xref: /linux/arch/arm64/Kconfig (revision 47ebe00b684c2bc183a766bc33c8b5943bc0df85)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_CLOCKSOURCE_DATA
13	select ARCH_HAS_DEBUG_VIRTUAL
14	select ARCH_HAS_DEVMEM_IS_ALLOWED
15	select ARCH_HAS_DMA_COHERENT_TO_PFN
16	select ARCH_HAS_DMA_MMAP_PGPROT
17	select ARCH_HAS_DMA_PREP_COHERENT
18	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19	select ARCH_HAS_ELF_RANDOMIZE
20	select ARCH_HAS_FAST_MULTIPLIER
21	select ARCH_HAS_FORTIFY_SOURCE
22	select ARCH_HAS_GCOV_PROFILE_ALL
23	select ARCH_HAS_GIGANTIC_PAGE
24	select ARCH_HAS_KCOV
25	select ARCH_HAS_KEEPINITRD
26	select ARCH_HAS_MEMBARRIER_SYNC_CORE
27	select ARCH_HAS_PTE_DEVMAP
28	select ARCH_HAS_PTE_SPECIAL
29	select ARCH_HAS_SETUP_DMA_OPS
30	select ARCH_HAS_SET_DIRECT_MAP
31	select ARCH_HAS_SET_MEMORY
32	select ARCH_HAS_STRICT_KERNEL_RWX
33	select ARCH_HAS_STRICT_MODULE_RWX
34	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
35	select ARCH_HAS_SYNC_DMA_FOR_CPU
36	select ARCH_HAS_SYSCALL_WRAPPER
37	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
38	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
39	select ARCH_HAVE_NMI_SAFE_CMPXCHG
40	select ARCH_INLINE_READ_LOCK if !PREEMPT
41	select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
42	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
43	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
44	select ARCH_INLINE_READ_UNLOCK if !PREEMPT
45	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
46	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
47	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
48	select ARCH_INLINE_WRITE_LOCK if !PREEMPT
49	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
50	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
51	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
52	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
53	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
54	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
55	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
56	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPT
57	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPT
58	select ARCH_INLINE_SPIN_LOCK if !PREEMPT
59	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPT
60	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPT
61	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPT
62	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPT
63	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPT
64	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPT
65	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPT
66	select ARCH_KEEP_MEMBLOCK
67	select ARCH_USE_CMPXCHG_LOCKREF
68	select ARCH_USE_QUEUED_RWLOCKS
69	select ARCH_USE_QUEUED_SPINLOCKS
70	select ARCH_SUPPORTS_MEMORY_FAILURE
71	select ARCH_SUPPORTS_ATOMIC_RMW
72	select ARCH_SUPPORTS_INT128 if GCC_VERSION >= 50000 || CC_IS_CLANG
73	select ARCH_SUPPORTS_NUMA_BALANCING
74	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
75	select ARCH_WANT_FRAME_POINTERS
76	select ARCH_HAS_UBSAN_SANITIZE_ALL
77	select ARM_AMBA
78	select ARM_ARCH_TIMER
79	select ARM_GIC
80	select AUDIT_ARCH_COMPAT_GENERIC
81	select ARM_GIC_V2M if PCI
82	select ARM_GIC_V3
83	select ARM_GIC_V3_ITS if PCI
84	select ARM_PSCI_FW
85	select BUILDTIME_EXTABLE_SORT
86	select CLONE_BACKWARDS
87	select COMMON_CLK
88	select CPU_PM if (SUSPEND || CPU_IDLE)
89	select CRC32
90	select DCACHE_WORD_ACCESS
91	select DMA_DIRECT_REMAP
92	select EDAC_SUPPORT
93	select FRAME_POINTER
94	select GENERIC_ALLOCATOR
95	select GENERIC_ARCH_TOPOLOGY
96	select GENERIC_CLOCKEVENTS
97	select GENERIC_CLOCKEVENTS_BROADCAST
98	select GENERIC_CPU_AUTOPROBE
99	select GENERIC_CPU_VULNERABILITIES
100	select GENERIC_EARLY_IOREMAP
101	select GENERIC_IDLE_POLL_SETUP
102	select GENERIC_IRQ_MULTI_HANDLER
103	select GENERIC_IRQ_PROBE
104	select GENERIC_IRQ_SHOW
105	select GENERIC_IRQ_SHOW_LEVEL
106	select GENERIC_PCI_IOMAP
107	select GENERIC_SCHED_CLOCK
108	select GENERIC_SMP_IDLE_THREAD
109	select GENERIC_STRNCPY_FROM_USER
110	select GENERIC_STRNLEN_USER
111	select GENERIC_TIME_VSYSCALL
112	select GENERIC_GETTIMEOFDAY
113	select GENERIC_COMPAT_VDSO if (!CPU_BIG_ENDIAN && COMPAT)
114	select HANDLE_DOMAIN_IRQ
115	select HARDIRQS_SW_RESEND
116	select HAVE_PCI
117	select HAVE_ACPI_APEI if (ACPI && EFI)
118	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
119	select HAVE_ARCH_AUDITSYSCALL
120	select HAVE_ARCH_BITREVERSE
121	select HAVE_ARCH_HUGE_VMAP
122	select HAVE_ARCH_JUMP_LABEL
123	select HAVE_ARCH_JUMP_LABEL_RELATIVE
124	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
125	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
126	select HAVE_ARCH_KGDB
127	select HAVE_ARCH_MMAP_RND_BITS
128	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
129	select HAVE_ARCH_PREL32_RELOCATIONS
130	select HAVE_ARCH_SECCOMP_FILTER
131	select HAVE_ARCH_STACKLEAK
132	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
133	select HAVE_ARCH_TRACEHOOK
134	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
135	select HAVE_ARCH_VMAP_STACK
136	select HAVE_ARM_SMCCC
137	select HAVE_EBPF_JIT
138	select HAVE_C_RECORDMCOUNT
139	select HAVE_CMPXCHG_DOUBLE
140	select HAVE_CMPXCHG_LOCAL
141	select HAVE_CONTEXT_TRACKING
142	select HAVE_DEBUG_BUGVERBOSE
143	select HAVE_DEBUG_KMEMLEAK
144	select HAVE_DMA_CONTIGUOUS
145	select HAVE_DYNAMIC_FTRACE
146	select HAVE_EFFICIENT_UNALIGNED_ACCESS
147	select HAVE_FAST_GUP
148	select HAVE_FTRACE_MCOUNT_RECORD
149	select HAVE_FUNCTION_TRACER
150	select HAVE_FUNCTION_GRAPH_TRACER
151	select HAVE_GCC_PLUGINS
152	select HAVE_HW_BREAKPOINT if PERF_EVENTS
153	select HAVE_IRQ_TIME_ACCOUNTING
154	select HAVE_MEMBLOCK_NODE_MAP if NUMA
155	select HAVE_NMI
156	select HAVE_PATA_PLATFORM
157	select HAVE_PERF_EVENTS
158	select HAVE_PERF_REGS
159	select HAVE_PERF_USER_STACK_DUMP
160	select HAVE_REGS_AND_STACK_ACCESS_API
161	select HAVE_FUNCTION_ARG_ACCESS_API
162	select HAVE_RCU_TABLE_FREE
163	select HAVE_RSEQ
164	select HAVE_STACKPROTECTOR
165	select HAVE_SYSCALL_TRACEPOINTS
166	select HAVE_KPROBES
167	select HAVE_KRETPROBES
168	select HAVE_GENERIC_VDSO
169	select IOMMU_DMA if IOMMU_SUPPORT
170	select IRQ_DOMAIN
171	select IRQ_FORCED_THREADING
172	select MODULES_USE_ELF_RELA
173	select NEED_DMA_MAP_STATE
174	select NEED_SG_DMA_LENGTH
175	select OF
176	select OF_EARLY_FLATTREE
177	select PCI_DOMAINS_GENERIC if PCI
178	select PCI_ECAM if (ACPI && PCI)
