1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 15 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 16 select ARCH_ENABLE_MEMORY_HOTPLUG 17 select ARCH_ENABLE_MEMORY_HOTREMOVE 18 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 19 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 20 select ARCH_HAS_CACHE_LINE_SIZE 21 select ARCH_HAS_DEBUG_VIRTUAL 22 select ARCH_HAS_DEBUG_VM_PGTABLE 23 select ARCH_HAS_DMA_PREP_COHERENT 24 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 25 select ARCH_HAS_FAST_MULTIPLIER 26 select ARCH_HAS_FORTIFY_SOURCE 27 select ARCH_HAS_GCOV_PROFILE_ALL 28 select ARCH_HAS_GIGANTIC_PAGE 29 select ARCH_HAS_KCOV 30 select ARCH_HAS_KEEPINITRD 31 select ARCH_HAS_MEMBARRIER_SYNC_CORE 32 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 33 select ARCH_HAS_PTE_DEVMAP 34 select ARCH_HAS_PTE_SPECIAL 35 select ARCH_HAS_SETUP_DMA_OPS 36 select ARCH_HAS_SET_DIRECT_MAP 37 select ARCH_HAS_SET_MEMORY 38 select ARCH_STACKWALK 39 select ARCH_HAS_STRICT_KERNEL_RWX 40 select ARCH_HAS_STRICT_MODULE_RWX 41 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 42 select ARCH_HAS_SYNC_DMA_FOR_CPU 43 select ARCH_HAS_SYSCALL_WRAPPER 44 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 45 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 46 select ARCH_HAS_ZONE_DMA_SET if EXPERT 47 select ARCH_HAVE_ELF_PROT 48 select ARCH_HAVE_NMI_SAFE_CMPXCHG 49 select ARCH_INLINE_READ_LOCK if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 51 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 52 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 55 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 56 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 59 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 60 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 63 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 64 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 65 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 66 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 69 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 70 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 73 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 74 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 75 select ARCH_KEEP_MEMBLOCK 76 select ARCH_USE_CMPXCHG_LOCKREF 77 select ARCH_USE_GNU_PROPERTY 78 select ARCH_USE_MEMTEST 79 select ARCH_USE_QUEUED_RWLOCKS 80 select ARCH_USE_QUEUED_SPINLOCKS 81 select ARCH_USE_SYM_ANNOTATIONS 82 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 83 select ARCH_SUPPORTS_HUGETLBFS 84 select ARCH_SUPPORTS_MEMORY_FAILURE 85 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 86 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 87 select ARCH_SUPPORTS_LTO_CLANG_THIN 88 select ARCH_SUPPORTS_CFI_CLANG 89 select ARCH_SUPPORTS_ATOMIC_RMW 90 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 91 select ARCH_SUPPORTS_NUMA_BALANCING 92 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 93 select ARCH_WANT_DEFAULT_BPF_JIT 94 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 95 select ARCH_WANT_FRAME_POINTERS 96 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 97 select ARCH_WANT_LD_ORPHAN_WARN 98 select ARCH_WANTS_NO_INSTR 99 select ARCH_HAS_UBSAN_SANITIZE_ALL 100 select ARM_AMBA 101 select ARM_ARCH_TIMER 102 select ARM_GIC 103 select AUDIT_ARCH_COMPAT_GENERIC 104 select ARM_GIC_V2M if PCI 105 select ARM_GIC_V3 106 select ARM_GIC_V3_ITS if PCI 107 select ARM_PSCI_FW 108 select BUILDTIME_TABLE_SORT 109 select CLONE_BACKWARDS 110 select COMMON_CLK 111 select CPU_PM if (SUSPEND || CPU_IDLE) 112 select CRC32 113 select DCACHE_WORD_ACCESS 114 select DMA_DIRECT_REMAP 115 select EDAC_SUPPORT 116 select FRAME_POINTER 117 select GENERIC_ALLOCATOR 118 select GENERIC_ARCH_TOPOLOGY 119 select GENERIC_CLOCKEVENTS_BROADCAST 120 select GENERIC_CPU_AUTOPROBE 121 select GENERIC_CPU_VULNERABILITIES 122 select GENERIC_EARLY_IOREMAP 123 select GENERIC_IDLE_POLL_SETUP 124 select GENERIC_IRQ_IPI 125 select GENERIC_IRQ_PROBE 126 select GENERIC_IRQ_SHOW 127 select GENERIC_IRQ_SHOW_LEVEL 128 select GENERIC_LIB_DEVMEM_IS_ALLOWED 129 select GENERIC_PCI_IOMAP 130 select GENERIC_PTDUMP 131 select GENERIC_SCHED_CLOCK 132 select GENERIC_SMP_IDLE_THREAD 133 select GENERIC_TIME_VSYSCALL 134 select GENERIC_GETTIMEOFDAY 135 select GENERIC_VDSO_TIME_NS 136 select HARDIRQS_SW_RESEND 137 select HAVE_MOVE_PMD 138 select HAVE_MOVE_PUD 139 select HAVE_PCI 140 select HAVE_ACPI_APEI if (ACPI && EFI) 141 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 142 select HAVE_ARCH_AUDITSYSCALL 143 select HAVE_ARCH_BITREVERSE 144 select HAVE_ARCH_COMPILER_H 145 select HAVE_ARCH_HUGE_VMAP 146 select HAVE_ARCH_JUMP_LABEL 147 select HAVE_ARCH_JUMP_LABEL_RELATIVE 148 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 149 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 150 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 151 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 152 # Some instrumentation may be unsound, hence EXPERT 153 select HAVE_ARCH_KCSAN if EXPERT 154 select HAVE_ARCH_KFENCE 155 select HAVE_ARCH_KGDB 156 select HAVE_ARCH_MMAP_RND_BITS 157 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 158 select HAVE_ARCH_PREL32_RELOCATIONS 159 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 160 select HAVE_ARCH_SECCOMP_FILTER 161 select HAVE_ARCH_STACKLEAK 162 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 163 select HAVE_ARCH_TRACEHOOK 164 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 165 select HAVE_ARCH_VMAP_STACK 166 select HAVE_ARM_SMCCC 167 select HAVE_ASM_MODVERSIONS 168 select HAVE_EBPF_JIT 169 select HAVE_C_RECORDMCOUNT 170 select HAVE_CMPXCHG_DOUBLE 171 select HAVE_CMPXCHG_LOCAL 172 select HAVE_CONTEXT_TRACKING 173 select HAVE_DEBUG_KMEMLEAK 174 select HAVE_DMA_CONTIGUOUS 175 select HAVE_DYNAMIC_FTRACE 176 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 177 if $(cc-option,-fpatchable-function-entry=2) 178 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 179 if DYNAMIC_FTRACE_WITH_REGS 180 select HAVE_EFFICIENT_UNALIGNED_ACCESS 181 select HAVE_FAST_GUP 182 select HAVE_FTRACE_MCOUNT_RECORD 183 select HAVE_FUNCTION_TRACER 184 select HAVE_FUNCTION_ERROR_INJECTION 185 select HAVE_FUNCTION_GRAPH_TRACER 186 select HAVE_GCC_PLUGINS 187 select HAVE_HW_BREAKPOINT if PERF_EVENTS 188 select HAVE_IRQ_TIME_ACCOUNTING 189 select HAVE_KVM 190 select HAVE_NMI 191 select HAVE_PATA_PLATFORM 192 select HAVE_PERF_EVENTS 193 select HAVE_PERF_REGS 194 select HAVE_PERF_USER_STACK_DUMP 195 select HAVE_REGS_AND_STACK_ACCESS_API 196 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 197 select HAVE_FUNCTION_ARG_ACCESS_API 198 select MMU_GATHER_RCU_TABLE_FREE 199 select HAVE_RSEQ 200 select HAVE_STACKPROTECTOR 201 select HAVE_SYSCALL_TRACEPOINTS 202 select HAVE_KPROBES 203 select HAVE_KRETPROBES 204 select HAVE_GENERIC_VDSO 205 select IOMMU_DMA if IOMMU_SUPPORT 206 select IRQ_DOMAIN 207 select IRQ_FORCED_THREADING 208 select KASAN_VMALLOC if KASAN_GENERIC 209 select MODULES_USE_ELF_RELA 210 select NEED_DMA_MAP_STATE 211 select NEED_SG_DMA_LENGTH 212 select OF 213 select OF_EARLY_FLATTREE 214 select PCI_DOMAINS_GENERIC if PCI 215 select PCI_ECAM if (ACPI && PCI) 216 select PCI_SYSCALL if PCI 217 select POWER_RESET 218 select POWER_SUPPLY 219 select SPARSE_IRQ 220 select SWIOTLB 221 select SYSCTL_EXCEPTION_TRACE 222 select THREAD_INFO_IN_TASK 223 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 224 select TRACE_IRQFLAGS_SUPPORT 225 help 226 ARM 64-bit (AArch64) Linux support. 227 228config 64BIT 229 def_bool y 230 231config MMU 232 def_bool y 233 234config ARM64_PAGE_SHIFT 235 int 236 default 16 if ARM64_64K_PAGES 237 default 14 if ARM64_16K_PAGES 238 default 12 239 240config ARM64_CONT_PTE_SHIFT 241 int 242 default 5 if ARM64_64K_PAGES 243 default 7 if ARM64_16K_PAGES 244 default 4 245 246config ARM64_CONT_PMD_SHIFT 247 int 248 default 5 if ARM64_64K_PAGES 249 default 5 if ARM64_16K_PAGES 250 default 4 251 252config ARCH_MMAP_RND_BITS_MIN 253 default 14 if ARM64_64K_PAGES 254 default 16 if ARM64_16K_PAGES 255 default 18 256 257# max bits determined by the following formula: 258# VA_BITS - PAGE_SHIFT - 3 259config ARCH_MMAP_RND_BITS_MAX 260 default 19 if ARM64_VA_BITS=36 261 default 24 if ARM64_VA_BITS=39 262 default 27 if ARM64_VA_BITS=42 263 default 30 if ARM64_VA_BITS=47 264 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 265 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 266 default 33 if ARM64_VA_BITS=48 267 default 14 if ARM64_64K_PAGES 268 default 16 if ARM64_16K_PAGES 269 default 18 270 271config ARCH_MMAP_RND_COMPAT_BITS_MIN 272 default 7 if ARM64_64K_PAGES 273 default 9 if ARM64_16K_PAGES 274 default 11 275 276config ARCH_MMAP_RND_COMPAT_BITS_MAX 277 default 16 278 279config NO_IOPORT_MAP 280 def_bool y if !PCI 281 282config STACKTRACE_SUPPORT 283 def_bool y 284 285config ILLEGAL_POINTER_VALUE 286 hex 287 default 0xdead000000000000 288 289config LOCKDEP_SUPPORT 290 def_bool y 291 292config GENERIC_BUG 293 def_bool y 294 depends on BUG 295 296config GENERIC_BUG_RELATIVE_POINTERS 