xref: /linux/arch/arm64/Kconfig (revision 3ae8cef210dd52ae95fd5a87f9bea0932bd4e470)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CRC32
25	select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON
26	select ARCH_HAS_CURRENT_STACK_POINTER
27	select ARCH_HAS_DEBUG_VIRTUAL
28	select ARCH_HAS_DEBUG_VM_PGTABLE
29	select ARCH_HAS_DMA_OPS if XEN
30	select ARCH_HAS_DMA_PREP_COHERENT
31	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
32	select ARCH_HAS_FAST_MULTIPLIER
33	select ARCH_HAS_FORTIFY_SOURCE
34	select ARCH_HAS_GCOV_PROFILE_ALL
35	select ARCH_HAS_GIGANTIC_PAGE
36	select ARCH_HAS_KCOV
37	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
38	select ARCH_HAS_KEEPINITRD
39	select ARCH_HAS_MEMBARRIER_SYNC_CORE
40	select ARCH_HAS_MEM_ENCRYPT
41	select ARCH_SUPPORTS_MSEAL_SYSTEM_MAPPINGS
42	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
43	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
44	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
45	select ARCH_HAS_PREEMPT_LAZY
46	select ARCH_HAS_PTDUMP
47	select ARCH_HAS_PTE_DEVMAP
48	select ARCH_HAS_PTE_SPECIAL
49	select ARCH_HAS_HW_PTE_YOUNG
50	select ARCH_HAS_SETUP_DMA_OPS
51	select ARCH_HAS_SET_DIRECT_MAP
52	select ARCH_HAS_SET_MEMORY
53	select ARCH_HAS_MEM_ENCRYPT
54	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
55	select ARCH_STACKWALK
56	select ARCH_HAS_STRICT_KERNEL_RWX
57	select ARCH_HAS_STRICT_MODULE_RWX
58	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
59	select ARCH_HAS_SYNC_DMA_FOR_CPU
60	select ARCH_HAS_SYSCALL_WRAPPER
61	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
62	select ARCH_HAS_ZONE_DMA_SET if EXPERT
63	select ARCH_HAVE_ELF_PROT
64	select ARCH_HAVE_NMI_SAFE_CMPXCHG
65	select ARCH_HAVE_TRACE_MMIO_ACCESS
66	select ARCH_INLINE_READ_LOCK if !PREEMPTION
67	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
68	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
71	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
72	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
75	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
76	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
79	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
80	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
81	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
82	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
83	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
85	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
86	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
87	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
89	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
90	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
91	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
92	select ARCH_KEEP_MEMBLOCK
93	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
94	select ARCH_USE_CMPXCHG_LOCKREF
95	select ARCH_USE_GNU_PROPERTY
96	select ARCH_USE_MEMTEST
97	select ARCH_USE_QUEUED_RWLOCKS
98	select ARCH_USE_QUEUED_SPINLOCKS
99	select ARCH_USE_SYM_ANNOTATIONS
100	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
101	select ARCH_SUPPORTS_HUGETLBFS
102	select ARCH_SUPPORTS_MEMORY_FAILURE
103	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
104	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
105	select ARCH_SUPPORTS_LTO_CLANG_THIN
106	select ARCH_SUPPORTS_CFI_CLANG
107	select ARCH_SUPPORTS_ATOMIC_RMW
108	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
109	select ARCH_SUPPORTS_NUMA_BALANCING
110	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
111	select ARCH_SUPPORTS_PER_VMA_LOCK
112	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
113	select ARCH_SUPPORTS_RT
114	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
115	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
116	select ARCH_WANT_DEFAULT_BPF_JIT
117	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
118	select ARCH_WANT_FRAME_POINTERS
119	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
120	select ARCH_WANT_LD_ORPHAN_WARN
121	select ARCH_WANTS_EXECMEM_LATE
122	select ARCH_WANTS_NO_INSTR
123	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
124	select ARCH_HAS_UBSAN
125	select ARM_AMBA
126	select ARM_ARCH_TIMER
127	select ARM_GIC
128	select AUDIT_ARCH_COMPAT_GENERIC
129	select ARM_GIC_V2M if PCI
130	select ARM_GIC_V3
131	select ARM_GIC_V3_ITS if PCI
132	select ARM_PSCI_FW
133	select BUILDTIME_TABLE_SORT
134	select CLONE_BACKWARDS
135	select COMMON_CLK
136	select CPU_PM if (SUSPEND || CPU_IDLE)
137	select CPUMASK_OFFSTACK if NR_CPUS > 256
138	select DCACHE_WORD_ACCESS
139	select DYNAMIC_FTRACE if FUNCTION_TRACER
140	select DMA_BOUNCE_UNALIGNED_KMALLOC
141	select DMA_DIRECT_REMAP
142	select EDAC_SUPPORT
143	select FRAME_POINTER
144	select FUNCTION_ALIGNMENT_4B
145	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
146	select GENERIC_ALLOCATOR
147	select GENERIC_ARCH_TOPOLOGY
148	select GENERIC_CLOCKEVENTS_BROADCAST
149	select GENERIC_CPU_AUTOPROBE
150	select GENERIC_CPU_DEVICES
151	select GENERIC_CPU_VULNERABILITIES
152	select GENERIC_EARLY_IOREMAP
153	select GENERIC_IDLE_POLL_SETUP
154	select GENERIC_IOREMAP
155	select GENERIC_IRQ_IPI
156	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
157	select GENERIC_IRQ_PROBE
158	select GENERIC_IRQ_SHOW
159	select GENERIC_IRQ_SHOW_LEVEL
160	select GENERIC_LIB_DEVMEM_IS_ALLOWED
161	select GENERIC_PCI_IOMAP
162	select GENERIC_SCHED_CLOCK
163	select GENERIC_SMP_IDLE_THREAD
164	select GENERIC_TIME_VSYSCALL
165	select GENERIC_GETTIMEOFDAY
166	select GENERIC_VDSO_DATA_STORE
167	select GENERIC_VDSO_TIME_NS
168	select HARDIRQS_SW_RESEND
169	select HAS_IOPORT
170	select HAVE_MOVE_PMD
171	select HAVE_MOVE_PUD
172	select HAVE_PCI
173	select HAVE_ACPI_APEI if (ACPI && EFI)
174	select HAVE_ALIGNED_STRUCT_PAGE
175	select HAVE_ARCH_AUDITSYSCALL
176	select HAVE_ARCH_BITREVERSE
177	select HAVE_ARCH_COMPILER_H
178	select HAVE_ARCH_HUGE_VMALLOC
179	select HAVE_ARCH_HUGE_VMAP
180	select HAVE_ARCH_JUMP_LABEL
181	select HAVE_ARCH_JUMP_LABEL_RELATIVE
182	select HAVE_ARCH_KASAN
183	select HAVE_ARCH_KASAN_VMALLOC
184	select HAVE_ARCH_KASAN_SW_TAGS
185	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
186	# Some instrumentation may be unsound, hence EXPERT
187	select HAVE_ARCH_KCSAN if EXPERT
188	select HAVE_ARCH_KFENCE
189	select HAVE_ARCH_KGDB
190	select HAVE_ARCH_MMAP_RND_BITS
191	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
192	select HAVE_ARCH_PREL32_RELOCATIONS
193	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
194	select HAVE_ARCH_SECCOMP_FILTER
195	select HAVE_ARCH_STACKLEAK
196	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
197	select HAVE_ARCH_TRACEHOOK
198	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
199	select HAVE_ARCH_VMAP_STACK
200	select HAVE_ARM_SMCCC
201	select HAVE_ASM_MODVERSIONS
202	select HAVE_EBPF_JIT
203	select HAVE_C_RECORDMCOUNT
204	select HAVE_CMPXCHG_DOUBLE
205	select HAVE_CMPXCHG_LOCAL
206	select HAVE_CONTEXT_TRACKING_USER
207	select HAVE_DEBUG_KMEMLEAK
208	select HAVE_DMA_CONTIGUOUS
209	select HAVE_DYNAMIC_FTRACE
210	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
211		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
212		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
213	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
214		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
215	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
216		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
217		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
218	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
219		if DYNAMIC_FTRACE_WITH_ARGS
220	select HAVE_SAMPLE_FTRACE_DIRECT
221	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
222	select HAVE_BUILDTIME_MCOUNT_SORT
223	select HAVE_EFFICIENT_UNALIGNED_ACCESS
224	select HAVE_GUP_FAST
225	select HAVE_FTRACE_GRAPH_FUNC
226	select HAVE_FTRACE_MCOUNT_RECORD
227	select HAVE_FUNCTION_TRACER
228	select HAVE_FUNCTION_ERROR_INJECTION
229	select HAVE_FUNCTION_GRAPH_FREGS
230	select HAVE_FUNCTION_GRAPH_TRACER
231	select HAVE_GCC_PLUGINS
232	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
233		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
234	select HAVE_HW_BREAKPOINT if PERF_EVENTS
235	select HAVE_IOREMAP_PROT
236	select HAVE_IRQ_TIME_ACCOUNTING
237	select HAVE_LIVEPATCH
238	select HAVE_MOD_ARCH_SPECIFIC
239	select HAVE_NMI
240	select HAVE_PERF_EVENTS
241	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
242	select HAVE_PERF_REGS
243	select HAVE_PERF_USER_STACK_DUMP
244	select HAVE_PREEMPT_DYNAMIC_KEY
245	select HAVE_REGS_AND_STACK_ACCESS_API
246	select HAVE_RELIABLE_STACKTRACE
247	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
248	select HAVE_FUNCTION_ARG_ACCESS_API
249	select MMU_GATHER_RCU_TABLE_FREE
250	select HAVE_RSEQ
251	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
252	select HAVE_STACKPROTECTOR
253	select HAVE_SYSCALL_TRACEPOINTS
254	select HAVE_KPROBES
255	select HAVE_KRETPROBES
256	select HAVE_GENERIC_VDSO
257	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
258	select HOTPLUG_SMT if HOTPLUG_CPU
259	select IRQ_DOMAIN
260	select IRQ_FORCED_THREADING
261	select KASAN_VMALLOC if KASAN
262	select LOCK_MM_AND_FIND_VMA
263	select MODULES_USE_ELF_RELA
264	select NEED_DMA_MAP_STATE
265	select NEED_SG_DMA_LENGTH
266	select OF
267	select OF_EARLY_FLATTREE
268	select PCI_DOMAINS_GENERIC if PCI
269	select PCI_ECAM if (ACPI && PCI)
270	select PCI_SYSCALL if PCI
271	select POWER_RESET
272	select POWER_SUPPLY
273	select SPARSE_IRQ
274	select SWIOTLB
275	select SYSCTL_EXCEPTION_TRACE
276	select THREAD_INFO_IN_TASK
277	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
278	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
279	select TRACE_IRQFLAGS_SUPPORT
280	select TRACE_IRQFLAGS_NMI_SUPPORT
281	select HAVE_SOFTIRQ_ON_OWN_STACK
282	select USER_STACKTRACE_SUPPORT
283	select VDSO_GETRANDOM
284	select VMAP_STACK
285	help
286	  ARM 64-bit (AArch64) Linux support.
287
288config RUSTC_SUPPORTS_ARM64
289	def_bool y
290	depends on CPU_LITTLE_ENDIAN
291	# Shadow call stack is only supported on certain rustc versions.