179	select PCI_SYSCALL if PCI
180	select POWER_RESET
181	select POWER_SUPPLY
182	select REFCOUNT_FULL
183	select SPARSE_IRQ
184	select SWIOTLB
185	select SYSCTL_EXCEPTION_TRACE
186	select THREAD_INFO_IN_TASK
187	help
188	  ARM 64-bit (AArch64) Linux support.
189
190config 64BIT
191	def_bool y
192
193config MMU
194	def_bool y
195
196config ARM64_PAGE_SHIFT
197	int
198	default 16 if ARM64_64K_PAGES
199	default 14 if ARM64_16K_PAGES
200	default 12
201
202config ARM64_CONT_SHIFT
203	int
204	default 5 if ARM64_64K_PAGES
205	default 7 if ARM64_16K_PAGES
206	default 4
207
208config ARCH_MMAP_RND_BITS_MIN
209       default 14 if ARM64_64K_PAGES
210       default 16 if ARM64_16K_PAGES
211       default 18
212
213# max bits determined by the following formula:
214#  VA_BITS - PAGE_SHIFT - 3
215config ARCH_MMAP_RND_BITS_MAX
216       default 19 if ARM64_VA_BITS=36
217       default 24 if ARM64_VA_BITS=39
218       default 27 if ARM64_VA_BITS=42
219       default 30 if ARM64_VA_BITS=47
220       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
221       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
222       default 33 if ARM64_VA_BITS=48
223       default 14 if ARM64_64K_PAGES
224       default 16 if ARM64_16K_PAGES
225       default 18
226
227config ARCH_MMAP_RND_COMPAT_BITS_MIN
228       default 7 if ARM64_64K_PAGES
229       default 9 if ARM64_16K_PAGES
230       default 11
231
232config ARCH_MMAP_RND_COMPAT_BITS_MAX
233       default 16
234
235config NO_IOPORT_MAP
236	def_bool y if !PCI
237
238config STACKTRACE_SUPPORT
239	def_bool y
240
241config ILLEGAL_POINTER_VALUE
242	hex
243	default 0xdead000000000000
244
245config LOCKDEP_SUPPORT
246	def_bool y
247
248config TRACE_IRQFLAGS_SUPPORT
249	def_bool y
250
251config GENERIC_BUG
252	def_bool y
253	depends on BUG
254
255config GENERIC_BUG_RELATIVE_POINTERS
256	def_bool y
257	depends on GENERIC_BUG
258
259config GENERIC_HWEIGHT
260	def_bool y
261
262config GENERIC_CSUM
263        def_bool y
264
265config GENERIC_CALIBRATE_DELAY
266	def_bool y
267
268config ZONE_DMA32
269	bool "Support DMA32 zone" if EXPERT
270	default y
271
272config ARCH_ENABLE_MEMORY_HOTPLUG
273	def_bool y
274
275config SMP
276	def_bool y
277
278config KERNEL_MODE_NEON
279	def_bool y
280
281config FIX_EARLYCON_MEM
282	def_bool y
283
284config PGTABLE_LEVELS
285	int
286	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
287	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
288	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_USER_VA_BITS_52)
289	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
290	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
291	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
292
293config ARCH_SUPPORTS_UPROBES
294	def_bool y
295
296config ARCH_PROC_KCORE_TEXT
297	def_bool y
298
299source "arch/arm64/Kconfig.platforms"
300
301menu "Kernel Features"
302
303menu "ARM errata workarounds via the alternatives framework"
304
305config ARM64_WORKAROUND_CLEAN_CACHE
306	bool
307
308config ARM64_ERRATUM_826319
309	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
310	default y
311	select ARM64_WORKAROUND_CLEAN_CACHE
312	help
313	  This option adds an alternative code sequence to work around ARM
314	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
315	  AXI master interface and an L2 cache.
316
317	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
318	  and is unable to accept a certain write via this interface, it will
319	  not progress on read data presented on the read data channel and the
320	  system can deadlock.
321
322	  The workaround promotes data cache clean instructions to
323	  data cache clean-and-invalidate.
324	  Please note that this does not necessarily enable the workaround,
325	  as it depends on the alternative framework, which will only patch
326	  the kernel if an affected CPU is detected.
327
328	  If unsure, say Y.
329
330config ARM64_ERRATUM_827319
331	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
332	default y
333	select ARM64_WORKAROUND_CLEAN_CACHE
334	help
335	  This option adds an alternative code sequence to work around ARM
336	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
337	  master interface and an L2 cache.
338
339	  Under certain conditions this erratum can cause a clean line eviction
340	  to occur at the same time as another transaction to the same address
341	  on the AMBA 5 CHI interface, which can cause data corruption if the
342	  interconnect reorders the two transactions.
343
344	  The workaround promotes data cache clean instructions to
345	  data cache clean-and-invalidate.
346	  Please note that this does not necessarily enable the workaround,
347	  as it depends on the alternative framework, which will only patch
348	  the kernel if an affected CPU is detected.
349
350	  If unsure, say Y.
351
352config ARM64_ERRATUM_824069
353	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
354	default y
355	select ARM64_WORKAROUND_CLEAN_CACHE
356	help
357	  This option adds an alternative code sequence to work around ARM
358	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
359	  to a coherent interconnect.
360
361	  If a Cortex-A53 processor is executing a store or prefetch for
362	  write instruction at the same time as a processor in another
363	  cluster is executing a cache maintenance operation to the same
364	  address, then this erratum might cause a clean cache line to be
365	  incorrectly marked as dirty.
366
367	  The workaround promotes data cache clean instructions to
368	  data cache clean-and-invalidate.
369	  Please note that this option does not necessarily enable the
370	  workaround, as it depends on the alternative framework, which will
371	  only patch the kernel if an affected CPU is detected.
372
373	  If unsure, say Y.
374
375config ARM64_ERRATUM_819472
376	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
377	default y
378	select ARM64_WORKAROUND_CLEAN_CACHE
379	help
380	  This option adds an alternative code sequence to work around ARM
381	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
382	  present when it is connected to a coherent interconnect.
