071	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1072	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1073	help
1074	  Allows choosing one of multiple possible virtual address
1075	  space sizes. The level of translation table is determined by
1076	  a combination of page size and virtual address space size.
1077
1078config ARM64_VA_BITS_36
1079	bool "36-bit" if EXPERT
1080	depends on ARM64_16K_PAGES
1081
1082config ARM64_VA_BITS_39
1083	bool "39-bit"
1084	depends on ARM64_4K_PAGES
1085
1086config ARM64_VA_BITS_42
1087	bool "42-bit"
1088	depends on ARM64_64K_PAGES
1089
1090config ARM64_VA_BITS_47
1091	bool "47-bit"
1092	depends on ARM64_16K_PAGES
1093
1094config ARM64_VA_BITS_48
1095	bool "48-bit"
1096
1097config ARM64_VA_BITS_52
1098	bool "52-bit"
1099	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1100	help
1101	  Enable 52-bit virtual addressing for userspace when explicitly
1102	  requested via a hint to mmap(). The kernel will also use 52-bit
1103	  virtual addresses for its own mappings (provided HW support for
1104	  this feature is available, otherwise it reverts to 48-bit).
1105
1106	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1107	  ARMv8.3 Pointer Authentication will result in the PAC being
1108	  reduced from 7 bits to 3 bits, which may have a significant
1109	  impact on its susceptibility to brute-force attacks.
1110
1111	  If unsure, select 48-bit virtual addressing instead.
1112
1113endchoice
1114
1115config ARM64_FORCE_52BIT
1116	bool "Force 52-bit virtual addresses for userspace"
1117	depends on ARM64_VA_BITS_52 && EXPERT
1118	help
1119	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1120	  to maintain compatibility with older software by providing 48-bit VAs
1121	  unless a hint is supplied to mmap.
1122
1123	  This configuration option disables the 48-bit compatibility logic, and
1124	  forces all userspace addresses to be 52-bit on HW that supports it. One
1125	  should only enable this configuration option for stress testing userspace
1126	  memory management code. If unsure say N here.
1127
1128config ARM64_VA_BITS
1129	int
1130	default 36 if ARM64_VA_BITS_36
1131	default 39 if ARM64_VA_BITS_39
1132	default 42 if ARM64_VA_BITS_42
1133	default 47 if ARM64_VA_BITS_47
1134	default 48 if ARM64_VA_BITS_48
1135	default 52 if ARM64_VA_BITS_52
1136
1137choice
1138	prompt "Physical address space size"
1139	default ARM64_PA_BITS_48
1140	help
1141	  Choose the maximum physical address range that the kernel will
1142	  support.
1143
1144config ARM64_PA_BITS_48
1145	bool "48-bit"
1146
1147config ARM64_PA_BITS_52
1148	bool "52-bit (ARMv8.2)"
1149	depends on ARM64_64K_PAGES
1150	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1151	help
1152	  Enable support for a 52-bit physical address space, introduced as
1153	  part of the ARMv8.2-LPA extension.
1154
1155	  With this enabled, the kernel will also continue to work on CPUs that
1156	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1157	  minor performance overhead).
1158
1159endchoice
1160
1161config ARM64_PA_BITS
1162	int
1163	default 48 if ARM64_PA_BITS_48
1164	default 52 if ARM64_PA_BITS_52
1165
1166choice
1167	prompt "Endianness"
1168	default CPU_LITTLE_ENDIAN
1169	help
1170	  Select the endianness of data accesses performed by the CPU. Userspace
1171	  applications will need to be compiled and linked for the endianness
1172	  that is selected here.
1173
1174config CPU_BIG_ENDIAN
1175	bool "Build big-endian kernel"
1176	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1177	help
1178	  Say Y if you plan on running a kernel with a big-endian userspace.
1179
1180config CPU_LITTLE_ENDIAN
1181	bool "Build little-endian kernel"
1182	help
1183	  Say Y if you plan on running a kernel with a little-endian userspace.
1184	  This is usually the case for distributions targeting arm64.
1185
1186endchoice
1187
1188config SCHED_MC
1189	bool "Multi-core scheduler support"
1190	help
1191	  Multi-core scheduler support improves the CPU scheduler's decision
1192	  making when dealing with multi-core CPU chips at a cost of slightly
1193	  increased overhead in some places. If unsure say N here.
1194
1195config SCHED_CLUSTER
1196	bool "Cluster scheduler support"
1197	help
1198	  Cluster scheduler support improves the CPU scheduler's decision
1199	  making when dealing with machines that have clusters of CPUs.
1200	  Cluster usually means a couple of CPUs which are placed closely
1201	  by sharing mid-level caches, last-level cache tags or internal
1202	  busses.
1203
1204config SCHED_SMT
1205	bool "SMT scheduler support"
1206	help
1207	  Improves the CPU scheduler's decision making when dealing with
1208	  MultiThreading at a cost of slightly increased overhead in some
1209	  places. If unsure say N here.