292	#
293	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
294	# required due to use of the -Zfixed-x18 flag.
295	#
296	# Otherwise, rustc version 1.82+ is required due to use of the
297	# -Zsanitizer=shadow-call-stack flag.
298	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
299
300config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
301	def_bool CC_IS_CLANG
302	# https://github.com/ClangBuiltLinux/linux/issues/1507
303	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
304
305config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
306	def_bool CC_IS_GCC
307	depends on $(cc-option,-fpatchable-function-entry=2)
308
309config 64BIT
310	def_bool y
311
312config MMU
313	def_bool y
314
315config ARM64_CONT_PTE_SHIFT
316	int
317	default 5 if PAGE_SIZE_64KB
318	default 7 if PAGE_SIZE_16KB
319	default 4
320
321config ARM64_CONT_PMD_SHIFT
322	int
323	default 5 if PAGE_SIZE_64KB
324	default 5 if PAGE_SIZE_16KB
325	default 4
326
327config ARCH_MMAP_RND_BITS_MIN
328	default 14 if PAGE_SIZE_64KB
329	default 16 if PAGE_SIZE_16KB
330	default 18
331
332# max bits determined by the following formula:
333#  VA_BITS - PTDESC_TABLE_SHIFT
334config ARCH_MMAP_RND_BITS_MAX
335	default 19 if ARM64_VA_BITS=36
336	default 24 if ARM64_VA_BITS=39
337	default 27 if ARM64_VA_BITS=42
338	default 30 if ARM64_VA_BITS=47
339	default 29 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_64K_PAGES
340	default 31 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_16K_PAGES
341	default 33 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52)
342	default 14 if ARM64_64K_PAGES
343	default 16 if ARM64_16K_PAGES
344	default 18
345
346config ARCH_MMAP_RND_COMPAT_BITS_MIN
347	default 7 if ARM64_64K_PAGES
348	default 9 if ARM64_16K_PAGES
349	default 11
350
351config ARCH_MMAP_RND_COMPAT_BITS_MAX
352	default 16
353
354config NO_IOPORT_MAP
355	def_bool y if !PCI
356
357config STACKTRACE_SUPPORT
358	def_bool y
359
360config ILLEGAL_POINTER_VALUE
361	hex
362	default 0xdead000000000000
363
364config LOCKDEP_SUPPORT
365	def_bool y
366
367config GENERIC_BUG
368	def_bool y
369	depends on BUG
370
371config GENERIC_BUG_RELATIVE_POINTERS
372	def_bool y
373	depends on GENERIC_BUG
374
375config GENERIC_HWEIGHT
376	def_bool y
377
378config GENERIC_CSUM
379	def_bool y
380
381config GENERIC_CALIBRATE_DELAY
382	def_bool y
383
384config SMP
385	def_bool y
386
387config KERNEL_MODE_NEON
388	def_bool y
389
390config FIX_EARLYCON_MEM
391	def_bool y
392
393config PGTABLE_LEVELS
394	int
395	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
396	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
397	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
398	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
399	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
400	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
401	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
402	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
403
404config ARCH_SUPPORTS_UPROBES
405	def_bool y
406
407config ARCH_PROC_KCORE_TEXT
408	def_bool y
409
410config BROKEN_GAS_INST
411	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
412
413config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
414	bool
415	# Clang's __builtin_return_address() strips the PAC since 12.0.0
416	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
417	default y if CC_IS_CLANG
418	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
419	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
420	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
421	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
422	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
423	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
424	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
425	default n
426
427config KASAN_SHADOW_OFFSET
428	hex
429	depends on KASAN_GENERIC || KASAN_SW_TAGS
430	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
431	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
432	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
433	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
434	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
435	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
436	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
437	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
438	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
439	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
440	default 0xffffffffffffffff
441
442config UNWIND_TABLES
443	bool
444
445source "arch/arm64/Kconfig.platforms"
446
447menu "Kernel Features"
448
449menu "ARM errata workarounds via the alternatives framework"
450
451config AMPERE_ERRATUM_AC03_CPU_38
452        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
453	default y
454	help
455	  This option adds an alternative code sequence to work around Ampere
456	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
457
458	  The affected design reports FEAT_HAFDBS as not implemented in
459	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
460	  as required by the architecture. The unadvertised HAFDBS
461	  implementation suffers from an additional erratum where hardware
462	  A/D updates can occur after a PTE has been marked invalid.
463
464	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
465	  which avoids enabling unadvertised hardware Access Flag management
466	  at stage-2.
467
468	  If unsure, say Y.
469
470config AMPERE_ERRATUM_AC04_CPU_23
471        bool "AmpereOne: AC04_CPU_23:  Failure to synchronize writes to HCR_EL2 may corrupt address translations."
472	default y
473	help
474	  This option adds an alternative code sequence to work around Ampere
475	  errata AC04_CPU_23 on AmpereOne.
476
477	  Updates to HCR_EL2 can rarely corrupt simultaneous translations for
478	  data addresses initiated by load/store instructions. Only
479	  instruction initiated translations are vulnerable, not translations
480	  from prefetches for example. A DSB before the store to HCR_EL2 is
481	  sufficient to prevent older instructions from hitting the window
482	  for corruption, and an ISB after is sufficient to prevent younger
483	  instructions from hitting the window for corruption.
484
485	  If unsure, say Y.
486
487config ARM64_WORKAROUND_CLEAN_CACHE
488	bool
489
490config ARM64_ERRATUM_826319
491	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
492	default y
493	select ARM64_WORKAROUND_CLEAN_CACHE
494	help
495	  This option adds an alternative code sequence to work around ARM
496	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
497	  AXI master interface and an L2 cache.
498
499	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
500	  and is unable to accept a certain write via this interface, it will
501	  not progress on read data presented on the read data channel and the
502	  system can deadlock.
503
504	  The workaround promotes data cache clean instructions to
505	  data cache clean-and-invalidate.
506	  Please note that this does not necessarily enable the workaround,
507	  as it depends on the alternative framework, which will only patch
508	  the kernel if an affected CPU is detected.
509
510	  If unsure, say Y.
511
512config ARM64_ERRATUM_827319
513	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
514	default y
515	select ARM64_WORKAROUND_CLEAN_CACHE
516	help
517	  This option adds an alternative code sequence to work around ARM
518	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
519	  master interface and an L2 cache.
520
521	  Under certain conditions this erratum can cause a clean line eviction
522	  to occur at the same time as another transaction to the same address
523	  on the AMBA 5 CHI interface, which can cause data corruption if the
524	  interconnect reorders the two transactions.
525
526	  The workaround promotes data cache clean instructions to
527	  data cache clean-and-invalidate.
528	  Please note that this does not necessarily enable the workaround,
529	  as it depends on the alternative framework, which will only patch
530	  the kernel if an affected CPU is detected.
531
532	  If unsure, say Y.
533
534config ARM64_ERRATUM_824069
535	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
536	default y
537	select ARM64_WORKAROUND_CLEAN_CACHE
538	help
539	  This option adds an alternative code sequence to work around ARM
540	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
541	  to a coherent interconnect.
542
543	  If a Cortex-A53 processor is executing a store or prefetch for
544	  write instruction at the same time as a processor in another
545	  cluster is executing a cache maintenance operation to the same
546	  address, then this erratum might cause a clean cache line to be
547	  incorrectly marked as dirty.
548
549	  The workaround promotes data cache clean instructions to
550	  data cache clean-and-invalidate.
551	  Please note that this option does not necessarily enable the
552	  workaround, as it depends on the alternative framework, which will
553	  only patch the kernel if an affected CPU is detected.
554
555	  If unsure, say Y.
556
557config ARM64_ERRATUM_819472
558	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
559	default y
560	select ARM64_WORKAROUND_CLEAN_CACHE
561	help
562	  This option adds an alternative code sequence to work around ARM
563	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
564	  present when it is connected to a coherent interconnect.
565
566	  If the processor is executing a load and store exclusive sequence at
567	  the same time as a processor in another cluster is executing a cache
568	  maintenance operation to the same address, then this erratum might
569	  cause data corruption.
570
571	  The workaround promotes data cache clean instructions to
572	  data cache clean-and-invalidate.
573	  Please note that this does not necessarily enable the workaround,
574	  as it depends on the alternative framework, which will only patch
575	  the kernel if an affected CPU is detected.
576
577	  If unsure, say Y.
578
579config ARM64_ERRATUM_832075
580	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
581	default y
582	help
583	  This option adds an alternative code sequence to work around ARM
584	  erratum 832075 on Cortex-A57 parts up to r1p2.
585
586	  Affected Cortex-A57 parts might deadlock when exclusive load/store
587	  instructions to Write-Back memory are mixed with Device loads.
588
589	  The workaround is to promote device loads to use Load-Acquire
590	  semantics.
591	  Please note that this does not necessarily enable the workaround,
592	  as it depends on the alternative framework, which will only patch
593	  the kernel if an affected CPU is detected.
594
595	  If unsure, say Y.
596
597config ARM64_ERRATUM_834220
598	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
599	depends on KVM
600	help
601	  This option adds an alternative code sequence to work around ARM
602	  erratum 834220 on Cortex-A57 parts up to r1p2.
603
604	  Affected Cortex-A57 parts might report a Stage 2 translation
605	  fault as the result of a Stage 1 fault for load crossing a
606	  page boundary when there is a permission or device memory
607	  alignment fault at Stage 1 and a translation fault at Stage 2.