383
384	  If the processor is executing a load and store exclusive sequence at
385	  the same time as a processor in another cluster is executing a cache
386	  maintenance operation to the same address, then this erratum might
387	  cause data corruption.
388
389	  The workaround promotes data cache clean instructions to
390	  data cache clean-and-invalidate.
391	  Please note that this does not necessarily enable the workaround,
392	  as it depends on the alternative framework, which will only patch
393	  the kernel if an affected CPU is detected.
394
395	  If unsure, say Y.
396
397config ARM64_ERRATUM_832075
398	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
399	default y
400	help
401	  This option adds an alternative code sequence to work around ARM
402	  erratum 832075 on Cortex-A57 parts up to r1p2.
403
404	  Affected Cortex-A57 parts might deadlock when exclusive load/store
405	  instructions to Write-Back memory are mixed with Device loads.
406
407	  The workaround is to promote device loads to use Load-Acquire
408	  semantics.
409	  Please note that this does not necessarily enable the workaround,
410	  as it depends on the alternative framework, which will only patch
411	  the kernel if an affected CPU is detected.
412
413	  If unsure, say Y.
414
415config ARM64_ERRATUM_834220
416	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
417	depends on KVM
418	default y
419	help
420	  This option adds an alternative code sequence to work around ARM
421	  erratum 834220 on Cortex-A57 parts up to r1p2.
422
423	  Affected Cortex-A57 parts might report a Stage 2 translation
424	  fault as the result of a Stage 1 fault for load crossing a
425	  page boundary when there is a permission or device memory
426	  alignment fault at Stage 1 and a translation fault at Stage 2.
427
428	  The workaround is to verify that the Stage 1 translation
429	  doesn't generate a fault before handling the Stage 2 fault.
430	  Please note that this does not necessarily enable the workaround,
431	  as it depends on the alternative framework, which will only patch
432	  the kernel if an affected CPU is detected.
433
434	  If unsure, say Y.
435
436config ARM64_ERRATUM_845719
437	bool "Cortex-A53: 845719: a load might read incorrect data"
438	depends on COMPAT
439	default y
440	help
441	  This option adds an alternative code sequence to work around ARM
442	  erratum 845719 on Cortex-A53 parts up to r0p4.
443
444	  When running a compat (AArch32) userspace on an affected Cortex-A53
445	  part, a load at EL0 from a virtual address that matches the bottom 32
446	  bits of the virtual address used by a recent load at (AArch64) EL1
447	  might return incorrect data.
448
449	  The workaround is to write the contextidr_el1 register on exception
450	  return to a 32-bit task.
451	  Please note that this does not necessarily enable the workaround,
452	  as it depends on the alternative framework, which will only patch
453	  the kernel if an affected CPU is detected.
454
455	  If unsure, say Y.
456
457config ARM64_ERRATUM_843419
458	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
459	default y
460	select ARM64_MODULE_PLTS if MODULES
461	help
462	  This option links the kernel with '--fix-cortex-a53-843419' and
463	  enables PLT support to replace certain ADRP instructions, which can
464	  cause subsequent memory accesses to use an incorrect address on
465	  Cortex-A53 parts up to r0p4.
466
467	  If unsure, say Y.
468
469config ARM64_ERRATUM_1024718
470	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
471	default y
472	help
473	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
474
475	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
476	  update of the hardware dirty bit when the DBM/AP bits are updated
477	  without a break-before-make. The workaround is to disable the usage
478	  of hardware DBM locally on the affected cores. CPUs not affected by
479	  this erratum will continue to use the feature.
480
481	  If unsure, say Y.
482
483config ARM64_ERRATUM_1418040
484	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
485	default y
486	depends on COMPAT
487	help
488	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
489	  errata 1188873 and 1418040.
490
491	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
492	  cause register corruption when accessing the timer registers
493	  from AArch32 userspace.
494
495	  If unsure, say Y.
496
497config ARM64_ERRATUM_1165522
498	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
499	default y
500	help
501	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
502
503	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
504	  corrupted TLBs by speculating an AT instruction during a guest
505	  context switch.
506
507	  If unsure, say Y.
508
509config ARM64_ERRATUM_1286807
510	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
511	default y
512	select ARM64_WORKAROUND_REPEAT_TLBI
513	help
514	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
515
516	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
517	  address for a cacheable mapping of a location is being
518	  accessed by a core while another core is remapping the virtual
519	  address to a new physical page using the recommended
520	  break-before-make sequence, then under very rare circumstances
521	  TLBI+DSB completes before a read using the translation being
522	  invalidated has been observed by other observers. The
523	  workaround repeats the TLBI+DSB operation.
524
525	  If unsure, say Y.
526
527config ARM64_ERRATUM_1463225
528	bool "Cortex-A76: Software Step might prevent interrupt recognition"
529	default y
530	help
531	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
532
533	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
534	  of a system call instruction (SVC) can prevent recognition of
535	  subsequent interrupts when software stepping is disabled in the
536	  exception handler of the system call and either kernel debugging
537	  is enabled or VHE is in use.
538
539	  Work around the erratum by triggering a dummy step exception
540	  when handling a system call from a task that is being stepped
541	  in a VHE configuration of the kernel.
542
543	  If unsure, say Y.
544
545config CAVIUM_ERRATUM_22375
546	bool "Cavium erratum 22375, 24313"
547	default y
548	help
549	  Enable workaround for errata 22375 and 24313.
550
551	  This implements two gicv3-its errata workarounds for ThunderX. Both
552	  with a small impact affecting only ITS table allocation.
553
554	    erratum 22375: only alloc 8MB table size
555	    erratum 24313: ignore memory access type
556
557	  The fixes are in ITS initialization and basically ignore memory access
558	  type and table size provided by the TYPER and BASER registers.
559
560	  If unsure, say Y.
561
562config CAVIUM_ERRATUM_23144
563	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
564	depends on NUMA
565	default y
566	help
567	  ITS SYNC command hang for cross node io and collections/cpu mapping.
568
569	  If unsure, say Y.
570
571config CAVIUM_ERRATUM_23154
572	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
573	default y
574	help
575	  The gicv3 of ThunderX requires a modified version for
576	  reading the IAR status to ensure data synchronization
577	  (access to icc_iar1_el1 is not sync'ed before and after).
578
579	  If unsure, say Y.
580
581config CAVIUM_ERRATUM_27456
582	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
583	default y
584	help
585	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
586	  instructions may cause the icache to become corrupted if it
587	  contains data for a non-current ASID.  The fix is to
588	  invalidate the icache when changing the mm context.
589
590	  If unsure, say Y.
591
592config CAVIUM_ERRATUM_30115
593	bool "Cavium erratum 30115: Guest may disable interrupts in host"
594	default y
595	help
596	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
597	  1.2, and T83 Pass 1.0, KVM guest execution may disable
598	  interrupts in host. Trapping both GICv3 group-0 and group-1
599	  accesses sidesteps the issue.