297 def_bool y 298 depends on GENERIC_BUG 299 300config GENERIC_HWEIGHT 301 def_bool y 302 303config GENERIC_CSUM 304 def_bool y 305 306config GENERIC_CALIBRATE_DELAY 307 def_bool y 308 309config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 310 def_bool y 311 312config SMP 313 def_bool y 314 315config KERNEL_MODE_NEON 316 def_bool y 317 318config FIX_EARLYCON_MEM 319 def_bool y 320 321config PGTABLE_LEVELS 322 int 323 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 324 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 325 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 326 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 327 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 328 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 329 330config ARCH_SUPPORTS_UPROBES 331 def_bool y 332 333config ARCH_PROC_KCORE_TEXT 334 def_bool y 335 336config BROKEN_GAS_INST 337 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 338 339config KASAN_SHADOW_OFFSET 340 hex 341 depends on KASAN_GENERIC || KASAN_SW_TAGS 342 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 343 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 344 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 345 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 346 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 347 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 348 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 349 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 350 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 351 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 352 default 0xffffffffffffffff 353 354source "arch/arm64/Kconfig.platforms" 355 356menu "Kernel Features" 357 358menu "ARM errata workarounds via the alternatives framework" 359 360config ARM64_WORKAROUND_CLEAN_CACHE 361 bool 362 363config ARM64_ERRATUM_826319 364 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 365 default y 366 select ARM64_WORKAROUND_CLEAN_CACHE 367 help 368 This option adds an alternative code sequence to work around ARM 369 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 370 AXI master interface and an L2 cache. 371 372 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 373 and is unable to accept a certain write via this interface, it will 374 not progress on read data presented on the read data channel and the 375 system can deadlock. 376 377 The workaround promotes data cache clean instructions to 378 data cache clean-and-invalidate. 379 Please note that this does not necessarily enable the workaround, 380 as it depends on the alternative framework, which will only patch 381 the kernel if an affected CPU is detected. 382 383 If unsure, say Y. 384 385config ARM64_ERRATUM_827319 386 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 387 default y 388 select ARM64_WORKAROUND_CLEAN_CACHE 389 help 390 This option adds an alternative code sequence to work around ARM 391 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 392 master interface and an L2 cache. 393 394 Under certain conditions this erratum can cause a clean line eviction 395 to occur at the same time as another transaction to the same address 396 on the AMBA 5 CHI interface, which can cause data corruption if the 397 interconnect reorders the two transactions. 398 399 The workaround promotes data cache clean instructions to 400 data cache clean-and-invalidate. 401 Please note that this does not necessarily enable the workaround, 402 as it depends on the alternative framework, which will only patch 403 the kernel if an affected CPU is detected. 404 405 If unsure, say Y. 406 407config ARM64_ERRATUM_824069 408 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 409 default y 410 select ARM64_WORKAROUND_CLEAN_CACHE 411 help 412 This option adds an alternative code sequence to work around ARM 413 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 414 to a coherent interconnect. 415 416 If a Cortex-A53 processor is executing a store or prefetch for 417 write instruction at the same time as a processor in another 418 cluster is executing a cache maintenance operation to the same 419 address, then this erratum might cause a clean cache line to be 420 incorrectly marked as dirty. 421 422 The workaround promotes data cache clean instructions to 423 data cache clean-and-invalidate. 424 Please note that this option does not necessarily enable the 425 workaround, as it depends on the alternative framework, which will 426 only patch the kernel if an affected CPU is detected. 427 428 If unsure, say Y. 429 430config ARM64_ERRATUM_819472 431 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 432 default y 433 select ARM64_WORKAROUND_CLEAN_CACHE 434 help 435 This option adds an alternative code sequence to work around ARM 436 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 437 present when it is connected to a coherent interconnect. 438 439 If the processor is executing a load and store exclusive sequence at 440 the same time as a processor in another cluster is executing a cache 441 maintenance operation to the same address, then this erratum might 442 cause data corruption. 443 444 The workaround promotes data cache clean instructions to 445 data cache clean-and-invalidate. 446 Please note that this does not necessarily enable the workaround, 447 as it depends on the alternative framework, which will only patch 448 the kernel if an affected CPU is detected. 449 450 If unsure, say Y. 451 452config ARM64_ERRATUM_832075 453 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 454 default y 455 help 456 This option adds an alternative code sequence to work around ARM 457 erratum 832075 on Cortex-A57 parts up to r1p2. 458 459 Affected Cortex-A57 parts might deadlock when exclusive load/store 460 instructions to Write-Back memory are mixed with Device loads. 461 462 The workaround is to promote device loads to use Load-Acquire 463 semantics. 464 Please note that this does not necessarily enable the workaround, 465 as it depends on the alternative framework, which will only patch 466 the kernel if an affected CPU is detected. 467 468 If unsure, say Y. 469 470config ARM64_ERRATUM_834220 471 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 472 depends on KVM 473 default y 474 help 475 This option adds an alternative code sequence to work around ARM 476 erratum 834220 on Cortex-A57 parts up to r1p2. 477 478 Affected Cortex-A57 parts might report a Stage 2 translation 479 fault as the result of a Stage 1 fault for load crossing a 480 page boundary when there is a permission or device memory 481 alignment fault at Stage 1 and a translation fault at Stage 2. 482 483 The workaround is to verify that the Stage 1 translation 484 doesn't generate a fault before handling the Stage 2 fault. 485 Please note that this does not necessarily enable the workaround, 486 as it depends on the alternative framework, which will only patch 487 the kernel if an affected CPU is detected. 488 489 If unsure, say Y. 490 491config ARM64_ERRATUM_845719 492 bool "Cortex-A53: 845719: a load might read incorrect data" 493 depends on COMPAT 494 default y 495 help 496 This option adds an alternative code sequence to work around ARM 497 erratum 845719 on Cortex-A53 parts up to r0p4. 498 499 When running a compat (AArch32) userspace on an affected Cortex-A53 500 part, a load at EL0 from a virtual address that matches the bottom 32 501 bits of the virtual address used by a recent load at (AArch64) EL1 502 might return incorrect data. 503 504 The workaround is to write the contextidr_el1 register on exception 505 return to a 32-bit task. 506 Please note that this does not necessarily enable the workaround, 507 as it depends on the alternative framework, which will only patch 508 the kernel if an affected CPU is detected. 509 510 If unsure, say Y. 511 512config ARM64_ERRATUM_843419 513 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 514 default y 515 select ARM64_MODULE_PLTS if MODULES 516 help 517 This option links the kernel with '--fix-cortex-a53-843419' and 518 enables PLT support to replace certain ADRP instructions, which can 519 cause subsequent memory accesses to use an incorrect address on 520 Cortex-A53 parts up to r0p4. 521 522 If unsure, say Y. 523 524config ARM64_LD_HAS_FIX_ERRATUM_843419 525 def_bool $(ld-option,--fix-cortex-a53-843419) 526 527config ARM64_ERRATUM_1024718 528 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 529 default y 530 help 531 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 532 533 Affected Cortex-A55 cores (all revisions) could cause incorrect 534 update of the hardware dirty bit when the DBM/AP bits are updated 535 without a break-before-make. The workaround is to disable the usage 536 of hardware DBM locally on the affected cores. CPUs not affected by 537 this erratum will continue to use the feature. 538 539 If unsure, say Y. 540 541config ARM64_ERRATUM_1418040 542 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 543 default y 544 depends on COMPAT 545 help 546 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 547 errata 1188873 and 1418040. 