608
609	  The workaround is to verify that the Stage 1 translation
610	  doesn't generate a fault before handling the Stage 2 fault.
611	  Please note that this does not necessarily enable the workaround,
612	  as it depends on the alternative framework, which will only patch
613	  the kernel if an affected CPU is detected.
614
615	  If unsure, say N.
616
617config ARM64_ERRATUM_1742098
618	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
619	depends on COMPAT
620	default y
621	help
622	  This option removes the AES hwcap for aarch32 user-space to
623	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
624
625	  Affected parts may corrupt the AES state if an interrupt is
626	  taken between a pair of AES instructions. These instructions
627	  are only present if the cryptography extensions are present.
628	  All software should have a fallback implementation for CPUs
629	  that don't implement the cryptography extensions.
630
631	  If unsure, say Y.
632
633config ARM64_ERRATUM_845719
634	bool "Cortex-A53: 845719: a load might read incorrect data"
635	depends on COMPAT
636	default y
637	help
638	  This option adds an alternative code sequence to work around ARM
639	  erratum 845719 on Cortex-A53 parts up to r0p4.
640
641	  When running a compat (AArch32) userspace on an affected Cortex-A53
642	  part, a load at EL0 from a virtual address that matches the bottom 32
643	  bits of the virtual address used by a recent load at (AArch64) EL1
644	  might return incorrect data.
645
646	  The workaround is to write the contextidr_el1 register on exception
647	  return to a 32-bit task.
648	  Please note that this does not necessarily enable the workaround,
649	  as it depends on the alternative framework, which will only patch
650	  the kernel if an affected CPU is detected.
651
652	  If unsure, say Y.
653
654config ARM64_ERRATUM_843419
655	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
656	default y
657	help
658	  This option links the kernel with '--fix-cortex-a53-843419' and
659	  enables PLT support to replace certain ADRP instructions, which can
660	  cause subsequent memory accesses to use an incorrect address on
661	  Cortex-A53 parts up to r0p4.
662
663	  If unsure, say Y.
664
665config ARM64_ERRATUM_1024718
666	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
667	default y
668	help
669	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
670
671	  Affected Cortex-A55 cores (all revisions) could cause incorrect
672	  update of the hardware dirty bit when the DBM/AP bits are updated
673	  without a break-before-make. The workaround is to disable the usage
674	  of hardware DBM locally on the affected cores. CPUs not affected by
675	  this erratum will continue to use the feature.
676
677	  If unsure, say Y.
678
679config ARM64_ERRATUM_1418040
680	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
681	default y
682	depends on COMPAT
683	help
684	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
685	  errata 1188873 and 1418040.
686
687	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
688	  cause register corruption when accessing the timer registers
689	  from AArch32 userspace.
690
691	  If unsure, say Y.
692
693config ARM64_WORKAROUND_SPECULATIVE_AT
694	bool
695
696config ARM64_ERRATUM_1165522
697	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
698	default y
699	select ARM64_WORKAROUND_SPECULATIVE_AT
700	help
701	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
702
703	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
704	  corrupted TLBs by speculating an AT instruction during a guest
705	  context switch.
706
707	  If unsure, say Y.
708
709config ARM64_ERRATUM_1319367
710	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
711	default y
712	select ARM64_WORKAROUND_SPECULATIVE_AT
713	help
714	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
715	  and A72 erratum 1319367
716
717	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
718	  speculating an AT instruction during a guest context switch.
719
720	  If unsure, say Y.
721
722config ARM64_ERRATUM_1530923
723	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
724	default y
725	select ARM64_WORKAROUND_SPECULATIVE_AT
726	help
727	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
728
729	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
730	  corrupted TLBs by speculating an AT instruction during a guest
731	  context switch.
732
733	  If unsure, say Y.
734
735config ARM64_WORKAROUND_REPEAT_TLBI
736	bool
737
738config ARM64_ERRATUM_2441007
739	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
740	select ARM64_WORKAROUND_REPEAT_TLBI
741	help
742	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
743
744	  Under very rare circumstances, affected Cortex-A55 CPUs
745	  may not handle a race between a break-before-make sequence on one
746	  CPU, and another CPU accessing the same page. This could allow a
747	  store to a page that has been unmapped.
748
749	  Work around this by adding the affected CPUs to the list that needs
750	  TLB sequences to be done twice.
751
752	  If unsure, say N.
753
754config ARM64_ERRATUM_1286807
755	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
756	select ARM64_WORKAROUND_REPEAT_TLBI
757	help
758	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
759
760	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
761	  address for a cacheable mapping of a location is being
762	  accessed by a core while another core is remapping the virtual
763	  address to a new physical page using the recommended
764	  break-before-make sequence, then under very rare circumstances
765	  TLBI+DSB completes before a read using the translation being
766	  invalidated has been observed by other observers. The
767	  workaround repeats the TLBI+DSB operation.
768
769	  If unsure, say N.
770
771config ARM64_ERRATUM_1463225
772	bool "Cortex-A76: Software Step might prevent interrupt recognition"
773	default y
774	help
775	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
776
777	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
778	  of a system call instruction (SVC) can prevent recognition of
779	  subsequent interrupts when software stepping is disabled in the
780	  exception handler of the system call and either kernel debugging
781	  is enabled or VHE is in use.
782
783	  Work around the erratum by triggering a dummy step exception
784	  when handling a system call from a task that is being stepped
785	  in a VHE configuration of the kernel.
786
787	  If unsure, say Y.
788
789config ARM64_ERRATUM_1542419
790	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
791	help
792	  This option adds a workaround for ARM Neoverse-N1 erratum
793	  1542419.
794
795	  Affected Neoverse-N1 cores could execute a stale instruction when
796	  modified by another CPU. The workaround depends on a firmware
797	  counterpart.
798
799	  Workaround the issue by hiding the DIC feature from EL0. This
800	  forces user-space to perform cache maintenance.
801
802	  If unsure, say N.
803
804config ARM64_ERRATUM_1508412
805	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
806	default y
807	help
808	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
809
810	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
811	  of a store-exclusive or read of PAR_EL1 and a load with device or
812	  non-cacheable memory attributes. The workaround depends on a firmware
813	  counterpart.
814
815	  KVM guests must also have the workaround implemented or they can
816	  deadlock the system.
817
818	  Work around the issue by inserting DMB SY barriers around PAR_EL1
819	  register reads and warning KVM users. The DMB barrier is sufficient
820	  to prevent a speculative PAR_EL1 read.
821
822	  If unsure, say Y.
823
824config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
825	bool
826
827config ARM64_ERRATUM_2051678
828	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
829	default y
830	help
831	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
832	  Affected Cortex-A510 might not respect the ordering rules for
833	  hardware update of the page table's dirty bit. The workaround
834	  is to not enable the feature on affected CPUs.
835
836	  If unsure, say Y.
837
838config ARM64_ERRATUM_2077057
839	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
840	default y
841	help
842	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
843	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
844	  expected, but a Pointer Authentication trap is taken instead. The
845	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
846	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
847
848	  This can only happen when EL2 is stepping EL1.
849
850	  When these conditions occur, the SPSR_EL2 value is unchanged from the
851	  previous guest entry, and can be restored from the in-memory copy.
852
853	  If unsure, say Y.
854
855config ARM64_ERRATUM_2658417
856	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
857	default y
858	help
859	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
860	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
861	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
862	  A510 CPUs are using shared neon hardware. As the sharing is not
863	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
864	  user-space should not be using these instructions.
865
866	  If unsure, say Y.
867
868config ARM64_ERRATUM_2119858
869	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
870	default y
871	depends on CORESIGHT_TRBE
872	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
873	help
874	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
875
876	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
877	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
878	  the event of a WRAP event.
879
880	  Work around the issue by always making sure we move the TRBPTR_EL1 by
881	  256 bytes before enabling the buffer and filling the first 256 bytes of
882	  the buffer with ETM ignore packets upon disabling.
883
884	  If unsure, say Y.
885
886config ARM64_ERRATUM_2139208
887	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
888	default y
889	depends on CORESIGHT_TRBE
890	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
891	help
892	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
893
894	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
895	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
896	  the event of a WRAP event.
897
898	  Work around the issue by always making sure we move the TRBPTR_EL1 by
899	  256 bytes before enabling the buffer and filling the first 256 bytes of
900	  the buffer with ETM ignore packets upon disabling.
901
902	  If unsure, say Y.
903
904config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
905	bool
906
907config ARM64_ERRATUM_2054223
908	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
909	default y
910	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
911	help
912	  Enable workaround for ARM Cortex-A710 erratum 2054223
913
914	  Affected cores may fail to flush the trace data on a TSB instruction, when
915	  the PE is in trace prohibited state. This will cause losing a few bytes
916	  of the trace cached.
917
918	  Workaround is to issue two TSB consecutively on affected cores.
919
920	  If unsure, say Y.
921
922config ARM64_ERRATUM_2067961
923	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
924	default y
925	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
926	help
927	  Enable workaround for ARM Neoverse-N2 erratum 2067961
928
929	  Affected cores may fail to flush the trace data on a TSB instruction, when
930	  the PE is in trace prohibited state. This will cause losing a few bytes
931	  of the trace cached.
932
933	  Workaround is to issue two TSB consecutively on affected cores.
934
935	  If unsure, say Y.
936
937config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
938	bool
939
940config ARM64_ERRATUM_2253138
941	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
942	depends on CORESIGHT_TRBE
943	default y
944	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
945	help
946	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
947
948	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
949	  for TRBE. Under some conditions, the TRBE might generate a write to the next
950	  virtually addressed page following the last page of the TRBE address space
951	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
952
953	  Work around this in the driver by always making sure that there is a
954	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
955
956	  If unsure, say Y.
957
958config ARM64_ERRATUM_2224489
959	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
960	depends on CORESIGHT_TRBE
961	default y
962	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
963	help
964	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
965
966	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
967	  for TRBE. Under some conditions, the TRBE might generate a write to the next
968	  virtually addressed page following the last page of the TRBE address space
969	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
970
971	  Work around this in the driver by always making sure that there is a
972	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
973
974	  If unsure, say Y.
975
976config ARM64_ERRATUM_2441009
977	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
978	select ARM64_WORKAROUND_REPEAT_TLBI
979	help
980	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
981
982	  Under very rare circumstances, affected Cortex-A510 CPUs
983	  may not handle a race between a break-before-make sequence on one
984	  CPU, and another CPU accessing the same page. This could allow a
985	  store to a page that has been unmapped.