600
601	  If unsure, say Y.
602
603config QCOM_FALKOR_ERRATUM_1003
604	bool "Falkor E1003: Incorrect translation due to ASID change"
605	default y
606	help
607	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
608	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
609	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
610	  then only for entries in the walk cache, since the leaf translation
611	  is unchanged. Work around the erratum by invalidating the walk cache
612	  entries for the trampoline before entering the kernel proper.
613
614config ARM64_WORKAROUND_REPEAT_TLBI
615	bool
616
617config QCOM_FALKOR_ERRATUM_1009
618	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
619	default y
620	select ARM64_WORKAROUND_REPEAT_TLBI
621	help
622	  On Falkor v1, the CPU may prematurely complete a DSB following a
623	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
624	  one more time to fix the issue.
625
626	  If unsure, say Y.
627
628config QCOM_QDF2400_ERRATUM_0065
629	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
630	default y
631	help
632	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
633	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
634	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
635
636	  If unsure, say Y.
637
638config SOCIONEXT_SYNQUACER_PREITS
639	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
640	default y
641	help
642	  Socionext Synquacer SoCs implement a separate h/w block to generate
643	  MSI doorbell writes with non-zero values for the device ID.
644
645	  If unsure, say Y.
646
647config HISILICON_ERRATUM_161600802
648	bool "Hip07 161600802: Erroneous redistributor VLPI base"
649	default y
650	help
651	  The HiSilicon Hip07 SoC uses the wrong redistributor base
652	  when issued ITS commands such as VMOVP and VMAPP, and requires
653	  a 128kB offset to be applied to the target address in this commands.
654
655	  If unsure, say Y.
656
657config QCOM_FALKOR_ERRATUM_E1041
658	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
659	default y
660	help
661	  Falkor CPU may speculatively fetch instructions from an improper
662	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
663	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
664
665	  If unsure, say Y.
666
667config FUJITSU_ERRATUM_010001
668	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
669	default y
670	help
671	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
672	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
673	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
674	  This fault occurs under a specific hardware condition when a
675	  load/store instruction performs an address translation using:
676	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
677	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
678	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
679	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
680
681	  The workaround is to ensure these bits are clear in TCR_ELx.
682	  The workaround only affects the Fujitsu-A64FX.
683
684	  If unsure, say Y.
685
686endmenu
687
688
689choice
690	prompt "Page size"
691	default ARM64_4K_PAGES
692	help
693	  Page size (translation granule) configuration.
694
695config ARM64_4K_PAGES
696	bool "4KB"
697	help
698	  This feature enables 4KB pages support.
699
700config ARM64_16K_PAGES
701	bool "16KB"
702	help
703	  The system will use 16KB pages support. AArch32 emulation
704	  requires applications compiled with 16K (or a multiple of 16K)
705	  aligned segments.
706
707config ARM64_64K_PAGES
708	bool "64KB"
709	help
710	  This feature enables 64KB pages support (4KB by default)
711	  allowing only two levels of page tables and faster TLB
712	  look-up. AArch32 emulation requires applications compiled
713	  with 64K aligned segments.
714
715endchoice
716
717choice
718	prompt "Virtual address space size"
719	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
720	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
721	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
722	help
723	  Allows choosing one of multiple possible virtual address
724	  space sizes. The level of translation table is determined by
725	  a combination of page size and virtual address space size.
726
727config ARM64_VA_BITS_36
728	bool "36-bit" if EXPERT
729	depends on ARM64_16K_PAGES
730
731config ARM64_VA_BITS_39
732	bool "39-bit"
733	depends on ARM64_4K_PAGES
734
735config ARM64_VA_BITS_42
736	bool "42-bit"
737	depends on ARM64_64K_PAGES
738
739config ARM64_VA_BITS_47
740	bool "47-bit"
741	depends on ARM64_16K_PAGES
742
743config ARM64_VA_BITS_48
744	bool "48-bit"
745
746config ARM64_USER_VA_BITS_52
747	bool "52-bit (user)"
748	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
749	help
750	  Enable 52-bit virtual addressing for userspace when explicitly
751	  requested via a hint to mmap(). The kernel will continue to
752	  use 48-bit virtual addresses for its own mappings.
753
754	  NOTE: Enabling 52-bit virtual addressing in conjunction with
755	  ARMv8.3 Pointer Authentication will result in the PAC being
756	  reduced from 7 bits to 3 bits, which may have a significant
757	  impact on its susceptibility to brute-force attacks.
758
759	  If unsure, select 48-bit virtual addressing instead.
760
761endchoice
762
763config ARM64_FORCE_52BIT
764	bool "Force 52-bit virtual addresses for userspace"
765	depends on ARM64_USER_VA_BITS_52 && EXPERT
766	help
767	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
768	  to maintain compatibility with older software by providing 48-bit VAs
769	  unless a hint is supplied to mmap.
770
771	  This configuration option disables the 48-bit compatibility logic, and
772	  forces all userspace addresses to be 52-bit on HW that supports it. One
773	  should only enable this configuration option for stress testing userspace
774	  memory management code. If unsure say N here.
775
776config ARM64_VA_BITS
777	int
778	default 36 if ARM64_VA_BITS_36
779	default 39 if ARM64_VA_BITS_39
780	default 42 if ARM64_VA_BITS_42
781	default 47 if ARM64_VA_BITS_47
782	default 48 if ARM64_VA_BITS_48 || ARM64_USER_VA_BITS_52
783
784choice
785	prompt "Physical address space size"
786	default ARM64_PA_BITS_48
787	help
788	  Choose the maximum physical address range that the kernel will
789	  support.
790
791config ARM64_PA_BITS_48
792	bool "48-bit"
793
794config ARM64_PA_BITS_52
795	bool "52-bit (ARMv8.2)"
796	depends on ARM64_64K_PAGES
797	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
798	help
799	  Enable support for a 52-bit physical address space, introduced as
800	  part of the ARMv8.2-LPA extension.
801
802	  With this enabled, the kernel will also continue to work on CPUs that
803	  do not support ARMv8.2-LPA, but with some added memory overhead (and
804	  minor performance overhead).
805
806endchoice
807
808config ARM64_PA_BITS
809	int
810	default 48 if ARM64_PA_BITS_48
811	default 52 if ARM64_PA_BITS_52
812
813config CPU_BIG_ENDIAN
814       bool "Build big-endian kernel"
815       help
816         Say Y if you plan on running a kernel in big-endian mode.
817
818config SCHED_MC
819	bool "Multi-core scheduler support"
820	help
821	  Multi-core scheduler support improves the CPU scheduler's decision
822	  making when dealing with multi-core CPU chips at a cost of slightly
823	  increased overhead in some places. If unsure say N here.
824
825config SCHED_SMT
826	bool "SMT scheduler support"
827	help
828	  Improves the CPU scheduler's decision making when dealing with
829	  MultiThreading at a cost of slightly increased overhead in some
830	  places. If unsure say N here.
831
832config NR_CPUS
833	int "Maximum number of CPUs (2-4096)"
834	range 2 4096
835	default "256"
836
837config HOTPLUG_CPU
838	bool "Support for hot-pluggable CPUs"
839	select GENERIC_IRQ_MIGRATION
840	help
841	  Say Y here to experiment with turning CPUs off and on.  CPUs
842	  can be controlled through /sys/devices/system/cpu.
