1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_HAS_DEBUG_VIRTUAL 15 select ARCH_HAS_DEBUG_VM_PGTABLE 16 select ARCH_HAS_DEVMEM_IS_ALLOWED 17 select ARCH_HAS_DMA_PREP_COHERENT 18 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 19 select ARCH_HAS_FAST_MULTIPLIER 20 select ARCH_HAS_FORTIFY_SOURCE 21 select ARCH_HAS_GCOV_PROFILE_ALL 22 select ARCH_HAS_GIGANTIC_PAGE 23 select ARCH_HAS_KCOV 24 select ARCH_HAS_KEEPINITRD 25 select ARCH_HAS_MEMBARRIER_SYNC_CORE 26 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 27 select ARCH_HAS_PTE_DEVMAP 28 select ARCH_HAS_PTE_SPECIAL 29 select ARCH_HAS_SETUP_DMA_OPS 30 select ARCH_HAS_SET_DIRECT_MAP 31 select ARCH_HAS_SET_MEMORY 32 select ARCH_STACKWALK 33 select ARCH_HAS_STRICT_KERNEL_RWX 34 select ARCH_HAS_STRICT_MODULE_RWX 35 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 36 select ARCH_HAS_SYNC_DMA_FOR_CPU 37 select ARCH_HAS_SYSCALL_WRAPPER 38 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 39 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 40 select ARCH_HAVE_ELF_PROT 41 select ARCH_HAVE_NMI_SAFE_CMPXCHG 42 select ARCH_INLINE_READ_LOCK if !PREEMPTION 43 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 44 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 45 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 46 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 47 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 48 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 49 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 50 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 51 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 52 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 53 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 54 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 55 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 56 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 57 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 58 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 59 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 60 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 61 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 62 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 64 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 65 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 66 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 67 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 68 select ARCH_KEEP_MEMBLOCK 69 select ARCH_USE_CMPXCHG_LOCKREF 70 select ARCH_USE_GNU_PROPERTY 71 select ARCH_USE_QUEUED_RWLOCKS 72 select ARCH_USE_QUEUED_SPINLOCKS 73 select ARCH_USE_SYM_ANNOTATIONS 74 select ARCH_SUPPORTS_MEMORY_FAILURE 75 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 76 select ARCH_SUPPORTS_ATOMIC_RMW 77 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 78 select ARCH_SUPPORTS_NUMA_BALANCING 79 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 80 select ARCH_WANT_DEFAULT_BPF_JIT 81 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 82 select ARCH_WANT_FRAME_POINTERS 83 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 84 select ARCH_HAS_UBSAN_SANITIZE_ALL 85 select ARM_AMBA 86 select ARM_ARCH_TIMER 87 select ARM_GIC 88 select AUDIT_ARCH_COMPAT_GENERIC 89 select ARM_GIC_V2M if PCI 90 select ARM_GIC_V3 91 select ARM_GIC_V3_ITS if PCI 92 select ARM_PSCI_FW 93 select BUILDTIME_TABLE_SORT 94 select CLONE_BACKWARDS 95 select COMMON_CLK 96 select CPU_PM if (SUSPEND || CPU_IDLE) 97 select CRC32 98 select DCACHE_WORD_ACCESS 99 select DMA_DIRECT_REMAP 100 select EDAC_SUPPORT 101 select FRAME_POINTER 102 select GENERIC_ALLOCATOR 103 select GENERIC_ARCH_TOPOLOGY 104 select GENERIC_CLOCKEVENTS 105 select GENERIC_CLOCKEVENTS_BROADCAST 106 select GENERIC_CPU_AUTOPROBE 107 select GENERIC_CPU_VULNERABILITIES 108 select GENERIC_EARLY_IOREMAP 109 select GENERIC_IDLE_POLL_SETUP 110 select GENERIC_IRQ_IPI 111 select GENERIC_IRQ_MULTI_HANDLER 112 select GENERIC_IRQ_PROBE 113 select GENERIC_IRQ_SHOW 114 select GENERIC_IRQ_SHOW_LEVEL 115 select GENERIC_PCI_IOMAP 116 select GENERIC_PTDUMP 117 select GENERIC_SCHED_CLOCK 118 select GENERIC_SMP_IDLE_THREAD 119 select GENERIC_STRNCPY_FROM_USER 120 select GENERIC_STRNLEN_USER 121 select GENERIC_TIME_VSYSCALL 122 select GENERIC_GETTIMEOFDAY 123 select GENERIC_VDSO_TIME_NS 124 select HANDLE_DOMAIN_IRQ 125 select HARDIRQS_SW_RESEND 126 select HAVE_MOVE_PMD 127 select HAVE_PCI 128 select HAVE_ACPI_APEI if (ACPI && EFI) 129 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 130 select HAVE_ARCH_AUDITSYSCALL 131 select HAVE_ARCH_BITREVERSE 132 select HAVE_ARCH_COMPILER_H 133 select HAVE_ARCH_HUGE_VMAP 134 select HAVE_ARCH_JUMP_LABEL 135 select HAVE_ARCH_JUMP_LABEL_RELATIVE 136 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 137 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 138 select HAVE_ARCH_KGDB 139 select HAVE_ARCH_MMAP_RND_BITS 140 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 141 select HAVE_ARCH_PREL32_RELOCATIONS 142 select HAVE_ARCH_SECCOMP_FILTER 143 select HAVE_ARCH_STACKLEAK 144 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 145 select HAVE_ARCH_TRACEHOOK 146 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 147 select HAVE_ARCH_VMAP_STACK 148 select HAVE_ARM_SMCCC 149 select HAVE_ASM_MODVERSIONS 150 select HAVE_EBPF_JIT 151 select HAVE_C_RECORDMCOUNT 152 select HAVE_CMPXCHG_DOUBLE 153 select HAVE_CMPXCHG_LOCAL 154 select HAVE_CONTEXT_TRACKING 155 select HAVE_DEBUG_BUGVERBOSE 156 select HAVE_DEBUG_KMEMLEAK 157 select HAVE_DMA_CONTIGUOUS 158 select HAVE_DYNAMIC_FTRACE 159 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 160 if $(cc-option,-fpatchable-function-entry=2) 161 select HAVE_EFFICIENT_UNALIGNED_ACCESS 162 select HAVE_FAST_GUP 163 select HAVE_FTRACE_MCOUNT_RECORD 164 select HAVE_FUNCTION_TRACER 165 select HAVE_FUNCTION_ERROR_INJECTION 166 select HAVE_FUNCTION_GRAPH_TRACER 167 select HAVE_GCC_PLUGINS 168 select HAVE_HW_BREAKPOINT if PERF_EVENTS 169 select HAVE_IRQ_TIME_ACCOUNTING 170 select HAVE_NMI 171 select HAVE_PATA_PLATFORM 172 select HAVE_PERF_EVENTS 173 select HAVE_PERF_REGS 174 select HAVE_PERF_USER_STACK_DUMP 175 select HAVE_REGS_AND_STACK_ACCESS_API 176 select HAVE_FUNCTION_ARG_ACCESS_API 177 select HAVE_FUTEX_CMPXCHG if FUTEX 178 select MMU_GATHER_RCU_TABLE_FREE 179 select HAVE_RSEQ 180 select HAVE_STACKPROTECTOR 181 select HAVE_SYSCALL_TRACEPOINTS 182 select HAVE_KPROBES 183 select HAVE_KRETPROBES 184 select HAVE_GENERIC_VDSO 185 select IOMMU_DMA if IOMMU_SUPPORT 186 select IRQ_DOMAIN 187 select IRQ_FORCED_THREADING 188 select MODULES_USE_ELF_RELA 189 select NEED_DMA_MAP_STATE 190 select NEED_SG_DMA_LENGTH 191 select OF 192 select OF_EARLY_FLATTREE 193 select PCI_DOMAINS_GENERIC if PCI 194 select PCI_ECAM if (ACPI && PCI) 195 select PCI_SYSCALL if PCI 196 select POWER_RESET 197 select POWER_SUPPLY 198 select SET_FS 199 select SPARSE_IRQ 200 select SWIOTLB 201 select SYSCTL_EXCEPTION_TRACE 202 select THREAD_INFO_IN_TASK 203 help 204 ARM 64-bit (AArch64) Linux support. 205 206config 64BIT 207 def_bool y 208 209config MMU 210 def_bool y 211 212config ARM64_PAGE_SHIFT 213 int 214 default 16 if ARM64_64K_PAGES 215 default 14 if ARM64_16K_PAGES 216 default 12 217 218config ARM64_CONT_PTE_SHIFT 219 int 220 default 5 if ARM64_64K_PAGES 221 default 7 if ARM64_16K_PAGES 222 default 4 223 224config ARM64_CONT_PMD_SHIFT 225 int 226 default 5 if ARM64_64K_PAGES 227 default 5 if ARM64_16K_PAGES 228 default 4 229 230config ARCH_MMAP_RND_BITS_MIN 231 default 14 if ARM64_64K_PAGES 232 default 16 if ARM64_16K_PAGES 233 default 18 234 235# max bits determined by the following formula: 236# VA_BITS - PAGE_SHIFT - 3 237config ARCH_MMAP_RND_BITS_MAX 238 default 19 if ARM64_VA_BITS=36 239 default 24 if ARM64_VA_BITS=39 240 default 27 if ARM64_VA_BITS=42 241 default 30 if ARM64_VA_BITS=47 242 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 243 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 244 default 33 if ARM64_VA_BITS=48 245 default 14 if ARM64_64K_PAGES 246 default 16 if ARM64_16K_PAGES 247 default 18 248 249config ARCH_MMAP_RND_COMPAT_BITS_MIN 250 default 7 if ARM64_64K_PAGES 251 default 9 if ARM64_16K_PAGES 252 default 11 253 254config ARCH_MMAP_RND_COMPAT_BITS_MAX 255 default 16 256 257config NO_IOPORT_MAP 258 def_bool y if !PCI 259 260config STACKTRACE_SUPPORT 261 def_bool y 