986
987	  Work around this by adding the affected CPUs to the list that needs
988	  TLB sequences to be done twice.
989
990	  If unsure, say N.
991
992config ARM64_ERRATUM_2064142
993	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
994	depends on CORESIGHT_TRBE
995	default y
996	help
997	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
998
999	  Affected Cortex-A510 core might fail to write into system registers after the
1000	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
1001	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
1002	  and TRBTRG_EL1 will be ignored and will not be effected.
1003
1004	  Work around this in the driver by executing TSB CSYNC and DSB after collection
1005	  is stopped and before performing a system register write to one of the affected
1006	  registers.
1007
1008	  If unsure, say Y.
1009
1010config ARM64_ERRATUM_2038923
1011	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
1012	depends on CORESIGHT_TRBE
1013	default y
1014	help
1015	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
1016
1017	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
1018	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1019	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1020	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1021	  execution changes from a context, in which trace is prohibited to one where it
1022	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1023	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1024	  the trace buffer state might be corrupted.
1025
1026	  Work around this in the driver by preventing an inconsistent view of whether the
1027	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1028	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1029	  two ISB instructions if no ERET is to take place.
1030
1031	  If unsure, say Y.
1032
1033config ARM64_ERRATUM_1902691
1034	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1035	depends on CORESIGHT_TRBE
1036	default y
1037	help
1038	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1039
1040	  Affected Cortex-A510 core might cause trace data corruption, when being written
1041	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1042	  trace data.
1043
1044	  Work around this problem in the driver by just preventing TRBE initialization on
1045	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1046	  on such implementations. This will cover the kernel for any firmware that doesn't
1047	  do this already.
1048
1049	  If unsure, say Y.
1050
1051config ARM64_ERRATUM_2457168
1052	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1053	depends on ARM64_AMU_EXTN
1054	default y
1055	help
1056	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1057
1058	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1059	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1060	  incorrectly giving a significantly higher output value.
1061
1062	  Work around this problem by returning 0 when reading the affected counter in
1063	  key locations that results in disabling all users of this counter. This effect
1064	  is the same to firmware disabling affected counters.
1065
1066	  If unsure, say Y.
1067
1068config ARM64_ERRATUM_2645198
1069	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1070	default y
1071	help
1072	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1073
1074	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1075	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1076	  next instruction abort caused by permission fault.
1077
1078	  Only user-space does executable to non-executable permission transition via
1079	  mprotect() system call. Workaround the problem by doing a break-before-make
1080	  TLB invalidation, for all changes to executable user space mappings.
1081
1082	  If unsure, say Y.
1083
1084config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1085	bool
1086
1087config ARM64_ERRATUM_2966298
1088	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1089	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1090	default y
1091	help
1092	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1093
1094	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1095	  load might leak data from a privileged level via a cache side channel.
1096
1097	  Work around this problem by executing a TLBI before returning to EL0.
1098
1099	  If unsure, say Y.
1100
1101config ARM64_ERRATUM_3117295
1102	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1103	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1104	default y
1105	help
1106	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1107
1108	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1109	  load might leak data from a privileged level via a cache side channel.
1110
1111	  Work around this problem by executing a TLBI before returning to EL0.
1112
1113	  If unsure, say Y.
1114
1115config ARM64_ERRATUM_3194386
1116	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1117	default y
1118	help
1119	  This option adds the workaround for the following errata:
1120
1121	  * ARM Cortex-A76 erratum 3324349
1122	  * ARM Cortex-A77 erratum 3324348
1123	  * ARM Cortex-A78 erratum 3324344
1124	  * ARM Cortex-A78C erratum 3324346
1125	  * ARM Cortex-A78C erratum 3324347
1126	  * ARM Cortex-A710 erratam 3324338
1127	  * ARM Cortex-A715 errartum 3456084
1128	  * ARM Cortex-A720 erratum 3456091
1129	  * ARM Cortex-A725 erratum 3456106
1130	  * ARM Cortex-X1 erratum 3324344
1131	  * ARM Cortex-X1C erratum 3324346
1132	  * ARM Cortex-X2 erratum 3324338
1133	  * ARM Cortex-X3 erratum 3324335
1134	  * ARM Cortex-X4 erratum 3194386
1135	  * ARM Cortex-X925 erratum 3324334
1136	  * ARM Neoverse-N1 erratum 3324349
1137	  * ARM Neoverse N2 erratum 3324339
1138	  * ARM Neoverse-N3 erratum 3456111
1139	  * ARM Neoverse-V1 erratum 3324341
1140	  * ARM Neoverse V2 erratum 3324336
1141	  * ARM Neoverse-V3 erratum 3312417
1142
1143	  On affected cores "MSR SSBS, #0" instructions may not affect
1144	  subsequent speculative instructions, which may permit unexepected
1145	  speculative store bypassing.
1146
1147	  Work around this problem by placing a Speculation Barrier (SB) or
1148	  Instruction Synchronization Barrier (ISB) after kernel changes to
1149	  SSBS. The presence of the SSBS special-purpose register is hidden
1150	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1151	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1152
1153	  If unsure, say Y.
1154
1155config CAVIUM_ERRATUM_22375
1156	bool "Cavium erratum 22375, 24313"
1157	default y
1158	help
1159	  Enable workaround for errata 22375 and 24313.
1160
1161	  This implements two gicv3-its errata workarounds for ThunderX. Both
1162	  with a small impact affecting only ITS table allocation.
1163
1164	    erratum 22375: only alloc 8MB table size
1165	    erratum 24313: ignore memory access type
1166
1167	  The fixes are in ITS initialization and basically ignore memory access
1168	  type and table size provided by the TYPER and BASER registers.
1169
1170	  If unsure, say Y.
1171
1172config CAVIUM_ERRATUM_23144
1173	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1174	depends on NUMA
1175	default y
1176	help
1177	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1178
1179	  If unsure, say Y.
1180
1181config CAVIUM_ERRATUM_23154
1182	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1183	default y
1184	help
1185	  The ThunderX GICv3 implementation requires a modified version for
1186	  reading the IAR status to ensure data synchronization
1187	  (access to icc_iar1_el1 is not sync'ed before and after).
1188
1189	  It also suffers from erratum 38545 (also present on Marvell's
1190	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1191	  spuriously presented to the CPU interface.
1192
1193	  If unsure, say Y.
1194
1195config CAVIUM_ERRATUM_27456
1196	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1197	default y
1198	help
1199	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1200	  instructions may cause the icache to become corrupted if it
1201	  contains data for a non-current ASID.  The fix is to
1202	  invalidate the icache when changing the mm context.
1203
1204	  If unsure, say Y.
1205
1206config CAVIUM_ERRATUM_30115
1207	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1208	default y
1209	help
1210	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1211	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1212	  interrupts in host. Trapping both GICv3 group-0 and group-1
1213	  accesses sidesteps the issue.
1214
1215	  If unsure, say Y.
1216
1217config CAVIUM_TX2_ERRATUM_219
1218	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1219	default y
1220	help
1221	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1222	  TTBR update and the corresponding context synchronizing operation can
1223	  cause a spurious Data Abort to be delivered to any hardware thread in
1224	  the CPU core.
1225
1226	  Work around the issue by avoiding the problematic code sequence and
1227	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1228	  trap handler performs the corresponding register access, skips the
1229	  instruction and ensures context synchronization by virtue of the
1230	  exception return.
1231
1232	  If unsure, say Y.
1233
1234config FUJITSU_ERRATUM_010001
1235	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1236	default y
1237	help
1238	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1239	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1240	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1241	  This fault occurs under a specific hardware condition when a
1242	  load/store instruction performs an address translation using:
1243	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1244	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1245	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1246	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1247
1248	  The workaround is to ensure these bits are clear in TCR_ELx.
1249	  The workaround only affects the Fujitsu-A64FX.
1250
1251	  If unsure, say Y.
1252
1253config HISILICON_ERRATUM_161600802
1254	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1255	default y
1256	help
1257	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1258	  when issued ITS commands such as VMOVP and VMAPP, and requires
1259	  a 128kB offset to be applied to the target address in this commands.
1260
1261	  If unsure, say Y.
1262
1263config HISILICON_ERRATUM_162100801
1264	bool "Hip09 162100801 erratum support"
1265	default y
1266	help
1267	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1268	  during unmapping operation, which will cause some vSGIs lost.
1269	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1270	  after VMOVP.
1271
1272	  If unsure, say Y.
1273
1274config QCOM_FALKOR_ERRATUM_1003
1275	bool "Falkor E1003: Incorrect translation due to ASID change"
1276	default y
1277	help
1278	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1279	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1280	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1281	  then only for entries in the walk cache, since the leaf translation
1282	  is unchanged. Work around the erratum by invalidating the walk cache
1283	  entries for the trampoline before entering the kernel proper.
1284
1285config QCOM_FALKOR_ERRATUM_1009
1286	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1287	default y
1288	select ARM64_WORKAROUND_REPEAT_TLBI
1289	help
1290	  On Falkor v1, the CPU may prematurely complete a DSB following a
1291	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1292	  one more time to fix the issue.
1293
1294	  If unsure, say Y.
1295
1296config QCOM_QDF2400_ERRATUM_0065
1297	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1298	default y
1299	help
1300	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1301	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1302	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1303
1304	  If unsure, say Y.
1305
1306config QCOM_FALKOR_ERRATUM_E1041
1307	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1308	default y
1309	help
1310	  Falkor CPU may speculatively fetch instructions from an improper
1311	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1312	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1313
1314	  If unsure, say Y.
1315
1316config NVIDIA_CARMEL_CNP_ERRATUM
1317	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1318	default y
1319	help
1320	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1321	  invalidate shared TLB entries installed by a different core, as it would
1322	  on standard ARM cores.
1323
1324	  If unsure, say Y.
1325
1326config ROCKCHIP_ERRATUM_3568002
1327	bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB"
1328	default y
1329	help
1330	  The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI
1331	  addressing limited to the first 32bit of physical address space.
1332
1333	  If unsure, say Y.
1334
1335config ROCKCHIP_ERRATUM_3588001
1336	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1337	default y
1338	help
1339	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1340	  This means, that its sharability feature may not be used, even though it
1341	  is supported by the IP itself.