843
844# Common NUMA Features
845config NUMA
846	bool "Numa Memory Allocation and Scheduler Support"
847	select ACPI_NUMA if ACPI
848	select OF_NUMA
849	help
850	  Enable NUMA (Non Uniform Memory Access) support.
851
852	  The kernel will try to allocate memory used by a CPU on the
853	  local memory of the CPU and add some more
854	  NUMA awareness to the kernel.
855
856config NODES_SHIFT
857	int "Maximum NUMA Nodes (as a power of 2)"
858	range 1 10
859	default "2"
860	depends on NEED_MULTIPLE_NODES
861	help
862	  Specify the maximum number of NUMA Nodes available on the target
863	  system.  Increases memory reserved to accommodate various tables.
864
865config USE_PERCPU_NUMA_NODE_ID
866	def_bool y
867	depends on NUMA
868
869config HAVE_SETUP_PER_CPU_AREA
870	def_bool y
871	depends on NUMA
872
873config NEED_PER_CPU_EMBED_FIRST_CHUNK
874	def_bool y
875	depends on NUMA
876
877config HOLES_IN_ZONE
878	def_bool y
879
880source "kernel/Kconfig.hz"
881
882config ARCH_SUPPORTS_DEBUG_PAGEALLOC
883	def_bool y
884
885config ARCH_SPARSEMEM_ENABLE
886	def_bool y
887	select SPARSEMEM_VMEMMAP_ENABLE
888
889config ARCH_SPARSEMEM_DEFAULT
890	def_bool ARCH_SPARSEMEM_ENABLE
891
892config ARCH_SELECT_MEMORY_MODEL
893	def_bool ARCH_SPARSEMEM_ENABLE
894
895config ARCH_FLATMEM_ENABLE
896	def_bool !NUMA
897
898config HAVE_ARCH_PFN_VALID
899	def_bool y
900
901config HW_PERF_EVENTS
902	def_bool y
903	depends on ARM_PMU
904
905config SYS_SUPPORTS_HUGETLBFS
906	def_bool y
907
908config ARCH_WANT_HUGE_PMD_SHARE
909	def_bool y if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
910
911config ARCH_HAS_CACHE_LINE_SIZE
912	def_bool y
913
914config ARCH_ENABLE_SPLIT_PMD_PTLOCK
915	def_bool y if PGTABLE_LEVELS > 2
916
917config SECCOMP
918	bool "Enable seccomp to safely compute untrusted bytecode"
919	---help---
920	  This kernel feature is useful for number crunching applications
921	  that may need to compute untrusted bytecode during their
922	  execution. By using pipes or other transports made available to
923	  the process as file descriptors supporting the read/write
924	  syscalls, it's possible to isolate those applications in
925	  their own address space using seccomp. Once seccomp is
926	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
927	  and the task is only allowed to execute a few safe syscalls
928	  defined by each seccomp mode.
929
930config PARAVIRT
931	bool "Enable paravirtualization code"
932	help
933	  This changes the kernel so it can modify itself when it is run
934	  under a hypervisor, potentially improving performance significantly
935	  over full virtualization.
936
937config PARAVIRT_TIME_ACCOUNTING
938	bool "Paravirtual steal time accounting"
939	select PARAVIRT
940	help
941	  Select this option to enable fine granularity task steal time
942	  accounting. Time spent executing other tasks in parallel with
943	  the current vCPU is discounted from the vCPU power. To account for
944	  that, there can be a small performance impact.
945
946	  If in doubt, say N here.
947
948config KEXEC
949	depends on PM_SLEEP_SMP
950	select KEXEC_CORE
951	bool "kexec system call"
952	---help---
953	  kexec is a system call that implements the ability to shutdown your
954	  current kernel, and to start another kernel.  It is like a reboot
955	  but it is independent of the system firmware.   And like a reboot
956	  you can start any kernel with it, not just Linux.
957
958config KEXEC_FILE
959	bool "kexec file based system call"
960	select KEXEC_CORE
961	help
962	  This is new version of kexec system call. This system call is
963	  file based and takes file descriptors as system call argument
964	  for kernel and initramfs as opposed to list of segments as
965	  accepted by previous system call.
966
967config KEXEC_VERIFY_SIG
968	bool "Verify kernel signature during kexec_file_load() syscall"
969	depends on KEXEC_FILE
970	help
971	  Select this option to verify a signature with loaded kernel
972	  image. If configured, any attempt of loading a image without
973	  valid signature will fail.
974
975	  In addition to that option, you need to enable signature
976	  verification for the corresponding kernel image type being
977	  loaded in order for this to work.
978
979config KEXEC_IMAGE_VERIFY_SIG
980	bool "Enable Image signature verification support"
981	default y
982	depends on KEXEC_VERIFY_SIG
983	depends on EFI && SIGNED_PE_FILE_VERIFICATION
984	help
985	  Enable Image signature verification support.
986
987comment "Support for PE file signature verification disabled"
988	depends on KEXEC_VERIFY_SIG
989	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
990
991config CRASH_DUMP
992	bool "Build kdump crash kernel"
993	help
994	  Generate crash dump after being started by kexec. This should
995	  be normally only set in special crash dump kernels which are
996	  loaded in the main kernel with kexec-tools into a specially
997	  reserved region and then later executed after a crash by
998	  kdump/kexec.
999
1000	  For more details see Documentation/admin-guide/kdump/kdump.rst
1001
1002config XEN_DOM0
1003	def_bool y
1004	depends on XEN
1005
1006config XEN
1007	bool "Xen guest support on ARM64"
1008	depends on ARM64 && OF
1009	select SWIOTLB_XEN
1010	select PARAVIRT
1011	help
1012	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1013
1014config FORCE_MAX_ZONEORDER
1015	int
1016	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1017	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1018	default "11"
1019	help
1020	  The kernel memory allocator divides physically contiguous memory
1021	  blocks into "zones", where each zone is a power of two number of
1022	  pages.  This option selects the largest power of two that the kernel
1023	  keeps in the memory allocator.  If you need to allocate very large
1024	  blocks of physically contiguous memory, then you may need to
1025	  increase this value.
1026
1027	  This config option is actually maximum order plus one. For example,
1028	  a value of 11 means that the largest free memory block is 2^10 pages.
1029
1030	  We make sure that we can allocate upto a HugePage size for each configuration.
1031	  Hence we have :
1032		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1033
1034	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1035	  4M allocations matching the default size used by generic code.
1036
1037config UNMAP_KERNEL_AT_EL0
1038	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1039	default y
1040	help
1041	  Speculation attacks against some high-performance processors can
1042	  be used to bypass MMU permission checks and leak kernel data to
1043	  userspace. This can be defended against by unmapping the kernel
1044	  when running in userspace, mapping it back in on exception entry
1045	  via a trampoline page in the vector table.
