1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU 9 select ACPI_IORT if ACPI 10 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 11 select ACPI_MCFG if (ACPI && PCI) 12 select ACPI_SPCR_TABLE if ACPI 13 select ACPI_PPTT if ACPI 14 select ARCH_HAS_DEBUG_WX 15 select ARCH_BINFMT_ELF_EXTRA_PHDRS 16 select ARCH_BINFMT_ELF_STATE 17 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 18 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 19 select ARCH_ENABLE_MEMORY_HOTPLUG 20 select ARCH_ENABLE_MEMORY_HOTREMOVE 21 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 22 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 23 select ARCH_HAS_CACHE_LINE_SIZE 24 select ARCH_HAS_CURRENT_STACK_POINTER 25 select ARCH_HAS_DEBUG_VIRTUAL 26 select ARCH_HAS_DEBUG_VM_PGTABLE 27 select ARCH_HAS_DMA_PREP_COHERENT 28 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 29 select ARCH_HAS_FAST_MULTIPLIER 30 select ARCH_HAS_FORTIFY_SOURCE 31 select ARCH_HAS_GCOV_PROFILE_ALL 32 select ARCH_HAS_GIGANTIC_PAGE 33 select ARCH_HAS_KCOV 34 select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON 35 select ARCH_HAS_KEEPINITRD 36 select ARCH_HAS_MEMBARRIER_SYNC_CORE 37 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 38 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 39 select ARCH_HAS_PTE_DEVMAP 40 select ARCH_HAS_PTE_SPECIAL 41 select ARCH_HAS_HW_PTE_YOUNG 42 select ARCH_HAS_SETUP_DMA_OPS 43 select ARCH_HAS_SET_DIRECT_MAP 44 select ARCH_HAS_SET_MEMORY 45 select ARCH_STACKWALK 46 select ARCH_HAS_STRICT_KERNEL_RWX 47 select ARCH_HAS_STRICT_MODULE_RWX 48 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 49 select ARCH_HAS_SYNC_DMA_FOR_CPU 50 select ARCH_HAS_SYSCALL_WRAPPER 51 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 52 select ARCH_HAS_ZONE_DMA_SET if EXPERT 53 select ARCH_HAVE_ELF_PROT 54 select ARCH_HAVE_NMI_SAFE_CMPXCHG 55 select ARCH_HAVE_TRACE_MMIO_ACCESS 56 select ARCH_INLINE_READ_LOCK if !PREEMPTION 57 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 58 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 59 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 60 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 62 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 64 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 66 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 67 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 68 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 70 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 71 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 72 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 73 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 74 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 76 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 77 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 78 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 80 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 81 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 82 select ARCH_KEEP_MEMBLOCK 83 select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 84 select ARCH_USE_CMPXCHG_LOCKREF 85 select ARCH_USE_GNU_PROPERTY 86 select ARCH_USE_MEMTEST 87 select ARCH_USE_QUEUED_RWLOCKS 88 select ARCH_USE_QUEUED_SPINLOCKS 89 select ARCH_USE_SYM_ANNOTATIONS 90 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 91 select ARCH_SUPPORTS_HUGETLBFS 92 select ARCH_SUPPORTS_MEMORY_FAILURE 93 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 94 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 95 select ARCH_SUPPORTS_LTO_CLANG_THIN 96 select ARCH_SUPPORTS_CFI_CLANG 97 select ARCH_SUPPORTS_ATOMIC_RMW 98 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 99 select ARCH_SUPPORTS_NUMA_BALANCING 100 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 101 select ARCH_SUPPORTS_PER_VMA_LOCK 102 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 103 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 104 select ARCH_WANT_DEFAULT_BPF_JIT 105 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 106 select ARCH_WANT_FRAME_POINTERS 107 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 108 select ARCH_WANT_LD_ORPHAN_WARN 109 select ARCH_WANTS_EXECMEM_LATE if EXECMEM 110 select ARCH_WANTS_NO_INSTR 111 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 112 select ARCH_HAS_UBSAN 113 select ARM_AMBA 114 select ARM_ARCH_TIMER 115 select ARM_GIC 116 select AUDIT_ARCH_COMPAT_GENERIC 117 select ARM_GIC_V2M if PCI 118 select ARM_GIC_V3 119 select ARM_GIC_V3_ITS if PCI 120 select ARM_PSCI_FW 121 select BUILDTIME_TABLE_SORT 122 select CLONE_BACKWARDS 123 select COMMON_CLK 124 select CPU_PM if (SUSPEND || CPU_IDLE) 125 select CPUMASK_OFFSTACK if NR_CPUS > 256 126 select CRC32 127 select DCACHE_WORD_ACCESS 128 select DYNAMIC_FTRACE if FUNCTION_TRACER 129 select DMA_BOUNCE_UNALIGNED_KMALLOC 130 select DMA_DIRECT_REMAP 131 select EDAC_SUPPORT 132 select FRAME_POINTER 133 select FUNCTION_ALIGNMENT_4B 134 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 135 select GENERIC_ALLOCATOR 136 select GENERIC_ARCH_TOPOLOGY 137 select GENERIC_CLOCKEVENTS_BROADCAST 138 select GENERIC_CPU_AUTOPROBE 139 select GENERIC_CPU_DEVICES 140 select GENERIC_CPU_VULNERABILITIES 141 select GENERIC_EARLY_IOREMAP 142 select GENERIC_IDLE_POLL_SETUP 143 select GENERIC_IOREMAP 144 select GENERIC_IRQ_IPI 145 select GENERIC_IRQ_PROBE 146 select GENERIC_IRQ_SHOW 147 select GENERIC_IRQ_SHOW_LEVEL 148 select GENERIC_LIB_DEVMEM_IS_ALLOWED 149 select GENERIC_PCI_IOMAP 150 select GENERIC_PTDUMP 151 select GENERIC_SCHED_CLOCK 152 select GENERIC_SMP_IDLE_THREAD 153 select GENERIC_TIME_VSYSCALL 154 select GENERIC_GETTIMEOFDAY 155 select GENERIC_VDSO_TIME_NS 156 select HARDIRQS_SW_RESEND 157 select HAS_IOPORT 158 select HAVE_MOVE_PMD 159 select HAVE_MOVE_PUD 160 select HAVE_PCI 161 select HAVE_ACPI_APEI if (ACPI && EFI) 162 select HAVE_ALIGNED_STRUCT_PAGE 163 select HAVE_ARCH_AUDITSYSCALL 164 select HAVE_ARCH_BITREVERSE 165 select HAVE_ARCH_COMPILER_H 166 select HAVE_ARCH_HUGE_VMALLOC 167 select HAVE_ARCH_HUGE_VMAP 168 select HAVE_ARCH_JUMP_LABEL 169 select HAVE_ARCH_JUMP_LABEL_RELATIVE 170 select HAVE_ARCH_KASAN 171 select HAVE_ARCH_KASAN_VMALLOC 172 select HAVE_ARCH_KASAN_SW_TAGS 173 select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE 174 # Some instrumentation may be unsound, hence EXPERT 175 select HAVE_ARCH_KCSAN if EXPERT 176 select HAVE_ARCH_KFENCE 177 select HAVE_ARCH_KGDB 178 select HAVE_ARCH_MMAP_RND_BITS 179 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 180 select HAVE_ARCH_PREL32_RELOCATIONS 181 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 182 select HAVE_ARCH_SECCOMP_FILTER 183 select HAVE_ARCH_STACKLEAK 184 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 185 select HAVE_ARCH_TRACEHOOK 186 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 187 select HAVE_ARCH_VMAP_STACK 188 select HAVE_ARM_SMCCC 189 select HAVE_ASM_MODVERSIONS 190 select HAVE_EBPF_JIT 191 select HAVE_C_RECORDMCOUNT 192 select HAVE_CMPXCHG_DOUBLE 193 select HAVE_CMPXCHG_LOCAL 194 select HAVE_CONTEXT_TRACKING_USER 195 select HAVE_DEBUG_KMEMLEAK 196 select HAVE_DMA_CONTIGUOUS 197 select HAVE_DYNAMIC_FTRACE 198 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 199 if $(cc-option,-fpatchable-function-entry=2) 200 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 201 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 202 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 203 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 204 (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE)) 205 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 206 if DYNAMIC_FTRACE_WITH_ARGS 207 select HAVE_SAMPLE_FTRACE_DIRECT 208 select HAVE_SAMPLE_FTRACE_DIRECT_MULTI 209 select HAVE_EFFICIENT_UNALIGNED_ACCESS 210 select HAVE_GUP_FAST 211 select HAVE_FTRACE_MCOUNT_RECORD 212 select HAVE_FUNCTION_TRACER 213 select HAVE_FUNCTION_ERROR_INJECTION 214 select HAVE_FUNCTION_GRAPH_TRACER 215 select HAVE_FUNCTION_GRAPH_RETVAL 216 select HAVE_GCC_PLUGINS 217 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 218 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 219 select HAVE_HW_BREAKPOINT if PERF_EVENTS 220 select HAVE_IOREMAP_PROT 221 select HAVE_IRQ_TIME_ACCOUNTING 222 select HAVE_MOD_ARCH_SPECIFIC 223 select HAVE_NMI 224 select HAVE_PERF_EVENTS 225 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 226 select HAVE_PERF_REGS 227 select HAVE_PERF_USER_STACK_DUMP 228 select HAVE_PREEMPT_DYNAMIC_KEY 229 select HAVE_REGS_AND_STACK_ACCESS_API 230 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 231 select HAVE_FUNCTION_ARG_ACCESS_API 232 select MMU_GATHER_RCU_TABLE_FREE 233 select HAVE_RSEQ 234 select HAVE_RUST if CPU_LITTLE_ENDIAN 235 select HAVE_STACKPROTECTOR 236 select HAVE_SYSCALL_TRACEPOINTS 237 select HAVE_KPROBES 238 select HAVE_KRETPROBES 239 select HAVE_GENERIC_VDSO 240 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 241 select IRQ_DOMAIN 242 select IRQ_FORCED_THREADING 243 select KASAN_VMALLOC if KASAN 244 select LOCK_MM_AND_FIND_VMA 245 select MODULES_USE_ELF_RELA 246 select NEED_DMA_MAP_STATE 247 select NEED_SG_DMA_LENGTH 248 select OF 249 select OF_EARLY_FLATTREE 250 select PCI_DOMAINS_GENERIC if PCI 251 select PCI_ECAM if (ACPI && PCI) 252 select PCI_SYSCALL if PCI 253 select POWER_RESET 254 select POWER_SUPPLY 255 select SPARSE_IRQ 256 select SWIOTLB 257 select SYSCTL_EXCEPTION_TRACE 258 select THREAD_INFO_IN_TASK 259 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 260 select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD 261 select TRACE_IRQFLAGS_SUPPORT 262 select TRACE_IRQFLAGS_NMI_SUPPORT 263 select HAVE_SOFTIRQ_ON_OWN_STACK 264 select USER_STACKTRACE_SUPPORT 265 help 266 ARM 64-bit (AArch64) Linux support. 