1342
1343	  If unsure, say Y.
1344
1345config SOCIONEXT_SYNQUACER_PREITS
1346	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1347	default y
1348	help
1349	  Socionext Synquacer SoCs implement a separate h/w block to generate
1350	  MSI doorbell writes with non-zero values for the device ID.
1351
1352	  If unsure, say Y.
1353
1354endmenu # "ARM errata workarounds via the alternatives framework"
1355
1356choice
1357	prompt "Page size"
1358	default ARM64_4K_PAGES
1359	help
1360	  Page size (translation granule) configuration.
1361
1362config ARM64_4K_PAGES
1363	bool "4KB"
1364	select HAVE_PAGE_SIZE_4KB
1365	help
1366	  This feature enables 4KB pages support.
1367
1368config ARM64_16K_PAGES
1369	bool "16KB"
1370	select HAVE_PAGE_SIZE_16KB
1371	help
1372	  The system will use 16KB pages support. AArch32 emulation
1373	  requires applications compiled with 16K (or a multiple of 16K)
1374	  aligned segments.
1375
1376config ARM64_64K_PAGES
1377	bool "64KB"
1378	select HAVE_PAGE_SIZE_64KB
1379	help
1380	  This feature enables 64KB pages support (4KB by default)
1381	  allowing only two levels of page tables and faster TLB
1382	  look-up. AArch32 emulation requires applications compiled
1383	  with 64K aligned segments.
1384
1385endchoice
1386
1387choice
1388	prompt "Virtual address space size"
1389	default ARM64_VA_BITS_52
1390	help
1391	  Allows choosing one of multiple possible virtual address
1392	  space sizes. The level of translation table is determined by
1393	  a combination of page size and virtual address space size.
1394
1395config ARM64_VA_BITS_36
1396	bool "36-bit" if EXPERT
1397	depends on PAGE_SIZE_16KB
1398
1399config ARM64_VA_BITS_39
1400	bool "39-bit"
1401	depends on PAGE_SIZE_4KB
1402
1403config ARM64_VA_BITS_42
1404	bool "42-bit"
1405	depends on PAGE_SIZE_64KB
1406
1407config ARM64_VA_BITS_47
1408	bool "47-bit"
1409	depends on PAGE_SIZE_16KB
1410
1411config ARM64_VA_BITS_48
1412	bool "48-bit"
1413
1414config ARM64_VA_BITS_52
1415	bool "52-bit"
1416	help
1417	  Enable 52-bit virtual addressing for userspace when explicitly
1418	  requested via a hint to mmap(). The kernel will also use 52-bit
1419	  virtual addresses for its own mappings (provided HW support for
1420	  this feature is available, otherwise it reverts to 48-bit).
1421
1422	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1423	  ARMv8.3 Pointer Authentication will result in the PAC being
1424	  reduced from 7 bits to 3 bits, which may have a significant
1425	  impact on its susceptibility to brute-force attacks.
1426
1427	  If unsure, select 48-bit virtual addressing instead.
1428
1429endchoice
1430
1431config ARM64_FORCE_52BIT
1432	bool "Force 52-bit virtual addresses for userspace"
1433	depends on ARM64_VA_BITS_52 && EXPERT
1434	help
1435	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1436	  to maintain compatibility with older software by providing 48-bit VAs
1437	  unless a hint is supplied to mmap.
1438
1439	  This configuration option disables the 48-bit compatibility logic, and
1440	  forces all userspace addresses to be 52-bit on HW that supports it. One
1441	  should only enable this configuration option for stress testing userspace
1442	  memory management code. If unsure say N here.
1443
1444config ARM64_VA_BITS
1445	int
1446	default 36 if ARM64_VA_BITS_36
1447	default 39 if ARM64_VA_BITS_39
1448	default 42 if ARM64_VA_BITS_42
1449	default 47 if ARM64_VA_BITS_47
1450	default 48 if ARM64_VA_BITS_48
1451	default 52 if ARM64_VA_BITS_52
1452
1453choice
1454	prompt "Physical address space size"
1455	default ARM64_PA_BITS_48
1456	help
1457	  Choose the maximum physical address range that the kernel will
1458	  support.
1459
1460config ARM64_PA_BITS_48
1461	bool "48-bit"
1462	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1463
1464config ARM64_PA_BITS_52
1465	bool "52-bit"
1466	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1467	help
1468	  Enable support for a 52-bit physical address space, introduced as
1469	  part of the ARMv8.2-LPA extension.
1470
1471	  With this enabled, the kernel will also continue to work on CPUs that
1472	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1473	  minor performance overhead).
1474
1475endchoice
1476
1477config ARM64_PA_BITS
1478	int
1479	default 48 if ARM64_PA_BITS_48
1480	default 52 if ARM64_PA_BITS_52
1481
1482config ARM64_LPA2
1483	def_bool y
1484	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1485
1486choice
1487	prompt "Endianness"
1488	default CPU_LITTLE_ENDIAN
1489	help
1490	  Select the endianness of data accesses performed by the CPU. Userspace
1491	  applications will need to be compiled and linked for the endianness
1492	  that is selected here.
1493
1494config CPU_BIG_ENDIAN
1495	bool "Build big-endian kernel"
1496	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1497	depends on AS_IS_GNU || AS_VERSION >= 150000
1498	help
1499	  Say Y if you plan on running a kernel with a big-endian userspace.
1500
1501config CPU_LITTLE_ENDIAN
1502	bool "Build little-endian kernel"
1503	help
1504	  Say Y if you plan on running a kernel with a little-endian userspace.
1505	  This is usually the case for distributions targeting arm64.
1506
1507endchoice
1508
1509config SCHED_MC
1510	bool "Multi-core scheduler support"
1511	help
1512	  Multi-core scheduler support improves the CPU scheduler's decision
1513	  making when dealing with multi-core CPU chips at a cost of slightly
1514	  increased overhead in some places. If unsure say N here.
1515
1516config SCHED_CLUSTER
1517	bool "Cluster scheduler support"
1518	help
1519	  Cluster scheduler support improves the CPU scheduler's decision
1520	  making when dealing with machines that have clusters of CPUs.
1521	  Cluster usually means a couple of CPUs which are placed closely
1522	  by sharing mid-level caches, last-level cache tags or internal
1523	  busses.
1524
1525config SCHED_SMT
1526	bool "SMT scheduler support"
1527	help
1528	  Improves the CPU scheduler's decision making when dealing with
1529	  MultiThreading at a cost of slightly increased overhead in some
1530	  places. If unsure say N here.
1531
1532config NR_CPUS
1533	int "Maximum number of CPUs (2-4096)"
1534	range 2 4096
1535	default "512"
1536
1537config HOTPLUG_CPU
1538	bool "Support for hot-pluggable CPUs"
1539	select GENERIC_IRQ_MIGRATION
1540	help
1541	  Say Y here to experiment with turning CPUs off and on.  CPUs
1542	  can be controlled through /sys/devices/system/cpu.
1543
1544# Common NUMA Features
1545config NUMA
1546	bool "NUMA Memory Allocation and Scheduler Support"
1547	select GENERIC_ARCH_NUMA
1548	select OF_NUMA
1549	select HAVE_SETUP_PER_CPU_AREA
1550	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1551	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1552	select USE_PERCPU_NUMA_NODE_ID
1553	help
1554	  Enable NUMA (Non-Uniform Memory Access) support.
1555
1556	  The kernel will try to allocate memory used by a CPU on the
1557	  local memory of the CPU and add some more
1558	  NUMA awareness to the kernel.
1559
1560config NODES_SHIFT
1561	int "Maximum NUMA Nodes (as a power of 2)"
1562	range 1 10
1563	default "4"
1564	depends on NUMA
1565	help
1566	  Specify the maximum number of NUMA Nodes available on the target
1567	  system.  Increases memory reserved to accommodate various tables.
1568
1569source "kernel/Kconfig.hz"
1570
1571config ARCH_SPARSEMEM_ENABLE
1572	def_bool y
1573	select SPARSEMEM_VMEMMAP_ENABLE
1574	select SPARSEMEM_VMEMMAP
1575
1576config HW_PERF_EVENTS
1577	def_bool y
1578	depends on ARM_PMU
1579
1580# Supported by clang >= 7.0 or GCC >= 12.0.0
1581config CC_HAVE_SHADOW_CALL_STACK
1582	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1583
1584config PARAVIRT
1585	bool "Enable paravirtualization code"
1586	help
1587	  This changes the kernel so it can modify itself when it is run
1588	  under a hypervisor, potentially improving performance significantly
1589	  over full virtualization.
1590
1591config PARAVIRT_TIME_ACCOUNTING
1592	bool "Paravirtual steal time accounting"
1593	select PARAVIRT
1594	help
1595	  Select this option to enable fine granularity task steal time
1596	  accounting. Time spent executing other tasks in parallel with
1597	  the current vCPU is discounted from the vCPU power. To account for
1598	  that, there can be a small performance impact.
1599
1600	  If in doubt, say N here.
1601
1602config ARCH_SUPPORTS_KEXEC
1603	def_bool PM_SLEEP_SMP
1604
1605config ARCH_SUPPORTS_KEXEC_FILE
1606	def_bool y
1607
1608config ARCH_SELECTS_KEXEC_FILE
1609	def_bool y
1610	depends on KEXEC_FILE
1611	select HAVE_IMA_KEXEC if IMA
1612
1613config ARCH_SUPPORTS_KEXEC_SIG
1614	def_bool y
1615
1616config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1617	def_bool y
1618
1619config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1620	def_bool y
1621
1622config ARCH_SUPPORTS_KEXEC_HANDOVER
1623	def_bool y
1624
1625config ARCH_SUPPORTS_CRASH_DUMP
1626	def_bool y
1627
1628config ARCH_DEFAULT_CRASH_DUMP
1629	def_bool y
1630
1631config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1632	def_bool CRASH_RESERVE
1633
1634config TRANS_TABLE
1635	def_bool y
1636	depends on HIBERNATION || KEXEC_CORE
1637
1638config XEN_DOM0
1639	def_bool y
1640	depends on XEN
1641
1642config XEN
1643	bool "Xen guest support on ARM64"
1644	depends on ARM64 && OF
1645	select SWIOTLB_XEN
1646	select PARAVIRT
1647	help
1648	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1649
1650# include/linux/mmzone.h requires the following to be true:
1651#
1652#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1653#
1654# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1655#
1656#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1657# ----+-------------------+--------------+----------------------+-------------------------+
1658# 4K  |       27          |      12      |       15             |         10              |
1659# 16K |       27          |      14      |       13             |         11              |
1660# 64K |       29          |      16      |       13             |         13              |
1661config ARCH_FORCE_MAX_ORDER
1662	int
1663	default "13" if ARM64_64K_PAGES
1664	default "11" if ARM64_16K_PAGES
1665	default "10"
1666	help
1667	  The kernel page allocator limits the size of maximal physically
1668	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1669	  defines the maximal power of two of number of pages that can be
1670	  allocated as a single contiguous block. This option allows
1671	  overriding the default setting when ability to allocate very
1672	  large blocks of physically contiguous memory is required.