548 549 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 550 cause register corruption when accessing the timer registers 551 from AArch32 userspace. 552 553 If unsure, say Y. 554 555config ARM64_WORKAROUND_SPECULATIVE_AT 556 bool 557 558config ARM64_ERRATUM_1165522 559 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 560 default y 561 select ARM64_WORKAROUND_SPECULATIVE_AT 562 help 563 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 564 565 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 566 corrupted TLBs by speculating an AT instruction during a guest 567 context switch. 568 569 If unsure, say Y. 570 571config ARM64_ERRATUM_1319367 572 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 573 default y 574 select ARM64_WORKAROUND_SPECULATIVE_AT 575 help 576 This option adds work arounds for ARM Cortex-A57 erratum 1319537 577 and A72 erratum 1319367 578 579 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 580 speculating an AT instruction during a guest context switch. 581 582 If unsure, say Y. 583 584config ARM64_ERRATUM_1530923 585 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 586 default y 587 select ARM64_WORKAROUND_SPECULATIVE_AT 588 help 589 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 590 591 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 592 corrupted TLBs by speculating an AT instruction during a guest 593 context switch. 594 595 If unsure, say Y. 596 597config ARM64_WORKAROUND_REPEAT_TLBI 598 bool 599 600config ARM64_ERRATUM_1286807 601 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 602 default y 603 select ARM64_WORKAROUND_REPEAT_TLBI 604 help 605 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 606 607 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 608 address for a cacheable mapping of a location is being 609 accessed by a core while another core is remapping the virtual 610 address to a new physical page using the recommended 611 break-before-make sequence, then under very rare circumstances 612 TLBI+DSB completes before a read using the translation being 613 invalidated has been observed by other observers. The 614 workaround repeats the TLBI+DSB operation. 615 616config ARM64_ERRATUM_1463225 617 bool "Cortex-A76: Software Step might prevent interrupt recognition" 618 default y 619 help 620 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 621 622 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 623 of a system call instruction (SVC) can prevent recognition of 624 subsequent interrupts when software stepping is disabled in the 625 exception handler of the system call and either kernel debugging 626 is enabled or VHE is in use. 627 628 Work around the erratum by triggering a dummy step exception 629 when handling a system call from a task that is being stepped 630 in a VHE configuration of the kernel. 631 632 If unsure, say Y. 633 634config ARM64_ERRATUM_1542419 635 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 636 default y 637 help 638 This option adds a workaround for ARM Neoverse-N1 erratum 639 1542419. 640 641 Affected Neoverse-N1 cores could execute a stale instruction when 642 modified by another CPU. The workaround depends on a firmware 643 counterpart. 644 645 Workaround the issue by hiding the DIC feature from EL0. This 646 forces user-space to perform cache maintenance. 647 648 If unsure, say Y. 649 650config ARM64_ERRATUM_1508412 651 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 652 default y 653 help 654 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 655 656 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 657 of a store-exclusive or read of PAR_EL1 and a load with device or 658 non-cacheable memory attributes. The workaround depends on a firmware 659 counterpart. 660 661 KVM guests must also have the workaround implemented or they can 662 deadlock the system. 663 664 Work around the issue by inserting DMB SY barriers around PAR_EL1 665 register reads and warning KVM users. The DMB barrier is sufficient 666 to prevent a speculative PAR_EL1 read. 667 668 If unsure, say Y. 669 670config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 671 bool 672 673config ARM64_ERRATUM_2051678 674 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 675 default y 676 help 677 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 678 Affected Coretex-A510 might not respect the ordering rules for 679 hardware update of the page table's dirty bit. The workaround 680 is to not enable the feature on affected CPUs. 681 682 If unsure, say Y. 683 684config ARM64_ERRATUM_2077057 685 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 686 help 687 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 688 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 689 expected, but a Pointer Authentication trap is taken instead. The 690 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 691 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 692 693 This can only happen when EL2 is stepping EL1. 694 695 When these conditions occur, the SPSR_EL2 value is unchanged from the 696 previous guest entry, and can be restored from the in-memory copy. 697 698 If unsure, say Y. 699 700config ARM64_ERRATUM_2119858 701 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 702 default y 703 depends on CORESIGHT_TRBE 704 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 705 help 706 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 707 708 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 709 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 710 the event of a WRAP event. 711 712 Work around the issue by always making sure we move the TRBPTR_EL1 by 713 256 bytes before enabling the buffer and filling the first 256 bytes of 714 the buffer with ETM ignore packets upon disabling. 715 716 If unsure, say Y. 717 718config ARM64_ERRATUM_2139208 719 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 720 default y 721 depends on CORESIGHT_TRBE 722 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 723 help 724 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 725 726 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 727 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 728 the event of a WRAP event. 729 730 Work around the issue by always making sure we move the TRBPTR_EL1 by 731 256 bytes before enabling the buffer and filling the first 256 bytes of 732 the buffer with ETM ignore packets upon disabling. 733 734 If unsure, say Y. 735 736config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 737 bool 738 739config ARM64_ERRATUM_2054223 740 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 741 default y 742 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 743 help 744 Enable workaround for ARM Cortex-A710 erratum 2054223 745 746 Affected cores may fail to flush the trace data on a TSB instruction, when 747 the PE is in trace prohibited state. This will cause losing a few bytes 748 of the trace cached. 749 750 Workaround is to issue two TSB consecutively on affected cores. 751 752 If unsure, say Y. 753 754config ARM64_ERRATUM_2067961 755 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 756 default y 757 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 758 help 759 Enable workaround for ARM Neoverse-N2 erratum 2067961 760 761 Affected cores may fail to flush the trace data on a TSB instruction, when 762 the PE is in trace prohibited state. This will cause losing a few bytes 763 of the trace cached. 764 765 Workaround is to issue two TSB consecutively on affected cores. 766 767 If unsure, say Y. 768 769config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 770 bool 771 772config ARM64_ERRATUM_2253138 773 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 774 depends on CORESIGHT_TRBE 775 default y 776 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 777 help 778 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 779 780 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 781 for TRBE. Under some conditions, the TRBE might generate a write to the next 782 virtually addressed page following the last page of the TRBE address space 783 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 784 785 Work around this in the driver by always making sure that there is a 786 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 787 788 If unsure, say Y. 789 790config ARM64_ERRATUM_2224489 791 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 792 depends on CORESIGHT_TRBE 793 default y 794 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 795 help 796 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 797 798 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 799 for TRBE. Under some conditions, the TRBE might generate a write to the next 800 virtually addressed page following the last page of the TRBE address space 801 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 802 803 Work around this in the driver by always making sure that there is a 804 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 805 806 If unsure, say Y. 807 808config ARM64_ERRATUM_2064142 809 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 810 depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in 811 default y 812 help 813 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 814 815 Affected Cortex-A510 core might fail to write into system registers after the 816 TRBE has been disabled. Under some conditions after the TRBE has been disabled 817 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 818 and TRBTRG_EL1 will be ignored and will not be effected. 