1210
1211config NR_CPUS
1212	int "Maximum number of CPUs (2-4096)"
1213	range 2 4096
1214	default "256"
1215
1216config HOTPLUG_CPU
1217	bool "Support for hot-pluggable CPUs"
1218	select GENERIC_IRQ_MIGRATION
1219	help
1220	  Say Y here to experiment with turning CPUs off and on.  CPUs
1221	  can be controlled through /sys/devices/system/cpu.
1222
1223# Common NUMA Features
1224config NUMA
1225	bool "NUMA Memory Allocation and Scheduler Support"
1226	select GENERIC_ARCH_NUMA
1227	select ACPI_NUMA if ACPI
1228	select OF_NUMA
1229	select HAVE_SETUP_PER_CPU_AREA
1230	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1231	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1232	select USE_PERCPU_NUMA_NODE_ID
1233	help
1234	  Enable NUMA (Non-Uniform Memory Access) support.
1235
1236	  The kernel will try to allocate memory used by a CPU on the
1237	  local memory of the CPU and add some more
1238	  NUMA awareness to the kernel.
1239
1240config NODES_SHIFT
1241	int "Maximum NUMA Nodes (as a power of 2)"
1242	range 1 10
1243	default "4"
1244	depends on NUMA
1245	help
1246	  Specify the maximum number of NUMA Nodes available on the target
1247	  system.  Increases memory reserved to accommodate various tables.
1248
1249source "kernel/Kconfig.hz"
1250
1251config ARCH_SPARSEMEM_ENABLE
1252	def_bool y
1253	select SPARSEMEM_VMEMMAP_ENABLE
1254	select SPARSEMEM_VMEMMAP
1255
1256config HW_PERF_EVENTS
1257	def_bool y
1258	depends on ARM_PMU
1259
1260# Supported by clang >= 7.0
1261config CC_HAVE_SHADOW_CALL_STACK
1262	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1263
1264config PARAVIRT
1265	bool "Enable paravirtualization code"
1266	help
1267	  This changes the kernel so it can modify itself when it is run
1268	  under a hypervisor, potentially improving performance significantly
1269	  over full virtualization.
1270
1271config PARAVIRT_TIME_ACCOUNTING
1272	bool "Paravirtual steal time accounting"
1273	select PARAVIRT
1274	help
1275	  Select this option to enable fine granularity task steal time
1276	  accounting. Time spent executing other tasks in parallel with
1277	  the current vCPU is discounted from the vCPU power. To account for
1278	  that, there can be a small performance impact.
1279
1280	  If in doubt, say N here.
1281
1282config KEXEC
1283	depends on PM_SLEEP_SMP
1284	select KEXEC_CORE
1285	bool "kexec system call"
1286	help
1287	  kexec is a system call that implements the ability to shutdown your
1288	  current kernel, and to start another kernel.  It is like a reboot
1289	  but it is independent of the system firmware.   And like a reboot
1290	  you can start any kernel with it, not just Linux.
1291
1292config KEXEC_FILE
1293	bool "kexec file based system call"
1294	select KEXEC_CORE
1295	select HAVE_IMA_KEXEC if IMA
1296	help
1297	  This is new version of kexec system call. This system call is
1298	  file based and takes file descriptors as system call argument
1299	  for kernel and initramfs as opposed to list of segments as
1300	  accepted by previous system call.
1301
1302config KEXEC_SIG
1303	bool "Verify kernel signature during kexec_file_load() syscall"
1304	depends on KEXEC_FILE
1305	help
1306	  Select this option to verify a signature with loaded kernel
1307	  image. If configured, any attempt of loading a image without
1308	  valid signature will fail.
1309
1310	  In addition to that option, you need to enable signature
1311	  verification for the corresponding kernel image type being
1312	  loaded in order for this to work.
1313
1314config KEXEC_IMAGE_VERIFY_SIG
1315	bool "Enable Image signature verification support"
1316	default y
1317	depends on KEXEC_SIG
1318	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1319	help
1320	  Enable Image signature verification support.
1321
1322comment "Support for PE file signature verification disabled"
1323	depends on KEXEC_SIG
1324	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1325
1326config CRASH_DUMP
1327	bool "Build kdump crash kernel"
1328	help
1329	  Generate crash dump after being started by kexec. This should
1330	  be normally only set in special crash dump kernels which are
1331	  loaded in the main kernel with kexec-tools into a specially
1332	  reserved region and then later executed after a crash by
1333	  kdump/kexec.