267 268config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 269 def_bool CC_IS_CLANG 270 # https://github.com/ClangBuiltLinux/linux/issues/1507 271 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 272 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 273 274config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 275 def_bool CC_IS_GCC 276 depends on $(cc-option,-fpatchable-function-entry=2) 277 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 278 279config 64BIT 280 def_bool y 281 282config MMU 283 def_bool y 284 285config ARM64_CONT_PTE_SHIFT 286 int 287 default 5 if PAGE_SIZE_64KB 288 default 7 if PAGE_SIZE_16KB 289 default 4 290 291config ARM64_CONT_PMD_SHIFT 292 int 293 default 5 if PAGE_SIZE_64KB 294 default 5 if PAGE_SIZE_16KB 295 default 4 296 297config ARCH_MMAP_RND_BITS_MIN 298 default 14 if PAGE_SIZE_64KB 299 default 16 if PAGE_SIZE_16KB 300 default 18 301 302# max bits determined by the following formula: 303# VA_BITS - PAGE_SHIFT - 3 304config ARCH_MMAP_RND_BITS_MAX 305 default 19 if ARM64_VA_BITS=36 306 default 24 if ARM64_VA_BITS=39 307 default 27 if ARM64_VA_BITS=42 308 default 30 if ARM64_VA_BITS=47 309 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 310 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 311 default 33 if ARM64_VA_BITS=48 312 default 14 if ARM64_64K_PAGES 313 default 16 if ARM64_16K_PAGES 314 default 18 315 316config ARCH_MMAP_RND_COMPAT_BITS_MIN 317 default 7 if ARM64_64K_PAGES 318 default 9 if ARM64_16K_PAGES 319 default 11 320 321config ARCH_MMAP_RND_COMPAT_BITS_MAX 322 default 16 323 324config NO_IOPORT_MAP 325 def_bool y if !PCI 326 327config STACKTRACE_SUPPORT 328 def_bool y 329 330config ILLEGAL_POINTER_VALUE 331 hex 332 default 0xdead000000000000 333 334config LOCKDEP_SUPPORT 335 def_bool y 336 337config GENERIC_BUG 338 def_bool y 339 depends on BUG 340 341config GENERIC_BUG_RELATIVE_POINTERS 342 def_bool y 343 depends on GENERIC_BUG 344 345config GENERIC_HWEIGHT 346 def_bool y 347 348config GENERIC_CSUM 349 def_bool y 350 351config GENERIC_CALIBRATE_DELAY 352 def_bool y 353 354config SMP 355 def_bool y 356 357config KERNEL_MODE_NEON 358 def_bool y 359 360config FIX_EARLYCON_MEM 361 def_bool y 362 363config PGTABLE_LEVELS 364 int 365 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 366 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 367 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 368 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 369 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 370 default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 371 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 372 default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52 373 374config ARCH_SUPPORTS_UPROBES 375 def_bool y 376 377config ARCH_PROC_KCORE_TEXT 378 def_bool y 379 380config BROKEN_GAS_INST 381 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 382 383config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 384 bool 385 # Clang's __builtin_return_address() strips the PAC since 12.0.0 386 # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2 387 default y if CC_IS_CLANG 388 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 389 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 390 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 391 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 392 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 393 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 394 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 395 default n 396 397config KASAN_SHADOW_OFFSET 398 hex 399 depends on KASAN_GENERIC || KASAN_SW_TAGS 400 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS 401 default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS 402 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 403 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 404 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 405 default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS 406 default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS 407 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 408 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 409 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 410 default 0xffffffffffffffff 411 412config UNWIND_TABLES 413 bool 414 415source "arch/arm64/Kconfig.platforms" 416 417menu "Kernel Features" 418 419menu "ARM errata workarounds via the alternatives framework" 420 421config AMPERE_ERRATUM_AC03_CPU_38 422 bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics" 423 default y 424 help 425 This option adds an alternative code sequence to work around Ampere 426 erratum AC03_CPU_38 on AmpereOne. 427 428 The affected design reports FEAT_HAFDBS as not implemented in 429 ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0 430 as required by the architecture. The unadvertised HAFDBS 431 implementation suffers from an additional erratum where hardware 432 A/D updates can occur after a PTE has been marked invalid. 433 434 The workaround forces KVM to explicitly set VTCR_EL2.HA to 0, 435 which avoids enabling unadvertised hardware Access Flag management 436 at stage-2. 437 438 If unsure, say Y. 439 440config ARM64_WORKAROUND_CLEAN_CACHE 441 bool 442 443config ARM64_ERRATUM_826319 444 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 445 default y 446 select ARM64_WORKAROUND_CLEAN_CACHE 447 help 448 This option adds an alternative code sequence to work around ARM 449 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 450 AXI master interface and an L2 cache. 451 452 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 453 and is unable to accept a certain write via this interface, it will 454 not progress on read data presented on the read data channel and the 455 system can deadlock. 456 457 The workaround promotes data cache clean instructions to 458 data cache clean-and-invalidate. 459 Please note that this does not necessarily enable the workaround, 460 as it depends on the alternative framework, which will only patch 461 the kernel if an affected CPU is detected. 462 463 If unsure, say Y. 464 465config ARM64_ERRATUM_827319 466 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 467 default y 468 select ARM64_WORKAROUND_CLEAN_CACHE 469 help 470 This option adds an alternative code sequence to work around ARM 471 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 472 master interface and an L2 cache. 473 474 Under certain conditions this erratum can cause a clean line eviction 475 to occur at the same time as another transaction to the same address 476 on the AMBA 5 CHI interface, which can cause data corruption if the 477 interconnect reorders the two transactions. 478 479 The workaround promotes data cache clean instructions to 480 data cache clean-and-invalidate. 481 Please note that this does not necessarily enable the workaround, 482 as it depends on the alternative framework, which will only patch 483 the kernel if an affected CPU is detected. 484 485 If unsure, say Y. 486 487config ARM64_ERRATUM_824069 488 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 489 default y 490 select ARM64_WORKAROUND_CLEAN_CACHE 491 help 492 This option adds an alternative code sequence to work around ARM 493 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 494 to a coherent interconnect. 495 496 If a Cortex-A53 processor is executing a store or prefetch for 497 write instruction at the same time as a processor in another 498 cluster is executing a cache maintenance operation to the same 499 address, then this erratum might cause a clean cache line to be 500 incorrectly marked as dirty. 501 502 The workaround promotes data cache clean instructions to 503 data cache clean-and-invalidate. 504 Please note that this option does not necessarily enable the 505 workaround, as it depends on the alternative framework, which will 506 only patch the kernel if an affected CPU is detected. 507 508 If unsure, say Y. 509 510config ARM64_ERRATUM_819472 511 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 512 default y 513 select ARM64_WORKAROUND_CLEAN_CACHE 514 help 515 This option adds an alternative code sequence to work around ARM 516 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 517 present when it is connected to a coherent interconnect. 518 519 If the processor is executing a load and store exclusive sequence at 520 the same time as a processor in another cluster is executing a cache 521 maintenance operation to the same address, then this erratum might 522 cause data corruption. 523 524 The workaround promotes data cache clean instructions to 525 data cache clean-and-invalidate. 526 Please note that this does not necessarily enable the workaround, 527 as it depends on the alternative framework, which will only patch 528 the kernel if an affected CPU is detected. 529 530 If unsure, say Y. 531 532config ARM64_ERRATUM_832075 533 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 534 default y 535 help 536 This option adds an alternative code sequence to work around ARM 537 erratum 832075 on Cortex-A57 parts up to r1p2. 538 539 Affected Cortex-A57 parts might deadlock when exclusive load/store 540 instructions to Write-Back memory are mixed with Device loads. 541 542 The workaround is to promote device loads to use Load-Acquire 543 semantics. 544 Please note that this does not necessarily enable the workaround, 545 as it depends on the alternative framework, which will only patch 546 the kernel if an affected CPU is detected. 547 548 If unsure, say Y. 549 550config ARM64_ERRATUM_834220 551 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)" 552 depends on KVM 553 help 554 This option adds an alternative code sequence to work around ARM 555 erratum 834220 on Cortex-A57 parts up to r1p2. 556 557 Affected Cortex-A57 parts might report a Stage 2 translation 558 fault as the result of a Stage 1 fault for load crossing a 559 page boundary when there is a permission or device memory 560 alignment fault at Stage 1 and a translation fault at Stage 2. 561 562 The workaround is to verify that the Stage 1 translation 563 doesn't generate a fault before handling the Stage 2 fault. 564 Please note that this does not necessarily enable the workaround, 565 as it depends on the alternative framework, which will only patch 566 the kernel if an affected CPU is detected. 567 568 If unsure, say N. 569 570config ARM64_ERRATUM_1742098 571 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 572 depends on COMPAT 573 default y 574 help 575 This option removes the AES hwcap for aarch32 user-space to 576 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 577 578 Affected parts may corrupt the AES state if an interrupt is 579 taken between a pair of AES instructions. These instructions 580 are only present if the cryptography extensions are present. 581 All software should have a fallback implementation for CPUs 582 that don't implement the cryptography extensions. 583 584 If unsure, say Y. 585 586config ARM64_ERRATUM_845719 587 bool "Cortex-A53: 845719: a load might read incorrect data" 588 depends on COMPAT 589 default y 590 help 591 This option adds an alternative code sequence to work around ARM 592 erratum 845719 on Cortex-A53 parts up to r0p4. 593 594 When running a compat (AArch32) userspace on an affected Cortex-A53 595 part, a load at EL0 from a virtual address that matches the bottom 32 596 bits of the virtual address used by a recent load at (AArch64) EL1 597 might return incorrect data. 598 599 The workaround is to write the contextidr_el1 register on exception 600 return to a 32-bit task. 601 Please note that this does not necessarily enable the workaround, 602 as it depends on the alternative framework, which will only patch 603 the kernel if an affected CPU is detected. 