819 820 Work around this in the driver by executing TSB CSYNC and DSB after collection 821 is stopped and before performing a system register write to one of the affected 822 registers. 823 824 If unsure, say Y. 825 826config ARM64_ERRATUM_2038923 827 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 828 depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in 829 default y 830 help 831 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 832 833 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 834 prohibited within the CPU. As a result, the trace buffer or trace buffer state 835 might be corrupted. This happens after TRBE buffer has been enabled by setting 836 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 837 execution changes from a context, in which trace is prohibited to one where it 838 isn't, or vice versa. In these mentioned conditions, the view of whether trace 839 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 840 the trace buffer state might be corrupted. 841 842 Work around this in the driver by preventing an inconsistent view of whether the 843 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 844 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 845 two ISB instructions if no ERET is to take place. 846 847 If unsure, say Y. 848 849config ARM64_ERRATUM_1902691 850 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 851 depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in 852 default y 853 help 854 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 855 856 Affected Cortex-A510 core might cause trace data corruption, when being written 857 into the memory. Effectively TRBE is broken and hence cannot be used to capture 858 trace data. 859 860 Work around this problem in the driver by just preventing TRBE initialization on 861 affected cpus. The firmware must have disabled the access to TRBE for the kernel 862 on such implementations. This will cover the kernel for any firmware that doesn't 863 do this already. 864 865 If unsure, say Y. 866 867config CAVIUM_ERRATUM_22375 868 bool "Cavium erratum 22375, 24313" 869 default y 870 help 871 Enable workaround for errata 22375 and 24313. 872 873 This implements two gicv3-its errata workarounds for ThunderX. Both 874 with a small impact affecting only ITS table allocation. 875 876 erratum 22375: only alloc 8MB table size 877 erratum 24313: ignore memory access type 878 879 The fixes are in ITS initialization and basically ignore memory access 880 type and table size provided by the TYPER and BASER registers. 881 882 If unsure, say Y. 883 884config CAVIUM_ERRATUM_23144 885 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 886 depends on NUMA 887 default y 888 help 889 ITS SYNC command hang for cross node io and collections/cpu mapping. 890 891 If unsure, say Y. 892 893config CAVIUM_ERRATUM_23154 894 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 895 default y 896 help 897 The gicv3 of ThunderX requires a modified version for 898 reading the IAR status to ensure data synchronization 899 (access to icc_iar1_el1 is not sync'ed before and after). 900 901 If unsure, say Y. 902 903config CAVIUM_ERRATUM_27456 904 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 905 default y 906 help 907 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 908 instructions may cause the icache to become corrupted if it 909 contains data for a non-current ASID. The fix is to 910 invalidate the icache when changing the mm context. 911 912 If unsure, say Y. 913 914config CAVIUM_ERRATUM_30115 915 bool "Cavium erratum 30115: Guest may disable interrupts in host" 916 default y 917 help 918 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 919 1.2, and T83 Pass 1.0, KVM guest execution may disable 920 interrupts in host. Trapping both GICv3 group-0 and group-1 921 accesses sidesteps the issue. 922 923 If unsure, say Y. 924 925config CAVIUM_TX2_ERRATUM_219 926 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 927 default y 928 help 929 On Cavium ThunderX2, a load, store or prefetch instruction between a 930 TTBR update and the corresponding context synchronizing operation can 931 cause a spurious Data Abort to be delivered to any hardware thread in 932 the CPU core. 933 934 Work around the issue by avoiding the problematic code sequence and 935 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 936 trap handler performs the corresponding register access, skips the 937 instruction and ensures context synchronization by virtue of the 938 exception return. 939 940 If unsure, say Y. 941 942config FUJITSU_ERRATUM_010001 943 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 944 default y 945 help 946 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 947 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 948 accesses may cause undefined fault (Data abort, DFSC=0b111111). 949 This fault occurs under a specific hardware condition when a 950 load/store instruction performs an address translation using: 951 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 952 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 953 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 954 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 955 956 The workaround is to ensure these bits are clear in TCR_ELx. 957 The workaround only affects the Fujitsu-A64FX. 958 959 If unsure, say Y. 960 961config HISILICON_ERRATUM_161600802 962 bool "Hip07 161600802: Erroneous redistributor VLPI base" 963 default y 964 help 965 The HiSilicon Hip07 SoC uses the wrong redistributor base 966 when issued ITS commands such as VMOVP and VMAPP, and requires 967 a 128kB offset to be applied to the target address in this commands. 968 969 If unsure, say Y. 970 971config QCOM_FALKOR_ERRATUM_1003 972 bool "Falkor E1003: Incorrect translation due to ASID change" 973 default y 974 help 975 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 976 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 977 in TTBR1_EL1, this situation only occurs in the entry trampoline and 978 then only for entries in the walk cache, since the leaf translation 979 is unchanged. Work around the erratum by invalidating the walk cache 980 entries for the trampoline before entering the kernel proper. 981 982config QCOM_FALKOR_ERRATUM_1009 983 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 984 default y 985 select ARM64_WORKAROUND_REPEAT_TLBI 986 help 987 On Falkor v1, the CPU may prematurely complete a DSB following a 988 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 989 one more time to fix the issue. 990 991 If unsure, say Y. 992 993config QCOM_QDF2400_ERRATUM_0065 994 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 995 default y 996 help 997 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 998 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 999 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1000 1001 If unsure, say Y. 1002 1003config QCOM_FALKOR_ERRATUM_E1041 1004 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1005 default y 1006 help 1007 Falkor CPU may speculatively fetch instructions from an improper 1008 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1009 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1010 1011 If unsure, say Y. 1012 1013config NVIDIA_CARMEL_CNP_ERRATUM 1014 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1015 default y 1016 help 1017 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1018 invalidate shared TLB entries installed by a different core, as it would 1019 on standard ARM cores. 1020 1021 If unsure, say Y. 1022 1023config SOCIONEXT_SYNQUACER_PREITS 1024 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1025 default y 1026 help 1027 Socionext Synquacer SoCs implement a separate h/w block to generate 1028 MSI doorbell writes with non-zero values for the device ID. 1029 1030 If unsure, say Y. 1031 1032endmenu 1033 1034 1035choice 1036 prompt "Page size" 1037 default ARM64_4K_PAGES 1038 help 1039 Page size (translation granule) configuration. 1040 1041config ARM64_4K_PAGES 1042 bool "4KB" 1043 help 1044 This feature enables 4KB pages support. 1045 1046config ARM64_16K_PAGES 1047 bool "16KB" 1048 help 1049 The system will use 16KB pages support. AArch32 emulation 1050 requires applications compiled with 16K (or a multiple of 16K) 1051 aligned segments. 1052 1053config ARM64_64K_PAGES 1054 bool "64KB" 1055 help 1056 This feature enables 64KB pages support (4KB by default) 1057 allowing only two levels of page tables and faster TLB 1058 look-up. AArch32 emulation requires applications compiled 1059 with 64K aligned segments. 