1046
1047	  If unsure, say Y.
1048
1049config HARDEN_BRANCH_PREDICTOR
1050	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1051	default y
1052	help
1053	  Speculation attacks against some high-performance processors rely on
1054	  being able to manipulate the branch predictor for a victim context by
1055	  executing aliasing branches in the attacker context.  Such attacks
1056	  can be partially mitigated against by clearing internal branch
1057	  predictor state and limiting the prediction logic in some situations.
1058
1059	  This config option will take CPU-specific actions to harden the
1060	  branch predictor against aliasing attacks and may rely on specific
1061	  instruction sequences or control bits being set by the system
1062	  firmware.
1063
1064	  If unsure, say Y.
1065
1066config HARDEN_EL2_VECTORS
1067	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1068	default y
1069	help
1070	  Speculation attacks against some high-performance processors can
1071	  be used to leak privileged information such as the vector base
1072	  register, resulting in a potential defeat of the EL2 layout
1073	  randomization.
1074
1075	  This config option will map the vectors to a fixed location,
1076	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1077	  to an attacker does not give away any extra information. This
1078	  only gets enabled on affected CPUs.
1079
1080	  If unsure, say Y.
1081
1082config ARM64_SSBD
1083	bool "Speculative Store Bypass Disable" if EXPERT
1084	default y
1085	help
1086	  This enables mitigation of the bypassing of previous stores
1087	  by speculative loads.
1088
1089	  If unsure, say Y.
1090
1091config RODATA_FULL_DEFAULT_ENABLED
1092	bool "Apply r/o permissions of VM areas also to their linear aliases"
1093	default y
1094	help
1095	  Apply read-only attributes of VM areas to the linear alias of
1096	  the backing pages as well. This prevents code or read-only data
1097	  from being modified (inadvertently or intentionally) via another
1098	  mapping of the same memory page. This additional enhancement can
1099	  be turned off at runtime by passing rodata=[off|on] (and turned on
1100	  with rodata=full if this option is set to 'n')
1101
1102	  This requires the linear region to be mapped down to pages,
1103	  which may adversely affect performance in some cases.
1104
1105config ARM64_SW_TTBR0_PAN
1106	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1107	help
1108	  Enabling this option prevents the kernel from accessing
1109	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1110	  zeroed area and reserved ASID. The user access routines
1111	  restore the valid TTBR0_EL1 temporarily.
1112
1113menuconfig COMPAT
1114	bool "Kernel support for 32-bit EL0"
1115	depends on ARM64_4K_PAGES || EXPERT
1116	select COMPAT_BINFMT_ELF if BINFMT_ELF
1117	select HAVE_UID16
1118	select OLD_SIGSUSPEND3
1119	select COMPAT_OLD_SIGACTION
1120	help
1121	  This option enables support for a 32-bit EL0 running under a 64-bit
1122	  kernel at EL1. AArch32-specific components such as system calls,
1123	  the user helper functions, VFP support and the ptrace interface are
1124	  handled appropriately by the kernel.
1125
1126	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1127	  that you will only be able to execute AArch32 binaries that were compiled
1128	  with page size aligned segments.
1129
1130	  If you want to execute 32-bit userspace applications, say Y.
1131
1132if COMPAT
1133
1134config KUSER_HELPERS
1135	bool "Enable kuser helpers page for 32 bit applications"
1136	default y
1137	help
1138	  Warning: disabling this option may break 32-bit user programs.
1139
1140	  Provide kuser helpers to compat tasks. The kernel provides
1141	  helper code to userspace in read only form at a fixed location
1142	  to allow userspace to be independent of the CPU type fitted to
1143	  the system. This permits binaries to be run on ARMv4 through
1144	  to ARMv8 without modification.
1145
1146	  See Documentation/arm/kernel_user_helpers.rst for details.
1147
1148	  However, the fixed address nature of these helpers can be used
1149	  by ROP (return orientated programming) authors when creating
1150	  exploits.
1151
1152	  If all of the binaries and libraries which run on your platform
1153	  are built specifically for your platform, and make no use of
1154	  these helpers, then you can turn this option off to hinder
1155	  such exploits. However, in that case, if a binary or library
1156	  relying on those helpers is run, it will not function correctly.
1157
1158	  Say N here only if you are absolutely certain that you do not
1159	  need these helpers; otherwise, the safe option is to say Y.
1160
1161
1162menuconfig ARMV8_DEPRECATED
1163	bool "Emulate deprecated/obsolete ARMv8 instructions"
1164	depends on SYSCTL
1165	help
1166	  Legacy software support may require certain instructions
1167	  that have been deprecated or obsoleted in the architecture.
1168
1169	  Enable this config to enable selective emulation of these
1170	  features.
1171
1172	  If unsure, say Y
1173
1174if ARMV8_DEPRECATED
1175
1176config SWP_EMULATION
1177	bool "Emulate SWP/SWPB instructions"
1178	help
1179	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1180	  they are always undefined. Say Y here to enable software
1181	  emulation of these instructions for userspace using LDXR/STXR.
1182
1183	  In some older versions of glibc [<=2.8] SWP is used during futex
1184	  trylock() operations with the assumption that the code will not
1185	  be preempted. This invalid assumption may be more likely to fail
1186	  with SWP emulation enabled, leading to deadlock of the user
1187	  application.
1188
1189	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1190	  on an external transaction monitoring block called a global
1191	  monitor to maintain update atomicity. If your system does not
1192	  implement a global monitor, this option can cause programs that
1193	  perform SWP operations to uncached memory to deadlock.
1194
1195	  If unsure, say Y
1196
1197config CP15_BARRIER_EMULATION
1198	bool "Emulate CP15 Barrier instructions"
1199	help
1200	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1201	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1202	  strongly recommended to use the ISB, DSB, and DMB
1203	  instructions instead.
1204
1205	  Say Y here to enable software emulation of these
1206	  instructions for AArch32 userspace code. When this option is
1207	  enabled, CP15 barrier usage is traced which can help
1208	  identify software that needs updating.
1209
1210	  If unsure, say Y
1211
1212config SETEND_EMULATION
1213	bool "Emulate SETEND instruction"
1214	help
1215	  The SETEND instruction alters the data-endianness of the
1216	  AArch32 EL0, and is deprecated in ARMv8.
1217
1218	  Say Y here to enable software emulation of the instruction
1219	  for AArch32 userspace code.
1220
1221	  Note: All the cpus on the system must have mixed endian support at EL0
1222	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1223	  endian - is hotplugged in after this feature has been enabled, there could
1224	  be unexpected results in the applications.
1225
1226	  If unsure, say Y
1227endif
1228
1229endif
1230
1231menu "ARMv8.1 architectural features"
1232
1233config ARM64_HW_AFDBM
1234	bool "Support for hardware updates of the Access and Dirty page flags"
1235	default y
1236	help
1237	  The ARMv8.1 architecture extensions introduce support for
1238	  hardware updates of the access and dirty information in page
1239	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1240	  capable processors, accesses to pages with PTE_AF cleared will
1241	  set this bit instead of raising an access flag fault.