604 605 If unsure, say Y. 606 607config ARM64_ERRATUM_843419 608 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 609 default y 610 help 611 This option links the kernel with '--fix-cortex-a53-843419' and 612 enables PLT support to replace certain ADRP instructions, which can 613 cause subsequent memory accesses to use an incorrect address on 614 Cortex-A53 parts up to r0p4. 615 616 If unsure, say Y. 617 618config ARM64_LD_HAS_FIX_ERRATUM_843419 619 def_bool $(ld-option,--fix-cortex-a53-843419) 620 621config ARM64_ERRATUM_1024718 622 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 623 default y 624 help 625 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 626 627 Affected Cortex-A55 cores (all revisions) could cause incorrect 628 update of the hardware dirty bit when the DBM/AP bits are updated 629 without a break-before-make. The workaround is to disable the usage 630 of hardware DBM locally on the affected cores. CPUs not affected by 631 this erratum will continue to use the feature. 632 633 If unsure, say Y. 634 635config ARM64_ERRATUM_1418040 636 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 637 default y 638 depends on COMPAT 639 help 640 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 641 errata 1188873 and 1418040. 642 643 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 644 cause register corruption when accessing the timer registers 645 from AArch32 userspace. 646 647 If unsure, say Y. 648 649config ARM64_WORKAROUND_SPECULATIVE_AT 650 bool 651 652config ARM64_ERRATUM_1165522 653 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 654 default y 655 select ARM64_WORKAROUND_SPECULATIVE_AT 656 help 657 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 658 659 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 660 corrupted TLBs by speculating an AT instruction during a guest 661 context switch. 662 663 If unsure, say Y. 664 665config ARM64_ERRATUM_1319367 666 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 667 default y 668 select ARM64_WORKAROUND_SPECULATIVE_AT 669 help 670 This option adds work arounds for ARM Cortex-A57 erratum 1319537 671 and A72 erratum 1319367 672 673 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 674 speculating an AT instruction during a guest context switch. 675 676 If unsure, say Y. 677 678config ARM64_ERRATUM_1530923 679 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 680 default y 681 select ARM64_WORKAROUND_SPECULATIVE_AT 682 help 683 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 684 685 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 686 corrupted TLBs by speculating an AT instruction during a guest 687 context switch. 688 689 If unsure, say Y. 690 691config ARM64_WORKAROUND_REPEAT_TLBI 692 bool 693 694config ARM64_ERRATUM_2441007 695 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 696 select ARM64_WORKAROUND_REPEAT_TLBI 697 help 698 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 699 700 Under very rare circumstances, affected Cortex-A55 CPUs 701 may not handle a race between a break-before-make sequence on one 702 CPU, and another CPU accessing the same page. This could allow a 703 store to a page that has been unmapped. 704 705 Work around this by adding the affected CPUs to the list that needs 706 TLB sequences to be done twice. 707 708 If unsure, say N. 709 710config ARM64_ERRATUM_1286807 711 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)" 712 select ARM64_WORKAROUND_REPEAT_TLBI 713 help 714 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 715 716 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 717 address for a cacheable mapping of a location is being 718 accessed by a core while another core is remapping the virtual 719 address to a new physical page using the recommended 720 break-before-make sequence, then under very rare circumstances 721 TLBI+DSB completes before a read using the translation being 722 invalidated has been observed by other observers. The 723 workaround repeats the TLBI+DSB operation. 724 725 If unsure, say N. 726 727config ARM64_ERRATUM_1463225 728 bool "Cortex-A76: Software Step might prevent interrupt recognition" 729 default y 730 help 731 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 732 733 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 734 of a system call instruction (SVC) can prevent recognition of 735 subsequent interrupts when software stepping is disabled in the 736 exception handler of the system call and either kernel debugging 737 is enabled or VHE is in use. 738 739 Work around the erratum by triggering a dummy step exception 740 when handling a system call from a task that is being stepped 741 in a VHE configuration of the kernel. 742 743 If unsure, say Y. 744 745config ARM64_ERRATUM_1542419 746 bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)" 747 help 748 This option adds a workaround for ARM Neoverse-N1 erratum 749 1542419. 750 751 Affected Neoverse-N1 cores could execute a stale instruction when 752 modified by another CPU. The workaround depends on a firmware 753 counterpart. 754 755 Workaround the issue by hiding the DIC feature from EL0. This 756 forces user-space to perform cache maintenance. 757 758 If unsure, say N. 759 760config ARM64_ERRATUM_1508412 761 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 762 default y 763 help 764 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 765 766 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 767 of a store-exclusive or read of PAR_EL1 and a load with device or 768 non-cacheable memory attributes. The workaround depends on a firmware 769 counterpart. 770 771 KVM guests must also have the workaround implemented or they can 772 deadlock the system. 773 774 Work around the issue by inserting DMB SY barriers around PAR_EL1 775 register reads and warning KVM users. The DMB barrier is sufficient 776 to prevent a speculative PAR_EL1 read. 777 778 If unsure, say Y. 779 780config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 781 bool 782 783config ARM64_ERRATUM_2051678 784 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 785 default y 786 help 787 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 788 Affected Cortex-A510 might not respect the ordering rules for 789 hardware update of the page table's dirty bit. The workaround 790 is to not enable the feature on affected CPUs. 791 792 If unsure, say Y. 793 794config ARM64_ERRATUM_2077057 795 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 796 default y 797 help 798 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 799 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 800 expected, but a Pointer Authentication trap is taken instead. The 801 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 802 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 803 804 This can only happen when EL2 is stepping EL1. 805 806 When these conditions occur, the SPSR_EL2 value is unchanged from the 807 previous guest entry, and can be restored from the in-memory copy. 808 809 If unsure, say Y. 810 811config ARM64_ERRATUM_2658417 812 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 813 default y 814 help 815 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 816 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 817 BFMMLA or VMMLA instructions in rare circumstances when a pair of 818 A510 CPUs are using shared neon hardware. As the sharing is not 819 discoverable by the kernel, hide the BF16 HWCAP to indicate that 820 user-space should not be using these instructions. 821 822 If unsure, say Y. 823 824config ARM64_ERRATUM_2119858 825 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 826 default y 827 depends on CORESIGHT_TRBE 828 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 829 help 830 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 831 832 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 833 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 834 the event of a WRAP event. 835 836 Work around the issue by always making sure we move the TRBPTR_EL1 by 837 256 bytes before enabling the buffer and filling the first 256 bytes of 838 the buffer with ETM ignore packets upon disabling. 839 840 If unsure, say Y. 841 842config ARM64_ERRATUM_2139208 843 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 844 default y 845 depends on CORESIGHT_TRBE 846 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 847 help 848 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 849 850 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 851 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 852 the event of a WRAP event. 853 854 Work around the issue by always making sure we move the TRBPTR_EL1 by 855 256 bytes before enabling the buffer and filling the first 256 bytes of 856 the buffer with ETM ignore packets upon disabling. 857 858 If unsure, say Y. 859 860config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 861 bool 862 863config ARM64_ERRATUM_2054223 864 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 865 default y 866 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 867 help 868 Enable workaround for ARM Cortex-A710 erratum 2054223 869 870 Affected cores may fail to flush the trace data on a TSB instruction, when 871 the PE is in trace prohibited state. This will cause losing a few bytes 872 of the trace cached. 873 874 Workaround is to issue two TSB consecutively on affected cores. 875 876 If unsure, say Y. 877 878config ARM64_ERRATUM_2067961 879 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 880 default y 881 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 882 help 883 Enable workaround for ARM Neoverse-N2 erratum 2067961 884 885 Affected cores may fail to flush the trace data on a TSB instruction, when 886 the PE is in trace prohibited state. This will cause losing a few bytes 887 of the trace cached. 888 889 Workaround is to issue two TSB consecutively on affected cores. 890 891 If unsure, say Y. 892 893config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 894 bool 895 896config ARM64_ERRATUM_2253138 897 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 898 depends on CORESIGHT_TRBE 899 default y 900 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 901 help 902 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 903 904 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 905 for TRBE. Under some conditions, the TRBE might generate a write to the next 906 virtually addressed page following the last page of the TRBE address space 907 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 908 909 Work around this in the driver by always making sure that there is a 910 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 911 912 If unsure, say Y. 913 914config ARM64_ERRATUM_2224489 915 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 916 depends on CORESIGHT_TRBE 917 default y 918 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 919 help 920 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 921 922 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 923 for TRBE. Under some conditions, the TRBE might generate a write to the next 924 virtually addressed page following the last page of the TRBE address space 925 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 926 927 Work around this in the driver by always making sure that there is a 928 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 929 930 If unsure, say Y. 931 932config ARM64_ERRATUM_2441009 933 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)" 934 select ARM64_WORKAROUND_REPEAT_TLBI 935 help 936 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 937 938 Under very rare circumstances, affected Cortex-A510 CPUs 939 may not handle a race between a break-before-make sequence on one 940 CPU, and another CPU accessing the same page. This could allow a 941 store to a page that has been unmapped. 