1673
1674	  The maximal size of allocation cannot exceed the size of the
1675	  section, so the value of MAX_PAGE_ORDER should satisfy
1676
1677	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1678
1679	  Don't change if unsure.
1680
1681config UNMAP_KERNEL_AT_EL0
1682	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1683	default y
1684	help
1685	  Speculation attacks against some high-performance processors can
1686	  be used to bypass MMU permission checks and leak kernel data to
1687	  userspace. This can be defended against by unmapping the kernel
1688	  when running in userspace, mapping it back in on exception entry
1689	  via a trampoline page in the vector table.
1690
1691	  If unsure, say Y.
1692
1693config MITIGATE_SPECTRE_BRANCH_HISTORY
1694	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1695	default y
1696	help
1697	  Speculation attacks against some high-performance processors can
1698	  make use of branch history to influence future speculation.
1699	  When taking an exception from user-space, a sequence of branches
1700	  or a firmware call overwrites the branch history.
1701
1702config RODATA_FULL_DEFAULT_ENABLED
1703	bool "Apply r/o permissions of VM areas also to their linear aliases"
1704	default y
1705	help
1706	  Apply read-only attributes of VM areas to the linear alias of
1707	  the backing pages as well. This prevents code or read-only data
1708	  from being modified (inadvertently or intentionally) via another
1709	  mapping of the same memory page. This additional enhancement can
1710	  be turned off at runtime by passing rodata=[off|on] (and turned on
1711	  with rodata=full if this option is set to 'n')
1712
1713	  This requires the linear region to be mapped down to pages,
1714	  which may adversely affect performance in some cases.
1715
1716config ARM64_SW_TTBR0_PAN
1717	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1718	depends on !KCSAN
1719	select ARM64_PAN
1720	help
1721	  Enabling this option prevents the kernel from accessing
1722	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1723	  zeroed area and reserved ASID. The user access routines
1724	  restore the valid TTBR0_EL1 temporarily.
1725
1726config ARM64_TAGGED_ADDR_ABI
1727	bool "Enable the tagged user addresses syscall ABI"
1728	default y
1729	help
1730	  When this option is enabled, user applications can opt in to a
1731	  relaxed ABI via prctl() allowing tagged addresses to be passed
1732	  to system calls as pointer arguments. For details, see
1733	  Documentation/arch/arm64/tagged-address-abi.rst.
1734
1735menuconfig COMPAT
1736	bool "Kernel support for 32-bit EL0"
1737	depends on ARM64_4K_PAGES || EXPERT
1738	select HAVE_UID16
1739	select OLD_SIGSUSPEND3
1740	select COMPAT_OLD_SIGACTION
1741	help
1742	  This option enables support for a 32-bit EL0 running under a 64-bit
1743	  kernel at EL1. AArch32-specific components such as system calls,
1744	  the user helper functions, VFP support and the ptrace interface are
1745	  handled appropriately by the kernel.
1746
1747	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1748	  that you will only be able to execute AArch32 binaries that were compiled
1749	  with page size aligned segments.
1750
1751	  If you want to execute 32-bit userspace applications, say Y.
1752
1753if COMPAT
1754
1755config KUSER_HELPERS
1756	bool "Enable kuser helpers page for 32-bit applications"
1757	default y
1758	help
1759	  Warning: disabling this option may break 32-bit user programs.
1760
1761	  Provide kuser helpers to compat tasks. The kernel provides
1762	  helper code to userspace in read only form at a fixed location
1763	  to allow userspace to be independent of the CPU type fitted to
1764	  the system. This permits binaries to be run on ARMv4 through
1765	  to ARMv8 without modification.
1766
1767	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1768
1769	  However, the fixed address nature of these helpers can be used
1770	  by ROP (return orientated programming) authors when creating
1771	  exploits.
1772
1773	  If all of the binaries and libraries which run on your platform
1774	  are built specifically for your platform, and make no use of
1775	  these helpers, then you can turn this option off to hinder
1776	  such exploits. However, in that case, if a binary or library
1777	  relying on those helpers is run, it will not function correctly.
1778
1779	  Say N here only if you are absolutely certain that you do not
1780	  need these helpers; otherwise, the safe option is to say Y.
1781
1782config COMPAT_VDSO
1783	bool "Enable vDSO for 32-bit applications"
1784	depends on !CPU_BIG_ENDIAN
1785	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1786	select GENERIC_COMPAT_VDSO
1787	default y
1788	help
1789	  Place in the process address space of 32-bit applications an
1790	  ELF shared object providing fast implementations of gettimeofday
1791	  and clock_gettime.
1792
1793	  You must have a 32-bit build of glibc 2.22 or later for programs
1794	  to seamlessly take advantage of this.
1795
1796config THUMB2_COMPAT_VDSO
1797	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1798	depends on COMPAT_VDSO
1799	default y
1800	help
1801	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1802	  otherwise with '-marm'.
1803
1804config COMPAT_ALIGNMENT_FIXUPS
1805	bool "Fix up misaligned multi-word loads and stores in user space"
1806
1807menuconfig ARMV8_DEPRECATED
1808	bool "Emulate deprecated/obsolete ARMv8 instructions"
1809	depends on SYSCTL
1810	help
1811	  Legacy software support may require certain instructions
1812	  that have been deprecated or obsoleted in the architecture.
1813
1814	  Enable this config to enable selective emulation of these
1815	  features.
1816
1817	  If unsure, say Y
1818
1819if ARMV8_DEPRECATED
1820
1821config SWP_EMULATION
1822	bool "Emulate SWP/SWPB instructions"
1823	help
1824	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1825	  they are always undefined. Say Y here to enable software
1826	  emulation of these instructions for userspace using LDXR/STXR.
1827	  This feature can be controlled at runtime with the abi.swp
1828	  sysctl which is disabled by default.
1829
1830	  In some older versions of glibc [<=2.8] SWP is used during futex
1831	  trylock() operations with the assumption that the code will not
1832	  be preempted. This invalid assumption may be more likely to fail
1833	  with SWP emulation enabled, leading to deadlock of the user
1834	  application.
1835
1836	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1837	  on an external transaction monitoring block called a global
1838	  monitor to maintain update atomicity. If your system does not
1839	  implement a global monitor, this option can cause programs that
1840	  perform SWP operations to uncached memory to deadlock.
1841
1842	  If unsure, say Y
1843
1844config CP15_BARRIER_EMULATION
1845	bool "Emulate CP15 Barrier instructions"
1846	help
1847	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1848	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1849	  strongly recommended to use the ISB, DSB, and DMB
1850	  instructions instead.
1851
1852	  Say Y here to enable software emulation of these
1853	  instructions for AArch32 userspace code. When this option is
1854	  enabled, CP15 barrier usage is traced which can help
1855	  identify software that needs updating. This feature can be
1856	  controlled at runtime with the abi.cp15_barrier sysctl.
1857
1858	  If unsure, say Y
1859
1860config SETEND_EMULATION
1861	bool "Emulate SETEND instruction"
1862	help
1863	  The SETEND instruction alters the data-endianness of the
1864	  AArch32 EL0, and is deprecated in ARMv8.
1865
1866	  Say Y here to enable software emulation of the instruction
1867	  for AArch32 userspace code. This feature can be controlled
1868	  at runtime with the abi.setend sysctl.
1869
1870	  Note: All the cpus on the system must have mixed endian support at EL0
1871	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1872	  endian - is hotplugged in after this feature has been enabled, there could
1873	  be unexpected results in the applications.
1874
1875	  If unsure, say Y
1876endif # ARMV8_DEPRECATED
1877
1878endif # COMPAT
1879
1880menu "ARMv8.1 architectural features"
1881
1882config ARM64_HW_AFDBM
1883	bool "Support for hardware updates of the Access and Dirty page flags"
1884	default y
1885	help
1886	  The ARMv8.1 architecture extensions introduce support for
1887	  hardware updates of the access and dirty information in page
1888	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1889	  capable processors, accesses to pages with PTE_AF cleared will
1890	  set this bit instead of raising an access flag fault.
1891	  Similarly, writes to read-only pages with the DBM bit set will
1892	  clear the read-only bit (AP[2]) instead of raising a
1893	  permission fault.
1894
1895	  Kernels built with this configuration option enabled continue
1896	  to work on pre-ARMv8.1 hardware and the performance impact is
1897	  minimal. If unsure, say Y.
1898
1899config ARM64_PAN
1900	bool "Enable support for Privileged Access Never (PAN)"
1901	default y
1902	help
1903	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1904	  prevents the kernel or hypervisor from accessing user-space (EL0)
1905	  memory directly.
1906
1907	  Choosing this option will cause any unprotected (not using
1908	  copy_to_user et al) memory access to fail with a permission fault.
1909
1910	  The feature is detected at runtime, and will remain as a 'nop'
1911	  instruction if the cpu does not implement the feature.
1912
1913config ARM64_LSE_ATOMICS
1914	bool
1915	default ARM64_USE_LSE_ATOMICS
1916
1917config ARM64_USE_LSE_ATOMICS
1918	bool "Atomic instructions"
1919	default y
1920	help
1921	  As part of the Large System Extensions, ARMv8.1 introduces new
1922	  atomic instructions that are designed specifically to scale in
1923	  very large systems.
1924
1925	  Say Y here to make use of these instructions for the in-kernel
1926	  atomic routines. This incurs a small overhead on CPUs that do
1927	  not support these instructions.
