xref: /linux/arch/arm64/Kconfig (revision 61307b7be41a1f1039d1d1368810a1d92cb97b44)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KEEPINITRD
34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37	select ARCH_HAS_PTE_DEVMAP
38	select ARCH_HAS_PTE_SPECIAL
39	select ARCH_HAS_HW_PTE_YOUNG
40	select ARCH_HAS_SETUP_DMA_OPS
41	select ARCH_HAS_SET_DIRECT_MAP
42	select ARCH_HAS_SET_MEMORY
43	select ARCH_STACKWALK
44	select ARCH_HAS_STRICT_KERNEL_RWX
45	select ARCH_HAS_STRICT_MODULE_RWX
46	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
47	select ARCH_HAS_SYNC_DMA_FOR_CPU
48	select ARCH_HAS_SYSCALL_WRAPPER
49	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
50	select ARCH_HAS_ZONE_DMA_SET if EXPERT
51	select ARCH_HAVE_ELF_PROT
52	select ARCH_HAVE_NMI_SAFE_CMPXCHG
53	select ARCH_HAVE_TRACE_MMIO_ACCESS
54	select ARCH_INLINE_READ_LOCK if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
70	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
80	select ARCH_KEEP_MEMBLOCK
81	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
82	select ARCH_USE_CMPXCHG_LOCKREF
83	select ARCH_USE_GNU_PROPERTY
84	select ARCH_USE_MEMTEST
85	select ARCH_USE_QUEUED_RWLOCKS
86	select ARCH_USE_QUEUED_SPINLOCKS
87	select ARCH_USE_SYM_ANNOTATIONS
88	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
89	select ARCH_SUPPORTS_HUGETLBFS
90	select ARCH_SUPPORTS_MEMORY_FAILURE
91	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
92	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
93	select ARCH_SUPPORTS_LTO_CLANG_THIN
94	select ARCH_SUPPORTS_CFI_CLANG
95	select ARCH_SUPPORTS_ATOMIC_RMW
96	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
97	select ARCH_SUPPORTS_NUMA_BALANCING
98	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
99	select ARCH_SUPPORTS_PER_VMA_LOCK
100	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
101	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
102	select ARCH_WANT_DEFAULT_BPF_JIT
103	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
104	select ARCH_WANT_FRAME_POINTERS
105	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
106	select ARCH_WANT_LD_ORPHAN_WARN
107	select ARCH_WANTS_EXECMEM_LATE if EXECMEM
108	select ARCH_WANTS_NO_INSTR
109	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
110	select ARCH_HAS_UBSAN
111	select ARM_AMBA
112	select ARM_ARCH_TIMER
113	select ARM_GIC
114	select AUDIT_ARCH_COMPAT_GENERIC
115	select ARM_GIC_V2M if PCI
116	select ARM_GIC_V3
117	select ARM_GIC_V3_ITS if PCI
118	select ARM_PSCI_FW
119	select BUILDTIME_TABLE_SORT
120	select CLONE_BACKWARDS
121	select COMMON_CLK
122	select CPU_PM if (SUSPEND || CPU_IDLE)
123	select CPUMASK_OFFSTACK if NR_CPUS > 256
124	select CRC32
125	select DCACHE_WORD_ACCESS
126	select DYNAMIC_FTRACE if FUNCTION_TRACER
127	select DMA_BOUNCE_UNALIGNED_KMALLOC
128	select DMA_DIRECT_REMAP
129	select EDAC_SUPPORT
130	select FRAME_POINTER
131	select FUNCTION_ALIGNMENT_4B
132	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
133	select GENERIC_ALLOCATOR
134	select GENERIC_ARCH_TOPOLOGY
135	select GENERIC_CLOCKEVENTS_BROADCAST
136	select GENERIC_CPU_AUTOPROBE
137	select GENERIC_CPU_DEVICES
138	select GENERIC_CPU_VULNERABILITIES
139	select GENERIC_EARLY_IOREMAP
140	select GENERIC_IDLE_POLL_SETUP
141	select GENERIC_IOREMAP
142	select GENERIC_IRQ_IPI
143	select GENERIC_IRQ_PROBE
144	select GENERIC_IRQ_SHOW
145	select GENERIC_IRQ_SHOW_LEVEL
146	select GENERIC_LIB_DEVMEM_IS_ALLOWED
147	select GENERIC_PCI_IOMAP
148	select GENERIC_PTDUMP
149	select GENERIC_SCHED_CLOCK
150	select GENERIC_SMP_IDLE_THREAD
151	select GENERIC_TIME_VSYSCALL
152	select GENERIC_GETTIMEOFDAY
153	select GENERIC_VDSO_TIME_NS
154	select HARDIRQS_SW_RESEND
155	select HAS_IOPORT
156	select HAVE_MOVE_PMD
157	select HAVE_MOVE_PUD
158	select HAVE_PCI
159	select HAVE_ACPI_APEI if (ACPI && EFI)
160	select HAVE_ALIGNED_STRUCT_PAGE
161	select HAVE_ARCH_AUDITSYSCALL
162	select HAVE_ARCH_BITREVERSE
163	select HAVE_ARCH_COMPILER_H
164	select HAVE_ARCH_HUGE_VMALLOC
165	select HAVE_ARCH_HUGE_VMAP
166	select HAVE_ARCH_JUMP_LABEL
167	select HAVE_ARCH_JUMP_LABEL_RELATIVE
168	select HAVE_ARCH_KASAN
169	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
170	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
171	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
172	# Some instrumentation may be unsound, hence EXPERT
173	select HAVE_ARCH_KCSAN if EXPERT
174	select HAVE_ARCH_KFENCE
175	select HAVE_ARCH_KGDB
176	select HAVE_ARCH_MMAP_RND_BITS
177	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
178	select HAVE_ARCH_PREL32_RELOCATIONS
179	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
180	select HAVE_ARCH_SECCOMP_FILTER
181	select HAVE_ARCH_STACKLEAK
182	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
183	select HAVE_ARCH_TRACEHOOK
184	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
185	select HAVE_ARCH_VMAP_STACK
186	select HAVE_ARM_SMCCC
187	select HAVE_ASM_MODVERSIONS
188	select HAVE_EBPF_JIT
189	select HAVE_C_RECORDMCOUNT
190	select HAVE_CMPXCHG_DOUBLE
191	select HAVE_CMPXCHG_LOCAL
192	select HAVE_CONTEXT_TRACKING_USER
193	select HAVE_DEBUG_KMEMLEAK
194	select HAVE_DMA_CONTIGUOUS
195	select HAVE_DYNAMIC_FTRACE
196	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
197		if $(cc-option,-fpatchable-function-entry=2)
198	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
199		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
200	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
201		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
202		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
203	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
204		if DYNAMIC_FTRACE_WITH_ARGS
205	select HAVE_SAMPLE_FTRACE_DIRECT
206	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
207	select HAVE_EFFICIENT_UNALIGNED_ACCESS
208	select HAVE_GUP_FAST
209	select HAVE_FTRACE_MCOUNT_RECORD
210	select HAVE_FUNCTION_TRACER
211	select HAVE_FUNCTION_ERROR_INJECTION
212	select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
213	select HAVE_FUNCTION_GRAPH_TRACER
214	select HAVE_GCC_PLUGINS
215	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
216		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
217	select HAVE_HW_BREAKPOINT if PERF_EVENTS
218	select HAVE_IOREMAP_PROT
219	select HAVE_IRQ_TIME_ACCOUNTING
220	select HAVE_MOD_ARCH_SPECIFIC
221	select HAVE_NMI
222	select HAVE_PERF_EVENTS
223	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
224	select HAVE_PERF_REGS
225	select HAVE_PERF_USER_STACK_DUMP
226	select HAVE_PREEMPT_DYNAMIC_KEY
227	select HAVE_REGS_AND_STACK_ACCESS_API
228	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
229	select HAVE_FUNCTION_ARG_ACCESS_API
230	select MMU_GATHER_RCU_TABLE_FREE
231	select HAVE_RSEQ
232	select HAVE_RUST if CPU_LITTLE_ENDIAN
233	select HAVE_STACKPROTECTOR
234	select HAVE_SYSCALL_TRACEPOINTS
235	select HAVE_KPROBES
236	select HAVE_KRETPROBES
237	select HAVE_GENERIC_VDSO
238	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
239	select IRQ_DOMAIN
240	select IRQ_FORCED_THREADING
241	select KASAN_VMALLOC if KASAN
242	select LOCK_MM_AND_FIND_VMA
243	select MODULES_USE_ELF_RELA
244	select NEED_DMA_MAP_STATE
245	select NEED_SG_DMA_LENGTH
246	select OF
247	select OF_EARLY_FLATTREE
248	select PCI_DOMAINS_GENERIC if PCI
249	select PCI_ECAM if (ACPI && PCI)