942 943 Work around this by adding the affected CPUs to the list that needs 944 TLB sequences to be done twice. 945 946 If unsure, say N. 947 948config ARM64_ERRATUM_2064142 949 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 950 depends on CORESIGHT_TRBE 951 default y 952 help 953 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 954 955 Affected Cortex-A510 core might fail to write into system registers after the 956 TRBE has been disabled. Under some conditions after the TRBE has been disabled 957 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 958 and TRBTRG_EL1 will be ignored and will not be effected. 959 960 Work around this in the driver by executing TSB CSYNC and DSB after collection 961 is stopped and before performing a system register write to one of the affected 962 registers. 963 964 If unsure, say Y. 965 966config ARM64_ERRATUM_2038923 967 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 968 depends on CORESIGHT_TRBE 969 default y 970 help 971 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 972 973 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 974 prohibited within the CPU. As a result, the trace buffer or trace buffer state 975 might be corrupted. This happens after TRBE buffer has been enabled by setting 976 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 977 execution changes from a context, in which trace is prohibited to one where it 978 isn't, or vice versa. In these mentioned conditions, the view of whether trace 979 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 980 the trace buffer state might be corrupted. 981 982 Work around this in the driver by preventing an inconsistent view of whether the 983 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 984 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 985 two ISB instructions if no ERET is to take place. 986 987 If unsure, say Y. 988 989config ARM64_ERRATUM_1902691 990 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 991 depends on CORESIGHT_TRBE 992 default y 993 help 994 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 995 996 Affected Cortex-A510 core might cause trace data corruption, when being written 997 into the memory. Effectively TRBE is broken and hence cannot be used to capture 998 trace data. 999 1000 Work around this problem in the driver by just preventing TRBE initialization on 1001 affected cpus. The firmware must have disabled the access to TRBE for the kernel 1002 on such implementations. This will cover the kernel for any firmware that doesn't 1003 do this already. 1004 1005 If unsure, say Y. 1006 1007config ARM64_ERRATUM_2457168 1008 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 1009 depends on ARM64_AMU_EXTN 1010 default y 1011 help 1012 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 1013 1014 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 1015 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 1016 incorrectly giving a significantly higher output value. 1017 1018 Work around this problem by returning 0 when reading the affected counter in 1019 key locations that results in disabling all users of this counter. This effect 1020 is the same to firmware disabling affected counters. 1021 1022 If unsure, say Y. 1023 1024config ARM64_ERRATUM_2645198 1025 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1026 default y 1027 help 1028 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1029 1030 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1031 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1032 next instruction abort caused by permission fault. 1033 1034 Only user-space does executable to non-executable permission transition via 1035 mprotect() system call. Workaround the problem by doing a break-before-make 1036 TLB invalidation, for all changes to executable user space mappings. 1037 1038 If unsure, say Y. 1039 1040config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1041 bool 1042 1043config ARM64_ERRATUM_2966298 1044 bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load" 1045 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1046 default y 1047 help 1048 This option adds the workaround for ARM Cortex-A520 erratum 2966298. 1049 1050 On an affected Cortex-A520 core, a speculatively executed unprivileged 1051 load might leak data from a privileged level via a cache side channel. 1052 1053 Work around this problem by executing a TLBI before returning to EL0. 1054 1055 If unsure, say Y. 1056 1057config ARM64_ERRATUM_3117295 1058 bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load" 1059 select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD 1060 default y 1061 help 1062 This option adds the workaround for ARM Cortex-A510 erratum 3117295. 1063 1064 On an affected Cortex-A510 core, a speculatively executed unprivileged 1065 load might leak data from a privileged level via a cache side channel. 1066 1067 Work around this problem by executing a TLBI before returning to EL0. 1068 1069 If unsure, say Y. 1070 1071config ARM64_ERRATUM_3194386 1072 bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing" 1073 default y 1074 help 1075 This option adds the workaround for the following errata: 1076 1077 * ARM Cortex-A76 erratum 3324349 1078 * ARM Cortex-A77 erratum 3324348 1079 * ARM Cortex-A78 erratum 3324344 1080 * ARM Cortex-A78C erratum 3324346 1081 * ARM Cortex-A78C erratum 3324347 1082 * ARM Cortex-A710 erratam 3324338 1083 * ARM Cortex-A720 erratum 3456091 1084 * ARM Cortex-A725 erratum 3456106 1085 * ARM Cortex-X1 erratum 3324344 1086 * ARM Cortex-X1C erratum 3324346 1087 * ARM Cortex-X2 erratum 3324338 1088 * ARM Cortex-X3 erratum 3324335 1089 * ARM Cortex-X4 erratum 3194386 1090 * ARM Cortex-X925 erratum 3324334 1091 * ARM Neoverse-N1 erratum 3324349 1092 * ARM Neoverse N2 erratum 3324339 1093 * ARM Neoverse-V1 erratum 3324341 1094 * ARM Neoverse V2 erratum 3324336 1095 * ARM Neoverse-V3 erratum 3312417 1096 1097 On affected cores "MSR SSBS, #0" instructions may not affect 1098 subsequent speculative instructions, which may permit unexepected 1099 speculative store bypassing. 1100 1101 Work around this problem by placing a Speculation Barrier (SB) or 1102 Instruction Synchronization Barrier (ISB) after kernel changes to 1103 SSBS. The presence of the SSBS special-purpose register is hidden 1104 from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace 1105 will use the PR_SPEC_STORE_BYPASS prctl to change SSBS. 1106 1107 If unsure, say Y. 1108 1109config CAVIUM_ERRATUM_22375 1110 bool "Cavium erratum 22375, 24313" 1111 default y 1112 help 1113 Enable workaround for errata 22375 and 24313. 1114 1115 This implements two gicv3-its errata workarounds for ThunderX. Both 1116 with a small impact affecting only ITS table allocation. 1117 1118 erratum 22375: only alloc 8MB table size 1119 erratum 24313: ignore memory access type 1120 1121 The fixes are in ITS initialization and basically ignore memory access 1122 type and table size provided by the TYPER and BASER registers. 1123 1124 If unsure, say Y. 1125 1126config CAVIUM_ERRATUM_23144 1127 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1128 depends on NUMA 1129 default y 1130 help 1131 ITS SYNC command hang for cross node io and collections/cpu mapping. 1132 1133 If unsure, say Y. 1134 1135config CAVIUM_ERRATUM_23154 1136 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1137 default y 1138 help 1139 The ThunderX GICv3 implementation requires a modified version for 1140 reading the IAR status to ensure data synchronization 1141 (access to icc_iar1_el1 is not sync'ed before and after). 1142 1143 It also suffers from erratum 38545 (also present on Marvell's 1144 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1145 spuriously presented to the CPU interface. 1146 1147 If unsure, say Y. 1148 1149config CAVIUM_ERRATUM_27456 1150 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1151 default y 1152 help 1153 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1154 instructions may cause the icache to become corrupted if it 1155 contains data for a non-current ASID. The fix is to 1156 invalidate the icache when changing the mm context. 1157 1158 If unsure, say Y. 1159 1160config CAVIUM_ERRATUM_30115 1161 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1162 default y 1163 help 1164 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1165 1.2, and T83 Pass 1.0, KVM guest execution may disable 1166 interrupts in host. Trapping both GICv3 group-0 and group-1 1167 accesses sidesteps the issue. 1168 1169 If unsure, say Y. 1170 1171config CAVIUM_TX2_ERRATUM_219 1172 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1173 default y 1174 help 1175 On Cavium ThunderX2, a load, store or prefetch instruction between a 1176 TTBR update and the corresponding context synchronizing operation can 1177 cause a spurious Data Abort to be delivered to any hardware thread in 1178 the CPU core. 1179 1180 Work around the issue by avoiding the problematic code sequence and 1181 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1182 trap handler performs the corresponding register access, skips the 1183 instruction and ensures context synchronization by virtue of the 1184 exception return. 1185 1186 If unsure, say Y. 1187 1188config FUJITSU_ERRATUM_010001 1189 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1190 default y 1191 help 1192 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1193 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1194 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1195 This fault occurs under a specific hardware condition when a 1196 load/store instruction performs an address translation using: 1197 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1198 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1199 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1200 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1201 1202 The workaround is to ensure these bits are clear in TCR_ELx. 1203 The workaround only affects the Fujitsu-A64FX. 1204 1205 If unsure, say Y. 1206 1207config HISILICON_ERRATUM_161600802 1208 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1209 default y 1210 help 1211 The HiSilicon Hip07 SoC uses the wrong redistributor base 1212 when issued ITS commands such as VMOVP and VMAPP, and requires 1213 a 128kB offset to be applied to the target address in this commands. 