1334
1335	  For more details see Documentation/admin-guide/kdump/kdump.rst
1336
1337config TRANS_TABLE
1338	def_bool y
1339	depends on HIBERNATION || KEXEC_CORE
1340
1341config XEN_DOM0
1342	def_bool y
1343	depends on XEN
1344
1345config XEN
1346	bool "Xen guest support on ARM64"
1347	depends on ARM64 && OF
1348	select SWIOTLB_XEN
1349	select PARAVIRT
1350	help
1351	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1352
1353config FORCE_MAX_ZONEORDER
1354	int
1355	default "14" if ARM64_64K_PAGES
1356	default "12" if ARM64_16K_PAGES
1357	default "11"
1358	help
1359	  The kernel memory allocator divides physically contiguous memory
1360	  blocks into "zones", where each zone is a power of two number of
1361	  pages.  This option selects the largest power of two that the kernel
1362	  keeps in the memory allocator.  If you need to allocate very large
1363	  blocks of physically contiguous memory, then you may need to
1364	  increase this value.
1365
1366	  This config option is actually maximum order plus one. For example,
1367	  a value of 11 means that the largest free memory block is 2^10 pages.
1368
1369	  We make sure that we can allocate upto a HugePage size for each configuration.
1370	  Hence we have :
1371		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1372
1373	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1374	  4M allocations matching the default size used by generic code.
1375
1376config UNMAP_KERNEL_AT_EL0
1377	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1378	default y
1379	help
1380	  Speculation attacks against some high-performance processors can
1381	  be used to bypass MMU permission checks and leak kernel data to
1382	  userspace. This can be defended against by unmapping the kernel
1383	  when running in userspace, mapping it back in on exception entry
1384	  via a trampoline page in the vector table.
1385
1386	  If unsure, say Y.
1387
1388config MITIGATE_SPECTRE_BRANCH_HISTORY
1389	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1390	default y
1391	help
1392	  Speculation attacks against some high-performance processors can
1393	  make use of branch history to influence future speculation.
1394	  When taking an exception from user-space, a sequence of branches
1395	  or a firmware call overwrites the branch history.
1396
1397config RODATA_FULL_DEFAULT_ENABLED
1398	bool "Apply r/o permissions of VM areas also to their linear aliases"
1399	default y
1400	help
1401	  Apply read-only attributes of VM areas to the linear alias of
1402	  the backing pages as well. This prevents code or read-only data
1403	  from being modified (inadvertently or intentionally) via another
1404	  mapping of the same memory page. This additional enhancement can
1405	  be turned off at runtime by passing rodata=[off|on] (and turned on
1406	  with rodata=full if this option is set to 'n')
1407
1408	  This requires the linear region to be mapped down to pages,
1409	  which may adversely affect performance in some cases.
1410
1411config ARM64_SW_TTBR0_PAN
1412	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1413	help
1414	  Enabling this option prevents the kernel from accessing
1415	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1416	  zeroed area and reserved ASID. The user access routines
1417	  restore the valid TTBR0_EL1 temporarily.
1418
1419config ARM64_TAGGED_ADDR_ABI
1420	bool "Enable the tagged user addresses syscall ABI"
1421	default y
1422	help
1423	  When this option is enabled, user applications can opt in to a
1424	  relaxed ABI via prctl() allowing tagged addresses to be passed
1425	  to system calls as pointer arguments. For details, see
1426	  Documentation/arm64/tagged-address-abi.rst.
1427
1428menuconfig COMPAT
1429	bool "Kernel support for 32-bit EL0"
1430	depends on ARM64_4K_PAGES || EXPERT
1431	select HAVE_UID16
1432	select OLD_SIGSUSPEND3
1433	select COMPAT_OLD_SIGACTION
1434	help
1435	  This option enables support for a 32-bit EL0 running under a 64-bit
1436	  kernel at EL1. AArch32-specific components such as system calls,
1437	  the user helper functions, VFP support and the ptrace interface are
1438	  handled appropriately by the kernel.
1439
1440	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1441	  that you will only be able to execute AArch32 binaries that were compiled
1442	  with page size aligned segments.
1443
1444	  If you want to execute 32-bit userspace applications, say Y.
1445
1446if COMPAT
1447
1448config KUSER_HELPERS
1449	bool "Enable kuser helpers page for 32-bit applications"
1450	default y
1451	help
1452	  Warning: disabling this option may break 32-bit user programs.
1453
1454	  Provide kuser helpers to compat tasks. The kernel provides
1455	  helper code to userspace in read only form at a fixed location
1456	  to allow userspace to be independent of the CPU type fitted to
1457	  the system. This permits binaries to be run on ARMv4 through
1458	  to ARMv8 without modification.
1459
1460	  See Documentation/arm/kernel_user_helpers.rst for details.
1461
1462	  However, the fixed address nature of these helpers can be used
1463	  by ROP (return orientated programming) authors when creating
1464	  exploits.
1465
1466	  If all of the binaries and libraries which run on your platform
1467	  are built specifically for your platform, and make no use of
1468	  these helpers, then you can turn this option off to hinder
1469	  such exploits. However, in that case, if a binary or library
1470	  relying on those helpers is run, it will not function correctly.
1471
1472	  Say N here only if you are absolutely certain that you do not
1473	  need these helpers; otherwise, the safe option is to say Y.