250	select PCI_SYSCALL if PCI
251	select POWER_RESET
252	select POWER_SUPPLY
253	select SPARSE_IRQ
254	select SWIOTLB
255	select SYSCTL_EXCEPTION_TRACE
256	select THREAD_INFO_IN_TASK
257	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
258	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
259	select TRACE_IRQFLAGS_SUPPORT
260	select TRACE_IRQFLAGS_NMI_SUPPORT
261	select HAVE_SOFTIRQ_ON_OWN_STACK
262	select USER_STACKTRACE_SUPPORT
263	help
264	  ARM 64-bit (AArch64) Linux support.
265
266config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
267	def_bool CC_IS_CLANG
268	# https://github.com/ClangBuiltLinux/linux/issues/1507
269	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
270	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
271
272config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
273	def_bool CC_IS_GCC
274	depends on $(cc-option,-fpatchable-function-entry=2)
275	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
276
277config 64BIT
278	def_bool y
279
280config MMU
281	def_bool y
282
283config ARM64_CONT_PTE_SHIFT
284	int
285	default 5 if PAGE_SIZE_64KB
286	default 7 if PAGE_SIZE_16KB
287	default 4
288
289config ARM64_CONT_PMD_SHIFT
290	int
291	default 5 if PAGE_SIZE_64KB
292	default 5 if PAGE_SIZE_16KB
293	default 4
294
295config ARCH_MMAP_RND_BITS_MIN
296	default 14 if PAGE_SIZE_64KB
297	default 16 if PAGE_SIZE_16KB
298	default 18
299
300# max bits determined by the following formula:
301#  VA_BITS - PAGE_SHIFT - 3
302config ARCH_MMAP_RND_BITS_MAX
303	default 19 if ARM64_VA_BITS=36
304	default 24 if ARM64_VA_BITS=39
305	default 27 if ARM64_VA_BITS=42
306	default 30 if ARM64_VA_BITS=47
307	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
308	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
309	default 33 if ARM64_VA_BITS=48
310	default 14 if ARM64_64K_PAGES
311	default 16 if ARM64_16K_PAGES
312	default 18
313
314config ARCH_MMAP_RND_COMPAT_BITS_MIN
315	default 7 if ARM64_64K_PAGES
316	default 9 if ARM64_16K_PAGES
317	default 11
318
319config ARCH_MMAP_RND_COMPAT_BITS_MAX
320	default 16
321
322config NO_IOPORT_MAP
323	def_bool y if !PCI
324
325config STACKTRACE_SUPPORT
326	def_bool y
327
328config ILLEGAL_POINTER_VALUE
329	hex
330	default 0xdead000000000000
331
332config LOCKDEP_SUPPORT
333	def_bool y
334
335config GENERIC_BUG
336	def_bool y
337	depends on BUG
338
339config GENERIC_BUG_RELATIVE_POINTERS
340	def_bool y
341	depends on GENERIC_BUG
342
343config GENERIC_HWEIGHT
344	def_bool y
345
346config GENERIC_CSUM
347	def_bool y
348
349config GENERIC_CALIBRATE_DELAY
350	def_bool y
351
352config SMP
353	def_bool y
354
355config KERNEL_MODE_NEON
356	def_bool y
357
358config FIX_EARLYCON_MEM
359	def_bool y
360
361config PGTABLE_LEVELS
362	int
363	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
364	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
365	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
366	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
367	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
368	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
369	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
370	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
371
372config ARCH_SUPPORTS_UPROBES
373	def_bool y
374
375config ARCH_PROC_KCORE_TEXT
376	def_bool y
377
378config BROKEN_GAS_INST
379	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
380
381config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
382	bool
383	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
384	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
385	default y if CC_IS_CLANG
386	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
387	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
388	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
389	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
390	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
391	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
392	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
393	default n
394
395config KASAN_SHADOW_OFFSET
396	hex
397	depends on KASAN_GENERIC || KASAN_SW_TAGS
398	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
399	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
400	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
401	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
402	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
403	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
404	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
405	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
406	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
407	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
408	default 0xffffffffffffffff
409
410config UNWIND_TABLES
411	bool
412
413source "arch/arm64/Kconfig.platforms"
414
415menu "Kernel Features"
416
417menu "ARM errata workarounds via the alternatives framework"
418
419config AMPERE_ERRATUM_AC03_CPU_38
420        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
421	default y
422	help
423	  This option adds an alternative code sequence to work around Ampere
424	  erratum AC03_CPU_38 on AmpereOne.
425
426	  The affected design reports FEAT_HAFDBS as not implemented in
427	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
428	  as required by the architecture. The unadvertised HAFDBS
429	  implementation suffers from an additional erratum where hardware
430	  A/D updates can occur after a PTE has been marked invalid.
431
432	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
433	  which avoids enabling unadvertised hardware Access Flag management
434	  at stage-2.
435
436	  If unsure, say Y.
437
438config ARM64_WORKAROUND_CLEAN_CACHE
439	bool
440
441config ARM64_ERRATUM_826319
442	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
443	default y
444	select ARM64_WORKAROUND_CLEAN_CACHE
445	help
446	  This option adds an alternative code sequence to work around ARM
447	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
448	  AXI master interface and an L2 cache.
449
450	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
451	  and is unable to accept a certain write via this interface, it will
452	  not progress on read data presented on the read data channel and the
453	  system can deadlock.
454
455	  The workaround promotes data cache clean instructions to
456	  data cache clean-and-invalidate.
457	  Please note that this does not necessarily enable the workaround,
458	  as it depends on the alternative framework, which will only patch
459	  the kernel if an affected CPU is detected.
460
461	  If unsure, say Y.
462
463config ARM64_ERRATUM_827319
464	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
465	default y
466	select ARM64_WORKAROUND_CLEAN_CACHE
467	help
468	  This option adds an alternative code sequence to work around ARM
469	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
470	  master interface and an L2 cache.
471
472	  Under certain conditions this erratum can cause a clean line eviction
473	  to occur at the same time as another transaction to the same address
474	  on the AMBA 5 CHI interface, which can cause data corruption if the
475	  interconnect reorders the two transactions.
476
477	  The workaround promotes data cache clean instructions to
478	  data cache clean-and-invalidate.
479	  Please note that this does not necessarily enable the workaround,
480	  as it depends on the alternative framework, which will only patch
481	  the kernel if an affected CPU is detected.
482
483	  If unsure, say Y.
484
485config ARM64_ERRATUM_824069
486	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
487	default y
488	select ARM64_WORKAROUND_CLEAN_CACHE
489	help
490	  This option adds an alternative code sequence to work around ARM
491	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
492	  to a coherent interconnect.
493
494	  If a Cortex-A53 processor is executing a store or prefetch for
495	  write instruction at the same time as a processor in another
496	  cluster is executing a cache maintenance operation to the same
497	  address, then this erratum might cause a clean cache line to be
498	  incorrectly marked as dirty.
499
500	  The workaround promotes data cache clean instructions to
501	  data cache clean-and-invalidate.
502	  Please note that this option does not necessarily enable the
503	  workaround, as it depends on the alternative framework, which will
504	  only patch the kernel if an affected CPU is detected.
505
506	  If unsure, say Y.
507
508config ARM64_ERRATUM_819472
509	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
510	default y
511	select ARM64_WORKAROUND_CLEAN_CACHE
512	help
513	  This option adds an alternative code sequence to work around ARM
514	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
515	  present when it is connected to a coherent interconnect.
516
517	  If the processor is executing a load and store exclusive sequence at
518	  the same time as a processor in another cluster is executing a cache
519	  maintenance operation to the same address, then this erratum might
520	  cause data corruption.
521
522	  The workaround promotes data cache clean instructions to
523	  data cache clean-and-invalidate.
524	  Please note that this does not necessarily enable the workaround,
525	  as it depends on the alternative framework, which will only patch
526	  the kernel if an affected CPU is detected.
527
528	  If unsure, say Y.
529
530config ARM64_ERRATUM_832075
531	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
532	default y
533	help
534	  This option adds an alternative code sequence to work around ARM
535	  erratum 832075 on Cortex-A57 parts up to r1p2.
536
537	  Affected Cortex-A57 parts might deadlock when exclusive load/store
538	  instructions to Write-Back memory are mixed with Device loads.
539
540	  The workaround is to promote device loads to use Load-Acquire
541	  semantics.
542	  Please note that this does not necessarily enable the workaround,
543	  as it depends on the alternative framework, which will only patch
544	  the kernel if an affected CPU is detected.
545
546	  If unsure, say Y.
547
548config ARM64_ERRATUM_834220
549	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
550	depends on KVM
551	help
552	  This option adds an alternative code sequence to work around ARM
553	  erratum 834220 on Cortex-A57 parts up to r1p2.
554
555	  Affected Cortex-A57 parts might report a Stage 2 translation
556	  fault as the result of a Stage 1 fault for load crossing a
557	  page boundary when there is a permission or device memory
558	  alignment fault at Stage 1 and a translation fault at Stage 2.
559
560	  The workaround is to verify that the Stage 1 translation
561	  doesn't generate a fault before handling the Stage 2 fault.
562	  Please note that this does not necessarily enable the workaround,
563	  as it depends on the alternative framework, which will only patch
564	  the kernel if an affected CPU is detected.
565
566	  If unsure, say N.
567
568config ARM64_ERRATUM_1742098
569	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
570	depends on COMPAT
571	default y
572	help
573	  This option removes the AES hwcap for aarch32 user-space to
574	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
575
576	  Affected parts may corrupt the AES state if an interrupt is
577	  taken between a pair of AES instructions. These instructions
578	  are only present if the cryptography extensions are present.
579	  All software should have a fallback implementation for CPUs
580	  that don't implement the cryptography extensions.
581
582	  If unsure, say Y.
583
584config ARM64_ERRATUM_845719
585	bool "Cortex-A53: 845719: a load might read incorrect data"
586	depends on COMPAT
587	default y
588	help
589	  This option adds an alternative code sequence to work around ARM
590	  erratum 845719 on Cortex-A53 parts up to r0p4.