1242	  Similarly, writes to read-only pages with the DBM bit set will
1243	  clear the read-only bit (AP[2]) instead of raising a
1244	  permission fault.
1245
1246	  Kernels built with this configuration option enabled continue
1247	  to work on pre-ARMv8.1 hardware and the performance impact is
1248	  minimal. If unsure, say Y.
1249
1250config ARM64_PAN
1251	bool "Enable support for Privileged Access Never (PAN)"
1252	default y
1253	help
1254	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1255	 prevents the kernel or hypervisor from accessing user-space (EL0)
1256	 memory directly.
1257
1258	 Choosing this option will cause any unprotected (not using
1259	 copy_to_user et al) memory access to fail with a permission fault.
1260
1261	 The feature is detected at runtime, and will remain as a 'nop'
1262	 instruction if the cpu does not implement the feature.
1263
1264config ARM64_LSE_ATOMICS
1265	bool "Atomic instructions"
1266	default y
1267	help
1268	  As part of the Large System Extensions, ARMv8.1 introduces new
1269	  atomic instructions that are designed specifically to scale in
1270	  very large systems.
1271
1272	  Say Y here to make use of these instructions for the in-kernel
1273	  atomic routines. This incurs a small overhead on CPUs that do
1274	  not support these instructions and requires the kernel to be
1275	  built with binutils >= 2.25 in order for the new instructions
1276	  to be used.
1277
1278config ARM64_VHE
1279	bool "Enable support for Virtualization Host Extensions (VHE)"
1280	default y
1281	help
1282	  Virtualization Host Extensions (VHE) allow the kernel to run
1283	  directly at EL2 (instead of EL1) on processors that support
1284	  it. This leads to better performance for KVM, as they reduce
1285	  the cost of the world switch.
1286
1287	  Selecting this option allows the VHE feature to be detected
1288	  at runtime, and does not affect processors that do not
1289	  implement this feature.
1290
1291endmenu
1292
1293menu "ARMv8.2 architectural features"
1294
1295config ARM64_UAO
1296	bool "Enable support for User Access Override (UAO)"
1297	default y
1298	help
1299	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1300	  causes the 'unprivileged' variant of the load/store instructions to
1301	  be overridden to be privileged.
1302
1303	  This option changes get_user() and friends to use the 'unprivileged'
1304	  variant of the load/store instructions. This ensures that user-space
1305	  really did have access to the supplied memory. When addr_limit is
1306	  set to kernel memory the UAO bit will be set, allowing privileged
1307	  access to kernel memory.
1308
1309	  Choosing this option will cause copy_to_user() et al to use user-space
1310	  memory permissions.
1311
1312	  The feature is detected at runtime, the kernel will use the
1313	  regular load/store instructions if the cpu does not implement the
1314	  feature.
1315
1316config ARM64_PMEM
1317	bool "Enable support for persistent memory"
1318	select ARCH_HAS_PMEM_API
1319	select ARCH_HAS_UACCESS_FLUSHCACHE
1320	help
1321	  Say Y to enable support for the persistent memory API based on the
1322	  ARMv8.2 DCPoP feature.
1323
1324	  The feature is detected at runtime, and the kernel will use DC CVAC
1325	  operations if DC CVAP is not supported (following the behaviour of
1326	  DC CVAP itself if the system does not define a point of persistence).
1327
1328config ARM64_RAS_EXTN
1329	bool "Enable support for RAS CPU Extensions"
1330	default y
1331	help
1332	  CPUs that support the Reliability, Availability and Serviceability
1333	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1334	  errors, classify them and report them to software.
1335
1336	  On CPUs with these extensions system software can use additional
1337	  barriers to determine if faults are pending and read the
1338	  classification from a new set of registers.
1339
1340	  Selecting this feature will allow the kernel to use these barriers
1341	  and access the new registers if the system supports the extension.
1342	  Platform RAS features may additionally depend on firmware support.
1343
1344config ARM64_CNP
1345	bool "Enable support for Common Not Private (CNP) translations"
1346	default y
1347	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1348	help
1349	  Common Not Private (CNP) allows translation table entries to
1350	  be shared between different PEs in the same inner shareable
1351	  domain, so the hardware can use this fact to optimise the
1352	  caching of such entries in the TLB.
1353
1354	  Selecting this option allows the CNP feature to be detected
1355	  at runtime, and does not affect PEs that do not implement
1356	  this feature.
1357
1358endmenu
1359
1360menu "ARMv8.3 architectural features"
1361
1362config ARM64_PTR_AUTH
1363	bool "Enable support for pointer authentication"
1364	default y
1365	depends on !KVM || ARM64_VHE
1366	help
1367	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1368	  instructions for signing and authenticating pointers against secret
1369	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1370	  and other attacks.
1371
1372	  This option enables these instructions at EL0 (i.e. for userspace).
1373
1374	  Choosing this option will cause the kernel to initialise secret keys
1375	  for each process at exec() time, with these keys being
1376	  context-switched along with the process.
1377
1378	  The feature is detected at runtime. If the feature is not present in
1379	  hardware it will not be advertised to userspace/KVM guest nor will it
1380	  be enabled. However, KVM guest also require VHE mode and hence
1381	  CONFIG_ARM64_VHE=y option to use this feature.
1382
1383endmenu
1384
1385config ARM64_SVE
1386	bool "ARM Scalable Vector Extension support"
1387	default y
1388	depends on !KVM || ARM64_VHE
1389	help
1390	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1391	  execution state which complements and extends the SIMD functionality
1392	  of the base architecture to support much larger vectors and to enable
1393	  additional vectorisation opportunities.
1394
1395	  To enable use of this extension on CPUs that implement it, say Y.
1396
1397	  On CPUs that support the SVE2 extensions, this option will enable
1398	  those too.
1399
1400	  Note that for architectural reasons, firmware _must_ implement SVE
1401	  support when running on SVE capable hardware.  The required support
1402	  is present in:
1403
1404	    * version 1.5 and later of the ARM Trusted Firmware
1405	    * the AArch64 boot wrapper since commit 5e1261e08abf
1406	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1407
1408	  For other firmware implementations, consult the firmware documentation
1409	  or vendor.
1410
1411	  If you need the kernel to boot on SVE-capable hardware with broken
1412	  firmware, you may need to say N here until you get your firmware
1413	  fixed.  Otherwise, you may experience firmware panics or lockups when
1414	  booting the kernel.  If unsure and you are not observing these
1415	  symptoms, you should assume that it is safe to say Y.
1416
1417	  CPUs that support SVE are architecturally required to support the
1418	  Virtualization Host Extensions (VHE), so the kernel makes no
1419	  provision for supporting SVE alongside KVM without VHE enabled.
1420	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1421	  KVM in the same kernel image.
1422
1423config ARM64_MODULE_PLTS
1424	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1425	depends on MODULES
1426	select HAVE_MOD_ARCH_SPECIFIC
1427	help
1428	  Allocate PLTs when loading modules so that jumps and calls whose
1429	  targets are too far away for their relative offsets to be encoded
1430	  in the instructions themselves can be bounced via veneers in the
1431	  module's PLT. This allows modules to be allocated in the generic
1432	  vmalloc area after the dedicated module memory area has been
1433	  exhausted.