262 263config ILLEGAL_POINTER_VALUE 264 hex 265 default 0xdead000000000000 266 267config LOCKDEP_SUPPORT 268 def_bool y 269 270config TRACE_IRQFLAGS_SUPPORT 271 def_bool y 272 273config GENERIC_BUG 274 def_bool y 275 depends on BUG 276 277config GENERIC_BUG_RELATIVE_POINTERS 278 def_bool y 279 depends on GENERIC_BUG 280 281config GENERIC_HWEIGHT 282 def_bool y 283 284config GENERIC_CSUM 285 def_bool y 286 287config GENERIC_CALIBRATE_DELAY 288 def_bool y 289 290config ZONE_DMA 291 bool "Support DMA zone" if EXPERT 292 default y 293 294config ZONE_DMA32 295 bool "Support DMA32 zone" if EXPERT 296 default y 297 298config ARCH_ENABLE_MEMORY_HOTPLUG 299 def_bool y 300 301config ARCH_ENABLE_MEMORY_HOTREMOVE 302 def_bool y 303 304config SMP 305 def_bool y 306 307config KERNEL_MODE_NEON 308 def_bool y 309 310config FIX_EARLYCON_MEM 311 def_bool y 312 313config PGTABLE_LEVELS 314 int 315 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 316 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 317 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 318 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 319 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 320 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 321 322config ARCH_SUPPORTS_UPROBES 323 def_bool y 324 325config ARCH_PROC_KCORE_TEXT 326 def_bool y 327 328config BROKEN_GAS_INST 329 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 330 331config KASAN_SHADOW_OFFSET 332 hex 333 depends on KASAN 334 default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 335 default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 336 default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 337 default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 338 default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 339 default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 340 default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 341 default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 342 default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 343 default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 344 default 0xffffffffffffffff 345 346source "arch/arm64/Kconfig.platforms" 347 348menu "Kernel Features" 349 350menu "ARM errata workarounds via the alternatives framework" 351 352config ARM64_WORKAROUND_CLEAN_CACHE 353 bool 354 355config ARM64_ERRATUM_826319 356 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 357 default y 358 select ARM64_WORKAROUND_CLEAN_CACHE 359 help 360 This option adds an alternative code sequence to work around ARM 361 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 362 AXI master interface and an L2 cache. 363 364 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 365 and is unable to accept a certain write via this interface, it will 366 not progress on read data presented on the read data channel and the 367 system can deadlock. 368 369 The workaround promotes data cache clean instructions to 370 data cache clean-and-invalidate. 371 Please note that this does not necessarily enable the workaround, 372 as it depends on the alternative framework, which will only patch 373 the kernel if an affected CPU is detected. 374 375 If unsure, say Y. 376 377config ARM64_ERRATUM_827319 378 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 379 default y 380 select ARM64_WORKAROUND_CLEAN_CACHE 381 help 382 This option adds an alternative code sequence to work around ARM 383 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 384 master interface and an L2 cache. 385 386 Under certain conditions this erratum can cause a clean line eviction 387 to occur at the same time as another transaction to the same address 388 on the AMBA 5 CHI interface, which can cause data corruption if the 389 interconnect reorders the two transactions. 390 391 The workaround promotes data cache clean instructions to 392 data cache clean-and-invalidate. 393 Please note that this does not necessarily enable the workaround, 394 as it depends on the alternative framework, which will only patch 395 the kernel if an affected CPU is detected. 396 397 If unsure, say Y. 398 399config ARM64_ERRATUM_824069 400 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 401 default y 402 select ARM64_WORKAROUND_CLEAN_CACHE 403 help 404 This option adds an alternative code sequence to work around ARM 405 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 406 to a coherent interconnect. 407 408 If a Cortex-A53 processor is executing a store or prefetch for 409 write instruction at the same time as a processor in another 410 cluster is executing a cache maintenance operation to the same 411 address, then this erratum might cause a clean cache line to be 412 incorrectly marked as dirty. 413 414 The workaround promotes data cache clean instructions to 415 data cache clean-and-invalidate. 416 Please note that this option does not necessarily enable the 417 workaround, as it depends on the alternative framework, which will 418 only patch the kernel if an affected CPU is detected. 419 420 If unsure, say Y. 421 422config ARM64_ERRATUM_819472 423 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 424 default y 425 select ARM64_WORKAROUND_CLEAN_CACHE 426 help 427 This option adds an alternative code sequence to work around ARM 428 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 429 present when it is connected to a coherent interconnect. 430 431 If the processor is executing a load and store exclusive sequence at 432 the same time as a processor in another cluster is executing a cache 433 maintenance operation to the same address, then this erratum might 434 cause data corruption. 435 436 The workaround promotes data cache clean instructions to 437 data cache clean-and-invalidate. 438 Please note that this does not necessarily enable the workaround, 439 as it depends on the alternative framework, which will only patch 440 the kernel if an affected CPU is detected. 441 442 If unsure, say Y. 443 444config ARM64_ERRATUM_832075 445 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 446 default y 447 help 448 This option adds an alternative code sequence to work around ARM 449 erratum 832075 on Cortex-A57 parts up to r1p2. 450 451 Affected Cortex-A57 parts might deadlock when exclusive load/store 452 instructions to Write-Back memory are mixed with Device loads. 453 454 The workaround is to promote device loads to use Load-Acquire 455 semantics. 456 Please note that this does not necessarily enable the workaround, 457 as it depends on the alternative framework, which will only patch 458 the kernel if an affected CPU is detected. 459 460 If unsure, say Y. 461 462config ARM64_ERRATUM_834220 463 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 464 depends on KVM 465 default y 466 help 467 This option adds an alternative code sequence to work around ARM 468 erratum 834220 on Cortex-A57 parts up to r1p2. 469 470 Affected Cortex-A57 parts might report a Stage 2 translation 471 fault as the result of a Stage 1 fault for load crossing a 472 page boundary when there is a permission or device memory 473 alignment fault at Stage 1 and a translation fault at Stage 2. 474 475 The workaround is to verify that the Stage 1 translation 476 doesn't generate a fault before handling the Stage 2 fault. 477 Please note that this does not necessarily enable the workaround, 478 as it depends on the alternative framework, which will only patch 479 the kernel if an affected CPU is detected. 480 481 If unsure, say Y. 482 483config ARM64_ERRATUM_845719 484 bool "Cortex-A53: 845719: a load might read incorrect data" 485 depends on COMPAT 486 default y 487 help 488 This option adds an alternative code sequence to work around ARM 489 erratum 845719 on Cortex-A53 parts up to r0p4. 490 491 When running a compat (AArch32) userspace on an affected Cortex-A53 492 part, a load at EL0 from a virtual address that matches the bottom 32 493 bits of the virtual address used by a recent load at (AArch64) EL1 494 might return incorrect data. 495 496 The workaround is to write the contextidr_el1 register on exception 497 return to a 32-bit task. 498 Please note that this does not necessarily enable the workaround, 499 as it depends on the alternative framework, which will only patch 500 the kernel if an affected CPU is detected. 