1214 1215 If unsure, say Y. 1216 1217config QCOM_FALKOR_ERRATUM_1003 1218 bool "Falkor E1003: Incorrect translation due to ASID change" 1219 default y 1220 help 1221 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1222 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1223 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1224 then only for entries in the walk cache, since the leaf translation 1225 is unchanged. Work around the erratum by invalidating the walk cache 1226 entries for the trampoline before entering the kernel proper. 1227 1228config QCOM_FALKOR_ERRATUM_1009 1229 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1230 default y 1231 select ARM64_WORKAROUND_REPEAT_TLBI 1232 help 1233 On Falkor v1, the CPU may prematurely complete a DSB following a 1234 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1235 one more time to fix the issue. 1236 1237 If unsure, say Y. 1238 1239config QCOM_QDF2400_ERRATUM_0065 1240 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1241 default y 1242 help 1243 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1244 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1245 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1246 1247 If unsure, say Y. 1248 1249config QCOM_FALKOR_ERRATUM_E1041 1250 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1251 default y 1252 help 1253 Falkor CPU may speculatively fetch instructions from an improper 1254 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1255 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1256 1257 If unsure, say Y. 1258 1259config NVIDIA_CARMEL_CNP_ERRATUM 1260 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1261 default y 1262 help 1263 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1264 invalidate shared TLB entries installed by a different core, as it would 1265 on standard ARM cores. 1266 1267 If unsure, say Y. 1268 1269config ROCKCHIP_ERRATUM_3588001 1270 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1271 default y 1272 help 1273 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1274 This means, that its sharability feature may not be used, even though it 1275 is supported by the IP itself. 1276 1277 If unsure, say Y. 1278 1279config SOCIONEXT_SYNQUACER_PREITS 1280 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1281 default y 1282 help 1283 Socionext Synquacer SoCs implement a separate h/w block to generate 1284 MSI doorbell writes with non-zero values for the device ID. 1285 1286 If unsure, say Y. 1287 1288endmenu # "ARM errata workarounds via the alternatives framework" 1289 1290choice 1291 prompt "Page size" 1292 default ARM64_4K_PAGES 1293 help 1294 Page size (translation granule) configuration. 1295 1296config ARM64_4K_PAGES 1297 bool "4KB" 1298 select HAVE_PAGE_SIZE_4KB 1299 help 1300 This feature enables 4KB pages support. 1301 1302config ARM64_16K_PAGES 1303 bool "16KB" 1304 select HAVE_PAGE_SIZE_16KB 1305 help 1306 The system will use 16KB pages support. AArch32 emulation 1307 requires applications compiled with 16K (or a multiple of 16K) 1308 aligned segments. 1309 1310config ARM64_64K_PAGES 1311 bool "64KB" 1312 select HAVE_PAGE_SIZE_64KB 1313 help 1314 This feature enables 64KB pages support (4KB by default) 1315 allowing only two levels of page tables and faster TLB 1316 look-up. AArch32 emulation requires applications compiled 1317 with 64K aligned segments. 1318 1319endchoice 1320 1321choice 1322 prompt "Virtual address space size" 1323 default ARM64_VA_BITS_52 1324 help 1325 Allows choosing one of multiple possible virtual address 1326 space sizes. The level of translation table is determined by 1327 a combination of page size and virtual address space size. 1328 1329config ARM64_VA_BITS_36 1330 bool "36-bit" if EXPERT 1331 depends on PAGE_SIZE_16KB 1332 1333config ARM64_VA_BITS_39 1334 bool "39-bit" 1335 depends on PAGE_SIZE_4KB 1336 1337config ARM64_VA_BITS_42 1338 bool "42-bit" 1339 depends on PAGE_SIZE_64KB 1340 1341config ARM64_VA_BITS_47 1342 bool "47-bit" 1343 depends on PAGE_SIZE_16KB 1344 1345config ARM64_VA_BITS_48 1346 bool "48-bit" 1347 1348config ARM64_VA_BITS_52 1349 bool "52-bit" 1350 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1351 help 1352 Enable 52-bit virtual addressing for userspace when explicitly 1353 requested via a hint to mmap(). The kernel will also use 52-bit 1354 virtual addresses for its own mappings (provided HW support for 1355 this feature is available, otherwise it reverts to 48-bit). 1356 1357 NOTE: Enabling 52-bit virtual addressing in conjunction with 1358 ARMv8.3 Pointer Authentication will result in the PAC being 1359 reduced from 7 bits to 3 bits, which may have a significant 1360 impact on its susceptibility to brute-force attacks. 1361 1362 If unsure, select 48-bit virtual addressing instead. 1363 1364endchoice 1365 1366config ARM64_FORCE_52BIT 1367 bool "Force 52-bit virtual addresses for userspace" 1368 depends on ARM64_VA_BITS_52 && EXPERT 1369 help 1370 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1371 to maintain compatibility with older software by providing 48-bit VAs 1372 unless a hint is supplied to mmap. 1373 1374 This configuration option disables the 48-bit compatibility logic, and 1375 forces all userspace addresses to be 52-bit on HW that supports it. One 1376 should only enable this configuration option for stress testing userspace 1377 memory management code. If unsure say N here. 1378 1379config ARM64_VA_BITS 1380 int 1381 default 36 if ARM64_VA_BITS_36 1382 default 39 if ARM64_VA_BITS_39 1383 default 42 if ARM64_VA_BITS_42 1384 default 47 if ARM64_VA_BITS_47 1385 default 48 if ARM64_VA_BITS_48 1386 default 52 if ARM64_VA_BITS_52 1387 1388choice 1389 prompt "Physical address space size" 1390 default ARM64_PA_BITS_48 1391 help 1392 Choose the maximum physical address range that the kernel will 1393 support. 1394 1395config ARM64_PA_BITS_48 1396 bool "48-bit" 1397 depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52 1398 1399config ARM64_PA_BITS_52 1400 bool "52-bit" 1401 depends on ARM64_64K_PAGES || ARM64_VA_BITS_52 1402 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1403 help 1404 Enable support for a 52-bit physical address space, introduced as 1405 part of the ARMv8.2-LPA extension. 1406 1407 With this enabled, the kernel will also continue to work on CPUs that 1408 do not support ARMv8.2-LPA, but with some added memory overhead (and 1409 minor performance overhead). 1410 1411endchoice 1412 1413config ARM64_PA_BITS 1414 int 1415 default 48 if ARM64_PA_BITS_48 1416 default 52 if ARM64_PA_BITS_52 1417 1418config ARM64_LPA2 1419 def_bool y 1420 depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES 1421 1422choice 1423 prompt "Endianness" 1424 default CPU_LITTLE_ENDIAN 1425 help 1426 Select the endianness of data accesses performed by the CPU. Userspace 1427 applications will need to be compiled and linked for the endianness 1428 that is selected here. 1429 1430config CPU_BIG_ENDIAN 1431 bool "Build big-endian kernel" 1432 # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c 1433 depends on AS_IS_GNU || AS_VERSION >= 150000 1434 help 1435 Say Y if you plan on running a kernel with a big-endian userspace. 1436 1437config CPU_LITTLE_ENDIAN 1438 bool "Build little-endian kernel" 1439 help 1440 Say Y if you plan on running a kernel with a little-endian userspace. 1441 This is usually the case for distributions targeting arm64. 1442 1443endchoice 1444 1445config SCHED_MC 1446 bool "Multi-core scheduler support" 1447 help 1448 Multi-core scheduler support improves the CPU scheduler's decision 1449 making when dealing with multi-core CPU chips at a cost of slightly 1450 increased overhead in some places. If unsure say N here. 1451 1452config SCHED_CLUSTER 1453 bool "Cluster scheduler support" 1454 help 1455 Cluster scheduler support improves the CPU scheduler's decision 1456 making when dealing with machines that have clusters of CPUs. 1457 Cluster usually means a couple of CPUs which are placed closely 1458 by sharing mid-level caches, last-level cache tags or internal 1459 busses. 1460 1461config SCHED_SMT 1462 bool "SMT scheduler support" 1463 help 1464 Improves the CPU scheduler's decision making when dealing with 1465 MultiThreading at a cost of slightly increased overhead in some 1466 places. If unsure say N here. 1467 1468config NR_CPUS 1469 int "Maximum number of CPUs (2-4096)" 1470 range 2 4096 1471 default "512" 1472 1473config HOTPLUG_CPU 1474 bool "Support for hot-pluggable CPUs" 1475 select GENERIC_IRQ_MIGRATION 1476 help 1477 Say Y here to experiment with turning CPUs off and on. CPUs 1478 can be controlled through /sys/devices/system/cpu. 1479 1480# Common NUMA Features 1481config NUMA 1482 bool "NUMA Memory Allocation and Scheduler Support" 1483 select GENERIC_ARCH_NUMA 1484 select OF_NUMA 1485 select HAVE_SETUP_PER_CPU_AREA 1486 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1487 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1488 select USE_PERCPU_NUMA_NODE_ID 1489 help 1490 Enable NUMA (Non-Uniform Memory Access) support. 1491 1492 The kernel will try to allocate memory used by a CPU on the 1493 local memory of the CPU and add some more 1494 NUMA awareness to the kernel. 1495 1496config NODES_SHIFT 1497 int "Maximum NUMA Nodes (as a power of 2)" 1498 range 1 10 1499 default "4" 1500 depends on NUMA 1501 help 1502 Specify the maximum number of NUMA Nodes available on the target 1503 system. Increases memory reserved to accommodate various tables. 1504 1505source "kernel/Kconfig.hz" 1506 1507config ARCH_SPARSEMEM_ENABLE 1508 def_bool y 1509 select SPARSEMEM_VMEMMAP_ENABLE 1510 select SPARSEMEM_VMEMMAP 1511 1512config HW_PERF_EVENTS 1513 def_bool y 1514 depends on ARM_PMU 1515 1516# Supported by clang >= 7.0 or GCC >= 12.0.0 1517config CC_HAVE_SHADOW_CALL_STACK 1518 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1519 1520config PARAVIRT 1521 bool "Enable paravirtualization code" 1522 help 1523 This changes the kernel so it can modify itself when it is run 1524 under a hypervisor, potentially improving performance significantly 1525 over full virtualization. 1526 1527config PARAVIRT_TIME_ACCOUNTING 1528 bool "Paravirtual steal time accounting" 1529 select PARAVIRT 1530 help 1531 Select this option to enable fine granularity task steal time 1532 accounting. Time spent executing other tasks in parallel with 1533 the current vCPU is discounted from the vCPU power. To account for 1534 that, there can be a small performance impact. 