1474
1475config COMPAT_VDSO
1476	bool "Enable vDSO for 32-bit applications"
1477	depends on !CPU_BIG_ENDIAN
1478	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1479	select GENERIC_COMPAT_VDSO
1480	default y
1481	help
1482	  Place in the process address space of 32-bit applications an
1483	  ELF shared object providing fast implementations of gettimeofday
1484	  and clock_gettime.
1485
1486	  You must have a 32-bit build of glibc 2.22 or later for programs
1487	  to seamlessly take advantage of this.
1488
1489config THUMB2_COMPAT_VDSO
1490	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1491	depends on COMPAT_VDSO
1492	default y
1493	help
1494	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1495	  otherwise with '-marm'.
1496
1497menuconfig ARMV8_DEPRECATED
1498	bool "Emulate deprecated/obsolete ARMv8 instructions"
1499	depends on SYSCTL
1500	help
1501	  Legacy software support may require certain instructions
1502	  that have been deprecated or obsoleted in the architecture.
1503
1504	  Enable this config to enable selective emulation of these
1505	  features.
1506
1507	  If unsure, say Y
1508
1509if ARMV8_DEPRECATED
1510
1511config SWP_EMULATION
1512	bool "Emulate SWP/SWPB instructions"
1513	help
1514	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1515	  they are always undefined. Say Y here to enable software
1516	  emulation of these instructions for userspace using LDXR/STXR.
1517	  This feature can be controlled at runtime with the abi.swp
1518	  sysctl which is disabled by default.
1519
1520	  In some older versions of glibc [<=2.8] SWP is used during futex
1521	  trylock() operations with the assumption that the code will not
1522	  be preempted. This invalid assumption may be more likely to fail
1523	  with SWP emulation enabled, leading to deadlock of the user
1524	  application.
1525
1526	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1527	  on an external transaction monitoring block called a global
1528	  monitor to maintain update atomicity. If your system does not
1529	  implement a global monitor, this option can cause programs that
1530	  perform SWP operations to uncached memory to deadlock.
1531
1532	  If unsure, say Y
1533
1534config CP15_BARRIER_EMULATION
1535	bool "Emulate CP15 Barrier instructions"
1536	help
1537	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1538	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1539	  strongly recommended to use the ISB, DSB, and DMB
1540	  instructions instead.
1541
1542	  Say Y here to enable software emulation of these
1543	  instructions for AArch32 userspace code. When this option is
1544	  enabled, CP15 barrier usage is traced which can help
1545	  identify software that needs updating. This feature can be
1546	  controlled at runtime with the abi.cp15_barrier sysctl.
1547
1548	  If unsure, say Y
1549
1550config SETEND_EMULATION
1551	bool "Emulate SETEND instruction"
1552	help
1553	  The SETEND instruction alters the data-endianness of the
1554	  AArch32 EL0, and is deprecated in ARMv8.
1555
1556	  Say Y here to enable software emulation of the instruction
1557	  for AArch32 userspace code. This feature can be controlled
1558	  at runtime with the abi.setend sysctl.
1559
1560	  Note: All the cpus on the system must have mixed endian support at EL0
1561	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1562	  endian - is hotplugged in after this feature has been enabled, there could
1563	  be unexpected results in the applications.
1564
1565	  If unsure, say Y
1566endif
1567
1568endif
1569
1570menu "ARMv8.1 architectural features"
1571
1572config ARM64_HW_AFDBM
1573	bool "Support for hardware updates of the Access and Dirty page flags"
1574	default y
1575	help
1576	  The ARMv8.1 architecture extensions introduce support for
1577	  hardware updates of the access and dirty information in page
1578	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1579	  capable processors, accesses to pages with PTE_AF cleared will
1580	  set this bit instead of raising an access flag fault.
1581	  Similarly, writes to read-only pages with the DBM bit set will
1582	  clear the read-only bit (AP[2]) instead of raising a
1583	  permission fault.
1584
1585	  Kernels built with this configuration option enabled continue
1586	  to work on pre-ARMv8.1 hardware and the performance impact is
1587	  minimal. If unsure, say Y.
1588
1589config ARM64_PAN
1590	bool "Enable support for Privileged Access Never (PAN)"
1591	default y
1592	help
1593	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1594	 prevents the kernel or hypervisor from accessing user-space (EL0)
1595	 memory directly.
1596
1597	 Choosing this option will cause any unprotected (not using
1598	 copy_to_user et al) memory access to fail with a permission fault.
1599
1600	 The feature is detected at runtime, and will remain as a 'nop'
1601	 instruction if the cpu does not implement the feature.