591
592	  When running a compat (AArch32) userspace on an affected Cortex-A53
593	  part, a load at EL0 from a virtual address that matches the bottom 32
594	  bits of the virtual address used by a recent load at (AArch64) EL1
595	  might return incorrect data.
596
597	  The workaround is to write the contextidr_el1 register on exception
598	  return to a 32-bit task.
599	  Please note that this does not necessarily enable the workaround,
600	  as it depends on the alternative framework, which will only patch
601	  the kernel if an affected CPU is detected.
602
603	  If unsure, say Y.
604
605config ARM64_ERRATUM_843419
606	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
607	default y
608	help
609	  This option links the kernel with '--fix-cortex-a53-843419' and
610	  enables PLT support to replace certain ADRP instructions, which can
611	  cause subsequent memory accesses to use an incorrect address on
612	  Cortex-A53 parts up to r0p4.
613
614	  If unsure, say Y.
615
616config ARM64_LD_HAS_FIX_ERRATUM_843419
617	def_bool $(ld-option,--fix-cortex-a53-843419)
618
619config ARM64_ERRATUM_1024718
620	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
621	default y
622	help
623	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
624
625	  Affected Cortex-A55 cores (all revisions) could cause incorrect
626	  update of the hardware dirty bit when the DBM/AP bits are updated
627	  without a break-before-make. The workaround is to disable the usage
628	  of hardware DBM locally on the affected cores. CPUs not affected by
629	  this erratum will continue to use the feature.
630
631	  If unsure, say Y.
632
633config ARM64_ERRATUM_1418040
634	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
635	default y
636	depends on COMPAT
637	help
638	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
639	  errata 1188873 and 1418040.
640
641	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
642	  cause register corruption when accessing the timer registers
643	  from AArch32 userspace.
644
645	  If unsure, say Y.
646
647config ARM64_WORKAROUND_SPECULATIVE_AT
648	bool
649
650config ARM64_ERRATUM_1165522
651	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
652	default y
653	select ARM64_WORKAROUND_SPECULATIVE_AT
654	help
655	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
656
657	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
658	  corrupted TLBs by speculating an AT instruction during a guest
659	  context switch.
660
661	  If unsure, say Y.
662
663config ARM64_ERRATUM_1319367
664	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
665	default y
666	select ARM64_WORKAROUND_SPECULATIVE_AT
667	help
668	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
669	  and A72 erratum 1319367
670
671	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
672	  speculating an AT instruction during a guest context switch.
673
674	  If unsure, say Y.
675
676config ARM64_ERRATUM_1530923
677	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
678	default y
679	select ARM64_WORKAROUND_SPECULATIVE_AT
680	help
681	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
682
683	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
684	  corrupted TLBs by speculating an AT instruction during a guest
685	  context switch.
686
687	  If unsure, say Y.
688
689config ARM64_WORKAROUND_REPEAT_TLBI
690	bool
691
692config ARM64_ERRATUM_2441007
693	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
694	select ARM64_WORKAROUND_REPEAT_TLBI
695	help
696	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
697
698	  Under very rare circumstances, affected Cortex-A55 CPUs
699	  may not handle a race between a break-before-make sequence on one
700	  CPU, and another CPU accessing the same page. This could allow a
701	  store to a page that has been unmapped.
702
703	  Work around this by adding the affected CPUs to the list that needs
704	  TLB sequences to be done twice.
705
706	  If unsure, say N.
707
708config ARM64_ERRATUM_1286807
709	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
710	select ARM64_WORKAROUND_REPEAT_TLBI
711	help
712	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
713
714	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
715	  address for a cacheable mapping of a location is being
716	  accessed by a core while another core is remapping the virtual
717	  address to a new physical page using the recommended
718	  break-before-make sequence, then under very rare circumstances
719	  TLBI+DSB completes before a read using the translation being
720	  invalidated has been observed by other observers. The
721	  workaround repeats the TLBI+DSB operation.
722
723	  If unsure, say N.
724
725config ARM64_ERRATUM_1463225
726	bool "Cortex-A76: Software Step might prevent interrupt recognition"
727	default y
728	help
729	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
730
731	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
732	  of a system call instruction (SVC) can prevent recognition of
733	  subsequent interrupts when software stepping is disabled in the
734	  exception handler of the system call and either kernel debugging
735	  is enabled or VHE is in use.
736
737	  Work around the erratum by triggering a dummy step exception
738	  when handling a system call from a task that is being stepped
739	  in a VHE configuration of the kernel.
740
741	  If unsure, say Y.
742
743config ARM64_ERRATUM_1542419
744	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
745	help
746	  This option adds a workaround for ARM Neoverse-N1 erratum
747	  1542419.
748
749	  Affected Neoverse-N1 cores could execute a stale instruction when
750	  modified by another CPU. The workaround depends on a firmware
751	  counterpart.
752
753	  Workaround the issue by hiding the DIC feature from EL0. This
754	  forces user-space to perform cache maintenance.
755
756	  If unsure, say N.
757
758config ARM64_ERRATUM_1508412
759	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
760	default y
761	help
762	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
763
764	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
765	  of a store-exclusive or read of PAR_EL1 and a load with device or
766	  non-cacheable memory attributes. The workaround depends on a firmware
767	  counterpart.
768
769	  KVM guests must also have the workaround implemented or they can
770	  deadlock the system.
771
772	  Work around the issue by inserting DMB SY barriers around PAR_EL1
773	  register reads and warning KVM users. The DMB barrier is sufficient
774	  to prevent a speculative PAR_EL1 read.
775
776	  If unsure, say Y.
777
778config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
779	bool
780
781config ARM64_ERRATUM_2051678
782	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
783	default y
784	help
785	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
786	  Affected Cortex-A510 might not respect the ordering rules for
787	  hardware update of the page table's dirty bit. The workaround
788	  is to not enable the feature on affected CPUs.
789
790	  If unsure, say Y.
791
792config ARM64_ERRATUM_2077057
793	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
794	default y
795	help
796	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
797	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
798	  expected, but a Pointer Authentication trap is taken instead. The
799	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
800	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
801
802	  This can only happen when EL2 is stepping EL1.
803
804	  When these conditions occur, the SPSR_EL2 value is unchanged from the
805	  previous guest entry, and can be restored from the in-memory copy.
806
807	  If unsure, say Y.
808
809config ARM64_ERRATUM_2658417
810	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
811	default y
812	help
813	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
814	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
815	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
816	  A510 CPUs are using shared neon hardware. As the sharing is not
817	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
818	  user-space should not be using these instructions.
819
820	  If unsure, say Y.
821
822config ARM64_ERRATUM_2119858
823	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
824	default y
825	depends on CORESIGHT_TRBE
826	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
827	help
828	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
829
830	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
831	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
832	  the event of a WRAP event.
833
834	  Work around the issue by always making sure we move the TRBPTR_EL1 by
835	  256 bytes before enabling the buffer and filling the first 256 bytes of
836	  the buffer with ETM ignore packets upon disabling.
837
838	  If unsure, say Y.
839
840config ARM64_ERRATUM_2139208
841	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
842	default y
843	depends on CORESIGHT_TRBE
844	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
845	help
846	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
847
848	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
849	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
850	  the event of a WRAP event.
851
852	  Work around the issue by always making sure we move the TRBPTR_EL1 by
853	  256 bytes before enabling the buffer and filling the first 256 bytes of
854	  the buffer with ETM ignore packets upon disabling.
855
856	  If unsure, say Y.
857
858config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
859	bool
860
861config ARM64_ERRATUM_2054223
862	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
863	default y
864	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
865	help
866	  Enable workaround for ARM Cortex-A710 erratum 2054223
867
868	  Affected cores may fail to flush the trace data on a TSB instruction, when
869	  the PE is in trace prohibited state. This will cause losing a few bytes
870	  of the trace cached.
871
872	  Workaround is to issue two TSB consecutively on affected cores.
873
874	  If unsure, say Y.
875
876config ARM64_ERRATUM_2067961
877	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
878	default y
879	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
880	help
881	  Enable workaround for ARM Neoverse-N2 erratum 2067961
882
883	  Affected cores may fail to flush the trace data on a TSB instruction, when
884	  the PE is in trace prohibited state. This will cause losing a few bytes
885	  of the trace cached.
886
887	  Workaround is to issue two TSB consecutively on affected cores.
888
889	  If unsure, say Y.
890
891config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
892	bool
893
894config ARM64_ERRATUM_2253138
895	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
896	depends on CORESIGHT_TRBE
897	default y
898	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
899	help
900	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
901
902	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
903	  for TRBE. Under some conditions, the TRBE might generate a write to the next
904	  virtually addressed page following the last page of the TRBE address space
905	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
906
907	  Work around this in the driver by always making sure that there is a
908	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
909
910	  If unsure, say Y.
911
912config ARM64_ERRATUM_2224489
913	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
914	depends on CORESIGHT_TRBE
915	default y
916	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
917	help
918	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
919
920	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
921	  for TRBE. Under some conditions, the TRBE might generate a write to the next
922	  virtually addressed page following the last page of the TRBE address space
923	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
924
925	  Work around this in the driver by always making sure that there is a
926	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
927
928	  If unsure, say Y.
929
930config ARM64_ERRATUM_2441009
931	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
932	select ARM64_WORKAROUND_REPEAT_TLBI
933	help
934	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
935
936	  Under very rare circumstances, affected Cortex-A510 CPUs
937	  may not handle a race between a break-before-make sequence on one
938	  CPU, and another CPU accessing the same page. This could allow a
939	  store to a page that has been unmapped.