501 502 If unsure, say Y. 503 504config ARM64_ERRATUM_843419 505 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 506 default y 507 select ARM64_MODULE_PLTS if MODULES 508 help 509 This option links the kernel with '--fix-cortex-a53-843419' and 510 enables PLT support to replace certain ADRP instructions, which can 511 cause subsequent memory accesses to use an incorrect address on 512 Cortex-A53 parts up to r0p4. 513 514 If unsure, say Y. 515 516config ARM64_ERRATUM_1024718 517 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 518 default y 519 help 520 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 521 522 Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect 523 update of the hardware dirty bit when the DBM/AP bits are updated 524 without a break-before-make. The workaround is to disable the usage 525 of hardware DBM locally on the affected cores. CPUs not affected by 526 this erratum will continue to use the feature. 527 528 If unsure, say Y. 529 530config ARM64_ERRATUM_1418040 531 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 532 default y 533 depends on COMPAT 534 help 535 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 536 errata 1188873 and 1418040. 537 538 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 539 cause register corruption when accessing the timer registers 540 from AArch32 userspace. 541 542 If unsure, say Y. 543 544config ARM64_WORKAROUND_SPECULATIVE_AT 545 bool 546 547config ARM64_ERRATUM_1165522 548 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 549 default y 550 select ARM64_WORKAROUND_SPECULATIVE_AT 551 help 552 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 553 554 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 555 corrupted TLBs by speculating an AT instruction during a guest 556 context switch. 557 558 If unsure, say Y. 559 560config ARM64_ERRATUM_1319367 561 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 562 default y 563 select ARM64_WORKAROUND_SPECULATIVE_AT 564 help 565 This option adds work arounds for ARM Cortex-A57 erratum 1319537 566 and A72 erratum 1319367 567 568 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 569 speculating an AT instruction during a guest context switch. 570 571 If unsure, say Y. 572 573config ARM64_ERRATUM_1530923 574 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 575 default y 576 select ARM64_WORKAROUND_SPECULATIVE_AT 577 help 578 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 579 580 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 581 corrupted TLBs by speculating an AT instruction during a guest 582 context switch. 583 584 If unsure, say Y. 585 586config ARM64_WORKAROUND_REPEAT_TLBI 587 bool 588 589config ARM64_ERRATUM_1286807 590 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 591 default y 592 select ARM64_WORKAROUND_REPEAT_TLBI 593 help 594 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 595 596 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 597 address for a cacheable mapping of a location is being 598 accessed by a core while another core is remapping the virtual 599 address to a new physical page using the recommended 600 break-before-make sequence, then under very rare circumstances 601 TLBI+DSB completes before a read using the translation being 602 invalidated has been observed by other observers. The 603 workaround repeats the TLBI+DSB operation. 604 605config ARM64_ERRATUM_1463225 606 bool "Cortex-A76: Software Step might prevent interrupt recognition" 607 default y 608 help 609 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 610 611 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 612 of a system call instruction (SVC) can prevent recognition of 613 subsequent interrupts when software stepping is disabled in the 614 exception handler of the system call and either kernel debugging 615 is enabled or VHE is in use. 616 617 Work around the erratum by triggering a dummy step exception 618 when handling a system call from a task that is being stepped 619 in a VHE configuration of the kernel. 620 621 If unsure, say Y. 622 623config ARM64_ERRATUM_1542419 624 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 625 default y 626 help 627 This option adds a workaround for ARM Neoverse-N1 erratum 628 1542419. 629 630 Affected Neoverse-N1 cores could execute a stale instruction when 631 modified by another CPU. The workaround depends on a firmware 632 counterpart. 633 634 Workaround the issue by hiding the DIC feature from EL0. This 635 forces user-space to perform cache maintenance. 636 637 If unsure, say Y. 638 639config CAVIUM_ERRATUM_22375 640 bool "Cavium erratum 22375, 24313" 641 default y 642 help 643 Enable workaround for errata 22375 and 24313. 644 645 This implements two gicv3-its errata workarounds for ThunderX. Both 646 with a small impact affecting only ITS table allocation. 647 648 erratum 22375: only alloc 8MB table size 649 erratum 24313: ignore memory access type 650 651 The fixes are in ITS initialization and basically ignore memory access 652 type and table size provided by the TYPER and BASER registers. 653 654 If unsure, say Y. 655 656config CAVIUM_ERRATUM_23144 657 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 658 depends on NUMA 659 default y 660 help 661 ITS SYNC command hang for cross node io and collections/cpu mapping. 662 663 If unsure, say Y. 664 665config CAVIUM_ERRATUM_23154 666 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 667 default y 668 help 669 The gicv3 of ThunderX requires a modified version for 670 reading the IAR status to ensure data synchronization 671 (access to icc_iar1_el1 is not sync'ed before and after). 672 673 If unsure, say Y. 674 675config CAVIUM_ERRATUM_27456 676 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 677 default y 678 help 679 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 680 instructions may cause the icache to become corrupted if it 681 contains data for a non-current ASID. The fix is to 682 invalidate the icache when changing the mm context. 683 684 If unsure, say Y. 685 686config CAVIUM_ERRATUM_30115 687 bool "Cavium erratum 30115: Guest may disable interrupts in host" 688 default y 689 help 690 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 691 1.2, and T83 Pass 1.0, KVM guest execution may disable 692 interrupts in host. Trapping both GICv3 group-0 and group-1 693 accesses sidesteps the issue. 694 695 If unsure, say Y. 696 697config CAVIUM_TX2_ERRATUM_219 698 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 699 default y 700 help 701 On Cavium ThunderX2, a load, store or prefetch instruction between a 702 TTBR update and the corresponding context synchronizing operation can 703 cause a spurious Data Abort to be delivered to any hardware thread in 704 the CPU core. 705 706 Work around the issue by avoiding the problematic code sequence and 707 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 708 trap handler performs the corresponding register access, skips the 709 instruction and ensures context synchronization by virtue of the 710 exception return. 711 712 If unsure, say Y. 713 714config FUJITSU_ERRATUM_010001 715 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 716 default y 717 help 718 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 719 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 720 accesses may cause undefined fault (Data abort, DFSC=0b111111). 721 This fault occurs under a specific hardware condition when a 722 load/store instruction performs an address translation using: 723 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 724 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 725 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 726 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 727 728 The workaround is to ensure these bits are clear in TCR_ELx. 729 The workaround only affects the Fujitsu-A64FX. 730 731 If unsure, say Y. 732 733config HISILICON_ERRATUM_161600802 734 bool "Hip07 161600802: Erroneous redistributor VLPI base" 735 default y 736 help 737 The HiSilicon Hip07 SoC uses the wrong redistributor base 738 when issued ITS commands such as VMOVP and VMAPP, and requires 739 a 128kB offset to be applied to the target address in this commands. 