1602
1603config AS_HAS_LDAPR
1604	def_bool $(as-instr,.arch_extension rcpc)
1605
1606config AS_HAS_LSE_ATOMICS
1607	def_bool $(as-instr,.arch_extension lse)
1608
1609config ARM64_LSE_ATOMICS
1610	bool
1611	default ARM64_USE_LSE_ATOMICS
1612	depends on AS_HAS_LSE_ATOMICS
1613
1614config ARM64_USE_LSE_ATOMICS
1615	bool "Atomic instructions"
1616	depends on JUMP_LABEL
1617	default y
1618	help
1619	  As part of the Large System Extensions, ARMv8.1 introduces new
1620	  atomic instructions that are designed specifically to scale in
1621	  very large systems.
1622
1623	  Say Y here to make use of these instructions for the in-kernel
1624	  atomic routines. This incurs a small overhead on CPUs that do
1625	  not support these instructions and requires the kernel to be
1626	  built with binutils >= 2.25 in order for the new instructions
1627	  to be used.
1628
1629endmenu
1630
1631menu "ARMv8.2 architectural features"
1632
1633config AS_HAS_ARMV8_2
1634       def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1635
1636config AS_HAS_SHA3
1637       def_bool $(as-instr,.arch armv8.2-a+sha3)
1638
1639config ARM64_PMEM
1640	bool "Enable support for persistent memory"
1641	select ARCH_HAS_PMEM_API
1642	select ARCH_HAS_UACCESS_FLUSHCACHE
1643	help
1644	  Say Y to enable support for the persistent memory API based on the
1645	  ARMv8.2 DCPoP feature.
1646
1647	  The feature is detected at runtime, and the kernel will use DC CVAC
1648	  operations if DC CVAP is not supported (following the behaviour of
1649	  DC CVAP itself if the system does not define a point of persistence).
1650
1651config ARM64_RAS_EXTN
1652	bool "Enable support for RAS CPU Extensions"
1653	default y
1654	help
1655	  CPUs that support the Reliability, Availability and Serviceability
1656	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1657	  errors, classify them and report them to software.
1658
1659	  On CPUs with these extensions system software can use additional
1660	  barriers to determine if faults are pending and read the
1661	  classification from a new set of registers.
1662
1663	  Selecting this feature will allow the kernel to use these barriers
1664	  and access the new registers if the system supports the extension.
1665	  Platform RAS features may additionally depend on firmware support.
1666
1667config ARM64_CNP
1668	bool "Enable support for Common Not Private (CNP) translations"
1669	default y
1670	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1671	help
1672	  Common Not Private (CNP) allows translation table entries to
1673	  be shared between different PEs in the same inner shareable
1674	  domain, so the hardware can use this fact to optimise the
1675	  caching of such entries in the TLB.
1676
1677	  Selecting this option allows the CNP feature to be detected
1678	  at runtime, and does not affect PEs that do not implement
1679	  this feature.
1680
1681endmenu
1682
1683menu "ARMv8.3 architectural features"
1684
1685config ARM64_PTR_AUTH
1686	bool "Enable support for pointer authentication"
1687	default y
1688	help
1689	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1690	  instructions for signing and authenticating pointers against secret
1691	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1692	  and other attacks.
1693
1694	  This option enables these instructions at EL0 (i.e. for userspace).
1695	  Choosing this option will cause the kernel to initialise secret keys
1696	  for each process at exec() time, with these keys being
1697	  context-switched along with the process.
1698
1699	  The feature is detected at runtime. If the feature is not present in
1700	  hardware it will not be advertised to userspace/KVM guest nor will it
1701	  be enabled.
1702
1703	  If the feature is present on the boot CPU but not on a late CPU, then
1704	  the late CPU will be parked. Also, if the boot CPU does not have
1705	  address auth and the late CPU has then the late CPU will still boot
1706	  but with the feature disabled. On such a system, this option should
1707	  not be selected.
1708
1709config ARM64_PTR_AUTH_KERNEL
1710	bool "Use pointer authentication for kernel"
1711	default y
1712	depends on ARM64_PTR_AUTH
1713	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1714	# Modern compilers insert a .note.gnu.property section note for PAC
1715	# which is only understood by binutils starting with version 2.33.1.
1716	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1717	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1718	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1719	help
1720	  If the compiler supports the -mbranch-protection or
1721	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1722	  will cause the kernel itself to be compiled with return address
1723	  protection. In this case, and if the target hardware is known to
1724	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1725	  disabled with minimal loss of protection.
1726
1727	  This feature works with FUNCTION_GRAPH_TRACER option only if
1728	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1729
1730config CC_HAS_BRANCH_PROT_PAC_RET
1731	# GCC 9 or later, clang 8 or later
1732	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1733
1734config CC_HAS_SIGN_RETURN_ADDRESS
1735	# GCC 7, 8
1736	def_bool $(cc-option,-msign-return-address=all)
1737
1738config AS_HAS_PAC
1739	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1740
1741config AS_HAS_CFI_NEGATE_RA_STATE
1742	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1743
1744endmenu
1745
1746menu "ARMv8.4 architectural features"
1747
1748config ARM64_AMU_EXTN
1749	bool "Enable support for the Activity Monitors Unit CPU extension"
1750	default y
1751	help
1752	  The activity monitors extension is an optional extension introduced
1753	  by the ARMv8.4 CPU architecture. This enables support for version 1
1754	  of the activity monitors architecture, AMUv1.