940
941	  Work around this by adding the affected CPUs to the list that needs
942	  TLB sequences to be done twice.
943
944	  If unsure, say N.
945
946config ARM64_ERRATUM_2064142
947	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
948	depends on CORESIGHT_TRBE
949	default y
950	help
951	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
952
953	  Affected Cortex-A510 core might fail to write into system registers after the
954	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
955	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
956	  and TRBTRG_EL1 will be ignored and will not be effected.
957
958	  Work around this in the driver by executing TSB CSYNC and DSB after collection
959	  is stopped and before performing a system register write to one of the affected
960	  registers.
961
962	  If unsure, say Y.
963
964config ARM64_ERRATUM_2038923
965	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
966	depends on CORESIGHT_TRBE
967	default y
968	help
969	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
970
971	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
972	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
973	  might be corrupted. This happens after TRBE buffer has been enabled by setting
974	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
975	  execution changes from a context, in which trace is prohibited to one where it
976	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
977	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
978	  the trace buffer state might be corrupted.
979
980	  Work around this in the driver by preventing an inconsistent view of whether the
981	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
982	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
983	  two ISB instructions if no ERET is to take place.
984
985	  If unsure, say Y.
986
987config ARM64_ERRATUM_1902691
988	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
989	depends on CORESIGHT_TRBE
990	default y
991	help
992	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
993
994	  Affected Cortex-A510 core might cause trace data corruption, when being written
995	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
996	  trace data.
997
998	  Work around this problem in the driver by just preventing TRBE initialization on
999	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1000	  on such implementations. This will cover the kernel for any firmware that doesn't
1001	  do this already.
1002
1003	  If unsure, say Y.
1004
1005config ARM64_ERRATUM_2457168
1006	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1007	depends on ARM64_AMU_EXTN
1008	default y
1009	help
1010	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1011
1012	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1013	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1014	  incorrectly giving a significantly higher output value.
1015
1016	  Work around this problem by returning 0 when reading the affected counter in
1017	  key locations that results in disabling all users of this counter. This effect
1018	  is the same to firmware disabling affected counters.
1019
1020	  If unsure, say Y.
1021
1022config ARM64_ERRATUM_2645198
1023	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1024	default y
1025	help
1026	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1027
1028	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1029	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1030	  next instruction abort caused by permission fault.
1031
1032	  Only user-space does executable to non-executable permission transition via
1033	  mprotect() system call. Workaround the problem by doing a break-before-make
1034	  TLB invalidation, for all changes to executable user space mappings.
1035
1036	  If unsure, say Y.
1037
1038config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1039	bool
1040
1041config ARM64_ERRATUM_2966298
1042	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1043	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1044	default y
1045	help
1046	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1047
1048	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1049	  load might leak data from a privileged level via a cache side channel.
1050
1051	  Work around this problem by executing a TLBI before returning to EL0.
1052
1053	  If unsure, say Y.
1054
1055config ARM64_ERRATUM_3117295
1056	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1057	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1058	default y
1059	help
1060	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1061
1062	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1063	  load might leak data from a privileged level via a cache side channel.
1064
1065	  Work around this problem by executing a TLBI before returning to EL0.
1066
1067	  If unsure, say Y.
1068
1069config CAVIUM_ERRATUM_22375
1070	bool "Cavium erratum 22375, 24313"
1071	default y
1072	help
1073	  Enable workaround for errata 22375 and 24313.
1074
1075	  This implements two gicv3-its errata workarounds for ThunderX. Both
1076	  with a small impact affecting only ITS table allocation.
1077
1078	    erratum 22375: only alloc 8MB table size
1079	    erratum 24313: ignore memory access type
1080
1081	  The fixes are in ITS initialization and basically ignore memory access
1082	  type and table size provided by the TYPER and BASER registers.
1083
1084	  If unsure, say Y.
1085
1086config CAVIUM_ERRATUM_23144
1087	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1088	depends on NUMA
1089	default y
1090	help
1091	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1092
1093	  If unsure, say Y.
1094
1095config CAVIUM_ERRATUM_23154
1096	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1097	default y
1098	help
1099	  The ThunderX GICv3 implementation requires a modified version for
1100	  reading the IAR status to ensure data synchronization
1101	  (access to icc_iar1_el1 is not sync'ed before and after).
1102
1103	  It also suffers from erratum 38545 (also present on Marvell's
1104	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1105	  spuriously presented to the CPU interface.
1106
1107	  If unsure, say Y.
1108
1109config CAVIUM_ERRATUM_27456
1110	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1111	default y
1112	help
1113	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1114	  instructions may cause the icache to become corrupted if it
1115	  contains data for a non-current ASID.  The fix is to
1116	  invalidate the icache when changing the mm context.
1117
1118	  If unsure, say Y.
1119
1120config CAVIUM_ERRATUM_30115
1121	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1122	default y
1123	help
1124	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1125	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1126	  interrupts in host. Trapping both GICv3 group-0 and group-1
1127	  accesses sidesteps the issue.
1128
1129	  If unsure, say Y.
1130
1131config CAVIUM_TX2_ERRATUM_219
1132	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1133	default y
1134	help
1135	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1136	  TTBR update and the corresponding context synchronizing operation can
1137	  cause a spurious Data Abort to be delivered to any hardware thread in
1138	  the CPU core.
1139
1140	  Work around the issue by avoiding the problematic code sequence and
1141	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1142	  trap handler performs the corresponding register access, skips the
1143	  instruction and ensures context synchronization by virtue of the
1144	  exception return.
1145
1146	  If unsure, say Y.
1147
1148config FUJITSU_ERRATUM_010001
1149	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1150	default y
1151	help
1152	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1153	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1154	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1155	  This fault occurs under a specific hardware condition when a
1156	  load/store instruction performs an address translation using:
1157	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1158	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1159	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1160	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1161
1162	  The workaround is to ensure these bits are clear in TCR_ELx.
1163	  The workaround only affects the Fujitsu-A64FX.
1164
1165	  If unsure, say Y.
1166
1167config HISILICON_ERRATUM_161600802
1168	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1169	default y
1170	help
1171	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1172	  when issued ITS commands such as VMOVP and VMAPP, and requires
1173	  a 128kB offset to be applied to the target address in this commands.
1174
1175	  If unsure, say Y.
1176
1177config QCOM_FALKOR_ERRATUM_1003
1178	bool "Falkor E1003: Incorrect translation due to ASID change"
1179	default y
1180	help
1181	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1182	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1183	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1184	  then only for entries in the walk cache, since the leaf translation
1185	  is unchanged. Work around the erratum by invalidating the walk cache
1186	  entries for the trampoline before entering the kernel proper.
1187
1188config QCOM_FALKOR_ERRATUM_1009
1189	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1190	default y
1191	select ARM64_WORKAROUND_REPEAT_TLBI
1192	help
1193	  On Falkor v1, the CPU may prematurely complete a DSB following a
1194	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1195	  one more time to fix the issue.
1196
1197	  If unsure, say Y.
1198
1199config QCOM_QDF2400_ERRATUM_0065
1200	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1201	default y
1202	help
1203	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1204	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1205	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1206
1207	  If unsure, say Y.
1208
1209config QCOM_FALKOR_ERRATUM_E1041
1210	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1211	default y
1212	help
1213	  Falkor CPU may speculatively fetch instructions from an improper
1214	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1215	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1216
1217	  If unsure, say Y.
1218
1219config NVIDIA_CARMEL_CNP_ERRATUM
1220	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1221	default y
1222	help
1223	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1224	  invalidate shared TLB entries installed by a different core, as it would
1225	  on standard ARM cores.
1226
1227	  If unsure, say Y.
1228
1229config ROCKCHIP_ERRATUM_3588001
1230	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1231	default y
1232	help
1233	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1234	  This means, that its sharability feature may not be used, even though it
1235	  is supported by the IP itself.
1236
1237	  If unsure, say Y.
1238
1239config SOCIONEXT_SYNQUACER_PREITS
1240	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1241	default y
1242	help
1243	  Socionext Synquacer SoCs implement a separate h/w block to generate
1244	  MSI doorbell writes with non-zero values for the device ID.
1245
1246	  If unsure, say Y.
1247
1248endmenu # "ARM errata workarounds via the alternatives framework"
1249
1250choice
1251	prompt "Page size"
1252	default ARM64_4K_PAGES
1253	help
1254	  Page size (translation granule) configuration.
1255
1256config ARM64_4K_PAGES
1257	bool "4KB"
1258	select HAVE_PAGE_SIZE_4KB
1259	help
1260	  This feature enables 4KB pages support.
1261
1262config ARM64_16K_PAGES
1263	bool "16KB"
1264	select HAVE_PAGE_SIZE_16KB
1265	help
1266	  The system will use 16KB pages support. AArch32 emulation
1267	  requires applications compiled with 16K (or a multiple of 16K)
1268	  aligned segments.
1269
1270config ARM64_64K_PAGES
1271	bool "64KB"
1272	select HAVE_PAGE_SIZE_64KB
1273	help
1274	  This feature enables 64KB pages support (4KB by default)
1275	  allowing only two levels of page tables and faster TLB
1276	  look-up. AArch32 emulation requires applications compiled
1277	  with 64K aligned segments.
1278
1279endchoice
1280
1281choice
1282	prompt "Virtual address space size"
1283	default ARM64_VA_BITS_52
1284	help
1285	  Allows choosing one of multiple possible virtual address
1286	  space sizes. The level of translation table is determined by
1287	  a combination of page size and virtual address space size.