740 741 If unsure, say Y. 742 743config QCOM_FALKOR_ERRATUM_1003 744 bool "Falkor E1003: Incorrect translation due to ASID change" 745 default y 746 help 747 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 748 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 749 in TTBR1_EL1, this situation only occurs in the entry trampoline and 750 then only for entries in the walk cache, since the leaf translation 751 is unchanged. Work around the erratum by invalidating the walk cache 752 entries for the trampoline before entering the kernel proper. 753 754config QCOM_FALKOR_ERRATUM_1009 755 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 756 default y 757 select ARM64_WORKAROUND_REPEAT_TLBI 758 help 759 On Falkor v1, the CPU may prematurely complete a DSB following a 760 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 761 one more time to fix the issue. 762 763 If unsure, say Y. 764 765config QCOM_QDF2400_ERRATUM_0065 766 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 767 default y 768 help 769 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 770 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 771 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 772 773 If unsure, say Y. 774 775config QCOM_FALKOR_ERRATUM_E1041 776 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 777 default y 778 help 779 Falkor CPU may speculatively fetch instructions from an improper 780 memory location when MMU translation is changed from SCTLR_ELn[M]=1 781 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 782 783 If unsure, say Y. 784 785config SOCIONEXT_SYNQUACER_PREITS 786 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 787 default y 788 help 789 Socionext Synquacer SoCs implement a separate h/w block to generate 790 MSI doorbell writes with non-zero values for the device ID. 791 792 If unsure, say Y. 793 794endmenu 795 796 797choice 798 prompt "Page size" 799 default ARM64_4K_PAGES 800 help 801 Page size (translation granule) configuration. 802 803config ARM64_4K_PAGES 804 bool "4KB" 805 help 806 This feature enables 4KB pages support. 807 808config ARM64_16K_PAGES 809 bool "16KB" 810 help 811 The system will use 16KB pages support. AArch32 emulation 812 requires applications compiled with 16K (or a multiple of 16K) 813 aligned segments. 814 815config ARM64_64K_PAGES 816 bool "64KB" 817 help 818 This feature enables 64KB pages support (4KB by default) 819 allowing only two levels of page tables and faster TLB 820 look-up. AArch32 emulation requires applications compiled 821 with 64K aligned segments. 822 823endchoice 824 825choice 826 prompt "Virtual address space size" 827 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 828 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 829 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 830 help 831 Allows choosing one of multiple possible virtual address 832 space sizes. The level of translation table is determined by 833 a combination of page size and virtual address space size. 834 835config ARM64_VA_BITS_36 836 bool "36-bit" if EXPERT 837 depends on ARM64_16K_PAGES 838 839config ARM64_VA_BITS_39 840 bool "39-bit" 841 depends on ARM64_4K_PAGES 842 843config ARM64_VA_BITS_42 844 bool "42-bit" 845 depends on ARM64_64K_PAGES 846 847config ARM64_VA_BITS_47 848 bool "47-bit" 849 depends on ARM64_16K_PAGES 850 851config ARM64_VA_BITS_48 852 bool "48-bit" 853 854config ARM64_VA_BITS_52 855 bool "52-bit" 856 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 857 help 858 Enable 52-bit virtual addressing for userspace when explicitly 859 requested via a hint to mmap(). The kernel will also use 52-bit 860 virtual addresses for its own mappings (provided HW support for 861 this feature is available, otherwise it reverts to 48-bit). 862 863 NOTE: Enabling 52-bit virtual addressing in conjunction with 864 ARMv8.3 Pointer Authentication will result in the PAC being 865 reduced from 7 bits to 3 bits, which may have a significant 866 impact on its susceptibility to brute-force attacks. 867 868 If unsure, select 48-bit virtual addressing instead. 869 870endchoice 871 872config ARM64_FORCE_52BIT 873 bool "Force 52-bit virtual addresses for userspace" 874 depends on ARM64_VA_BITS_52 && EXPERT 875 help 876 For systems with 52-bit userspace VAs enabled, the kernel will attempt 877 to maintain compatibility with older software by providing 48-bit VAs 878 unless a hint is supplied to mmap. 879 880 This configuration option disables the 48-bit compatibility logic, and 881 forces all userspace addresses to be 52-bit on HW that supports it. One 882 should only enable this configuration option for stress testing userspace 883 memory management code. If unsure say N here. 884 885config ARM64_VA_BITS 886 int 887 default 36 if ARM64_VA_BITS_36 888 default 39 if ARM64_VA_BITS_39 889 default 42 if ARM64_VA_BITS_42 890 default 47 if ARM64_VA_BITS_47 891 default 48 if ARM64_VA_BITS_48 892 default 52 if ARM64_VA_BITS_52 893 894choice 895 prompt "Physical address space size" 896 default ARM64_PA_BITS_48 897 help 898 Choose the maximum physical address range that the kernel will 899 support. 900 901config ARM64_PA_BITS_48 902 bool "48-bit" 903 904config ARM64_PA_BITS_52 905 bool "52-bit (ARMv8.2)" 906 depends on ARM64_64K_PAGES 907 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 908 help 909 Enable support for a 52-bit physical address space, introduced as 910 part of the ARMv8.2-LPA extension. 911 912 With this enabled, the kernel will also continue to work on CPUs that 913 do not support ARMv8.2-LPA, but with some added memory overhead (and 914 minor performance overhead). 915 916endchoice 917 918config ARM64_PA_BITS 919 int 920 default 48 if ARM64_PA_BITS_48 921 default 52 if ARM64_PA_BITS_52 922 923choice 924 prompt "Endianness" 925 default CPU_LITTLE_ENDIAN 926 help 927 Select the endianness of data accesses performed by the CPU. Userspace 928 applications will need to be compiled and linked for the endianness 929 that is selected here. 930 931config CPU_BIG_ENDIAN 932 bool "Build big-endian kernel" 933 help 934 Say Y if you plan on running a kernel with a big-endian userspace. 935 936config CPU_LITTLE_ENDIAN 937 bool "Build little-endian kernel" 938 help 939 Say Y if you plan on running a kernel with a little-endian userspace. 940 This is usually the case for distributions targeting arm64. 941 942endchoice 943 944config SCHED_MC 945 bool "Multi-core scheduler support" 946 help 947 Multi-core scheduler support improves the CPU scheduler's decision 948 making when dealing with multi-core CPU chips at a cost of slightly 949 increased overhead in some places. If unsure say N here. 950 951config SCHED_SMT 952 bool "SMT scheduler support" 953 help 954 Improves the CPU scheduler's decision making when dealing with 955 MultiThreading at a cost of slightly increased overhead in some 956 places. If unsure say N here. 957 958config NR_CPUS 959 int "Maximum number of CPUs (2-4096)" 960 range 2 4096 961 default "256" 962 963config HOTPLUG_CPU 964 bool "Support for hot-pluggable CPUs" 965 select GENERIC_IRQ_MIGRATION 966 help 967 Say Y here to experiment with turning CPUs off and on. CPUs 968 can be controlled through /sys/devices/system/cpu. 969 970# Common NUMA Features 971config NUMA 972 bool "NUMA Memory Allocation and Scheduler Support" 973 select ACPI_NUMA if ACPI 974 select OF_NUMA 975 help 976 Enable NUMA (Non-Uniform Memory Access) support. 977 978 The kernel will try to allocate memory used by a CPU on the 979 local memory of the CPU and add some more 980 NUMA awareness to the kernel. 981 982config NODES_SHIFT 983 int "Maximum NUMA Nodes (as a power of 2)" 984 range 1 10 985 default "2" 986 depends on NEED_MULTIPLE_NODES 987 help 988 Specify the maximum number of NUMA Nodes available on the target 989 system. Increases memory reserved to accommodate various tables. 990 991config USE_PERCPU_NUMA_NODE_ID 992 def_bool y 993 depends on NUMA 994 995config HAVE_SETUP_PER_CPU_AREA 996 def_bool y 997 depends on NUMA 998 999config NEED_PER_CPU_EMBED_FIRST_CHUNK 1000 def_bool y 1001 depends on NUMA 1002 1003config HOLES_IN_ZONE 1004 def_bool y 1005 1006source "kernel/Kconfig.hz" 1007 1008config ARCH_SUPPORTS_DEBUG_PAGEALLOC 1009 def_bool y 1010 1011config ARCH_SPARSEMEM_ENABLE 1012 def_bool y 1013 select SPARSEMEM_VMEMMAP_ENABLE 1014 1015config ARCH_SPARSEMEM_DEFAULT 1016 def_bool ARCH_SPARSEMEM_ENABLE 1017 1018config ARCH_SELECT_MEMORY_MODEL 1019 def_bool ARCH_SPARSEMEM_ENABLE 1020 1021config ARCH_FLATMEM_ENABLE 1022 def_bool !NUMA 1023 1024config HAVE_ARCH_PFN_VALID 1025 def_bool y 1026 1027config HW_PERF_EVENTS 1028 def_bool y 1029 depends on ARM_PMU 1030 1031config SYS_SUPPORTS_HUGETLBFS 1032 def_bool y 1033 1034config ARCH_WANT_HUGE_PMD_SHARE 1035 1036config ARCH_HAS_CACHE_LINE_SIZE 1037 def_bool y 1038 1039config ARCH_ENABLE_SPLIT_PMD_PTLOCK 1040 def_bool y if PGTABLE_LEVELS > 2 1041 1042# Supported by clang >= 7.0 1043config CC_HAVE_SHADOW_CALL_STACK 1044 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1045 1046config PARAVIRT 1047 bool "Enable paravirtualization code" 1048 help 1049 This changes the kernel so it can modify itself when it is run 1050 under a hypervisor, potentially improving performance significantly 1051 over full virtualization. 