1060 1061endchoice 1062 1063choice 1064 prompt "Virtual address space size" 1065 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 1066 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 1067 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 1068 help 1069 Allows choosing one of multiple possible virtual address 1070 space sizes. The level of translation table is determined by 1071 a combination of page size and virtual address space size. 1072 1073config ARM64_VA_BITS_36 1074 bool "36-bit" if EXPERT 1075 depends on ARM64_16K_PAGES 1076 1077config ARM64_VA_BITS_39 1078 bool "39-bit" 1079 depends on ARM64_4K_PAGES 1080 1081config ARM64_VA_BITS_42 1082 bool "42-bit" 1083 depends on ARM64_64K_PAGES 1084 1085config ARM64_VA_BITS_47 1086 bool "47-bit" 1087 depends on ARM64_16K_PAGES 1088 1089config ARM64_VA_BITS_48 1090 bool "48-bit" 1091 1092config ARM64_VA_BITS_52 1093 bool "52-bit" 1094 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 1095 help 1096 Enable 52-bit virtual addressing for userspace when explicitly 1097 requested via a hint to mmap(). The kernel will also use 52-bit 1098 virtual addresses for its own mappings (provided HW support for 1099 this feature is available, otherwise it reverts to 48-bit). 1100 1101 NOTE: Enabling 52-bit virtual addressing in conjunction with 1102 ARMv8.3 Pointer Authentication will result in the PAC being 1103 reduced from 7 bits to 3 bits, which may have a significant 1104 impact on its susceptibility to brute-force attacks. 1105 1106 If unsure, select 48-bit virtual addressing instead. 1107 1108endchoice 1109 1110config ARM64_FORCE_52BIT 1111 bool "Force 52-bit virtual addresses for userspace" 1112 depends on ARM64_VA_BITS_52 && EXPERT 1113 help 1114 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1115 to maintain compatibility with older software by providing 48-bit VAs 1116 unless a hint is supplied to mmap. 1117 1118 This configuration option disables the 48-bit compatibility logic, and 1119 forces all userspace addresses to be 52-bit on HW that supports it. One 1120 should only enable this configuration option for stress testing userspace 1121 memory management code. If unsure say N here. 1122 1123config ARM64_VA_BITS 1124 int 1125 default 36 if ARM64_VA_BITS_36 1126 default 39 if ARM64_VA_BITS_39 1127 default 42 if ARM64_VA_BITS_42 1128 default 47 if ARM64_VA_BITS_47 1129 default 48 if ARM64_VA_BITS_48 1130 default 52 if ARM64_VA_BITS_52 1131 1132choice 1133 prompt "Physical address space size" 1134 default ARM64_PA_BITS_48 1135 help 1136 Choose the maximum physical address range that the kernel will 1137 support. 1138 1139config ARM64_PA_BITS_48 1140 bool "48-bit" 1141 1142config ARM64_PA_BITS_52 1143 bool "52-bit (ARMv8.2)" 1144 depends on ARM64_64K_PAGES 1145 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1146 help 1147 Enable support for a 52-bit physical address space, introduced as 1148 part of the ARMv8.2-LPA extension. 1149 1150 With this enabled, the kernel will also continue to work on CPUs that 1151 do not support ARMv8.2-LPA, but with some added memory overhead (and 1152 minor performance overhead). 1153 1154endchoice 1155 1156config ARM64_PA_BITS 1157 int 1158 default 48 if ARM64_PA_BITS_48 1159 default 52 if ARM64_PA_BITS_52 1160 1161choice 1162 prompt "Endianness" 1163 default CPU_LITTLE_ENDIAN 1164 help 1165 Select the endianness of data accesses performed by the CPU. Userspace 1166 applications will need to be compiled and linked for the endianness 1167 that is selected here. 1168 1169config CPU_BIG_ENDIAN 1170 bool "Build big-endian kernel" 1171 depends on !LD_IS_LLD || LLD_VERSION >= 130000 1172 help 1173 Say Y if you plan on running a kernel with a big-endian userspace. 1174 1175config CPU_LITTLE_ENDIAN 1176 bool "Build little-endian kernel" 1177 help 1178 Say Y if you plan on running a kernel with a little-endian userspace. 1179 This is usually the case for distributions targeting arm64. 1180 1181endchoice 1182 1183config SCHED_MC 1184 bool "Multi-core scheduler support" 1185 help 1186 Multi-core scheduler support improves the CPU scheduler's decision 1187 making when dealing with multi-core CPU chips at a cost of slightly 1188 increased overhead in some places. If unsure say N here. 1189 1190config SCHED_CLUSTER 1191 bool "Cluster scheduler support" 1192 help 1193 Cluster scheduler support improves the CPU scheduler's decision 1194 making when dealing with machines that have clusters of CPUs. 1195 Cluster usually means a couple of CPUs which are placed closely 1196 by sharing mid-level caches, last-level cache tags or internal 1197 busses. 1198 1199config SCHED_SMT 1200 bool "SMT scheduler support" 1201 help 1202 Improves the CPU scheduler's decision making when dealing with 1203 MultiThreading at a cost of slightly increased overhead in some 1204 places. If unsure say N here. 1205 1206config NR_CPUS 1207 int "Maximum number of CPUs (2-4096)" 1208 range 2 4096 1209 default "256" 1210 1211config HOTPLUG_CPU 1212 bool "Support for hot-pluggable CPUs" 1213 select GENERIC_IRQ_MIGRATION 1214 help 1215 Say Y here to experiment with turning CPUs off and on. CPUs 1216 can be controlled through /sys/devices/system/cpu. 1217 1218# Common NUMA Features 1219config NUMA 1220 bool "NUMA Memory Allocation and Scheduler Support" 1221 select GENERIC_ARCH_NUMA 1222 select ACPI_NUMA if ACPI 1223 select OF_NUMA 1224 select HAVE_SETUP_PER_CPU_AREA 1225 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1226 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1227 select USE_PERCPU_NUMA_NODE_ID 1228 help 1229 Enable NUMA (Non-Uniform Memory Access) support. 1230 1231 The kernel will try to allocate memory used by a CPU on the 1232 local memory of the CPU and add some more 1233 NUMA awareness to the kernel. 1234 1235config NODES_SHIFT 1236 int "Maximum NUMA Nodes (as a power of 2)" 1237 range 1 10 1238 default "4" 1239 depends on NUMA 1240 help 1241 Specify the maximum number of NUMA Nodes available on the target 1242 system. Increases memory reserved to accommodate various tables. 1243 1244source "kernel/Kconfig.hz" 1245 1246config ARCH_SPARSEMEM_ENABLE 1247 def_bool y 1248 select SPARSEMEM_VMEMMAP_ENABLE 1249 select SPARSEMEM_VMEMMAP 1250 1251config HW_PERF_EVENTS 1252 def_bool y 1253 depends on ARM_PMU 1254 1255config ARCH_HAS_FILTER_PGPROT 1256 def_bool y 1257 1258# Supported by clang >= 7.0 1259config CC_HAVE_SHADOW_CALL_STACK 1260 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1261 1262config PARAVIRT 1263 bool "Enable paravirtualization code" 1264 help 1265 This changes the kernel so it can modify itself when it is run 1266 under a hypervisor, potentially improving performance significantly 1267 over full virtualization. 1268 1269config PARAVIRT_TIME_ACCOUNTING 1270 bool "Paravirtual steal time accounting" 1271 select PARAVIRT 1272 help 1273 Select this option to enable fine granularity task steal time 1274 accounting. Time spent executing other tasks in parallel with 1275 the current vCPU is discounted from the vCPU power. To account for 1276 that, there can be a small performance impact. 1277 1278 If in doubt, say N here. 1279 1280config KEXEC 1281 depends on PM_SLEEP_SMP 1282 select KEXEC_CORE 1283 bool "kexec system call" 1284 help 1285 kexec is a system call that implements the ability to shutdown your 1286 current kernel, and to start another kernel. It is like a reboot 1287 but it is independent of the system firmware. And like a reboot 1288 you can start any kernel with it, not just Linux. 1289 1290config KEXEC_FILE 1291 bool "kexec file based system call" 1292 select KEXEC_CORE 1293 select HAVE_IMA_KEXEC if IMA 1294 help 1295 This is new version of kexec system call. This system call is 1296 file based and takes file descriptors as system call argument 1297 for kernel and initramfs as opposed to list of segments as 1298 accepted by previous system call. 1299 1300config KEXEC_SIG 1301 bool "Verify kernel signature during kexec_file_load() syscall" 1302 depends on KEXEC_FILE 1303 help 1304 Select this option to verify a signature with loaded kernel 1305 image. If configured, any attempt of loading a image without 1306 valid signature will fail. 1307 1308 In addition to that option, you need to enable signature 1309 verification for the corresponding kernel image type being 1310 loaded in order for this to work. 1311 1312config KEXEC_IMAGE_VERIFY_SIG 1313 bool "Enable Image signature verification support" 1314 default y 1315 depends on KEXEC_SIG 1316 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1317 help 1318 Enable Image signature verification support. 1319 1320comment "Support for PE file signature verification disabled" 1321 depends on KEXEC_SIG 1322 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1323 1324config CRASH_DUMP 1325 bool "Build kdump crash kernel" 1326 help 1327 Generate crash dump after being started by kexec. This should 1328 be normally only set in special crash dump kernels which are 1329 loaded in the main kernel with kexec-tools into a specially 1330 reserved region and then later executed after a crash by 1331 kdump/kexec. 