1288
1289config ARM64_VA_BITS_36
1290	bool "36-bit" if EXPERT
1291	depends on PAGE_SIZE_16KB
1292
1293config ARM64_VA_BITS_39
1294	bool "39-bit"
1295	depends on PAGE_SIZE_4KB
1296
1297config ARM64_VA_BITS_42
1298	bool "42-bit"
1299	depends on PAGE_SIZE_64KB
1300
1301config ARM64_VA_BITS_47
1302	bool "47-bit"
1303	depends on PAGE_SIZE_16KB
1304
1305config ARM64_VA_BITS_48
1306	bool "48-bit"
1307
1308config ARM64_VA_BITS_52
1309	bool "52-bit"
1310	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1311	help
1312	  Enable 52-bit virtual addressing for userspace when explicitly
1313	  requested via a hint to mmap(). The kernel will also use 52-bit
1314	  virtual addresses for its own mappings (provided HW support for
1315	  this feature is available, otherwise it reverts to 48-bit).
1316
1317	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1318	  ARMv8.3 Pointer Authentication will result in the PAC being
1319	  reduced from 7 bits to 3 bits, which may have a significant
1320	  impact on its susceptibility to brute-force attacks.
1321
1322	  If unsure, select 48-bit virtual addressing instead.
1323
1324endchoice
1325
1326config ARM64_FORCE_52BIT
1327	bool "Force 52-bit virtual addresses for userspace"
1328	depends on ARM64_VA_BITS_52 && EXPERT
1329	help
1330	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1331	  to maintain compatibility with older software by providing 48-bit VAs
1332	  unless a hint is supplied to mmap.
1333
1334	  This configuration option disables the 48-bit compatibility logic, and
1335	  forces all userspace addresses to be 52-bit on HW that supports it. One
1336	  should only enable this configuration option for stress testing userspace
1337	  memory management code. If unsure say N here.
1338
1339config ARM64_VA_BITS
1340	int
1341	default 36 if ARM64_VA_BITS_36
1342	default 39 if ARM64_VA_BITS_39
1343	default 42 if ARM64_VA_BITS_42
1344	default 47 if ARM64_VA_BITS_47
1345	default 48 if ARM64_VA_BITS_48
1346	default 52 if ARM64_VA_BITS_52
1347
1348choice
1349	prompt "Physical address space size"
1350	default ARM64_PA_BITS_48
1351	help
1352	  Choose the maximum physical address range that the kernel will
1353	  support.
1354
1355config ARM64_PA_BITS_48
1356	bool "48-bit"
1357	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1358
1359config ARM64_PA_BITS_52
1360	bool "52-bit"
1361	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1362	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1363	help
1364	  Enable support for a 52-bit physical address space, introduced as
1365	  part of the ARMv8.2-LPA extension.
1366
1367	  With this enabled, the kernel will also continue to work on CPUs that
1368	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1369	  minor performance overhead).
1370
1371endchoice
1372
1373config ARM64_PA_BITS
1374	int
1375	default 48 if ARM64_PA_BITS_48
1376	default 52 if ARM64_PA_BITS_52
1377
1378config ARM64_LPA2
1379	def_bool y
1380	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1381
1382choice
1383	prompt "Endianness"
1384	default CPU_LITTLE_ENDIAN
1385	help
1386	  Select the endianness of data accesses performed by the CPU. Userspace
1387	  applications will need to be compiled and linked for the endianness
1388	  that is selected here.
1389
1390config CPU_BIG_ENDIAN
1391	bool "Build big-endian kernel"
1392	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1393	depends on AS_IS_GNU || AS_VERSION >= 150000
1394	help
1395	  Say Y if you plan on running a kernel with a big-endian userspace.
1396
1397config CPU_LITTLE_ENDIAN
1398	bool "Build little-endian kernel"
1399	help
1400	  Say Y if you plan on running a kernel with a little-endian userspace.
1401	  This is usually the case for distributions targeting arm64.
1402
1403endchoice
1404
1405config SCHED_MC
1406	bool "Multi-core scheduler support"
1407	help
1408	  Multi-core scheduler support improves the CPU scheduler's decision
1409	  making when dealing with multi-core CPU chips at a cost of slightly
1410	  increased overhead in some places. If unsure say N here.
1411
1412config SCHED_CLUSTER
1413	bool "Cluster scheduler support"
1414	help
1415	  Cluster scheduler support improves the CPU scheduler's decision
1416	  making when dealing with machines that have clusters of CPUs.
1417	  Cluster usually means a couple of CPUs which are placed closely
1418	  by sharing mid-level caches, last-level cache tags or internal
1419	  busses.
1420
1421config SCHED_SMT
1422	bool "SMT scheduler support"
1423	help
1424	  Improves the CPU scheduler's decision making when dealing with
1425	  MultiThreading at a cost of slightly increased overhead in some
1426	  places. If unsure say N here.
1427
1428config NR_CPUS
1429	int "Maximum number of CPUs (2-4096)"
1430	range 2 4096
1431	default "512"
1432
1433config HOTPLUG_CPU
1434	bool "Support for hot-pluggable CPUs"
1435	select GENERIC_IRQ_MIGRATION
1436	help
1437	  Say Y here to experiment with turning CPUs off and on.  CPUs
1438	  can be controlled through /sys/devices/system/cpu.
1439
1440# Common NUMA Features
1441config NUMA
1442	bool "NUMA Memory Allocation and Scheduler Support"
1443	select GENERIC_ARCH_NUMA
1444	select ACPI_NUMA if ACPI
1445	select OF_NUMA
1446	select HAVE_SETUP_PER_CPU_AREA
1447	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1448	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1449	select USE_PERCPU_NUMA_NODE_ID
1450	help
1451	  Enable NUMA (Non-Uniform Memory Access) support.
1452
1453	  The kernel will try to allocate memory used by a CPU on the
1454	  local memory of the CPU and add some more
1455	  NUMA awareness to the kernel.
1456
1457config NODES_SHIFT
1458	int "Maximum NUMA Nodes (as a power of 2)"
1459	range 1 10
1460	default "4"
1461	depends on NUMA
1462	help
1463	  Specify the maximum number of NUMA Nodes available on the target
1464	  system.  Increases memory reserved to accommodate various tables.
1465
1466source "kernel/Kconfig.hz"
1467
1468config ARCH_SPARSEMEM_ENABLE
1469	def_bool y
1470	select SPARSEMEM_VMEMMAP_ENABLE
1471	select SPARSEMEM_VMEMMAP
1472
1473config HW_PERF_EVENTS
1474	def_bool y
1475	depends on ARM_PMU
1476
1477# Supported by clang >= 7.0 or GCC >= 12.0.0
1478config CC_HAVE_SHADOW_CALL_STACK
1479	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1480
1481config PARAVIRT
1482	bool "Enable paravirtualization code"
1483	help
1484	  This changes the kernel so it can modify itself when it is run
1485	  under a hypervisor, potentially improving performance significantly
1486	  over full virtualization.
1487
1488config PARAVIRT_TIME_ACCOUNTING
1489	bool "Paravirtual steal time accounting"
1490	select PARAVIRT
1491	help
1492	  Select this option to enable fine granularity task steal time
1493	  accounting. Time spent executing other tasks in parallel with
1494	  the current vCPU is discounted from the vCPU power. To account for
1495	  that, there can be a small performance impact.
1496
1497	  If in doubt, say N here.
1498
1499config ARCH_SUPPORTS_KEXEC
1500	def_bool PM_SLEEP_SMP
1501
1502config ARCH_SUPPORTS_KEXEC_FILE
1503	def_bool y
1504
1505config ARCH_SELECTS_KEXEC_FILE
1506	def_bool y
1507	depends on KEXEC_FILE
1508	select HAVE_IMA_KEXEC if IMA
1509
1510config ARCH_SUPPORTS_KEXEC_SIG
1511	def_bool y
1512
1513config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1514	def_bool y
1515
1516config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1517	def_bool y
1518
1519config ARCH_SUPPORTS_CRASH_DUMP
1520	def_bool y
1521
1522config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1523	def_bool CRASH_RESERVE
1524
1525config TRANS_TABLE
1526	def_bool y
1527	depends on HIBERNATION || KEXEC_CORE
1528
1529config XEN_DOM0
1530	def_bool y
1531	depends on XEN
1532
1533config XEN
1534	bool "Xen guest support on ARM64"
1535	depends on ARM64 && OF
1536	select SWIOTLB_XEN
1537	select PARAVIRT
1538	help
1539	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1540
1541# include/linux/mmzone.h requires the following to be true:
1542#
1543#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1544#
1545# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1546#
1547#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1548# ----+-------------------+--------------+----------------------+-------------------------+
1549# 4K  |       27          |      12      |       15             |         10              |
1550# 16K |       27          |      14      |       13             |         11              |
1551# 64K |       29          |      16      |       13             |         13              |
1552config ARCH_FORCE_MAX_ORDER
1553	int
1554	default "13" if ARM64_64K_PAGES
1555	default "11" if ARM64_16K_PAGES
1556	default "10"
1557	help
1558	  The kernel page allocator limits the size of maximal physically
1559	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1560	  defines the maximal power of two of number of pages that can be
1561	  allocated as a single contiguous block. This option allows
1562	  overriding the default setting when ability to allocate very
1563	  large blocks of physically contiguous memory is required.