1052 1053config PARAVIRT_TIME_ACCOUNTING 1054 bool "Paravirtual steal time accounting" 1055 select PARAVIRT 1056 help 1057 Select this option to enable fine granularity task steal time 1058 accounting. Time spent executing other tasks in parallel with 1059 the current vCPU is discounted from the vCPU power. To account for 1060 that, there can be a small performance impact. 1061 1062 If in doubt, say N here. 1063 1064config KEXEC 1065 depends on PM_SLEEP_SMP 1066 select KEXEC_CORE 1067 bool "kexec system call" 1068 help 1069 kexec is a system call that implements the ability to shutdown your 1070 current kernel, and to start another kernel. It is like a reboot 1071 but it is independent of the system firmware. And like a reboot 1072 you can start any kernel with it, not just Linux. 1073 1074config KEXEC_FILE 1075 bool "kexec file based system call" 1076 select KEXEC_CORE 1077 help 1078 This is new version of kexec system call. This system call is 1079 file based and takes file descriptors as system call argument 1080 for kernel and initramfs as opposed to list of segments as 1081 accepted by previous system call. 1082 1083config KEXEC_SIG 1084 bool "Verify kernel signature during kexec_file_load() syscall" 1085 depends on KEXEC_FILE 1086 help 1087 Select this option to verify a signature with loaded kernel 1088 image. If configured, any attempt of loading a image without 1089 valid signature will fail. 1090 1091 In addition to that option, you need to enable signature 1092 verification for the corresponding kernel image type being 1093 loaded in order for this to work. 1094 1095config KEXEC_IMAGE_VERIFY_SIG 1096 bool "Enable Image signature verification support" 1097 default y 1098 depends on KEXEC_SIG 1099 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1100 help 1101 Enable Image signature verification support. 1102 1103comment "Support for PE file signature verification disabled" 1104 depends on KEXEC_SIG 1105 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1106 1107config CRASH_DUMP 1108 bool "Build kdump crash kernel" 1109 help 1110 Generate crash dump after being started by kexec. This should 1111 be normally only set in special crash dump kernels which are 1112 loaded in the main kernel with kexec-tools into a specially 1113 reserved region and then later executed after a crash by 1114 kdump/kexec. 1115 1116 For more details see Documentation/admin-guide/kdump/kdump.rst 1117 1118config XEN_DOM0 1119 def_bool y 1120 depends on XEN 1121 1122config XEN 1123 bool "Xen guest support on ARM64" 1124 depends on ARM64 && OF 1125 select SWIOTLB_XEN 1126 select PARAVIRT 1127 help 1128 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1129 1130config FORCE_MAX_ZONEORDER 1131 int 1132 default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE) 1133 default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE) 1134 default "11" 1135 help 1136 The kernel memory allocator divides physically contiguous memory 1137 blocks into "zones", where each zone is a power of two number of 1138 pages. This option selects the largest power of two that the kernel 1139 keeps in the memory allocator. If you need to allocate very large 1140 blocks of physically contiguous memory, then you may need to 1141 increase this value. 1142 1143 This config option is actually maximum order plus one. For example, 1144 a value of 11 means that the largest free memory block is 2^10 pages. 1145 1146 We make sure that we can allocate upto a HugePage size for each configuration. 1147 Hence we have : 1148 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1149 1150 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1151 4M allocations matching the default size used by generic code. 1152 1153config UNMAP_KERNEL_AT_EL0 1154 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1155 default y 1156 help 1157 Speculation attacks against some high-performance processors can 1158 be used to bypass MMU permission checks and leak kernel data to 1159 userspace. This can be defended against by unmapping the kernel 1160 when running in userspace, mapping it back in on exception entry 1161 via a trampoline page in the vector table. 1162 1163 If unsure, say Y. 1164 1165config RODATA_FULL_DEFAULT_ENABLED 1166 bool "Apply r/o permissions of VM areas also to their linear aliases" 1167 default y 1168 help 1169 Apply read-only attributes of VM areas to the linear alias of 1170 the backing pages as well. This prevents code or read-only data 1171 from being modified (inadvertently or intentionally) via another 1172 mapping of the same memory page. This additional enhancement can 1173 be turned off at runtime by passing rodata=[off|on] (and turned on 1174 with rodata=full if this option is set to 'n') 1175 1176 This requires the linear region to be mapped down to pages, 1177 which may adversely affect performance in some cases. 1178 1179config ARM64_SW_TTBR0_PAN 1180 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1181 help 1182 Enabling this option prevents the kernel from accessing 1183 user-space memory directly by pointing TTBR0_EL1 to a reserved 1184 zeroed area and reserved ASID. The user access routines 1185 restore the valid TTBR0_EL1 temporarily. 1186 1187config ARM64_TAGGED_ADDR_ABI 1188 bool "Enable the tagged user addresses syscall ABI" 1189 default y 1190 help 1191 When this option is enabled, user applications can opt in to a 1192 relaxed ABI via prctl() allowing tagged addresses to be passed 1193 to system calls as pointer arguments. For details, see 1194 Documentation/arm64/tagged-address-abi.rst. 1195 1196menuconfig COMPAT 1197 bool "Kernel support for 32-bit EL0" 1198 depends on ARM64_4K_PAGES || EXPERT 1199 select COMPAT_BINFMT_ELF if BINFMT_ELF 1200 select HAVE_UID16 1201 select OLD_SIGSUSPEND3 1202 select COMPAT_OLD_SIGACTION 1203 help 1204 This option enables support for a 32-bit EL0 running under a 64-bit 1205 kernel at EL1. AArch32-specific components such as system calls, 1206 the user helper functions, VFP support and the ptrace interface are 1207 handled appropriately by the kernel. 1208 1209 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1210 that you will only be able to execute AArch32 binaries that were compiled 1211 with page size aligned segments. 1212 1213 If you want to execute 32-bit userspace applications, say Y. 1214 1215if COMPAT 1216 1217config KUSER_HELPERS 1218 bool "Enable kuser helpers page for 32-bit applications" 1219 default y 1220 help 1221 Warning: disabling this option may break 32-bit user programs. 1222 1223 Provide kuser helpers to compat tasks. The kernel provides 1224 helper code to userspace in read only form at a fixed location 1225 to allow userspace to be independent of the CPU type fitted to 1226 the system. This permits binaries to be run on ARMv4 through 1227 to ARMv8 without modification. 1228 1229 See Documentation/arm/kernel_user_helpers.rst for details. 1230 1231 However, the fixed address nature of these helpers can be used 1232 by ROP (return orientated programming) authors when creating 1233 exploits. 1234 1235 If all of the binaries and libraries which run on your platform 1236 are built specifically for your platform, and make no use of 1237 these helpers, then you can turn this option off to hinder 1238 such exploits. However, in that case, if a binary or library 1239 relying on those helpers is run, it will not function correctly. 1240 1241 Say N here only if you are absolutely certain that you do not 1242 need these helpers; otherwise, the safe option is to say Y. 1243 1244config COMPAT_VDSO 1245 bool "Enable vDSO for 32-bit applications" 1246 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1247 select GENERIC_COMPAT_VDSO 1248 default y 1249 help 1250 Place in the process address space of 32-bit applications an 1251 ELF shared object providing fast implementations of gettimeofday 1252 and clock_gettime. 