1755
1756	  To enable the use of this extension on CPUs that implement it, say Y.
1757
1758	  Note that for architectural reasons, firmware _must_ implement AMU
1759	  support when running on CPUs that present the activity monitors
1760	  extension. The required support is present in:
1761	    * Version 1.5 and later of the ARM Trusted Firmware
1762
1763	  For kernels that have this configuration enabled but boot with broken
1764	  firmware, you may need to say N here until the firmware is fixed.
1765	  Otherwise you may experience firmware panics or lockups when
1766	  accessing the counter registers. Even if you are not observing these
1767	  symptoms, the values returned by the register reads might not
1768	  correctly reflect reality. Most commonly, the value read will be 0,
1769	  indicating that the counter is not enabled.
1770
1771config AS_HAS_ARMV8_4
1772	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1773
1774config ARM64_TLB_RANGE
1775	bool "Enable support for tlbi range feature"
1776	default y
1777	depends on AS_HAS_ARMV8_4
1778	help
1779	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1780	  range of input addresses.
1781
1782	  The feature introduces new assembly instructions, and they were
1783	  support when binutils >= 2.30.
1784
1785endmenu
1786
1787menu "ARMv8.5 architectural features"
1788
1789config AS_HAS_ARMV8_5
1790	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1791
1792config ARM64_BTI
1793	bool "Branch Target Identification support"
1794	default y
1795	help
1796	  Branch Target Identification (part of the ARMv8.5 Extensions)
1797	  provides a mechanism to limit the set of locations to which computed
1798	  branch instructions such as BR or BLR can jump.
1799
1800	  To make use of BTI on CPUs that support it, say Y.
1801
1802	  BTI is intended to provide complementary protection to other control
1803	  flow integrity protection mechanisms, such as the Pointer
1804	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1805	  For this reason, it does not make sense to enable this option without
1806	  also enabling support for pointer authentication.  Thus, when
1807	  enabling this option you should also select ARM64_PTR_AUTH=y.
1808
1809	  Userspace binaries must also be specifically compiled to make use of
1810	  this mechanism.  If you say N here or the hardware does not support
1811	  BTI, such binaries can still run, but you get no additional
1812	  enforcement of branch destinations.
1813
1814config ARM64_BTI_KERNEL
1815	bool "Use Branch Target Identification for kernel"
1816	default y
1817	depends on ARM64_BTI
1818	depends on ARM64_PTR_AUTH_KERNEL
1819	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1820	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1821	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1822	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1823	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1824	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1825	help
1826	  Build the kernel with Branch Target Identification annotations
1827	  and enable enforcement of this for kernel code. When this option
1828	  is enabled and the system supports BTI all kernel code including
1829	  modular code must have BTI enabled.
1830
1831config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1832	# GCC 9 or later, clang 8 or later
1833	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1834
1835config ARM64_E0PD
1836	bool "Enable support for E0PD"
1837	default y
1838	help
1839	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1840	  that EL0 accesses made via TTBR1 always fault in constant time,
1841	  providing similar benefits to KASLR as those provided by KPTI, but
1842	  with lower overhead and without disrupting legitimate access to
1843	  kernel memory such as SPE.
1844
1845	  This option enables E0PD for TTBR1 where available.
1846
1847config ARCH_RANDOM
1848	bool "Enable support for random number generation"
1849	default y
1850	help
1851	  Random number generation (part of the ARMv8.5 Extensions)
1852	  provides a high bandwidth, cryptographically secure
1853	  hardware random number generator.
1854
1855config ARM64_AS_HAS_MTE
1856	# Initial support for MTE went in binutils 2.32.0, checked with
1857	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1858	# as a late addition to the final architecture spec (LDGM/STGM)
1859	# is only supported in the newer 2.32.x and 2.33 binutils
1860	# versions, hence the extra "stgm" instruction check below.
1861	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1862
1863config ARM64_MTE
1864	bool "Memory Tagging Extension support"
1865	default y
1866	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1867	depends on AS_HAS_ARMV8_5
1868	depends on AS_HAS_LSE_ATOMICS
1869	# Required for tag checking in the uaccess routines
1870	depends on ARM64_PAN
1871	select ARCH_USES_HIGH_VMA_FLAGS
1872	help
1873	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1874	  architectural support for run-time, always-on detection of
1875	  various classes of memory error to aid with software debugging
1876	  to eliminate vulnerabilities arising from memory-unsafe
1877	  languages.
1878
1879	  This option enables the support for the Memory Tagging
1880	  Extension at EL0 (i.e. for userspace).
1881
1882	  Selecting this option allows the feature to be detected at
1883	  runtime. Any secondary CPU not implementing this feature will
1884	  not be allowed a late bring-up.