1564
1565	  The maximal size of allocation cannot exceed the size of the
1566	  section, so the value of MAX_PAGE_ORDER should satisfy
1567
1568	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1569
1570	  Don't change if unsure.
1571
1572config UNMAP_KERNEL_AT_EL0
1573	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1574	default y
1575	help
1576	  Speculation attacks against some high-performance processors can
1577	  be used to bypass MMU permission checks and leak kernel data to
1578	  userspace. This can be defended against by unmapping the kernel
1579	  when running in userspace, mapping it back in on exception entry
1580	  via a trampoline page in the vector table.
1581
1582	  If unsure, say Y.
1583
1584config MITIGATE_SPECTRE_BRANCH_HISTORY
1585	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1586	default y
1587	help
1588	  Speculation attacks against some high-performance processors can
1589	  make use of branch history to influence future speculation.
1590	  When taking an exception from user-space, a sequence of branches
1591	  or a firmware call overwrites the branch history.
1592
1593config RODATA_FULL_DEFAULT_ENABLED
1594	bool "Apply r/o permissions of VM areas also to their linear aliases"
1595	default y
1596	help
1597	  Apply read-only attributes of VM areas to the linear alias of
1598	  the backing pages as well. This prevents code or read-only data
1599	  from being modified (inadvertently or intentionally) via another
1600	  mapping of the same memory page. This additional enhancement can
1601	  be turned off at runtime by passing rodata=[off|on] (and turned on
1602	  with rodata=full if this option is set to 'n')
1603
1604	  This requires the linear region to be mapped down to pages,
1605	  which may adversely affect performance in some cases.
1606
1607config ARM64_SW_TTBR0_PAN
1608	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1609	help
1610	  Enabling this option prevents the kernel from accessing
1611	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1612	  zeroed area and reserved ASID. The user access routines
1613	  restore the valid TTBR0_EL1 temporarily.
1614
1615config ARM64_TAGGED_ADDR_ABI
1616	bool "Enable the tagged user addresses syscall ABI"
1617	default y
1618	help
1619	  When this option is enabled, user applications can opt in to a
1620	  relaxed ABI via prctl() allowing tagged addresses to be passed
1621	  to system calls as pointer arguments. For details, see
1622	  Documentation/arch/arm64/tagged-address-abi.rst.
1623
1624menuconfig COMPAT
1625	bool "Kernel support for 32-bit EL0"
1626	depends on ARM64_4K_PAGES || EXPERT
1627	select HAVE_UID16
1628	select OLD_SIGSUSPEND3
1629	select COMPAT_OLD_SIGACTION
1630	help
1631	  This option enables support for a 32-bit EL0 running under a 64-bit
1632	  kernel at EL1. AArch32-specific components such as system calls,
1633	  the user helper functions, VFP support and the ptrace interface are
1634	  handled appropriately by the kernel.
1635
1636	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1637	  that you will only be able to execute AArch32 binaries that were compiled
1638	  with page size aligned segments.
1639
1640	  If you want to execute 32-bit userspace applications, say Y.
1641
1642if COMPAT
1643
1644config KUSER_HELPERS
1645	bool "Enable kuser helpers page for 32-bit applications"
1646	default y
1647	help
1648	  Warning: disabling this option may break 32-bit user programs.
1649
1650	  Provide kuser helpers to compat tasks. The kernel provides
1651	  helper code to userspace in read only form at a fixed location
1652	  to allow userspace to be independent of the CPU type fitted to
1653	  the system. This permits binaries to be run on ARMv4 through
1654	  to ARMv8 without modification.
1655
1656	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1657
1658	  However, the fixed address nature of these helpers can be used
1659	  by ROP (return orientated programming) authors when creating
1660	  exploits.
1661
1662	  If all of the binaries and libraries which run on your platform
1663	  are built specifically for your platform, and make no use of
1664	  these helpers, then you can turn this option off to hinder
1665	  such exploits. However, in that case, if a binary or library
1666	  relying on those helpers is run, it will not function correctly.
1667
1668	  Say N here only if you are absolutely certain that you do not
1669	  need these helpers; otherwise, the safe option is to say Y.
1670
1671config COMPAT_VDSO
1672	bool "Enable vDSO for 32-bit applications"
1673	depends on !CPU_BIG_ENDIAN
1674	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1675	select GENERIC_COMPAT_VDSO
1676	default y
1677	help
1678	  Place in the process address space of 32-bit applications an
1679	  ELF shared object providing fast implementations of gettimeofday
1680	  and clock_gettime.
1681
1682	  You must have a 32-bit build of glibc 2.22 or later for programs
1683	  to seamlessly take advantage of this.
1684
1685config THUMB2_COMPAT_VDSO
1686	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1687	depends on COMPAT_VDSO
1688	default y
1689	help
1690	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1691	  otherwise with '-marm'.
1692
1693config COMPAT_ALIGNMENT_FIXUPS
1694	bool "Fix up misaligned multi-word loads and stores in user space"
1695
1696menuconfig ARMV8_DEPRECATED
1697	bool "Emulate deprecated/obsolete ARMv8 instructions"
1698	depends on SYSCTL
1699	help
1700	  Legacy software support may require certain instructions
1701	  that have been deprecated or obsoleted in the architecture.
1702
1703	  Enable this config to enable selective emulation of these
1704	  features.
1705
1706	  If unsure, say Y
1707
1708if ARMV8_DEPRECATED
1709
1710config SWP_EMULATION
1711	bool "Emulate SWP/SWPB instructions"
1712	help
1713	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1714	  they are always undefined. Say Y here to enable software
1715	  emulation of these instructions for userspace using LDXR/STXR.
1716	  This feature can be controlled at runtime with the abi.swp
1717	  sysctl which is disabled by default.
1718
1719	  In some older versions of glibc [<=2.8] SWP is used during futex
1720	  trylock() operations with the assumption that the code will not
1721	  be preempted. This invalid assumption may be more likely to fail
1722	  with SWP emulation enabled, leading to deadlock of the user
1723	  application.
1724
1725	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1726	  on an external transaction monitoring block called a global
1727	  monitor to maintain update atomicity. If your system does not
1728	  implement a global monitor, this option can cause programs that
1729	  perform SWP operations to uncached memory to deadlock.
1730
1731	  If unsure, say Y
1732
1733config CP15_BARRIER_EMULATION
1734	bool "Emulate CP15 Barrier instructions"
1735	help
1736	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1737	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1738	  strongly recommended to use the ISB, DSB, and DMB
1739	  instructions instead.
1740
1741	  Say Y here to enable software emulation of these
1742	  instructions for AArch32 userspace code. When this option is
1743	  enabled, CP15 barrier usage is traced which can help
1744	  identify software that needs updating. This feature can be
1745	  controlled at runtime with the abi.cp15_barrier sysctl.
1746
1747	  If unsure, say Y
1748
1749config SETEND_EMULATION
1750	bool "Emulate SETEND instruction"
1751	help
1752	  The SETEND instruction alters the data-endianness of the
1753	  AArch32 EL0, and is deprecated in ARMv8.
1754
1755	  Say Y here to enable software emulation of the instruction
1756	  for AArch32 userspace code. This feature can be controlled
1757	  at runtime with the abi.setend sysctl.
1758
1759	  Note: All the cpus on the system must have mixed endian support at EL0
1760	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1761	  endian - is hotplugged in after this feature has been enabled, there could
1762	  be unexpected results in the applications.
1763
1764	  If unsure, say Y
1765endif # ARMV8_DEPRECATED
1766
1767endif # COMPAT
1768
1769menu "ARMv8.1 architectural features"
1770
1771config ARM64_HW_AFDBM
1772	bool "Support for hardware updates of the Access and Dirty page flags"
1773	default y
1774	help
1775	  The ARMv8.1 architecture extensions introduce support for
1776	  hardware updates of the access and dirty information in page
1777	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1778	  capable processors, accesses to pages with PTE_AF cleared will
1779	  set this bit instead of raising an access flag fault.
1780	  Similarly, writes to read-only pages with the DBM bit set will
1781	  clear the read-only bit (AP[2]) instead of raising a
1782	  permission fault.
1783
1784	  Kernels built with this configuration option enabled continue
1785	  to work on pre-ARMv8.1 hardware and the performance impact is
1786	  minimal. If unsure, say Y.
1787
1788config ARM64_PAN
1789	bool "Enable support for Privileged Access Never (PAN)"
1790	default y
1791	help
1792	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1793	  prevents the kernel or hypervisor from accessing user-space (EL0)
1794	  memory directly.
1795
1796	  Choosing this option will cause any unprotected (not using
1797	  copy_to_user et al) memory access to fail with a permission fault.
1798
1799	  The feature is detected at runtime, and will remain as a 'nop'
1800	  instruction if the cpu does not implement the feature.
1801
1802config AS_HAS_LSE_ATOMICS
1803	def_bool $(as-instr,.arch_extension lse)
1804
1805config ARM64_LSE_ATOMICS
1806	bool
1807	default ARM64_USE_LSE_ATOMICS
1808	depends on AS_HAS_LSE_ATOMICS
1809
1810config ARM64_USE_LSE_ATOMICS
1811	bool "Atomic instructions"
1812	default y
1813	help
1814	  As part of the Large System Extensions, ARMv8.1 introduces new
1815	  atomic instructions that are designed specifically to scale in
1816	  very large systems.
1817
1818	  Say Y here to make use of these instructions for the in-kernel
1819	  atomic routines. This incurs a small overhead on CPUs that do
1820	  not support these instructions and requires the kernel to be
1821	  built with binutils >= 2.25 in order for the new instructions
1822	  to be used.