1332 1333 For more details see Documentation/admin-guide/kdump/kdump.rst 1334 1335config TRANS_TABLE 1336 def_bool y 1337 depends on HIBERNATION || KEXEC_CORE 1338 1339config XEN_DOM0 1340 def_bool y 1341 depends on XEN 1342 1343config XEN 1344 bool "Xen guest support on ARM64" 1345 depends on ARM64 && OF 1346 select SWIOTLB_XEN 1347 select PARAVIRT 1348 help 1349 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1350 1351config FORCE_MAX_ZONEORDER 1352 int 1353 default "14" if ARM64_64K_PAGES 1354 default "12" if ARM64_16K_PAGES 1355 default "11" 1356 help 1357 The kernel memory allocator divides physically contiguous memory 1358 blocks into "zones", where each zone is a power of two number of 1359 pages. This option selects the largest power of two that the kernel 1360 keeps in the memory allocator. If you need to allocate very large 1361 blocks of physically contiguous memory, then you may need to 1362 increase this value. 1363 1364 This config option is actually maximum order plus one. For example, 1365 a value of 11 means that the largest free memory block is 2^10 pages. 1366 1367 We make sure that we can allocate upto a HugePage size for each configuration. 1368 Hence we have : 1369 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1370 1371 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1372 4M allocations matching the default size used by generic code. 1373 1374config UNMAP_KERNEL_AT_EL0 1375 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1376 default y 1377 help 1378 Speculation attacks against some high-performance processors can 1379 be used to bypass MMU permission checks and leak kernel data to 1380 userspace. This can be defended against by unmapping the kernel 1381 when running in userspace, mapping it back in on exception entry 1382 via a trampoline page in the vector table. 1383 1384 If unsure, say Y. 1385 1386config RODATA_FULL_DEFAULT_ENABLED 1387 bool "Apply r/o permissions of VM areas also to their linear aliases" 1388 default y 1389 help 1390 Apply read-only attributes of VM areas to the linear alias of 1391 the backing pages as well. This prevents code or read-only data 1392 from being modified (inadvertently or intentionally) via another 1393 mapping of the same memory page. This additional enhancement can 1394 be turned off at runtime by passing rodata=[off|on] (and turned on 1395 with rodata=full if this option is set to 'n') 1396 1397 This requires the linear region to be mapped down to pages, 1398 which may adversely affect performance in some cases. 1399 1400config ARM64_SW_TTBR0_PAN 1401 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1402 help 1403 Enabling this option prevents the kernel from accessing 1404 user-space memory directly by pointing TTBR0_EL1 to a reserved 1405 zeroed area and reserved ASID. The user access routines 1406 restore the valid TTBR0_EL1 temporarily. 1407 1408config ARM64_TAGGED_ADDR_ABI 1409 bool "Enable the tagged user addresses syscall ABI" 1410 default y 1411 help 1412 When this option is enabled, user applications can opt in to a 1413 relaxed ABI via prctl() allowing tagged addresses to be passed 1414 to system calls as pointer arguments. For details, see 1415 Documentation/arm64/tagged-address-abi.rst. 1416 1417menuconfig COMPAT 1418 bool "Kernel support for 32-bit EL0" 1419 depends on ARM64_4K_PAGES || EXPERT 1420 select HAVE_UID16 1421 select OLD_SIGSUSPEND3 1422 select COMPAT_OLD_SIGACTION 1423 help 1424 This option enables support for a 32-bit EL0 running under a 64-bit 1425 kernel at EL1. AArch32-specific components such as system calls, 1426 the user helper functions, VFP support and the ptrace interface are 1427 handled appropriately by the kernel. 1428 1429 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1430 that you will only be able to execute AArch32 binaries that were compiled 1431 with page size aligned segments. 1432 1433 If you want to execute 32-bit userspace applications, say Y. 1434 1435if COMPAT 1436 1437config KUSER_HELPERS 1438 bool "Enable kuser helpers page for 32-bit applications" 1439 default y 1440 help 1441 Warning: disabling this option may break 32-bit user programs. 1442 1443 Provide kuser helpers to compat tasks. The kernel provides 1444 helper code to userspace in read only form at a fixed location 1445 to allow userspace to be independent of the CPU type fitted to 1446 the system. This permits binaries to be run on ARMv4 through 1447 to ARMv8 without modification. 1448 1449 See Documentation/arm/kernel_user_helpers.rst for details. 1450 1451 However, the fixed address nature of these helpers can be used 1452 by ROP (return orientated programming) authors when creating 1453 exploits. 1454 1455 If all of the binaries and libraries which run on your platform 1456 are built specifically for your platform, and make no use of 1457 these helpers, then you can turn this option off to hinder 1458 such exploits. However, in that case, if a binary or library 1459 relying on those helpers is run, it will not function correctly. 1460 1461 Say N here only if you are absolutely certain that you do not 1462 need these helpers; otherwise, the safe option is to say Y. 1463 1464config COMPAT_VDSO 1465 bool "Enable vDSO for 32-bit applications" 1466 depends on !CPU_BIG_ENDIAN 1467 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1468 select GENERIC_COMPAT_VDSO 1469 default y 1470 help 1471 Place in the process address space of 32-bit applications an 1472 ELF shared object providing fast implementations of gettimeofday 1473 and clock_gettime. 1474 1475 You must have a 32-bit build of glibc 2.22 or later for programs 1476 to seamlessly take advantage of this. 1477 1478config THUMB2_COMPAT_VDSO 1479 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1480 depends on COMPAT_VDSO 1481 default y 1482 help 1483 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1484 otherwise with '-marm'. 1485 1486menuconfig ARMV8_DEPRECATED 1487 bool "Emulate deprecated/obsolete ARMv8 instructions" 1488 depends on SYSCTL 1489 help 1490 Legacy software support may require certain instructions 1491 that have been deprecated or obsoleted in the architecture. 1492 1493 Enable this config to enable selective emulation of these 1494 features. 1495 1496 If unsure, say Y 1497 1498if ARMV8_DEPRECATED 1499 1500config SWP_EMULATION 1501 bool "Emulate SWP/SWPB instructions" 1502 help 1503 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1504 they are always undefined. Say Y here to enable software 1505 emulation of these instructions for userspace using LDXR/STXR. 1506 This feature can be controlled at runtime with the abi.swp 1507 sysctl which is disabled by default. 1508 1509 In some older versions of glibc [<=2.8] SWP is used during futex 1510 trylock() operations with the assumption that the code will not 1511 be preempted. This invalid assumption may be more likely to fail 1512 with SWP emulation enabled, leading to deadlock of the user 1513 application. 1514 1515 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1516 on an external transaction monitoring block called a global 1517 monitor to maintain update atomicity. If your system does not 1518 implement a global monitor, this option can cause programs that 1519 perform SWP operations to uncached memory to deadlock. 1520 1521 If unsure, say Y 1522 1523config CP15_BARRIER_EMULATION 1524 bool "Emulate CP15 Barrier instructions" 1525 help 1526 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1527 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1528 strongly recommended to use the ISB, DSB, and DMB 1529 instructions instead. 1530 1531 Say Y here to enable software emulation of these 1532 instructions for AArch32 userspace code. When this option is 1533 enabled, CP15 barrier usage is traced which can help 1534 identify software that needs updating. This feature can be 1535 controlled at runtime with the abi.cp15_barrier sysctl. 1536 1537 If unsure, say Y 1538 1539config SETEND_EMULATION 1540 bool "Emulate SETEND instruction" 1541 help 1542 The SETEND instruction alters the data-endianness of the 1543 AArch32 EL0, and is deprecated in ARMv8. 1544 1545 Say Y here to enable software emulation of the instruction 1546 for AArch32 userspace code. This feature can be controlled 1547 at runtime with the abi.setend sysctl. 1548 1549 Note: All the cpus on the system must have mixed endian support at EL0 1550 for this feature to be enabled. If a new CPU - which doesn't support mixed 1551 endian - is hotplugged in after this feature has been enabled, there could 1552 be unexpected results in the applications. 1553 1554 If unsure, say Y 1555endif 1556 1557endif 1558 1559menu "ARMv8.1 architectural features" 1560 1561config ARM64_HW_AFDBM 1562 bool "Support for hardware updates of the Access and Dirty page flags" 1563 default y 1564 help 1565 The ARMv8.1 architecture extensions introduce support for 1566 hardware updates of the access and dirty information in page 1567 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1568 capable processors, accesses to pages with PTE_AF cleared will 1569 set this bit instead of raising an access flag fault. 1570 Similarly, writes to read-only pages with the DBM bit set will 1571 clear the read-only bit (AP[2]) instead of raising a 1572 permission fault. 