1253 1254 You must have a 32-bit build of glibc 2.22 or later for programs 1255 to seamlessly take advantage of this. 1256 1257config THUMB2_COMPAT_VDSO 1258 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1259 depends on COMPAT_VDSO 1260 default y 1261 help 1262 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1263 otherwise with '-marm'. 1264 1265menuconfig ARMV8_DEPRECATED 1266 bool "Emulate deprecated/obsolete ARMv8 instructions" 1267 depends on SYSCTL 1268 help 1269 Legacy software support may require certain instructions 1270 that have been deprecated or obsoleted in the architecture. 1271 1272 Enable this config to enable selective emulation of these 1273 features. 1274 1275 If unsure, say Y 1276 1277if ARMV8_DEPRECATED 1278 1279config SWP_EMULATION 1280 bool "Emulate SWP/SWPB instructions" 1281 help 1282 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1283 they are always undefined. Say Y here to enable software 1284 emulation of these instructions for userspace using LDXR/STXR. 1285 This feature can be controlled at runtime with the abi.swp 1286 sysctl which is disabled by default. 1287 1288 In some older versions of glibc [<=2.8] SWP is used during futex 1289 trylock() operations with the assumption that the code will not 1290 be preempted. This invalid assumption may be more likely to fail 1291 with SWP emulation enabled, leading to deadlock of the user 1292 application. 1293 1294 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1295 on an external transaction monitoring block called a global 1296 monitor to maintain update atomicity. If your system does not 1297 implement a global monitor, this option can cause programs that 1298 perform SWP operations to uncached memory to deadlock. 1299 1300 If unsure, say Y 1301 1302config CP15_BARRIER_EMULATION 1303 bool "Emulate CP15 Barrier instructions" 1304 help 1305 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1306 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1307 strongly recommended to use the ISB, DSB, and DMB 1308 instructions instead. 1309 1310 Say Y here to enable software emulation of these 1311 instructions for AArch32 userspace code. When this option is 1312 enabled, CP15 barrier usage is traced which can help 1313 identify software that needs updating. This feature can be 1314 controlled at runtime with the abi.cp15_barrier sysctl. 1315 1316 If unsure, say Y 1317 1318config SETEND_EMULATION 1319 bool "Emulate SETEND instruction" 1320 help 1321 The SETEND instruction alters the data-endianness of the 1322 AArch32 EL0, and is deprecated in ARMv8. 1323 1324 Say Y here to enable software emulation of the instruction 1325 for AArch32 userspace code. This feature can be controlled 1326 at runtime with the abi.setend sysctl. 1327 1328 Note: All the cpus on the system must have mixed endian support at EL0 1329 for this feature to be enabled. If a new CPU - which doesn't support mixed 1330 endian - is hotplugged in after this feature has been enabled, there could 1331 be unexpected results in the applications. 1332 1333 If unsure, say Y 1334endif 1335 1336endif 1337 1338menu "ARMv8.1 architectural features" 1339 1340config ARM64_HW_AFDBM 1341 bool "Support for hardware updates of the Access and Dirty page flags" 1342 default y 1343 help 1344 The ARMv8.1 architecture extensions introduce support for 1345 hardware updates of the access and dirty information in page 1346 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1347 capable processors, accesses to pages with PTE_AF cleared will 1348 set this bit instead of raising an access flag fault. 1349 Similarly, writes to read-only pages with the DBM bit set will 1350 clear the read-only bit (AP[2]) instead of raising a 1351 permission fault. 1352 1353 Kernels built with this configuration option enabled continue 1354 to work on pre-ARMv8.1 hardware and the performance impact is 1355 minimal. If unsure, say Y. 1356 1357config ARM64_PAN 1358 bool "Enable support for Privileged Access Never (PAN)" 1359 default y 1360 help 1361 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1362 prevents the kernel or hypervisor from accessing user-space (EL0) 1363 memory directly. 1364 1365 Choosing this option will cause any unprotected (not using 1366 copy_to_user et al) memory access to fail with a permission fault. 1367 1368 The feature is detected at runtime, and will remain as a 'nop' 1369 instruction if the cpu does not implement the feature. 1370 1371config ARM64_LSE_ATOMICS 1372 bool 1373 default ARM64_USE_LSE_ATOMICS 1374 depends on $(as-instr,.arch_extension lse) 1375 1376config ARM64_USE_LSE_ATOMICS 1377 bool "Atomic instructions" 1378 depends on JUMP_LABEL 1379 default y 1380 help 1381 As part of the Large System Extensions, ARMv8.1 introduces new 1382 atomic instructions that are designed specifically to scale in 1383 very large systems. 1384 1385 Say Y here to make use of these instructions for the in-kernel 1386 atomic routines. This incurs a small overhead on CPUs that do 1387 not support these instructions and requires the kernel to be 1388 built with binutils >= 2.25 in order for the new instructions 1389 to be used. 1390 1391config ARM64_VHE 1392 bool "Enable support for Virtualization Host Extensions (VHE)" 1393 default y 1394 help 1395 Virtualization Host Extensions (VHE) allow the kernel to run 1396 directly at EL2 (instead of EL1) on processors that support 1397 it. This leads to better performance for KVM, as they reduce 1398 the cost of the world switch. 1399 1400 Selecting this option allows the VHE feature to be detected 1401 at runtime, and does not affect processors that do not 1402 implement this feature. 1403 1404endmenu 1405 1406menu "ARMv8.2 architectural features" 1407 1408config ARM64_UAO 1409 bool "Enable support for User Access Override (UAO)" 1410 default y 1411 help 1412 User Access Override (UAO; part of the ARMv8.2 Extensions) 1413 causes the 'unprivileged' variant of the load/store instructions to 1414 be overridden to be privileged. 1415 1416 This option changes get_user() and friends to use the 'unprivileged' 1417 variant of the load/store instructions. This ensures that user-space 1418 really did have access to the supplied memory. When addr_limit is 1419 set to kernel memory the UAO bit will be set, allowing privileged 1420 access to kernel memory. 1421 1422 Choosing this option will cause copy_to_user() et al to use user-space 1423 memory permissions. 1424 1425 The feature is detected at runtime, the kernel will use the 1426 regular load/store instructions if the cpu does not implement the 1427 feature. 1428 1429config ARM64_PMEM 1430 bool "Enable support for persistent memory" 1431 select ARCH_HAS_PMEM_API 1432 select ARCH_HAS_UACCESS_FLUSHCACHE 1433 help 1434 Say Y to enable support for the persistent memory API based on the 1435 ARMv8.2 DCPoP feature. 1436 1437 The feature is detected at runtime, and the kernel will use DC CVAC 1438 operations if DC CVAP is not supported (following the behaviour of 1439 DC CVAP itself if the system does not define a point of persistence). 1440 1441config ARM64_RAS_EXTN 1442 bool "Enable support for RAS CPU Extensions" 1443 default y 1444 help 1445 CPUs that support the Reliability, Availability and Serviceability 1446 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1447 errors, classify them and report them to software. 1448 1449 On CPUs with these extensions system software can use additional 1450 barriers to determine if faults are pending and read the 1451 classification from a new set of registers. 1452 1453 Selecting this feature will allow the kernel to use these barriers 1454 and access the new registers if the system supports the extension. 1455 Platform RAS features may additionally depend on firmware support. 1456 1457config ARM64_CNP 1458 bool "Enable support for Common Not Private (CNP) translations" 1459 default y 1460 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1461 help 1462 Common Not Private (CNP) allows translation table entries to 1463 be shared between different PEs in the same inner shareable 1464 domain, so the hardware can use this fact to optimise the 1465 caching of such entries in the TLB. 1466 1467 Selecting this option allows the CNP feature to be detected 1468 at runtime, and does not affect PEs that do not implement 1469 this feature. 