1928
1929endmenu # "ARMv8.1 architectural features"
1930
1931menu "ARMv8.2 architectural features"
1932
1933config ARM64_PMEM
1934	bool "Enable support for persistent memory"
1935	select ARCH_HAS_PMEM_API
1936	select ARCH_HAS_UACCESS_FLUSHCACHE
1937	help
1938	  Say Y to enable support for the persistent memory API based on the
1939	  ARMv8.2 DCPoP feature.
1940
1941	  The feature is detected at runtime, and the kernel will use DC CVAC
1942	  operations if DC CVAP is not supported (following the behaviour of
1943	  DC CVAP itself if the system does not define a point of persistence).
1944
1945config ARM64_RAS_EXTN
1946	bool "Enable support for RAS CPU Extensions"
1947	default y
1948	help
1949	  CPUs that support the Reliability, Availability and Serviceability
1950	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1951	  errors, classify them and report them to software.
1952
1953	  On CPUs with these extensions system software can use additional
1954	  barriers to determine if faults are pending and read the
1955	  classification from a new set of registers.
1956
1957	  Selecting this feature will allow the kernel to use these barriers
1958	  and access the new registers if the system supports the extension.
1959	  Platform RAS features may additionally depend on firmware support.
1960
1961config ARM64_CNP
1962	bool "Enable support for Common Not Private (CNP) translations"
1963	default y
1964	help
1965	  Common Not Private (CNP) allows translation table entries to
1966	  be shared between different PEs in the same inner shareable
1967	  domain, so the hardware can use this fact to optimise the
1968	  caching of such entries in the TLB.
1969
1970	  Selecting this option allows the CNP feature to be detected
1971	  at runtime, and does not affect PEs that do not implement
1972	  this feature.
1973
1974endmenu # "ARMv8.2 architectural features"
1975
1976menu "ARMv8.3 architectural features"
1977
1978config ARM64_PTR_AUTH
1979	bool "Enable support for pointer authentication"
1980	default y
1981	help
1982	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1983	  instructions for signing and authenticating pointers against secret
1984	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1985	  and other attacks.
1986
1987	  This option enables these instructions at EL0 (i.e. for userspace).
1988	  Choosing this option will cause the kernel to initialise secret keys
1989	  for each process at exec() time, with these keys being
1990	  context-switched along with the process.
1991
1992	  The feature is detected at runtime. If the feature is not present in
1993	  hardware it will not be advertised to userspace/KVM guest nor will it
1994	  be enabled.
1995
1996	  If the feature is present on the boot CPU but not on a late CPU, then
1997	  the late CPU will be parked. Also, if the boot CPU does not have
1998	  address auth and the late CPU has then the late CPU will still boot
1999	  but with the feature disabled. On such a system, this option should
2000	  not be selected.
2001
2002config ARM64_PTR_AUTH_KERNEL
2003	bool "Use pointer authentication for kernel"
2004	default y
2005	depends on ARM64_PTR_AUTH
2006	# Modern compilers insert a .note.gnu.property section note for PAC
2007	# which is only understood by binutils starting with version 2.33.1.
2008	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
2009	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
2010	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2011	help
2012	  If the compiler supports the -mbranch-protection or
2013	  -msign-return-address flag (e.g. GCC 7 or later), then this option
2014	  will cause the kernel itself to be compiled with return address
2015	  protection. In this case, and if the target hardware is known to
2016	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
2017	  disabled with minimal loss of protection.
2018
2019	  This feature works with FUNCTION_GRAPH_TRACER option only if
2020	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2021
2022config CC_HAS_BRANCH_PROT_PAC_RET
2023	# GCC 9 or later, clang 8 or later
2024	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2025
2026config AS_HAS_CFI_NEGATE_RA_STATE
2027	# binutils 2.34+
2028	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2029
2030endmenu # "ARMv8.3 architectural features"
2031
2032menu "ARMv8.4 architectural features"
2033
2034config ARM64_AMU_EXTN
2035	bool "Enable support for the Activity Monitors Unit CPU extension"
2036	default y
2037	help
2038	  The activity monitors extension is an optional extension introduced
2039	  by the ARMv8.4 CPU architecture. This enables support for version 1
2040	  of the activity monitors architecture, AMUv1.
2041
2042	  To enable the use of this extension on CPUs that implement it, say Y.
2043
2044	  Note that for architectural reasons, firmware _must_ implement AMU
2045	  support when running on CPUs that present the activity monitors
2046	  extension. The required support is present in:
2047	    * Version 1.5 and later of the ARM Trusted Firmware
2048
2049	  For kernels that have this configuration enabled but boot with broken
2050	  firmware, you may need to say N here until the firmware is fixed.
2051	  Otherwise you may experience firmware panics or lockups when
2052	  accessing the counter registers. Even if you are not observing these
2053	  symptoms, the values returned by the register reads might not
2054	  correctly reflect reality. Most commonly, the value read will be 0,
2055	  indicating that the counter is not enabled.
2056
2057config ARM64_TLB_RANGE
2058	bool "Enable support for tlbi range feature"
2059	default y
2060	help
2061	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2062	  range of input addresses.
2063
2064endmenu # "ARMv8.4 architectural features"
2065
2066menu "ARMv8.5 architectural features"
2067
2068config AS_HAS_ARMV8_5
2069	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2070
2071config ARM64_BTI
2072	bool "Branch Target Identification support"
2073	default y
2074	help
2075	  Branch Target Identification (part of the ARMv8.5 Extensions)
2076	  provides a mechanism to limit the set of locations to which computed
2077	  branch instructions such as BR or BLR can jump.
2078
2079	  To make use of BTI on CPUs that support it, say Y.
2080
2081	  BTI is intended to provide complementary protection to other control
2082	  flow integrity protection mechanisms, such as the Pointer
2083	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2084	  For this reason, it does not make sense to enable this option without
2085	  also enabling support for pointer authentication.  Thus, when
2086	  enabling this option you should also select ARM64_PTR_AUTH=y.
2087
2088	  Userspace binaries must also be specifically compiled to make use of
2089	  this mechanism.  If you say N here or the hardware does not support
2090	  BTI, such binaries can still run, but you get no additional
2091	  enforcement of branch destinations.
2092
2093config ARM64_BTI_KERNEL
2094	bool "Use Branch Target Identification for kernel"
2095	default y
2096	depends on ARM64_BTI
2097	depends on ARM64_PTR_AUTH_KERNEL
2098	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2099	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2100	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2101	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2102	depends on !CC_IS_GCC
2103	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2104	help
2105	  Build the kernel with Branch Target Identification annotations
2106	  and enable enforcement of this for kernel code. When this option
2107	  is enabled and the system supports BTI all kernel code including
2108	  modular code must have BTI enabled.
2109
2110config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2111	# GCC 9 or later, clang 8 or later
2112	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2113
2114config ARM64_E0PD
2115	bool "Enable support for E0PD"
2116	default y
2117	help
2118	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2119	  that EL0 accesses made via TTBR1 always fault in constant time,
2120	  providing similar benefits to KASLR as those provided by KPTI, but
2121	  with lower overhead and without disrupting legitimate access to
2122	  kernel memory such as SPE.
2123
2124	  This option enables E0PD for TTBR1 where available.
2125
2126config ARM64_AS_HAS_MTE
2127	# Initial support for MTE went in binutils 2.32.0, checked with
2128	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2129	# as a late addition to the final architecture spec (LDGM/STGM)
2130	# is only supported in the newer 2.32.x and 2.33 binutils
2131	# versions, hence the extra "stgm" instruction check below.
2132	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2133
2134config ARM64_MTE
2135	bool "Memory Tagging Extension support"
2136	default y
2137	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2138	depends on AS_HAS_ARMV8_5
2139	# Required for tag checking in the uaccess routines
2140	select ARM64_PAN
2141	select ARCH_HAS_SUBPAGE_FAULTS
2142	select ARCH_USES_HIGH_VMA_FLAGS
2143	select ARCH_USES_PG_ARCH_2
2144	select ARCH_USES_PG_ARCH_3
2145	help
2146	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2147	  architectural support for run-time, always-on detection of
2148	  various classes of memory error to aid with software debugging
2149	  to eliminate vulnerabilities arising from memory-unsafe
2150	  languages.
2151
2152	  This option enables the support for the Memory Tagging
2153	  Extension at EL0 (i.e. for userspace).
2154
2155	  Selecting this option allows the feature to be detected at
2156	  runtime. Any secondary CPU not implementing this feature will
2157	  not be allowed a late bring-up.
2158
2159	  Userspace binaries that want to use this feature must
2160	  explicitly opt in. The mechanism for the userspace is
2161	  described in:
2162
2163	  Documentation/arch/arm64/memory-tagging-extension.rst.
2164
2165endmenu # "ARMv8.5 architectural features"
2166
2167menu "ARMv8.7 architectural features"
2168
2169config ARM64_EPAN
2170	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2171	default y
2172	depends on ARM64_PAN
2173	help
2174	  Enhanced Privileged Access Never (EPAN) allows Privileged
2175	  Access Never to be used with Execute-only mappings.
2176
2177	  The feature is detected at runtime, and will remain disabled
2178	  if the cpu does not implement the feature.
2179endmenu # "ARMv8.7 architectural features"
2180
2181config AS_HAS_MOPS
2182	def_bool $(as-instr,.arch_extension mops)
2183
2184menu "ARMv8.9 architectural features"
2185
2186config ARM64_POE
2187	prompt "Permission Overlay Extension"
2188	def_bool y
2189	select ARCH_USES_HIGH_VMA_FLAGS
2190	select ARCH_HAS_PKEYS
2191	help
2192	  The Permission Overlay Extension is used to implement Memory
2193	  Protection Keys. Memory Protection Keys provides a mechanism for
2194	  enforcing page-based protections, but without requiring modification
2195	  of the page tables when an application changes protection domains.
2196
2197	  For details, see Documentation/core-api/protection-keys.rst
2198
2199	  If unsure, say y.
2200
2201config ARCH_PKEY_BITS
2202	int
2203	default 3
2204
2205config ARM64_HAFT
2206	bool "Support for Hardware managed Access Flag for Table Descriptors"
2207	depends on ARM64_HW_AFDBM
2208	default y
2209	help
2210	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2211	  Flag for Table descriptors. When enabled an architectural executed
2212	  memory access will update the Access Flag in each Table descriptor
2213	  which is accessed during the translation table walk and for which
2214	  the Access Flag is 0. The Access Flag of the Table descriptor use
2215	  the same bit of PTE_AF.
2216
2217	  The feature will only be enabled if all the CPUs in the system
2218	  support this feature. If unsure, say Y.