1573 1574 Kernels built with this configuration option enabled continue 1575 to work on pre-ARMv8.1 hardware and the performance impact is 1576 minimal. If unsure, say Y. 1577 1578config ARM64_PAN 1579 bool "Enable support for Privileged Access Never (PAN)" 1580 default y 1581 help 1582 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1583 prevents the kernel or hypervisor from accessing user-space (EL0) 1584 memory directly. 1585 1586 Choosing this option will cause any unprotected (not using 1587 copy_to_user et al) memory access to fail with a permission fault. 1588 1589 The feature is detected at runtime, and will remain as a 'nop' 1590 instruction if the cpu does not implement the feature. 1591 1592config AS_HAS_LDAPR 1593 def_bool $(as-instr,.arch_extension rcpc) 1594 1595config AS_HAS_LSE_ATOMICS 1596 def_bool $(as-instr,.arch_extension lse) 1597 1598config ARM64_LSE_ATOMICS 1599 bool 1600 default ARM64_USE_LSE_ATOMICS 1601 depends on AS_HAS_LSE_ATOMICS 1602 1603config ARM64_USE_LSE_ATOMICS 1604 bool "Atomic instructions" 1605 depends on JUMP_LABEL 1606 default y 1607 help 1608 As part of the Large System Extensions, ARMv8.1 introduces new 1609 atomic instructions that are designed specifically to scale in 1610 very large systems. 1611 1612 Say Y here to make use of these instructions for the in-kernel 1613 atomic routines. This incurs a small overhead on CPUs that do 1614 not support these instructions and requires the kernel to be 1615 built with binutils >= 2.25 in order for the new instructions 1616 to be used. 1617 1618endmenu 1619 1620menu "ARMv8.2 architectural features" 1621 1622config AS_HAS_ARMV8_2 1623 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1624 1625config AS_HAS_SHA3 1626 def_bool $(as-instr,.arch armv8.2-a+sha3) 1627 1628config ARM64_PMEM 1629 bool "Enable support for persistent memory" 1630 select ARCH_HAS_PMEM_API 1631 select ARCH_HAS_UACCESS_FLUSHCACHE 1632 help 1633 Say Y to enable support for the persistent memory API based on the 1634 ARMv8.2 DCPoP feature. 1635 1636 The feature is detected at runtime, and the kernel will use DC CVAC 1637 operations if DC CVAP is not supported (following the behaviour of 1638 DC CVAP itself if the system does not define a point of persistence). 1639 1640config ARM64_RAS_EXTN 1641 bool "Enable support for RAS CPU Extensions" 1642 default y 1643 help 1644 CPUs that support the Reliability, Availability and Serviceability 1645 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1646 errors, classify them and report them to software. 1647 1648 On CPUs with these extensions system software can use additional 1649 barriers to determine if faults are pending and read the 1650 classification from a new set of registers. 1651 1652 Selecting this feature will allow the kernel to use these barriers 1653 and access the new registers if the system supports the extension. 1654 Platform RAS features may additionally depend on firmware support. 1655 1656config ARM64_CNP 1657 bool "Enable support for Common Not Private (CNP) translations" 1658 default y 1659 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1660 help 1661 Common Not Private (CNP) allows translation table entries to 1662 be shared between different PEs in the same inner shareable 1663 domain, so the hardware can use this fact to optimise the 1664 caching of such entries in the TLB. 1665 1666 Selecting this option allows the CNP feature to be detected 1667 at runtime, and does not affect PEs that do not implement 1668 this feature. 1669 1670endmenu 1671 1672menu "ARMv8.3 architectural features" 1673 1674config ARM64_PTR_AUTH 1675 bool "Enable support for pointer authentication" 1676 default y 1677 help 1678 Pointer authentication (part of the ARMv8.3 Extensions) provides 1679 instructions for signing and authenticating pointers against secret 1680 keys, which can be used to mitigate Return Oriented Programming (ROP) 1681 and other attacks. 1682 1683 This option enables these instructions at EL0 (i.e. for userspace). 1684 Choosing this option will cause the kernel to initialise secret keys 1685 for each process at exec() time, with these keys being 1686 context-switched along with the process. 1687 1688 The feature is detected at runtime. If the feature is not present in 1689 hardware it will not be advertised to userspace/KVM guest nor will it 1690 be enabled. 1691 1692 If the feature is present on the boot CPU but not on a late CPU, then 1693 the late CPU will be parked. Also, if the boot CPU does not have 1694 address auth and the late CPU has then the late CPU will still boot 1695 but with the feature disabled. On such a system, this option should 1696 not be selected. 1697 1698config ARM64_PTR_AUTH_KERNEL 1699 bool "Use pointer authentication for kernel" 1700 default y 1701 depends on ARM64_PTR_AUTH 1702 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1703 # Modern compilers insert a .note.gnu.property section note for PAC 1704 # which is only understood by binutils starting with version 2.33.1. 1705 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1706 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1707 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1708 help 1709 If the compiler supports the -mbranch-protection or 1710 -msign-return-address flag (e.g. GCC 7 or later), then this option 1711 will cause the kernel itself to be compiled with return address 1712 protection. In this case, and if the target hardware is known to 1713 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1714 disabled with minimal loss of protection. 1715 1716 This feature works with FUNCTION_GRAPH_TRACER option only if 1717 DYNAMIC_FTRACE_WITH_REGS is enabled. 1718 1719config CC_HAS_BRANCH_PROT_PAC_RET 1720 # GCC 9 or later, clang 8 or later 1721 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1722 1723config CC_HAS_SIGN_RETURN_ADDRESS 1724 # GCC 7, 8 1725 def_bool $(cc-option,-msign-return-address=all) 1726 1727config AS_HAS_PAC 1728 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1729 1730config AS_HAS_CFI_NEGATE_RA_STATE 1731 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1732 1733endmenu 1734 1735menu "ARMv8.4 architectural features" 1736 1737config ARM64_AMU_EXTN 1738 bool "Enable support for the Activity Monitors Unit CPU extension" 1739 default y 1740 help 1741 The activity monitors extension is an optional extension introduced 1742 by the ARMv8.4 CPU architecture. This enables support for version 1 1743 of the activity monitors architecture, AMUv1. 1744 1745 To enable the use of this extension on CPUs that implement it, say Y. 1746 1747 Note that for architectural reasons, firmware _must_ implement AMU 1748 support when running on CPUs that present the activity monitors 1749 extension. The required support is present in: 1750 * Version 1.5 and later of the ARM Trusted Firmware 1751 1752 For kernels that have this configuration enabled but boot with broken 1753 firmware, you may need to say N here until the firmware is fixed. 1754 Otherwise you may experience firmware panics or lockups when 1755 accessing the counter registers. Even if you are not observing these 1756 symptoms, the values returned by the register reads might not 1757 correctly reflect reality. Most commonly, the value read will be 0, 1758 indicating that the counter is not enabled. 1759 1760config AS_HAS_ARMV8_4 1761 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1762 1763config ARM64_TLB_RANGE 1764 bool "Enable support for tlbi range feature" 1765 default y 1766 depends on AS_HAS_ARMV8_4 1767 help 1768 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1769 range of input addresses. 1770 1771 The feature introduces new assembly instructions, and they were 1772 support when binutils >= 2.30. 1773 1774endmenu 1775 1776menu "ARMv8.5 architectural features" 1777 1778config AS_HAS_ARMV8_5 1779 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1780 1781config ARM64_BTI 1782 bool "Branch Target Identification support" 1783 default y 1784 help 1785 Branch Target Identification (part of the ARMv8.5 Extensions) 1786 provides a mechanism to limit the set of locations to which computed 1787 branch instructions such as BR or BLR can jump. 1788 1789 To make use of BTI on CPUs that support it, say Y. 1790 1791 BTI is intended to provide complementary protection to other control 1792 flow integrity protection mechanisms, such as the Pointer 1793 authentication mechanism provided as part of the ARMv8.3 Extensions. 1794 For this reason, it does not make sense to enable this option without 1795 also enabling support for pointer authentication. Thus, when 1796 enabling this option you should also select ARM64_PTR_AUTH=y. 1797 1798 Userspace binaries must also be specifically compiled to make use of 1799 this mechanism. If you say N here or the hardware does not support 1800 BTI, such binaries can still run, but you get no additional 1801 enforcement of branch destinations. 