1885
1886	  Userspace binaries that want to use this feature must
1887	  explicitly opt in. The mechanism for the userspace is
1888	  described in:
1889
1890	  Documentation/arm64/memory-tagging-extension.rst.
1891
1892endmenu
1893
1894menu "ARMv8.7 architectural features"
1895
1896config ARM64_EPAN
1897	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1898	default y
1899	depends on ARM64_PAN
1900	help
1901	 Enhanced Privileged Access Never (EPAN) allows Privileged
1902	 Access Never to be used with Execute-only mappings.
1903
1904	 The feature is detected at runtime, and will remain disabled
1905	 if the cpu does not implement the feature.
1906endmenu
1907
1908config ARM64_SVE
1909	bool "ARM Scalable Vector Extension support"
1910	default y
1911	help
1912	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1913	  execution state which complements and extends the SIMD functionality
1914	  of the base architecture to support much larger vectors and to enable
1915	  additional vectorisation opportunities.
1916
1917	  To enable use of this extension on CPUs that implement it, say Y.
1918
1919	  On CPUs that support the SVE2 extensions, this option will enable
1920	  those too.
1921
1922	  Note that for architectural reasons, firmware _must_ implement SVE
1923	  support when running on SVE capable hardware.  The required support
1924	  is present in:
1925
1926	    * version 1.5 and later of the ARM Trusted Firmware
1927	    * the AArch64 boot wrapper since commit 5e1261e08abf
1928	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1929
1930	  For other firmware implementations, consult the firmware documentation
1931	  or vendor.
1932
1933	  If you need the kernel to boot on SVE-capable hardware with broken
1934	  firmware, you may need to say N here until you get your firmware
1935	  fixed.  Otherwise, you may experience firmware panics or lockups when
1936	  booting the kernel.  If unsure and you are not observing these
1937	  symptoms, you should assume that it is safe to say Y.
1938
1939config ARM64_MODULE_PLTS
1940	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1941	depends on MODULES
1942	select HAVE_MOD_ARCH_SPECIFIC
1943	help
1944	  Allocate PLTs when loading modules so that jumps and calls whose
1945	  targets are too far away for their relative offsets to be encoded
1946	  in the instructions themselves can be bounced via veneers in the
1947	  module's PLT. This allows modules to be allocated in the generic
1948	  vmalloc area after the dedicated module memory area has been
1949	  exhausted.
1950
1951	  When running with address space randomization (KASLR), the module
1952	  region itself may be too far away for ordinary relative jumps and
1953	  calls, and so in that case, module PLTs are required and cannot be
1954	  disabled.
1955
1956	  Specific errata workaround(s) might also force module PLTs to be
1957	  enabled (ARM64_ERRATUM_843419).
1958
1959config ARM64_PSEUDO_NMI
1960	bool "Support for NMI-like interrupts"
1961	select ARM_GIC_V3
1962	help
1963	  Adds support for mimicking Non-Maskable Interrupts through the use of
1964	  GIC interrupt priority. This support requires version 3 or later of
1965	  ARM GIC.
1966
1967	  This high priority configuration for interrupts needs to be
1968	  explicitly enabled by setting the kernel parameter
1969	  "irqchip.gicv3_pseudo_nmi" to 1.
1970
1971	  If unsure, say N
1972
1973if ARM64_PSEUDO_NMI
1974config ARM64_DEBUG_PRIORITY_MASKING
1975	bool "Debug interrupt priority masking"
1976	help
1977	  This adds runtime checks to functions enabling/disabling
1978	  interrupts when using priority masking. The additional checks verify
1979	  the validity of ICC_PMR_EL1 when calling concerned functions.
1980
1981	  If unsure, say N
1982endif
1983
1984config RELOCATABLE
1985	bool "Build a relocatable kernel image" if EXPERT
1986	select ARCH_HAS_RELR
1987	default y
1988	help
1989	  This builds the kernel as a Position Independent Executable (PIE),
1990	  which retains all relocation metadata required to relocate the
1991	  kernel binary at runtime to a different virtual address than the
1992	  address it was linked at.
1993	  Since AArch64 uses the RELA relocation format, this requires a
1994	  relocation pass at runtime even if the kernel is loaded at the
1995	  same address it was linked at.
1996
1997config RANDOMIZE_BASE
1998	bool "Randomize the address of the kernel image"
1999	select ARM64_MODULE_PLTS if MODULES
2000	select RELOCATABLE
2001	help
2002	  Randomizes the virtual address at which the kernel image is
2003	  loaded, as a security feature that deters exploit attempts
2004	  relying on knowledge of the location of kernel internals.
2005
2006	  It is the bootloader's job to provide entropy, by passing a
2007	  random u64 value in /chosen/kaslr-seed at kernel entry.
2008
2009	  When booting via the UEFI stub, it will invoke the firmware's
2010	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2011	  to the kernel proper. In addition, it will randomise the physical
2012	  location of the kernel Image as well.