1823
1824endmenu # "ARMv8.1 architectural features"
1825
1826menu "ARMv8.2 architectural features"
1827
1828config AS_HAS_ARMV8_2
1829	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1830
1831config AS_HAS_SHA3
1832	def_bool $(as-instr,.arch armv8.2-a+sha3)
1833
1834config ARM64_PMEM
1835	bool "Enable support for persistent memory"
1836	select ARCH_HAS_PMEM_API
1837	select ARCH_HAS_UACCESS_FLUSHCACHE
1838	help
1839	  Say Y to enable support for the persistent memory API based on the
1840	  ARMv8.2 DCPoP feature.
1841
1842	  The feature is detected at runtime, and the kernel will use DC CVAC
1843	  operations if DC CVAP is not supported (following the behaviour of
1844	  DC CVAP itself if the system does not define a point of persistence).
1845
1846config ARM64_RAS_EXTN
1847	bool "Enable support for RAS CPU Extensions"
1848	default y
1849	help
1850	  CPUs that support the Reliability, Availability and Serviceability
1851	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1852	  errors, classify them and report them to software.
1853
1854	  On CPUs with these extensions system software can use additional
1855	  barriers to determine if faults are pending and read the
1856	  classification from a new set of registers.
1857
1858	  Selecting this feature will allow the kernel to use these barriers
1859	  and access the new registers if the system supports the extension.
1860	  Platform RAS features may additionally depend on firmware support.
1861
1862config ARM64_CNP
1863	bool "Enable support for Common Not Private (CNP) translations"
1864	default y
1865	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1866	help
1867	  Common Not Private (CNP) allows translation table entries to
1868	  be shared between different PEs in the same inner shareable
1869	  domain, so the hardware can use this fact to optimise the
1870	  caching of such entries in the TLB.
1871
1872	  Selecting this option allows the CNP feature to be detected
1873	  at runtime, and does not affect PEs that do not implement
1874	  this feature.
1875
1876endmenu # "ARMv8.2 architectural features"
1877
1878menu "ARMv8.3 architectural features"
1879
1880config ARM64_PTR_AUTH
1881	bool "Enable support for pointer authentication"
1882	default y
1883	help
1884	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1885	  instructions for signing and authenticating pointers against secret
1886	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1887	  and other attacks.
1888
1889	  This option enables these instructions at EL0 (i.e. for userspace).
1890	  Choosing this option will cause the kernel to initialise secret keys
1891	  for each process at exec() time, with these keys being
1892	  context-switched along with the process.
1893
1894	  The feature is detected at runtime. If the feature is not present in
1895	  hardware it will not be advertised to userspace/KVM guest nor will it
1896	  be enabled.
1897
1898	  If the feature is present on the boot CPU but not on a late CPU, then
1899	  the late CPU will be parked. Also, if the boot CPU does not have
1900	  address auth and the late CPU has then the late CPU will still boot
1901	  but with the feature disabled. On such a system, this option should
1902	  not be selected.
1903
1904config ARM64_PTR_AUTH_KERNEL
1905	bool "Use pointer authentication for kernel"
1906	default y
1907	depends on ARM64_PTR_AUTH
1908	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1909	# Modern compilers insert a .note.gnu.property section note for PAC
1910	# which is only understood by binutils starting with version 2.33.1.
1911	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1912	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1913	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1914	help
1915	  If the compiler supports the -mbranch-protection or
1916	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1917	  will cause the kernel itself to be compiled with return address
1918	  protection. In this case, and if the target hardware is known to
1919	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1920	  disabled with minimal loss of protection.
1921
1922	  This feature works with FUNCTION_GRAPH_TRACER option only if
1923	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1924
1925config CC_HAS_BRANCH_PROT_PAC_RET
1926	# GCC 9 or later, clang 8 or later
1927	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1928
1929config CC_HAS_SIGN_RETURN_ADDRESS
1930	# GCC 7, 8
1931	def_bool $(cc-option,-msign-return-address=all)
1932
1933config AS_HAS_ARMV8_3
1934	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1935
1936config AS_HAS_CFI_NEGATE_RA_STATE
1937	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1938
1939config AS_HAS_LDAPR
1940	def_bool $(as-instr,.arch_extension rcpc)
1941
1942endmenu # "ARMv8.3 architectural features"
1943
1944menu "ARMv8.4 architectural features"
1945
1946config ARM64_AMU_EXTN
1947	bool "Enable support for the Activity Monitors Unit CPU extension"
1948	default y
1949	help
1950	  The activity monitors extension is an optional extension introduced
1951	  by the ARMv8.4 CPU architecture. This enables support for version 1
1952	  of the activity monitors architecture, AMUv1.
1953
1954	  To enable the use of this extension on CPUs that implement it, say Y.
1955
1956	  Note that for architectural reasons, firmware _must_ implement AMU
1957	  support when running on CPUs that present the activity monitors
1958	  extension. The required support is present in:
1959	    * Version 1.5 and later of the ARM Trusted Firmware
1960
1961	  For kernels that have this configuration enabled but boot with broken
1962	  firmware, you may need to say N here until the firmware is fixed.
1963	  Otherwise you may experience firmware panics or lockups when
1964	  accessing the counter registers. Even if you are not observing these
1965	  symptoms, the values returned by the register reads might not
1966	  correctly reflect reality. Most commonly, the value read will be 0,
1967	  indicating that the counter is not enabled.
1968
1969config AS_HAS_ARMV8_4
1970	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1971
1972config ARM64_TLB_RANGE
1973	bool "Enable support for tlbi range feature"
1974	default y
1975	depends on AS_HAS_ARMV8_4
1976	help
1977	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1978	  range of input addresses.
1979
1980	  The feature introduces new assembly instructions, and they were
1981	  support when binutils >= 2.30.
1982
1983endmenu # "ARMv8.4 architectural features"
1984
1985menu "ARMv8.5 architectural features"
1986
1987config AS_HAS_ARMV8_5
1988	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1989
1990config ARM64_BTI
1991	bool "Branch Target Identification support"
1992	default y
1993	help
1994	  Branch Target Identification (part of the ARMv8.5 Extensions)
1995	  provides a mechanism to limit the set of locations to which computed
1996	  branch instructions such as BR or BLR can jump.
1997
1998	  To make use of BTI on CPUs that support it, say Y.
1999
2000	  BTI is intended to provide complementary protection to other control
2001	  flow integrity protection mechanisms, such as the Pointer
2002	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2003	  For this reason, it does not make sense to enable this option without
2004	  also enabling support for pointer authentication.  Thus, when
2005	  enabling this option you should also select ARM64_PTR_AUTH=y.
2006
2007	  Userspace binaries must also be specifically compiled to make use of
2008	  this mechanism.  If you say N here or the hardware does not support
2009	  BTI, such binaries can still run, but you get no additional
2010	  enforcement of branch destinations.
2011
2012config ARM64_BTI_KERNEL
2013	bool "Use Branch Target Identification for kernel"
2014	default y
2015	depends on ARM64_BTI
2016	depends on ARM64_PTR_AUTH_KERNEL
2017	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2018	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2019	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2020	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2021	depends on !CC_IS_GCC
2022	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2023	help
2024	  Build the kernel with Branch Target Identification annotations
2025	  and enable enforcement of this for kernel code. When this option
2026	  is enabled and the system supports BTI all kernel code including
2027	  modular code must have BTI enabled.
2028
2029config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2030	# GCC 9 or later, clang 8 or later
2031	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2032
2033config ARM64_E0PD
2034	bool "Enable support for E0PD"
2035	default y
2036	help
2037	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2038	  that EL0 accesses made via TTBR1 always fault in constant time,
2039	  providing similar benefits to KASLR as those provided by KPTI, but
2040	  with lower overhead and without disrupting legitimate access to
2041	  kernel memory such as SPE.
2042
2043	  This option enables E0PD for TTBR1 where available.
2044
2045config ARM64_AS_HAS_MTE
2046	# Initial support for MTE went in binutils 2.32.0, checked with
2047	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2048	# as a late addition to the final architecture spec (LDGM/STGM)
2049	# is only supported in the newer 2.32.x and 2.33 binutils
2050	# versions, hence the extra "stgm" instruction check below.
2051	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2052
2053config ARM64_MTE
2054	bool "Memory Tagging Extension support"
2055	default y
2056	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2057	depends on AS_HAS_ARMV8_5
2058	depends on AS_HAS_LSE_ATOMICS
2059	# Required for tag checking in the uaccess routines
2060	depends on ARM64_PAN
2061	select ARCH_HAS_SUBPAGE_FAULTS
2062	select ARCH_USES_HIGH_VMA_FLAGS
2063	select ARCH_USES_PG_ARCH_X
2064	help
2065	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2066	  architectural support for run-time, always-on detection of
2067	  various classes of memory error to aid with software debugging
2068	  to eliminate vulnerabilities arising from memory-unsafe
2069	  languages.
2070
2071	  This option enables the support for the Memory Tagging
2072	  Extension at EL0 (i.e. for userspace).
2073
2074	  Selecting this option allows the feature to be detected at
2075	  runtime. Any secondary CPU not implementing this feature will
2076	  not be allowed a late bring-up.