1535 1536 If in doubt, say N here. 1537 1538config ARCH_SUPPORTS_KEXEC 1539 def_bool PM_SLEEP_SMP 1540 1541config ARCH_SUPPORTS_KEXEC_FILE 1542 def_bool y 1543 1544config ARCH_SELECTS_KEXEC_FILE 1545 def_bool y 1546 depends on KEXEC_FILE 1547 select HAVE_IMA_KEXEC if IMA 1548 1549config ARCH_SUPPORTS_KEXEC_SIG 1550 def_bool y 1551 1552config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG 1553 def_bool y 1554 1555config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG 1556 def_bool y 1557 1558config ARCH_SUPPORTS_CRASH_DUMP 1559 def_bool y 1560 1561config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION 1562 def_bool CRASH_RESERVE 1563 1564config TRANS_TABLE 1565 def_bool y 1566 depends on HIBERNATION || KEXEC_CORE 1567 1568config XEN_DOM0 1569 def_bool y 1570 depends on XEN 1571 1572config XEN 1573 bool "Xen guest support on ARM64" 1574 depends on ARM64 && OF 1575 select SWIOTLB_XEN 1576 select PARAVIRT 1577 help 1578 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1579 1580# include/linux/mmzone.h requires the following to be true: 1581# 1582# MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1583# 1584# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1585# 1586# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_PAGE_ORDER | default MAX_PAGE_ORDER | 1587# ----+-------------------+--------------+----------------------+-------------------------+ 1588# 4K | 27 | 12 | 15 | 10 | 1589# 16K | 27 | 14 | 13 | 11 | 1590# 64K | 29 | 16 | 13 | 13 | 1591config ARCH_FORCE_MAX_ORDER 1592 int 1593 default "13" if ARM64_64K_PAGES 1594 default "11" if ARM64_16K_PAGES 1595 default "10" 1596 help 1597 The kernel page allocator limits the size of maximal physically 1598 contiguous allocations. The limit is called MAX_PAGE_ORDER and it 1599 defines the maximal power of two of number of pages that can be 1600 allocated as a single contiguous block. This option allows 1601 overriding the default setting when ability to allocate very 1602 large blocks of physically contiguous memory is required. 1603 1604 The maximal size of allocation cannot exceed the size of the 1605 section, so the value of MAX_PAGE_ORDER should satisfy 1606 1607 MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1608 1609 Don't change if unsure. 1610 1611config UNMAP_KERNEL_AT_EL0 1612 bool "Unmap kernel when running in userspace (KPTI)" if EXPERT 1613 default y 1614 help 1615 Speculation attacks against some high-performance processors can 1616 be used to bypass MMU permission checks and leak kernel data to 1617 userspace. This can be defended against by unmapping the kernel 1618 when running in userspace, mapping it back in on exception entry 1619 via a trampoline page in the vector table. 1620 1621 If unsure, say Y. 1622 1623config MITIGATE_SPECTRE_BRANCH_HISTORY 1624 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1625 default y 1626 help 1627 Speculation attacks against some high-performance processors can 1628 make use of branch history to influence future speculation. 1629 When taking an exception from user-space, a sequence of branches 1630 or a firmware call overwrites the branch history. 1631 1632config RODATA_FULL_DEFAULT_ENABLED 1633 bool "Apply r/o permissions of VM areas also to their linear aliases" 1634 default y 1635 help 1636 Apply read-only attributes of VM areas to the linear alias of 1637 the backing pages as well. This prevents code or read-only data 1638 from being modified (inadvertently or intentionally) via another 1639 mapping of the same memory page. This additional enhancement can 1640 be turned off at runtime by passing rodata=[off|on] (and turned on 1641 with rodata=full if this option is set to 'n') 1642 1643 This requires the linear region to be mapped down to pages, 1644 which may adversely affect performance in some cases. 1645 1646config ARM64_SW_TTBR0_PAN 1647 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1648 depends on !KCSAN 1649 help 1650 Enabling this option prevents the kernel from accessing 1651 user-space memory directly by pointing TTBR0_EL1 to a reserved 1652 zeroed area and reserved ASID. The user access routines 1653 restore the valid TTBR0_EL1 temporarily. 1654 1655config ARM64_TAGGED_ADDR_ABI 1656 bool "Enable the tagged user addresses syscall ABI" 1657 default y 1658 help 1659 When this option is enabled, user applications can opt in to a 1660 relaxed ABI via prctl() allowing tagged addresses to be passed 1661 to system calls as pointer arguments. For details, see 1662 Documentation/arch/arm64/tagged-address-abi.rst. 1663 1664menuconfig COMPAT 1665 bool "Kernel support for 32-bit EL0" 1666 depends on ARM64_4K_PAGES || EXPERT 1667 select HAVE_UID16 1668 select OLD_SIGSUSPEND3 1669 select COMPAT_OLD_SIGACTION 1670 help 1671 This option enables support for a 32-bit EL0 running under a 64-bit 1672 kernel at EL1. AArch32-specific components such as system calls, 1673 the user helper functions, VFP support and the ptrace interface are 1674 handled appropriately by the kernel. 1675 1676 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1677 that you will only be able to execute AArch32 binaries that were compiled 1678 with page size aligned segments. 1679 1680 If you want to execute 32-bit userspace applications, say Y. 1681 1682if COMPAT 1683 1684config KUSER_HELPERS 1685 bool "Enable kuser helpers page for 32-bit applications" 1686 default y 1687 help 1688 Warning: disabling this option may break 32-bit user programs. 1689 1690 Provide kuser helpers to compat tasks. The kernel provides 1691 helper code to userspace in read only form at a fixed location 1692 to allow userspace to be independent of the CPU type fitted to 1693 the system. This permits binaries to be run on ARMv4 through 1694 to ARMv8 without modification. 1695 1696 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1697 1698 However, the fixed address nature of these helpers can be used 1699 by ROP (return orientated programming) authors when creating 1700 exploits. 1701 1702 If all of the binaries and libraries which run on your platform 1703 are built specifically for your platform, and make no use of 1704 these helpers, then you can turn this option off to hinder 1705 such exploits. However, in that case, if a binary or library 1706 relying on those helpers is run, it will not function correctly. 1707 1708 Say N here only if you are absolutely certain that you do not 1709 need these helpers; otherwise, the safe option is to say Y. 1710 1711config COMPAT_VDSO 1712 bool "Enable vDSO for 32-bit applications" 1713 depends on !CPU_BIG_ENDIAN 1714 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1715 select GENERIC_COMPAT_VDSO 1716 default y 1717 help 1718 Place in the process address space of 32-bit applications an 1719 ELF shared object providing fast implementations of gettimeofday 1720 and clock_gettime. 1721 1722 You must have a 32-bit build of glibc 2.22 or later for programs 1723 to seamlessly take advantage of this. 1724 1725config THUMB2_COMPAT_VDSO 1726 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1727 depends on COMPAT_VDSO 1728 default y 1729 help 1730 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1731 otherwise with '-marm'. 1732 1733config COMPAT_ALIGNMENT_FIXUPS 1734 bool "Fix up misaligned multi-word loads and stores in user space" 1735 1736menuconfig ARMV8_DEPRECATED 1737 bool "Emulate deprecated/obsolete ARMv8 instructions" 1738 depends on SYSCTL 1739 help 1740 Legacy software support may require certain instructions 1741 that have been deprecated or obsoleted in the architecture. 1742 1743 Enable this config to enable selective emulation of these 1744 features. 1745 1746 If unsure, say Y 1747 1748if ARMV8_DEPRECATED 1749 1750config SWP_EMULATION 1751 bool "Emulate SWP/SWPB instructions" 1752 help 1753 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1754 they are always undefined. Say Y here to enable software 1755 emulation of these instructions for userspace using LDXR/STXR. 1756 This feature can be controlled at runtime with the abi.swp 1757 sysctl which is disabled by default. 1758 1759 In some older versions of glibc [<=2.8] SWP is used during futex 1760 trylock() operations with the assumption that the code will not 1761 be preempted. This invalid assumption may be more likely to fail 1762 with SWP emulation enabled, leading to deadlock of the user 1763 application. 1764 1765 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1766 on an external transaction monitoring block called a global 1767 monitor to maintain update atomicity. If your system does not 1768 implement a global monitor, this option can cause programs that 1769 perform SWP operations to uncached memory to deadlock. 1770 1771 If unsure, say Y 1772 1773config CP15_BARRIER_EMULATION 1774 bool "Emulate CP15 Barrier instructions" 1775 help 1776 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1777 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1778 strongly recommended to use the ISB, DSB, and DMB 1779 instructions instead. 1780 1781 Say Y here to enable software emulation of these 1782 instructions for AArch32 userspace code. When this option is 1783 enabled, CP15 barrier usage is traced which can help 1784 identify software that needs updating. This feature can be 1785 controlled at runtime with the abi.cp15_barrier sysctl. 1786 1787 If unsure, say Y 1788 1789config SETEND_EMULATION 1790 bool "Emulate SETEND instruction" 1791 help 1792 The SETEND instruction alters the data-endianness of the 1793 AArch32 EL0, and is deprecated in ARMv8. 1794 1795 Say Y here to enable software emulation of the instruction 1796 for AArch32 userspace code. This feature can be controlled 1797 at runtime with the abi.setend sysctl. 1798 1799 Note: All the cpus on the system must have mixed endian support at EL0 1800 for this feature to be enabled. If a new CPU - which doesn't support mixed 1801 endian - is hotplugged in after this feature has been enabled, there could 1802 be unexpected results in the applications. 1803 1804 If unsure, say Y 1805endif # ARMV8_DEPRECATED 1806 1807endif # COMPAT 1808 1809menu "ARMv8.1 architectural features" 1810 1811config ARM64_HW_AFDBM 1812 bool "Support for hardware updates of the Access and Dirty page flags" 1813 default y 1814 help 1815 The ARMv8.1 architecture extensions introduce support for 1816 hardware updates of the access and dirty information in page 1817 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1818 capable processors, accesses to pages with PTE_AF cleared will 1819 set this bit instead of raising an access flag fault. 1820 Similarly, writes to read-only pages with the DBM bit set will 1821 clear the read-only bit (AP[2]) instead of raising a 1822 permission fault. 