2219
2220endmenu # "ARMv8.9 architectural features"
2221
2222menu "v9.4 architectural features"
2223
2224config ARM64_GCS
2225	bool "Enable support for Guarded Control Stack (GCS)"
2226	default y
2227	select ARCH_HAS_USER_SHADOW_STACK
2228	select ARCH_USES_HIGH_VMA_FLAGS
2229	depends on !UPROBES
2230	help
2231	  Guarded Control Stack (GCS) provides support for a separate
2232	  stack with restricted access which contains only return
2233	  addresses.  This can be used to harden against some attacks
2234	  by comparing return address used by the program with what is
2235	  stored in the GCS, and may also be used to efficiently obtain
2236	  the call stack for applications such as profiling.
2237
2238	  The feature is detected at runtime, and will remain disabled
2239	  if the system does not implement the feature.
2240
2241endmenu # "v9.4 architectural features"
2242
2243config ARM64_SVE
2244	bool "ARM Scalable Vector Extension support"
2245	default y
2246	help
2247	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2248	  execution state which complements and extends the SIMD functionality
2249	  of the base architecture to support much larger vectors and to enable
2250	  additional vectorisation opportunities.
2251
2252	  To enable use of this extension on CPUs that implement it, say Y.
2253
2254	  On CPUs that support the SVE2 extensions, this option will enable
2255	  those too.
2256
2257	  Note that for architectural reasons, firmware _must_ implement SVE
2258	  support when running on SVE capable hardware.  The required support
2259	  is present in:
2260
2261	    * version 1.5 and later of the ARM Trusted Firmware
2262	    * the AArch64 boot wrapper since commit 5e1261e08abf
2263	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2264
2265	  For other firmware implementations, consult the firmware documentation
2266	  or vendor.
2267
2268	  If you need the kernel to boot on SVE-capable hardware with broken
2269	  firmware, you may need to say N here until you get your firmware
2270	  fixed.  Otherwise, you may experience firmware panics or lockups when
2271	  booting the kernel.  If unsure and you are not observing these
2272	  symptoms, you should assume that it is safe to say Y.
2273
2274config ARM64_SME
2275	bool "ARM Scalable Matrix Extension support"
2276	default y
2277	depends on ARM64_SVE
2278	help
2279	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2280	  execution state which utilises a substantial subset of the SVE
2281	  instruction set, together with the addition of new architectural
2282	  register state capable of holding two dimensional matrix tiles to
2283	  enable various matrix operations.
2284
2285config ARM64_PSEUDO_NMI
2286	bool "Support for NMI-like interrupts"
2287	select ARM_GIC_V3
2288	help
2289	  Adds support for mimicking Non-Maskable Interrupts through the use of
2290	  GIC interrupt priority. This support requires version 3 or later of
2291	  ARM GIC.
2292
2293	  This high priority configuration for interrupts needs to be
2294	  explicitly enabled by setting the kernel parameter
2295	  "irqchip.gicv3_pseudo_nmi" to 1.
2296
2297	  If unsure, say N
2298
2299if ARM64_PSEUDO_NMI
2300config ARM64_DEBUG_PRIORITY_MASKING
2301	bool "Debug interrupt priority masking"
2302	help
2303	  This adds runtime checks to functions enabling/disabling
2304	  interrupts when using priority masking. The additional checks verify
2305	  the validity of ICC_PMR_EL1 when calling concerned functions.
2306
2307	  If unsure, say N
2308endif # ARM64_PSEUDO_NMI
2309
2310config RELOCATABLE
2311	bool "Build a relocatable kernel image" if EXPERT
2312	select ARCH_HAS_RELR
2313	default y
2314	help
2315	  This builds the kernel as a Position Independent Executable (PIE),
2316	  which retains all relocation metadata required to relocate the
2317	  kernel binary at runtime to a different virtual address than the
2318	  address it was linked at.
2319	  Since AArch64 uses the RELA relocation format, this requires a
2320	  relocation pass at runtime even if the kernel is loaded at the
2321	  same address it was linked at.
2322
2323config RANDOMIZE_BASE
2324	bool "Randomize the address of the kernel image"
2325	select RELOCATABLE
2326	help
2327	  Randomizes the virtual address at which the kernel image is
2328	  loaded, as a security feature that deters exploit attempts
2329	  relying on knowledge of the location of kernel internals.
2330
2331	  It is the bootloader's job to provide entropy, by passing a
2332	  random u64 value in /chosen/kaslr-seed at kernel entry.
2333
2334	  When booting via the UEFI stub, it will invoke the firmware's
2335	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2336	  to the kernel proper. In addition, it will randomise the physical
2337	  location of the kernel Image as well.
2338
2339	  If unsure, say N.
2340
2341config RANDOMIZE_MODULE_REGION_FULL
2342	bool "Randomize the module region over a 2 GB range"
2343	depends on RANDOMIZE_BASE
2344	default y
2345	help
2346	  Randomizes the location of the module region inside a 2 GB window
2347	  covering the core kernel. This way, it is less likely for modules
2348	  to leak information about the location of core kernel data structures
2349	  but it does imply that function calls between modules and the core
2350	  kernel will need to be resolved via veneers in the module PLT.
2351
2352	  When this option is not set, the module region will be randomized over
2353	  a limited range that contains the [_stext, _etext] interval of the
2354	  core kernel, so branch relocations are almost always in range unless
2355	  the region is exhausted. In this particular case of region
2356	  exhaustion, modules might be able to fall back to a larger 2GB area.
2357
2358config CC_HAVE_STACKPROTECTOR_SYSREG
2359	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2360
2361config STACKPROTECTOR_PER_TASK
2362	def_bool y
2363	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2364
2365config UNWIND_PATCH_PAC_INTO_SCS
2366	bool "Enable shadow call stack dynamically using code patching"
2367	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2368	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2369	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2370	depends on SHADOW_CALL_STACK
2371	select UNWIND_TABLES
2372	select DYNAMIC_SCS
2373
2374config ARM64_CONTPTE
2375	bool "Contiguous PTE mappings for user memory" if EXPERT
2376	depends on TRANSPARENT_HUGEPAGE
2377	default y
2378	help
2379	  When enabled, user mappings are configured using the PTE contiguous
2380	  bit, for any mappings that meet the size and alignment requirements.
2381	  This reduces TLB pressure and improves performance.
2382
2383endmenu # "Kernel Features"
2384
2385menu "Boot options"
2386
2387config ARM64_ACPI_PARKING_PROTOCOL
2388	bool "Enable support for the ARM64 ACPI parking protocol"
2389	depends on ACPI
2390	help
2391	  Enable support for the ARM64 ACPI parking protocol. If disabled
2392	  the kernel will not allow booting through the ARM64 ACPI parking
2393	  protocol even if the corresponding data is present in the ACPI
2394	  MADT table.
2395
2396config CMDLINE
2397	string "Default kernel command string"
2398	default ""
2399	help
2400	  Provide a set of default command-line options at build time by
2401	  entering them here. As a minimum, you should specify the the
2402	  root device (e.g. root=/dev/nfs).
2403
2404choice
2405	prompt "Kernel command line type"
2406	depends on CMDLINE != ""
2407	default CMDLINE_FROM_BOOTLOADER
2408	help
2409	  Choose how the kernel will handle the provided default kernel
2410	  command line string.
2411
2412config CMDLINE_FROM_BOOTLOADER
2413	bool "Use bootloader kernel arguments if available"
2414	help
2415	  Uses the command-line options passed by the boot loader. If
2416	  the boot loader doesn't provide any, the default kernel command
2417	  string provided in CMDLINE will be used.
2418
2419config CMDLINE_FORCE
2420	bool "Always use the default kernel command string"
2421	help
2422	  Always use the default kernel command string, even if the boot
2423	  loader passes other arguments to the kernel.
2424	  This is useful if you cannot or don't want to change the
2425	  command-line options your boot loader passes to the kernel.
2426
2427endchoice
2428
2429config EFI_STUB
2430	bool
2431
2432config EFI
2433	bool "UEFI runtime support"
2434	depends on OF && !CPU_BIG_ENDIAN
2435	depends on KERNEL_MODE_NEON
2436	select ARCH_SUPPORTS_ACPI
2437	select LIBFDT
2438	select UCS2_STRING
2439	select EFI_PARAMS_FROM_FDT
2440	select EFI_RUNTIME_WRAPPERS
2441	select EFI_STUB
2442	select EFI_GENERIC_STUB
2443	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2444	default y
2445	help
2446	  This option provides support for runtime services provided
2447	  by UEFI firmware (such as non-volatile variables, realtime
2448	  clock, and platform reset). A UEFI stub is also provided to
2449	  allow the kernel to be booted as an EFI application. This
2450	  is only useful on systems that have UEFI firmware.
2451
2452config COMPRESSED_INSTALL
2453	bool "Install compressed image by default"
2454	help
2455	  This makes the regular "make install" install the compressed
2456	  image we built, not the legacy uncompressed one.
2457
2458	  You can check that a compressed image works for you by doing
2459	  "make zinstall" first, and verifying that everything is fine
2460	  in your environment before making "make install" do this for
2461	  you.
2462
2463config DMI
2464	bool "Enable support for SMBIOS (DMI) tables"
2465	depends on EFI
2466	default y
2467	help
2468	  This enables SMBIOS/DMI feature for systems.
2469
2470	  This option is only useful on systems that have UEFI firmware.
2471	  However, even with this option, the resultant kernel should
2472	  continue to boot on existing non-UEFI platforms.
2473
2474endmenu # "Boot options"
2475
2476menu "Power management options"
2477
2478source "kernel/power/Kconfig"
2479
2480config ARCH_HIBERNATION_POSSIBLE
2481	def_bool y
2482	depends on CPU_PM
2483
2484config ARCH_HIBERNATION_HEADER
2485	def_bool y
2486	depends on HIBERNATION
2487
2488config ARCH_SUSPEND_POSSIBLE
2489	def_bool y
2490
2491endmenu # "Power management options"
2492
2493menu "CPU Power Management"
2494
2495source "drivers/cpuidle/Kconfig"
2496
2497source "drivers/cpufreq/Kconfig"
2498
2499endmenu # "CPU Power Management"
2500
2501source "drivers/acpi/Kconfig"
2502
2503source "arch/arm64/kvm/Kconfig"
2504
2505source "kernel/livepatch/Kconfig"
2506