1470 1471endmenu 1472 1473menu "ARMv8.3 architectural features" 1474 1475config ARM64_PTR_AUTH 1476 bool "Enable support for pointer authentication" 1477 default y 1478 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1479 # Modern compilers insert a .note.gnu.property section note for PAC 1480 # which is only understood by binutils starting with version 2.33.1. 1481 depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100) 1482 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1483 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1484 help 1485 Pointer authentication (part of the ARMv8.3 Extensions) provides 1486 instructions for signing and authenticating pointers against secret 1487 keys, which can be used to mitigate Return Oriented Programming (ROP) 1488 and other attacks. 1489 1490 This option enables these instructions at EL0 (i.e. for userspace). 1491 Choosing this option will cause the kernel to initialise secret keys 1492 for each process at exec() time, with these keys being 1493 context-switched along with the process. 1494 1495 If the compiler supports the -mbranch-protection or 1496 -msign-return-address flag (e.g. GCC 7 or later), then this option 1497 will also cause the kernel itself to be compiled with return address 1498 protection. In this case, and if the target hardware is known to 1499 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1500 disabled with minimal loss of protection. 1501 1502 The feature is detected at runtime. If the feature is not present in 1503 hardware it will not be advertised to userspace/KVM guest nor will it 1504 be enabled. 1505 1506 If the feature is present on the boot CPU but not on a late CPU, then 1507 the late CPU will be parked. Also, if the boot CPU does not have 1508 address auth and the late CPU has then the late CPU will still boot 1509 but with the feature disabled. On such a system, this option should 1510 not be selected. 1511 1512 This feature works with FUNCTION_GRAPH_TRACER option only if 1513 DYNAMIC_FTRACE_WITH_REGS is enabled. 1514 1515config CC_HAS_BRANCH_PROT_PAC_RET 1516 # GCC 9 or later, clang 8 or later 1517 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1518 1519config CC_HAS_SIGN_RETURN_ADDRESS 1520 # GCC 7, 8 1521 def_bool $(cc-option,-msign-return-address=all) 1522 1523config AS_HAS_PAC 1524 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1525 1526config AS_HAS_CFI_NEGATE_RA_STATE 1527 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1528 1529endmenu 1530 1531menu "ARMv8.4 architectural features" 1532 1533config ARM64_AMU_EXTN 1534 bool "Enable support for the Activity Monitors Unit CPU extension" 1535 default y 1536 help 1537 The activity monitors extension is an optional extension introduced 1538 by the ARMv8.4 CPU architecture. This enables support for version 1 1539 of the activity monitors architecture, AMUv1. 1540 1541 To enable the use of this extension on CPUs that implement it, say Y. 1542 1543 Note that for architectural reasons, firmware _must_ implement AMU 1544 support when running on CPUs that present the activity monitors 1545 extension. The required support is present in: 1546 * Version 1.5 and later of the ARM Trusted Firmware 1547 1548 For kernels that have this configuration enabled but boot with broken 1549 firmware, you may need to say N here until the firmware is fixed. 1550 Otherwise you may experience firmware panics or lockups when 1551 accessing the counter registers. Even if you are not observing these 1552 symptoms, the values returned by the register reads might not 1553 correctly reflect reality. Most commonly, the value read will be 0, 1554 indicating that the counter is not enabled. 1555 1556config AS_HAS_ARMV8_4 1557 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1558 1559config ARM64_TLB_RANGE 1560 bool "Enable support for tlbi range feature" 1561 default y 1562 depends on AS_HAS_ARMV8_4 1563 help 1564 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1565 range of input addresses. 1566 1567 The feature introduces new assembly instructions, and they were 1568 support when binutils >= 2.30. 1569 1570endmenu 1571 1572menu "ARMv8.5 architectural features" 1573 1574config ARM64_BTI 1575 bool "Branch Target Identification support" 1576 default y 1577 help 1578 Branch Target Identification (part of the ARMv8.5 Extensions) 1579 provides a mechanism to limit the set of locations to which computed 1580 branch instructions such as BR or BLR can jump. 1581 1582 To make use of BTI on CPUs that support it, say Y. 1583 1584 BTI is intended to provide complementary protection to other control 1585 flow integrity protection mechanisms, such as the Pointer 1586 authentication mechanism provided as part of the ARMv8.3 Extensions. 1587 For this reason, it does not make sense to enable this option without 1588 also enabling support for pointer authentication. Thus, when 1589 enabling this option you should also select ARM64_PTR_AUTH=y. 1590 1591 Userspace binaries must also be specifically compiled to make use of 1592 this mechanism. If you say N here or the hardware does not support 1593 BTI, such binaries can still run, but you get no additional 1594 enforcement of branch destinations. 1595 1596config ARM64_BTI_KERNEL 1597 bool "Use Branch Target Identification for kernel" 1598 default y 1599 depends on ARM64_BTI 1600 depends on ARM64_PTR_AUTH 1601 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1602 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1603 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1604 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1605 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1606 help 1607 Build the kernel with Branch Target Identification annotations 1608 and enable enforcement of this for kernel code. When this option 1609 is enabled and the system supports BTI all kernel code including 1610 modular code must have BTI enabled. 1611 1612config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1613 # GCC 9 or later, clang 8 or later 1614 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1615 1616config ARM64_E0PD 1617 bool "Enable support for E0PD" 1618 default y 1619 help 1620 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1621 that EL0 accesses made via TTBR1 always fault in constant time, 1622 providing similar benefits to KASLR as those provided by KPTI, but 1623 with lower overhead and without disrupting legitimate access to 1624 kernel memory such as SPE. 1625 1626 This option enables E0PD for TTBR1 where available. 1627 1628config ARCH_RANDOM 1629 bool "Enable support for random number generation" 1630 default y 1631 help 1632 Random number generation (part of the ARMv8.5 Extensions) 1633 provides a high bandwidth, cryptographically secure 1634 hardware random number generator. 1635 1636config ARM64_AS_HAS_MTE 1637 # Initial support for MTE went in binutils 2.32.0, checked with 1638 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1639 # as a late addition to the final architecture spec (LDGM/STGM) 1640 # is only supported in the newer 2.32.x and 2.33 binutils 1641 # versions, hence the extra "stgm" instruction check below. 1642 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1643 1644config ARM64_MTE 1645 bool "Memory Tagging Extension support" 1646 default y 1647 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1648 select ARCH_USES_HIGH_VMA_FLAGS 1649 help 1650 Memory Tagging (part of the ARMv8.5 Extensions) provides 1651 architectural support for run-time, always-on detection of 1652 various classes of memory error to aid with software debugging 1653 to eliminate vulnerabilities arising from memory-unsafe 1654 languages. 1655 1656 This option enables the support for the Memory Tagging 1657 Extension at EL0 (i.e. for userspace). 1658 1659 Selecting this option allows the feature to be detected at 1660 runtime. Any secondary CPU not implementing this feature will 1661 not be allowed a late bring-up. 1662 1663 Userspace binaries that want to use this feature must 1664 explicitly opt in. The mechanism for the userspace is 1665 described in: 1666 1667 Documentation/arm64/memory-tagging-extension.rst. 1668 1669endmenu 1670 1671config ARM64_SVE 1672 bool "ARM Scalable Vector Extension support" 1673 default y 1674 depends on !KVM || ARM64_VHE 1675 help 1676 The Scalable Vector Extension (SVE) is an extension to the AArch64 1677 execution state which complements and extends the SIMD functionality 1678 of the base architecture to support much larger vectors and to enable 1679 additional vectorisation opportunities. 