1434
1435	  When running with address space randomization (KASLR), the module
1436	  region itself may be too far away for ordinary relative jumps and
1437	  calls, and so in that case, module PLTs are required and cannot be
1438	  disabled.
1439
1440	  Specific errata workaround(s) might also force module PLTs to be
1441	  enabled (ARM64_ERRATUM_843419).
1442
1443config ARM64_PSEUDO_NMI
1444	bool "Support for NMI-like interrupts"
1445	select CONFIG_ARM_GIC_V3
1446	help
1447	  Adds support for mimicking Non-Maskable Interrupts through the use of
1448	  GIC interrupt priority. This support requires version 3 or later of
1449	  ARM GIC.
1450
1451	  This high priority configuration for interrupts needs to be
1452	  explicitly enabled by setting the kernel parameter
1453	  "irqchip.gicv3_pseudo_nmi" to 1.
1454
1455	  If unsure, say N
1456
1457if ARM64_PSEUDO_NMI
1458config ARM64_DEBUG_PRIORITY_MASKING
1459	bool "Debug interrupt priority masking"
1460	help
1461	  This adds runtime checks to functions enabling/disabling
1462	  interrupts when using priority masking. The additional checks verify
1463	  the validity of ICC_PMR_EL1 when calling concerned functions.
1464
1465	  If unsure, say N
1466endif
1467
1468config RELOCATABLE
1469	bool
1470	help
1471	  This builds the kernel as a Position Independent Executable (PIE),
1472	  which retains all relocation metadata required to relocate the
1473	  kernel binary at runtime to a different virtual address than the
1474	  address it was linked at.
1475	  Since AArch64 uses the RELA relocation format, this requires a
1476	  relocation pass at runtime even if the kernel is loaded at the
1477	  same address it was linked at.
1478
1479config RANDOMIZE_BASE
1480	bool "Randomize the address of the kernel image"
1481	select ARM64_MODULE_PLTS if MODULES
1482	select RELOCATABLE
1483	help
1484	  Randomizes the virtual address at which the kernel image is
1485	  loaded, as a security feature that deters exploit attempts
1486	  relying on knowledge of the location of kernel internals.
1487
1488	  It is the bootloader's job to provide entropy, by passing a
1489	  random u64 value in /chosen/kaslr-seed at kernel entry.
1490
1491	  When booting via the UEFI stub, it will invoke the firmware's
1492	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1493	  to the kernel proper. In addition, it will randomise the physical
1494	  location of the kernel Image as well.
1495
1496	  If unsure, say N.
1497
1498config RANDOMIZE_MODULE_REGION_FULL
1499	bool "Randomize the module region over a 4 GB range"
1500	depends on RANDOMIZE_BASE
1501	default y
1502	help
1503	  Randomizes the location of the module region inside a 4 GB window
1504	  covering the core kernel. This way, it is less likely for modules
1505	  to leak information about the location of core kernel data structures
1506	  but it does imply that function calls between modules and the core
1507	  kernel will need to be resolved via veneers in the module PLT.
1508
1509	  When this option is not set, the module region will be randomized over
1510	  a limited range that contains the [_stext, _etext] interval of the
1511	  core kernel, so branch relocations are always in range.
1512
1513config CC_HAVE_STACKPROTECTOR_SYSREG
1514	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1515
1516config STACKPROTECTOR_PER_TASK
1517	def_bool y
1518	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1519
1520endmenu
1521
1522menu "Boot options"
1523
1524config ARM64_ACPI_PARKING_PROTOCOL
1525	bool "Enable support for the ARM64 ACPI parking protocol"
1526	depends on ACPI
1527	help
1528	  Enable support for the ARM64 ACPI parking protocol. If disabled
1529	  the kernel will not allow booting through the ARM64 ACPI parking
1530	  protocol even if the corresponding data is present in the ACPI
1531	  MADT table.
1532
1533config CMDLINE
1534	string "Default kernel command string"
1535	default ""
1536	help
1537	  Provide a set of default command-line options at build time by
1538	  entering them here. As a minimum, you should specify the the
1539	  root device (e.g. root=/dev/nfs).
1540
1541config CMDLINE_FORCE
1542	bool "Always use the default kernel command string"
1543	help
1544	  Always use the default kernel command string, even if the boot
1545	  loader passes other arguments to the kernel.
1546	  This is useful if you cannot or don't want to change the
1547	  command-line options your boot loader passes to the kernel.
1548
1549config EFI_STUB
1550	bool
1551
1552config EFI
1553	bool "UEFI runtime support"
1554	depends on OF && !CPU_BIG_ENDIAN
1555	depends on KERNEL_MODE_NEON
1556	select ARCH_SUPPORTS_ACPI
1557	select LIBFDT
1558	select UCS2_STRING
1559	select EFI_PARAMS_FROM_FDT
1560	select EFI_RUNTIME_WRAPPERS
1561	select EFI_STUB
1562	select EFI_ARMSTUB
1563	default y
1564	help
1565	  This option provides support for runtime services provided
1566	  by UEFI firmware (such as non-volatile variables, realtime
1567          clock, and platform reset). A UEFI stub is also provided to
1568	  allow the kernel to be booted as an EFI application. This
1569	  is only useful on systems that have UEFI firmware.
1570
1571config DMI
1572	bool "Enable support for SMBIOS (DMI) tables"
1573	depends on EFI
1574	default y
1575	help
1576	  This enables SMBIOS/DMI feature for systems.
1577
1578	  This option is only useful on systems that have UEFI firmware.
1579	  However, even with this option, the resultant kernel should
1580	  continue to boot on existing non-UEFI platforms.
1581
1582endmenu
1583
1584config SYSVIPC_COMPAT
1585	def_bool y
1586	depends on COMPAT && SYSVIPC
1587
1588config ARCH_ENABLE_HUGEPAGE_MIGRATION
1589	def_bool y
1590	depends on HUGETLB_PAGE && MIGRATION
1591
1592menu "Power management options"
1593
1594source "kernel/power/Kconfig"
1595
1596config ARCH_HIBERNATION_POSSIBLE
1597	def_bool y
1598	depends on CPU_PM
1599
1600config ARCH_HIBERNATION_HEADER
1601	def_bool y
1602	depends on HIBERNATION
1603
1604config ARCH_SUSPEND_POSSIBLE
1605	def_bool y
1606
1607endmenu
1608
1609menu "CPU Power Management"
1610
1611source "drivers/cpuidle/Kconfig"
1612
1613source "drivers/cpufreq/Kconfig"
1614
1615endmenu
1616
1617source "drivers/firmware/Kconfig"
1618
1619source "drivers/acpi/Kconfig"
1620
1621source "arch/arm64/kvm/Kconfig"
1622
1623if CRYPTO
1624source "arch/arm64/crypto/Kconfig"
1625endif
1626