1823 1824 Kernels built with this configuration option enabled continue 1825 to work on pre-ARMv8.1 hardware and the performance impact is 1826 minimal. If unsure, say Y. 1827 1828config ARM64_PAN 1829 bool "Enable support for Privileged Access Never (PAN)" 1830 default y 1831 help 1832 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1833 prevents the kernel or hypervisor from accessing user-space (EL0) 1834 memory directly. 1835 1836 Choosing this option will cause any unprotected (not using 1837 copy_to_user et al) memory access to fail with a permission fault. 1838 1839 The feature is detected at runtime, and will remain as a 'nop' 1840 instruction if the cpu does not implement the feature. 1841 1842config AS_HAS_LSE_ATOMICS 1843 def_bool $(as-instr,.arch_extension lse) 1844 1845config ARM64_LSE_ATOMICS 1846 bool 1847 default ARM64_USE_LSE_ATOMICS 1848 depends on AS_HAS_LSE_ATOMICS 1849 1850config ARM64_USE_LSE_ATOMICS 1851 bool "Atomic instructions" 1852 default y 1853 help 1854 As part of the Large System Extensions, ARMv8.1 introduces new 1855 atomic instructions that are designed specifically to scale in 1856 very large systems. 1857 1858 Say Y here to make use of these instructions for the in-kernel 1859 atomic routines. This incurs a small overhead on CPUs that do 1860 not support these instructions and requires the kernel to be 1861 built with binutils >= 2.25 in order for the new instructions 1862 to be used. 1863 1864endmenu # "ARMv8.1 architectural features" 1865 1866menu "ARMv8.2 architectural features" 1867 1868config AS_HAS_ARMV8_2 1869 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1870 1871config AS_HAS_SHA3 1872 def_bool $(as-instr,.arch armv8.2-a+sha3) 1873 1874config ARM64_PMEM 1875 bool "Enable support for persistent memory" 1876 select ARCH_HAS_PMEM_API 1877 select ARCH_HAS_UACCESS_FLUSHCACHE 1878 help 1879 Say Y to enable support for the persistent memory API based on the 1880 ARMv8.2 DCPoP feature. 1881 1882 The feature is detected at runtime, and the kernel will use DC CVAC 1883 operations if DC CVAP is not supported (following the behaviour of 1884 DC CVAP itself if the system does not define a point of persistence). 1885 1886config ARM64_RAS_EXTN 1887 bool "Enable support for RAS CPU Extensions" 1888 default y 1889 help 1890 CPUs that support the Reliability, Availability and Serviceability 1891 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1892 errors, classify them and report them to software. 1893 1894 On CPUs with these extensions system software can use additional 1895 barriers to determine if faults are pending and read the 1896 classification from a new set of registers. 1897 1898 Selecting this feature will allow the kernel to use these barriers 1899 and access the new registers if the system supports the extension. 1900 Platform RAS features may additionally depend on firmware support. 1901 1902config ARM64_CNP 1903 bool "Enable support for Common Not Private (CNP) translations" 1904 default y 1905 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1906 help 1907 Common Not Private (CNP) allows translation table entries to 1908 be shared between different PEs in the same inner shareable 1909 domain, so the hardware can use this fact to optimise the 1910 caching of such entries in the TLB. 1911 1912 Selecting this option allows the CNP feature to be detected 1913 at runtime, and does not affect PEs that do not implement 1914 this feature. 1915 1916endmenu # "ARMv8.2 architectural features" 1917 1918menu "ARMv8.3 architectural features" 1919 1920config ARM64_PTR_AUTH 1921 bool "Enable support for pointer authentication" 1922 default y 1923 help 1924 Pointer authentication (part of the ARMv8.3 Extensions) provides 1925 instructions for signing and authenticating pointers against secret 1926 keys, which can be used to mitigate Return Oriented Programming (ROP) 1927 and other attacks. 1928 1929 This option enables these instructions at EL0 (i.e. for userspace). 1930 Choosing this option will cause the kernel to initialise secret keys 1931 for each process at exec() time, with these keys being 1932 context-switched along with the process. 1933 1934 The feature is detected at runtime. If the feature is not present in 1935 hardware it will not be advertised to userspace/KVM guest nor will it 1936 be enabled. 1937 1938 If the feature is present on the boot CPU but not on a late CPU, then 1939 the late CPU will be parked. Also, if the boot CPU does not have 1940 address auth and the late CPU has then the late CPU will still boot 1941 but with the feature disabled. On such a system, this option should 1942 not be selected. 1943 1944config ARM64_PTR_AUTH_KERNEL 1945 bool "Use pointer authentication for kernel" 1946 default y 1947 depends on ARM64_PTR_AUTH 1948 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1949 # Modern compilers insert a .note.gnu.property section note for PAC 1950 # which is only understood by binutils starting with version 2.33.1. 1951 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1952 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1953 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1954 help 1955 If the compiler supports the -mbranch-protection or 1956 -msign-return-address flag (e.g. GCC 7 or later), then this option 1957 will cause the kernel itself to be compiled with return address 1958 protection. In this case, and if the target hardware is known to 1959 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1960 disabled with minimal loss of protection. 1961 1962 This feature works with FUNCTION_GRAPH_TRACER option only if 1963 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1964 1965config CC_HAS_BRANCH_PROT_PAC_RET 1966 # GCC 9 or later, clang 8 or later 1967 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1968 1969config CC_HAS_SIGN_RETURN_ADDRESS 1970 # GCC 7, 8 1971 def_bool $(cc-option,-msign-return-address=all) 1972 1973config AS_HAS_ARMV8_3 1974 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1975 1976config AS_HAS_CFI_NEGATE_RA_STATE 1977 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1978 1979config AS_HAS_LDAPR 1980 def_bool $(as-instr,.arch_extension rcpc) 1981 1982endmenu # "ARMv8.3 architectural features" 1983 1984menu "ARMv8.4 architectural features" 1985 1986config ARM64_AMU_EXTN 1987 bool "Enable support for the Activity Monitors Unit CPU extension" 1988 default y 1989 help 1990 The activity monitors extension is an optional extension introduced 1991 by the ARMv8.4 CPU architecture. This enables support for version 1 1992 of the activity monitors architecture, AMUv1. 1993 1994 To enable the use of this extension on CPUs that implement it, say Y. 1995 1996 Note that for architectural reasons, firmware _must_ implement AMU 1997 support when running on CPUs that present the activity monitors 1998 extension. The required support is present in: 1999 * Version 1.5 and later of the ARM Trusted Firmware 2000 2001 For kernels that have this configuration enabled but boot with broken 2002 firmware, you may need to say N here until the firmware is fixed. 2003 Otherwise you may experience firmware panics or lockups when 2004 accessing the counter registers. Even if you are not observing these 2005 symptoms, the values returned by the register reads might not 2006 correctly reflect reality. Most commonly, the value read will be 0, 2007 indicating that the counter is not enabled. 2008 2009config AS_HAS_ARMV8_4 2010 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 2011 2012config ARM64_TLB_RANGE 2013 bool "Enable support for tlbi range feature" 2014 default y 2015 depends on AS_HAS_ARMV8_4 2016 help 2017 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 2018 range of input addresses. 2019 2020 The feature introduces new assembly instructions, and they were 2021 support when binutils >= 2.30. 2022 2023endmenu # "ARMv8.4 architectural features" 2024 2025menu "ARMv8.5 architectural features" 2026 2027config AS_HAS_ARMV8_5 2028 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 2029 2030config ARM64_BTI 2031 bool "Branch Target Identification support" 2032 default y 2033 help 2034 Branch Target Identification (part of the ARMv8.5 Extensions) 2035 provides a mechanism to limit the set of locations to which computed 2036 branch instructions such as BR or BLR can jump. 2037 2038 To make use of BTI on CPUs that support it, say Y. 2039 2040 BTI is intended to provide complementary protection to other control 2041 flow integrity protection mechanisms, such as the Pointer 2042 authentication mechanism provided as part of the ARMv8.3 Extensions. 2043 For this reason, it does not make sense to enable this option without 2044 also enabling support for pointer authentication. Thus, when 2045 enabling this option you should also select ARM64_PTR_AUTH=y. 2046 2047 Userspace binaries must also be specifically compiled to make use of 2048 this mechanism. If you say N here or the hardware does not support 2049 BTI, such binaries can still run, but you get no additional 2050 enforcement of branch destinations. 2051 2052config ARM64_BTI_KERNEL 2053 bool "Use Branch Target Identification for kernel" 2054 default y 2055 depends on ARM64_BTI 2056 depends on ARM64_PTR_AUTH_KERNEL 2057 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 2058 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 2059 depends on !CC_IS_GCC || GCC_VERSION >= 100100 2060 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 2061 depends on !CC_IS_GCC 2062 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 2063 help 2064 Build the kernel with Branch Target Identification annotations 2065 and enable enforcement of this for kernel code. When this option 2066 is enabled and the system supports BTI all kernel code including 2067 modular code must have BTI enabled. 2068 2069config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2070 # GCC 9 or later, clang 8 or later 2071 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2072 2073config ARM64_E0PD 2074 bool "Enable support for E0PD" 2075 default y 2076 help 2077 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2078 that EL0 accesses made via TTBR1 always fault in constant time, 2079 providing similar benefits to KASLR as those provided by KPTI, but 2080 with lower overhead and without disrupting legitimate access to 2081 kernel memory such as SPE. 2082 2083 This option enables E0PD for TTBR1 where available. 2084 2085config ARM64_AS_HAS_MTE 2086 # Initial support for MTE went in binutils 2.32.0, checked with 2087 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2088 # as a late addition to the final architecture spec (LDGM/STGM) 2089 # is only supported in the newer 2.32.x and 2.33 binutils 2090 # versions, hence the extra "stgm" instruction check below. 