1680 1681 To enable use of this extension on CPUs that implement it, say Y. 1682 1683 On CPUs that support the SVE2 extensions, this option will enable 1684 those too. 1685 1686 Note that for architectural reasons, firmware _must_ implement SVE 1687 support when running on SVE capable hardware. The required support 1688 is present in: 1689 1690 * version 1.5 and later of the ARM Trusted Firmware 1691 * the AArch64 boot wrapper since commit 5e1261e08abf 1692 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1693 1694 For other firmware implementations, consult the firmware documentation 1695 or vendor. 1696 1697 If you need the kernel to boot on SVE-capable hardware with broken 1698 firmware, you may need to say N here until you get your firmware 1699 fixed. Otherwise, you may experience firmware panics or lockups when 1700 booting the kernel. If unsure and you are not observing these 1701 symptoms, you should assume that it is safe to say Y. 1702 1703 CPUs that support SVE are architecturally required to support the 1704 Virtualization Host Extensions (VHE), so the kernel makes no 1705 provision for supporting SVE alongside KVM without VHE enabled. 1706 Thus, you will need to enable CONFIG_ARM64_VHE if you want to support 1707 KVM in the same kernel image. 1708 1709config ARM64_MODULE_PLTS 1710 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1711 depends on MODULES 1712 select HAVE_MOD_ARCH_SPECIFIC 1713 help 1714 Allocate PLTs when loading modules so that jumps and calls whose 1715 targets are too far away for their relative offsets to be encoded 1716 in the instructions themselves can be bounced via veneers in the 1717 module's PLT. This allows modules to be allocated in the generic 1718 vmalloc area after the dedicated module memory area has been 1719 exhausted. 1720 1721 When running with address space randomization (KASLR), the module 1722 region itself may be too far away for ordinary relative jumps and 1723 calls, and so in that case, module PLTs are required and cannot be 1724 disabled. 1725 1726 Specific errata workaround(s) might also force module PLTs to be 1727 enabled (ARM64_ERRATUM_843419). 1728 1729config ARM64_PSEUDO_NMI 1730 bool "Support for NMI-like interrupts" 1731 select ARM_GIC_V3 1732 help 1733 Adds support for mimicking Non-Maskable Interrupts through the use of 1734 GIC interrupt priority. This support requires version 3 or later of 1735 ARM GIC. 1736 1737 This high priority configuration for interrupts needs to be 1738 explicitly enabled by setting the kernel parameter 1739 "irqchip.gicv3_pseudo_nmi" to 1. 1740 1741 If unsure, say N 1742 1743if ARM64_PSEUDO_NMI 1744config ARM64_DEBUG_PRIORITY_MASKING 1745 bool "Debug interrupt priority masking" 1746 help 1747 This adds runtime checks to functions enabling/disabling 1748 interrupts when using priority masking. The additional checks verify 1749 the validity of ICC_PMR_EL1 when calling concerned functions. 1750 1751 If unsure, say N 1752endif 1753 1754config RELOCATABLE 1755 bool "Build a relocatable kernel image" if EXPERT 1756 select ARCH_HAS_RELR 1757 default y 1758 help 1759 This builds the kernel as a Position Independent Executable (PIE), 1760 which retains all relocation metadata required to relocate the 1761 kernel binary at runtime to a different virtual address than the 1762 address it was linked at. 1763 Since AArch64 uses the RELA relocation format, this requires a 1764 relocation pass at runtime even if the kernel is loaded at the 1765 same address it was linked at. 1766 1767config RANDOMIZE_BASE 1768 bool "Randomize the address of the kernel image" 1769 select ARM64_MODULE_PLTS if MODULES 1770 select RELOCATABLE 1771 help 1772 Randomizes the virtual address at which the kernel image is 1773 loaded, as a security feature that deters exploit attempts 1774 relying on knowledge of the location of kernel internals. 1775 1776 It is the bootloader's job to provide entropy, by passing a 1777 random u64 value in /chosen/kaslr-seed at kernel entry. 1778 1779 When booting via the UEFI stub, it will invoke the firmware's 1780 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1781 to the kernel proper. In addition, it will randomise the physical 1782 location of the kernel Image as well. 1783 1784 If unsure, say N. 1785 1786config RANDOMIZE_MODULE_REGION_FULL 1787 bool "Randomize the module region over a 4 GB range" 1788 depends on RANDOMIZE_BASE 1789 default y 1790 help 1791 Randomizes the location of the module region inside a 4 GB window 1792 covering the core kernel. This way, it is less likely for modules 1793 to leak information about the location of core kernel data structures 1794 but it does imply that function calls between modules and the core 1795 kernel will need to be resolved via veneers in the module PLT. 1796 1797 When this option is not set, the module region will be randomized over 1798 a limited range that contains the [_stext, _etext] interval of the 1799 core kernel, so branch relocations are always in range. 1800 1801config CC_HAVE_STACKPROTECTOR_SYSREG 1802 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1803 1804config STACKPROTECTOR_PER_TASK 1805 def_bool y 1806 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1807 1808endmenu 1809 1810menu "Boot options" 1811 1812config ARM64_ACPI_PARKING_PROTOCOL 1813 bool "Enable support for the ARM64 ACPI parking protocol" 1814 depends on ACPI 1815 help 1816 Enable support for the ARM64 ACPI parking protocol. If disabled 1817 the kernel will not allow booting through the ARM64 ACPI parking 1818 protocol even if the corresponding data is present in the ACPI 1819 MADT table. 1820 1821config CMDLINE 1822 string "Default kernel command string" 1823 default "" 1824 help 1825 Provide a set of default command-line options at build time by 1826 entering them here. As a minimum, you should specify the the 1827 root device (e.g. root=/dev/nfs). 1828 1829config CMDLINE_FORCE 1830 bool "Always use the default kernel command string" 1831 depends on CMDLINE != "" 1832 help 1833 Always use the default kernel command string, even if the boot 1834 loader passes other arguments to the kernel. 1835 This is useful if you cannot or don't want to change the 1836 command-line options your boot loader passes to the kernel. 1837 1838config EFI_STUB 1839 bool 1840 1841config EFI 1842 bool "UEFI runtime support" 1843 depends on OF && !CPU_BIG_ENDIAN 1844 depends on KERNEL_MODE_NEON 1845 select ARCH_SUPPORTS_ACPI 1846 select LIBFDT 1847 select UCS2_STRING 1848 select EFI_PARAMS_FROM_FDT 1849 select EFI_RUNTIME_WRAPPERS 1850 select EFI_STUB 1851 select EFI_GENERIC_STUB 1852 default y 1853 help 1854 This option provides support for runtime services provided 1855 by UEFI firmware (such as non-volatile variables, realtime 1856 clock, and platform reset). A UEFI stub is also provided to 1857 allow the kernel to be booted as an EFI application. This 1858 is only useful on systems that have UEFI firmware. 1859 1860config DMI 1861 bool "Enable support for SMBIOS (DMI) tables" 1862 depends on EFI 1863 default y 1864 help 1865 This enables SMBIOS/DMI feature for systems. 1866 1867 This option is only useful on systems that have UEFI firmware. 1868 However, even with this option, the resultant kernel should 1869 continue to boot on existing non-UEFI platforms. 1870 1871endmenu 1872 1873config SYSVIPC_COMPAT 1874 def_bool y 1875 depends on COMPAT && SYSVIPC 1876 1877config ARCH_ENABLE_HUGEPAGE_MIGRATION 1878 def_bool y 1879 depends on HUGETLB_PAGE && MIGRATION 1880 1881config ARCH_ENABLE_THP_MIGRATION 1882 def_bool y 1883 depends on TRANSPARENT_HUGEPAGE 1884 1885menu "Power management options" 1886 1887source "kernel/power/Kconfig" 1888 1889config ARCH_HIBERNATION_POSSIBLE 1890 def_bool y 1891 depends on CPU_PM 1892 1893config ARCH_HIBERNATION_HEADER 1894 def_bool y 1895 depends on HIBERNATION 1896 1897config ARCH_SUSPEND_POSSIBLE 1898 def_bool y 1899 1900endmenu 1901 1902menu "CPU Power Management" 1903 1904source "drivers/cpuidle/Kconfig" 1905 1906source "drivers/cpufreq/Kconfig" 1907 1908endmenu 1909 1910source "drivers/firmware/Kconfig" 1911 1912source "drivers/acpi/Kconfig" 1913 1914source "arch/arm64/kvm/Kconfig" 1915 1916if CRYPTO 1917source "arch/arm64/crypto/Kconfig" 1918endif 1919