2077
2078	  Userspace binaries that want to use this feature must
2079	  explicitly opt in. The mechanism for the userspace is
2080	  described in:
2081
2082	  Documentation/arch/arm64/memory-tagging-extension.rst.
2083
2084endmenu # "ARMv8.5 architectural features"
2085
2086menu "ARMv8.7 architectural features"
2087
2088config ARM64_EPAN
2089	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2090	default y
2091	depends on ARM64_PAN
2092	help
2093	  Enhanced Privileged Access Never (EPAN) allows Privileged
2094	  Access Never to be used with Execute-only mappings.
2095
2096	  The feature is detected at runtime, and will remain disabled
2097	  if the cpu does not implement the feature.
2098endmenu # "ARMv8.7 architectural features"
2099
2100config ARM64_SVE
2101	bool "ARM Scalable Vector Extension support"
2102	default y
2103	help
2104	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2105	  execution state which complements and extends the SIMD functionality
2106	  of the base architecture to support much larger vectors and to enable
2107	  additional vectorisation opportunities.
2108
2109	  To enable use of this extension on CPUs that implement it, say Y.
2110
2111	  On CPUs that support the SVE2 extensions, this option will enable
2112	  those too.
2113
2114	  Note that for architectural reasons, firmware _must_ implement SVE
2115	  support when running on SVE capable hardware.  The required support
2116	  is present in:
2117
2118	    * version 1.5 and later of the ARM Trusted Firmware
2119	    * the AArch64 boot wrapper since commit 5e1261e08abf
2120	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2121
2122	  For other firmware implementations, consult the firmware documentation
2123	  or vendor.
2124
2125	  If you need the kernel to boot on SVE-capable hardware with broken
2126	  firmware, you may need to say N here until you get your firmware
2127	  fixed.  Otherwise, you may experience firmware panics or lockups when
2128	  booting the kernel.  If unsure and you are not observing these
2129	  symptoms, you should assume that it is safe to say Y.
2130
2131config ARM64_SME
2132	bool "ARM Scalable Matrix Extension support"
2133	default y
2134	depends on ARM64_SVE
2135	help
2136	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2137	  execution state which utilises a substantial subset of the SVE
2138	  instruction set, together with the addition of new architectural
2139	  register state capable of holding two dimensional matrix tiles to
2140	  enable various matrix operations.
2141
2142config ARM64_PSEUDO_NMI
2143	bool "Support for NMI-like interrupts"
2144	select ARM_GIC_V3
2145	help
2146	  Adds support for mimicking Non-Maskable Interrupts through the use of
2147	  GIC interrupt priority. This support requires version 3 or later of
2148	  ARM GIC.
2149
2150	  This high priority configuration for interrupts needs to be
2151	  explicitly enabled by setting the kernel parameter
2152	  "irqchip.gicv3_pseudo_nmi" to 1.
2153
2154	  If unsure, say N
2155
2156if ARM64_PSEUDO_NMI
2157config ARM64_DEBUG_PRIORITY_MASKING
2158	bool "Debug interrupt priority masking"
2159	help
2160	  This adds runtime checks to functions enabling/disabling
2161	  interrupts when using priority masking. The additional checks verify
2162	  the validity of ICC_PMR_EL1 when calling concerned functions.
2163
2164	  If unsure, say N
2165endif # ARM64_PSEUDO_NMI
2166
2167config RELOCATABLE
2168	bool "Build a relocatable kernel image" if EXPERT
2169	select ARCH_HAS_RELR
2170	default y
2171	help
2172	  This builds the kernel as a Position Independent Executable (PIE),
2173	  which retains all relocation metadata required to relocate the
2174	  kernel binary at runtime to a different virtual address than the
2175	  address it was linked at.
2176	  Since AArch64 uses the RELA relocation format, this requires a
2177	  relocation pass at runtime even if the kernel is loaded at the
2178	  same address it was linked at.
2179
2180config RANDOMIZE_BASE
2181	bool "Randomize the address of the kernel image"
2182	select RELOCATABLE
2183	help
2184	  Randomizes the virtual address at which the kernel image is
2185	  loaded, as a security feature that deters exploit attempts
2186	  relying on knowledge of the location of kernel internals.
2187
2188	  It is the bootloader's job to provide entropy, by passing a
2189	  random u64 value in /chosen/kaslr-seed at kernel entry.
2190
2191	  When booting via the UEFI stub, it will invoke the firmware's
2192	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2193	  to the kernel proper. In addition, it will randomise the physical
2194	  location of the kernel Image as well.
2195
2196	  If unsure, say N.
2197
2198config RANDOMIZE_MODULE_REGION_FULL
2199	bool "Randomize the module region over a 2 GB range"
2200	depends on RANDOMIZE_BASE
2201	default y
2202	help
2203	  Randomizes the location of the module region inside a 2 GB window
2204	  covering the core kernel. This way, it is less likely for modules
2205	  to leak information about the location of core kernel data structures
2206	  but it does imply that function calls between modules and the core
2207	  kernel will need to be resolved via veneers in the module PLT.
2208
2209	  When this option is not set, the module region will be randomized over
2210	  a limited range that contains the [_stext, _etext] interval of the
2211	  core kernel, so branch relocations are almost always in range unless
2212	  the region is exhausted. In this particular case of region
2213	  exhaustion, modules might be able to fall back to a larger 2GB area.
2214
2215config CC_HAVE_STACKPROTECTOR_SYSREG
2216	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2217
2218config STACKPROTECTOR_PER_TASK
2219	def_bool y
2220	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2221
2222config UNWIND_PATCH_PAC_INTO_SCS
2223	bool "Enable shadow call stack dynamically using code patching"
2224	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2225	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2226	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2227	depends on SHADOW_CALL_STACK
2228	select UNWIND_TABLES
2229	select DYNAMIC_SCS
2230
2231config ARM64_CONTPTE
2232	bool "Contiguous PTE mappings for user memory" if EXPERT
2233	depends on TRANSPARENT_HUGEPAGE
2234	default y
2235	help
2236	  When enabled, user mappings are configured using the PTE contiguous
2237	  bit, for any mappings that meet the size and alignment requirements.
2238	  This reduces TLB pressure and improves performance.
2239
2240endmenu # "Kernel Features"
2241
2242menu "Boot options"
2243
2244config ARM64_ACPI_PARKING_PROTOCOL
2245	bool "Enable support for the ARM64 ACPI parking protocol"
2246	depends on ACPI
2247	help
2248	  Enable support for the ARM64 ACPI parking protocol. If disabled
2249	  the kernel will not allow booting through the ARM64 ACPI parking
2250	  protocol even if the corresponding data is present in the ACPI
2251	  MADT table.
2252
2253config CMDLINE
2254	string "Default kernel command string"
2255	default ""
2256	help
2257	  Provide a set of default command-line options at build time by
2258	  entering them here. As a minimum, you should specify the the
2259	  root device (e.g. root=/dev/nfs).
2260
2261choice
2262	prompt "Kernel command line type" if CMDLINE != ""
2263	default CMDLINE_FROM_BOOTLOADER
2264	help
2265	  Choose how the kernel will handle the provided default kernel
2266	  command line string.
2267
2268config CMDLINE_FROM_BOOTLOADER
2269	bool "Use bootloader kernel arguments if available"
2270	help
2271	  Uses the command-line options passed by the boot loader. If
2272	  the boot loader doesn't provide any, the default kernel command
2273	  string provided in CMDLINE will be used.
2274
2275config CMDLINE_FORCE
2276	bool "Always use the default kernel command string"
2277	help
2278	  Always use the default kernel command string, even if the boot
2279	  loader passes other arguments to the kernel.
2280	  This is useful if you cannot or don't want to change the
2281	  command-line options your boot loader passes to the kernel.
2282
2283endchoice
2284
2285config EFI_STUB
2286	bool
2287
2288config EFI
2289	bool "UEFI runtime support"
2290	depends on OF && !CPU_BIG_ENDIAN
2291	depends on KERNEL_MODE_NEON
2292	select ARCH_SUPPORTS_ACPI
2293	select LIBFDT
2294	select UCS2_STRING
2295	select EFI_PARAMS_FROM_FDT
2296	select EFI_RUNTIME_WRAPPERS
2297	select EFI_STUB
2298	select EFI_GENERIC_STUB
2299	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2300	default y
2301	help
2302	  This option provides support for runtime services provided
2303	  by UEFI firmware (such as non-volatile variables, realtime
2304	  clock, and platform reset). A UEFI stub is also provided to
2305	  allow the kernel to be booted as an EFI application. This
2306	  is only useful on systems that have UEFI firmware.
2307
2308config DMI
2309	bool "Enable support for SMBIOS (DMI) tables"
2310	depends on EFI
2311	default y
2312	help
2313	  This enables SMBIOS/DMI feature for systems.
2314
2315	  This option is only useful on systems that have UEFI firmware.
2316	  However, even with this option, the resultant kernel should
2317	  continue to boot on existing non-UEFI platforms.
2318
2319endmenu # "Boot options"
2320
2321menu "Power management options"
2322
2323source "kernel/power/Kconfig"
2324
2325config ARCH_HIBERNATION_POSSIBLE
2326	def_bool y
2327	depends on CPU_PM
2328
2329config ARCH_HIBERNATION_HEADER
2330	def_bool y
2331	depends on HIBERNATION
2332
2333config ARCH_SUSPEND_POSSIBLE
2334	def_bool y
2335
2336endmenu # "Power management options"
2337
2338menu "CPU Power Management"
2339
2340source "drivers/cpuidle/Kconfig"
2341
2342source "drivers/cpufreq/Kconfig"
2343
2344endmenu # "CPU Power Management"
2345
2346source "drivers/acpi/Kconfig"
2347
2348source "arch/arm64/kvm/Kconfig"
2349
2350