2013
2014	  If unsure, say N.
2015
2016config RANDOMIZE_MODULE_REGION_FULL
2017	bool "Randomize the module region over a 2 GB range"
2018	depends on RANDOMIZE_BASE
2019	default y
2020	help
2021	  Randomizes the location of the module region inside a 2 GB window
2022	  covering the core kernel. This way, it is less likely for modules
2023	  to leak information about the location of core kernel data structures
2024	  but it does imply that function calls between modules and the core
2025	  kernel will need to be resolved via veneers in the module PLT.
2026
2027	  When this option is not set, the module region will be randomized over
2028	  a limited range that contains the [_stext, _etext] interval of the
2029	  core kernel, so branch relocations are almost always in range unless
2030	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2031	  particular case of region exhaustion, modules might be able to fall
2032	  back to a larger 2GB area.
2033
2034config CC_HAVE_STACKPROTECTOR_SYSREG
2035	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2036
2037config STACKPROTECTOR_PER_TASK
2038	def_bool y
2039	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2040
2041endmenu
2042
2043menu "Boot options"
2044
2045config ARM64_ACPI_PARKING_PROTOCOL
2046	bool "Enable support for the ARM64 ACPI parking protocol"
2047	depends on ACPI
2048	help
2049	  Enable support for the ARM64 ACPI parking protocol. If disabled
2050	  the kernel will not allow booting through the ARM64 ACPI parking
2051	  protocol even if the corresponding data is present in the ACPI
2052	  MADT table.
2053
2054config CMDLINE
2055	string "Default kernel command string"
2056	default ""
2057	help
2058	  Provide a set of default command-line options at build time by
2059	  entering them here. As a minimum, you should specify the the
2060	  root device (e.g. root=/dev/nfs).
2061
2062choice
2063	prompt "Kernel command line type" if CMDLINE != ""
2064	default CMDLINE_FROM_BOOTLOADER
2065	help
2066	  Choose how the kernel will handle the provided default kernel
2067	  command line string.
2068
2069config CMDLINE_FROM_BOOTLOADER
2070	bool "Use bootloader kernel arguments if available"
2071	help
2072	  Uses the command-line options passed by the boot loader. If
2073	  the boot loader doesn't provide any, the default kernel command
2074	  string provided in CMDLINE will be used.
2075
2076config CMDLINE_FORCE
2077	bool "Always use the default kernel command string"
2078	help
2079	  Always use the default kernel command string, even if the boot
2080	  loader passes other arguments to the kernel.
2081	  This is useful if you cannot or don't want to change the
2082	  command-line options your boot loader passes to the kernel.
2083
2084endchoice
2085
2086config EFI_STUB
2087	bool
2088
2089config EFI
2090	bool "UEFI runtime support"
2091	depends on OF && !CPU_BIG_ENDIAN
2092	depends on KERNEL_MODE_NEON
2093	select ARCH_SUPPORTS_ACPI
2094	select LIBFDT
2095	select UCS2_STRING
2096	select EFI_PARAMS_FROM_FDT
2097	select EFI_RUNTIME_WRAPPERS
2098	select EFI_STUB
2099	select EFI_GENERIC_STUB
2100	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2101	default y
2102	help
2103	  This option provides support for runtime services provided
2104	  by UEFI firmware (such as non-volatile variables, realtime
2105          clock, and platform reset). A UEFI stub is also provided to
2106	  allow the kernel to be booted as an EFI application. This
2107	  is only useful on systems that have UEFI firmware.
2108
2109config DMI
2110	bool "Enable support for SMBIOS (DMI) tables"
2111	depends on EFI
2112	default y
2113	help
2114	  This enables SMBIOS/DMI feature for systems.
2115
2116	  This option is only useful on systems that have UEFI firmware.
2117	  However, even with this option, the resultant kernel should
2118	  continue to boot on existing non-UEFI platforms.
2119
2120endmenu
2121
2122config SYSVIPC_COMPAT
2123	def_bool y
2124	depends on COMPAT && SYSVIPC
2125
2126menu "Power management options"
2127
2128source "kernel/power/Kconfig"
2129
2130config ARCH_HIBERNATION_POSSIBLE
2131	def_bool y
2132	depends on CPU_PM
2133
2134config ARCH_HIBERNATION_HEADER
2135	def_bool y
2136	depends on HIBERNATION
2137
2138config ARCH_SUSPEND_POSSIBLE
2139	def_bool y
2140
2141endmenu
2142
2143menu "CPU Power Management"
2144
2145source "drivers/cpuidle/Kconfig"
2146
2147source "drivers/cpufreq/Kconfig"
2148
2149endmenu
2150
2151source "drivers/acpi/Kconfig"
2152
2153source "arch/arm64/kvm/Kconfig"
2154
2155if CRYPTO
2156source "arch/arm64/crypto/Kconfig"
2157endif
2158