2091 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2092 2093config ARM64_MTE 2094 bool "Memory Tagging Extension support" 2095 default y 2096 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2097 depends on AS_HAS_ARMV8_5 2098 depends on AS_HAS_LSE_ATOMICS 2099 # Required for tag checking in the uaccess routines 2100 depends on ARM64_PAN 2101 select ARCH_HAS_SUBPAGE_FAULTS 2102 select ARCH_USES_HIGH_VMA_FLAGS 2103 select ARCH_USES_PG_ARCH_X 2104 help 2105 Memory Tagging (part of the ARMv8.5 Extensions) provides 2106 architectural support for run-time, always-on detection of 2107 various classes of memory error to aid with software debugging 2108 to eliminate vulnerabilities arising from memory-unsafe 2109 languages. 2110 2111 This option enables the support for the Memory Tagging 2112 Extension at EL0 (i.e. for userspace). 2113 2114 Selecting this option allows the feature to be detected at 2115 runtime. Any secondary CPU not implementing this feature will 2116 not be allowed a late bring-up. 2117 2118 Userspace binaries that want to use this feature must 2119 explicitly opt in. The mechanism for the userspace is 2120 described in: 2121 2122 Documentation/arch/arm64/memory-tagging-extension.rst. 2123 2124endmenu # "ARMv8.5 architectural features" 2125 2126menu "ARMv8.7 architectural features" 2127 2128config ARM64_EPAN 2129 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2130 default y 2131 depends on ARM64_PAN 2132 help 2133 Enhanced Privileged Access Never (EPAN) allows Privileged 2134 Access Never to be used with Execute-only mappings. 2135 2136 The feature is detected at runtime, and will remain disabled 2137 if the cpu does not implement the feature. 2138endmenu # "ARMv8.7 architectural features" 2139 2140config ARM64_SVE 2141 bool "ARM Scalable Vector Extension support" 2142 default y 2143 help 2144 The Scalable Vector Extension (SVE) is an extension to the AArch64 2145 execution state which complements and extends the SIMD functionality 2146 of the base architecture to support much larger vectors and to enable 2147 additional vectorisation opportunities. 2148 2149 To enable use of this extension on CPUs that implement it, say Y. 2150 2151 On CPUs that support the SVE2 extensions, this option will enable 2152 those too. 2153 2154 Note that for architectural reasons, firmware _must_ implement SVE 2155 support when running on SVE capable hardware. The required support 2156 is present in: 2157 2158 * version 1.5 and later of the ARM Trusted Firmware 2159 * the AArch64 boot wrapper since commit 5e1261e08abf 2160 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2161 2162 For other firmware implementations, consult the firmware documentation 2163 or vendor. 2164 2165 If you need the kernel to boot on SVE-capable hardware with broken 2166 firmware, you may need to say N here until you get your firmware 2167 fixed. Otherwise, you may experience firmware panics or lockups when 2168 booting the kernel. If unsure and you are not observing these 2169 symptoms, you should assume that it is safe to say Y. 2170 2171config ARM64_SME 2172 bool "ARM Scalable Matrix Extension support" 2173 default y 2174 depends on ARM64_SVE 2175 help 2176 The Scalable Matrix Extension (SME) is an extension to the AArch64 2177 execution state which utilises a substantial subset of the SVE 2178 instruction set, together with the addition of new architectural 2179 register state capable of holding two dimensional matrix tiles to 2180 enable various matrix operations. 2181 2182config ARM64_PSEUDO_NMI 2183 bool "Support for NMI-like interrupts" 2184 select ARM_GIC_V3 2185 help 2186 Adds support for mimicking Non-Maskable Interrupts through the use of 2187 GIC interrupt priority. This support requires version 3 or later of 2188 ARM GIC. 2189 2190 This high priority configuration for interrupts needs to be 2191 explicitly enabled by setting the kernel parameter 2192 "irqchip.gicv3_pseudo_nmi" to 1. 2193 2194 If unsure, say N 2195 2196if ARM64_PSEUDO_NMI 2197config ARM64_DEBUG_PRIORITY_MASKING 2198 bool "Debug interrupt priority masking" 2199 help 2200 This adds runtime checks to functions enabling/disabling 2201 interrupts when using priority masking. The additional checks verify 2202 the validity of ICC_PMR_EL1 when calling concerned functions. 2203 2204 If unsure, say N 2205endif # ARM64_PSEUDO_NMI 2206 2207config RELOCATABLE 2208 bool "Build a relocatable kernel image" if EXPERT 2209 select ARCH_HAS_RELR 2210 default y 2211 help 2212 This builds the kernel as a Position Independent Executable (PIE), 2213 which retains all relocation metadata required to relocate the 2214 kernel binary at runtime to a different virtual address than the 2215 address it was linked at. 2216 Since AArch64 uses the RELA relocation format, this requires a 2217 relocation pass at runtime even if the kernel is loaded at the 2218 same address it was linked at. 2219 2220config RANDOMIZE_BASE 2221 bool "Randomize the address of the kernel image" 2222 select RELOCATABLE 2223 help 2224 Randomizes the virtual address at which the kernel image is 2225 loaded, as a security feature that deters exploit attempts 2226 relying on knowledge of the location of kernel internals. 2227 2228 It is the bootloader's job to provide entropy, by passing a 2229 random u64 value in /chosen/kaslr-seed at kernel entry. 2230 2231 When booting via the UEFI stub, it will invoke the firmware's 2232 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2233 to the kernel proper. In addition, it will randomise the physical 2234 location of the kernel Image as well. 2235 2236 If unsure, say N. 2237 2238config RANDOMIZE_MODULE_REGION_FULL 2239 bool "Randomize the module region over a 2 GB range" 2240 depends on RANDOMIZE_BASE 2241 default y 2242 help 2243 Randomizes the location of the module region inside a 2 GB window 2244 covering the core kernel. This way, it is less likely for modules 2245 to leak information about the location of core kernel data structures 2246 but it does imply that function calls between modules and the core 2247 kernel will need to be resolved via veneers in the module PLT. 2248 2249 When this option is not set, the module region will be randomized over 2250 a limited range that contains the [_stext, _etext] interval of the 2251 core kernel, so branch relocations are almost always in range unless 2252 the region is exhausted. In this particular case of region 2253 exhaustion, modules might be able to fall back to a larger 2GB area. 2254 2255config CC_HAVE_STACKPROTECTOR_SYSREG 2256 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2257 2258config STACKPROTECTOR_PER_TASK 2259 def_bool y 2260 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2261 2262config UNWIND_PATCH_PAC_INTO_SCS 2263 bool "Enable shadow call stack dynamically using code patching" 2264 # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated 2265 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2266 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2267 depends on SHADOW_CALL_STACK 2268 select UNWIND_TABLES 2269 select DYNAMIC_SCS 2270 2271config ARM64_CONTPTE 2272 bool "Contiguous PTE mappings for user memory" if EXPERT 2273 depends on TRANSPARENT_HUGEPAGE 2274 default y 2275 help 2276 When enabled, user mappings are configured using the PTE contiguous 2277 bit, for any mappings that meet the size and alignment requirements. 2278 This reduces TLB pressure and improves performance. 2279 2280endmenu # "Kernel Features" 2281 2282menu "Boot options" 2283 2284config ARM64_ACPI_PARKING_PROTOCOL 2285 bool "Enable support for the ARM64 ACPI parking protocol" 2286 depends on ACPI 2287 help 2288 Enable support for the ARM64 ACPI parking protocol. If disabled 2289 the kernel will not allow booting through the ARM64 ACPI parking 2290 protocol even if the corresponding data is present in the ACPI 2291 MADT table. 2292 2293config CMDLINE 2294 string "Default kernel command string" 2295 default "" 2296 help 2297 Provide a set of default command-line options at build time by 2298 entering them here. As a minimum, you should specify the the 2299 root device (e.g. root=/dev/nfs). 2300 2301choice 2302 prompt "Kernel command line type" 2303 depends on CMDLINE != "" 2304 default CMDLINE_FROM_BOOTLOADER 2305 help 2306 Choose how the kernel will handle the provided default kernel 2307 command line string. 2308 2309config CMDLINE_FROM_BOOTLOADER 2310 bool "Use bootloader kernel arguments if available" 2311 help 2312 Uses the command-line options passed by the boot loader. If 2313 the boot loader doesn't provide any, the default kernel command 2314 string provided in CMDLINE will be used. 2315 2316config CMDLINE_FORCE 2317 bool "Always use the default kernel command string" 2318 help 2319 Always use the default kernel command string, even if the boot 2320 loader passes other arguments to the kernel. 2321 This is useful if you cannot or don't want to change the 2322 command-line options your boot loader passes to the kernel. 2323 2324endchoice 2325 2326config EFI_STUB 2327 bool 2328 2329config EFI 2330 bool "UEFI runtime support" 2331 depends on OF && !CPU_BIG_ENDIAN 2332 depends on KERNEL_MODE_NEON 2333 select ARCH_SUPPORTS_ACPI 2334 select LIBFDT 2335 select UCS2_STRING 2336 select EFI_PARAMS_FROM_FDT 2337 select EFI_RUNTIME_WRAPPERS 2338 select EFI_STUB 2339 select EFI_GENERIC_STUB 2340 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2341 default y 2342 help 2343 This option provides support for runtime services provided 2344 by UEFI firmware (such as non-volatile variables, realtime 2345 clock, and platform reset). A UEFI stub is also provided to 2346 allow the kernel to be booted as an EFI application. This 2347 is only useful on systems that have UEFI firmware. 2348 2349config COMPRESSED_INSTALL 2350 bool "Install compressed image by default" 2351 help 2352 This makes the regular "make install" install the compressed 2353 image we built, not the legacy uncompressed one. 2354 2355 You can check that a compressed image works for you by doing 2356 "make zinstall" first, and verifying that everything is fine 2357 in your environment before making "make install" do this for 2358 you. 2359 2360config DMI 2361 bool "Enable support for SMBIOS (DMI) tables" 2362 depends on EFI 2363 default y 2364 help 2365 This enables SMBIOS/DMI feature for systems. 2366 2367 This option is only useful on systems that have UEFI firmware. 2368 However, even with this option, the resultant kernel should 2369 continue to boot on existing non-UEFI platforms. 2370 2371endmenu # "Boot options" 2372 2373menu "Power management options" 2374 2375source "kernel/power/Kconfig" 2376 2377config ARCH_HIBERNATION_POSSIBLE 2378 def_bool y 2379 depends on CPU_PM 2380 2381config ARCH_HIBERNATION_HEADER 2382 def_bool y 2383 depends on HIBERNATION 2384 2385config ARCH_SUSPEND_POSSIBLE 2386 def_bool y 2387 2388endmenu # "Power management options" 2389 2390menu "CPU Power Management" 2391 2392source "drivers/cpuidle/Kconfig" 2393 2394source "drivers/cpufreq/Kconfig" 2395 2396endmenu # "CPU Power Management" 2397 2398source "drivers/acpi/Kconfig" 2399 2400source "arch/arm64/kvm/Kconfig" 2401 2402