1802 1803config ARM64_BTI_KERNEL 1804 bool "Use Branch Target Identification for kernel" 1805 default y 1806 depends on ARM64_BTI 1807 depends on ARM64_PTR_AUTH_KERNEL 1808 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1809 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1810 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1811 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 1812 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 1813 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1814 help 1815 Build the kernel with Branch Target Identification annotations 1816 and enable enforcement of this for kernel code. When this option 1817 is enabled and the system supports BTI all kernel code including 1818 modular code must have BTI enabled. 1819 1820config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1821 # GCC 9 or later, clang 8 or later 1822 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1823 1824config ARM64_E0PD 1825 bool "Enable support for E0PD" 1826 default y 1827 help 1828 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1829 that EL0 accesses made via TTBR1 always fault in constant time, 1830 providing similar benefits to KASLR as those provided by KPTI, but 1831 with lower overhead and without disrupting legitimate access to 1832 kernel memory such as SPE. 1833 1834 This option enables E0PD for TTBR1 where available. 1835 1836config ARCH_RANDOM 1837 bool "Enable support for random number generation" 1838 default y 1839 help 1840 Random number generation (part of the ARMv8.5 Extensions) 1841 provides a high bandwidth, cryptographically secure 1842 hardware random number generator. 1843 1844config ARM64_AS_HAS_MTE 1845 # Initial support for MTE went in binutils 2.32.0, checked with 1846 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1847 # as a late addition to the final architecture spec (LDGM/STGM) 1848 # is only supported in the newer 2.32.x and 2.33 binutils 1849 # versions, hence the extra "stgm" instruction check below. 1850 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1851 1852config ARM64_MTE 1853 bool "Memory Tagging Extension support" 1854 default y 1855 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1856 depends on AS_HAS_ARMV8_5 1857 depends on AS_HAS_LSE_ATOMICS 1858 # Required for tag checking in the uaccess routines 1859 depends on ARM64_PAN 1860 select ARCH_USES_HIGH_VMA_FLAGS 1861 help 1862 Memory Tagging (part of the ARMv8.5 Extensions) provides 1863 architectural support for run-time, always-on detection of 1864 various classes of memory error to aid with software debugging 1865 to eliminate vulnerabilities arising from memory-unsafe 1866 languages. 1867 1868 This option enables the support for the Memory Tagging 1869 Extension at EL0 (i.e. for userspace). 1870 1871 Selecting this option allows the feature to be detected at 1872 runtime. Any secondary CPU not implementing this feature will 1873 not be allowed a late bring-up. 1874 1875 Userspace binaries that want to use this feature must 1876 explicitly opt in. The mechanism for the userspace is 1877 described in: 1878 1879 Documentation/arm64/memory-tagging-extension.rst. 1880 1881endmenu 1882 1883menu "ARMv8.7 architectural features" 1884 1885config ARM64_EPAN 1886 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1887 default y 1888 depends on ARM64_PAN 1889 help 1890 Enhanced Privileged Access Never (EPAN) allows Privileged 1891 Access Never to be used with Execute-only mappings. 1892 1893 The feature is detected at runtime, and will remain disabled 1894 if the cpu does not implement the feature. 1895endmenu 1896 1897config ARM64_SVE 1898 bool "ARM Scalable Vector Extension support" 1899 default y 1900 help 1901 The Scalable Vector Extension (SVE) is an extension to the AArch64 1902 execution state which complements and extends the SIMD functionality 1903 of the base architecture to support much larger vectors and to enable 1904 additional vectorisation opportunities. 1905 1906 To enable use of this extension on CPUs that implement it, say Y. 1907 1908 On CPUs that support the SVE2 extensions, this option will enable 1909 those too. 1910 1911 Note that for architectural reasons, firmware _must_ implement SVE 1912 support when running on SVE capable hardware. The required support 1913 is present in: 1914 1915 * version 1.5 and later of the ARM Trusted Firmware 1916 * the AArch64 boot wrapper since commit 5e1261e08abf 1917 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1918 1919 For other firmware implementations, consult the firmware documentation 1920 or vendor. 1921 1922 If you need the kernel to boot on SVE-capable hardware with broken 1923 firmware, you may need to say N here until you get your firmware 1924 fixed. Otherwise, you may experience firmware panics or lockups when 1925 booting the kernel. If unsure and you are not observing these 1926 symptoms, you should assume that it is safe to say Y. 1927 1928config ARM64_MODULE_PLTS 1929 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1930 depends on MODULES 1931 select HAVE_MOD_ARCH_SPECIFIC 1932 help 1933 Allocate PLTs when loading modules so that jumps and calls whose 1934 targets are too far away for their relative offsets to be encoded 1935 in the instructions themselves can be bounced via veneers in the 1936 module's PLT. This allows modules to be allocated in the generic 1937 vmalloc area after the dedicated module memory area has been 1938 exhausted. 1939 1940 When running with address space randomization (KASLR), the module 1941 region itself may be too far away for ordinary relative jumps and 1942 calls, and so in that case, module PLTs are required and cannot be 1943 disabled. 1944 1945 Specific errata workaround(s) might also force module PLTs to be 1946 enabled (ARM64_ERRATUM_843419). 1947 1948config ARM64_PSEUDO_NMI 1949 bool "Support for NMI-like interrupts" 1950 select ARM_GIC_V3 1951 help 1952 Adds support for mimicking Non-Maskable Interrupts through the use of 1953 GIC interrupt priority. This support requires version 3 or later of 1954 ARM GIC. 1955 1956 This high priority configuration for interrupts needs to be 1957 explicitly enabled by setting the kernel parameter 1958 "irqchip.gicv3_pseudo_nmi" to 1. 1959 1960 If unsure, say N 1961 1962if ARM64_PSEUDO_NMI 1963config ARM64_DEBUG_PRIORITY_MASKING 1964 bool "Debug interrupt priority masking" 1965 help 1966 This adds runtime checks to functions enabling/disabling 1967 interrupts when using priority masking. The additional checks verify 1968 the validity of ICC_PMR_EL1 when calling concerned functions. 1969 1970 If unsure, say N 1971endif 1972 1973config RELOCATABLE 1974 bool "Build a relocatable kernel image" if EXPERT 1975 select ARCH_HAS_RELR 1976 default y 1977 help 1978 This builds the kernel as a Position Independent Executable (PIE), 1979 which retains all relocation metadata required to relocate the 1980 kernel binary at runtime to a different virtual address than the 1981 address it was linked at. 1982 Since AArch64 uses the RELA relocation format, this requires a 1983 relocation pass at runtime even if the kernel is loaded at the 1984 same address it was linked at. 1985 1986config RANDOMIZE_BASE 1987 bool "Randomize the address of the kernel image" 1988 select ARM64_MODULE_PLTS if MODULES 1989 select RELOCATABLE 1990 help 1991 Randomizes the virtual address at which the kernel image is 1992 loaded, as a security feature that deters exploit attempts 1993 relying on knowledge of the location of kernel internals. 1994 1995 It is the bootloader's job to provide entropy, by passing a 1996 random u64 value in /chosen/kaslr-seed at kernel entry. 1997 1998 When booting via the UEFI stub, it will invoke the firmware's 1999 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2000 to the kernel proper. In addition, it will randomise the physical 2001 location of the kernel Image as well. 2002 2003 If unsure, say N. 2004 2005config RANDOMIZE_MODULE_REGION_FULL 2006 bool "Randomize the module region over a 2 GB range" 2007 depends on RANDOMIZE_BASE 2008 default y 2009 help 2010 Randomizes the location of the module region inside a 2 GB window 2011 covering the core kernel. This way, it is less likely for modules 2012 to leak information about the location of core kernel data structures 2013 but it does imply that function calls between modules and the core 2014 kernel will need to be resolved via veneers in the module PLT. 2015 2016 When this option is not set, the module region will be randomized over 2017 a limited range that contains the [_stext, _etext] interval of the 2018 core kernel, so branch relocations are almost always in range unless 2019 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this 2020 particular case of region exhaustion, modules might be able to fall 2021 back to a larger 2GB area. 2022 2023config CC_HAVE_STACKPROTECTOR_SYSREG 2024 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2025 2026config STACKPROTECTOR_PER_TASK 2027 def_bool y 2028 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2029 2030endmenu 2031 2032menu "Boot options" 2033 2034config ARM64_ACPI_PARKING_PROTOCOL 2035 bool "Enable support for the ARM64 ACPI parking protocol" 2036 depends on ACPI 2037 help 2038 Enable support for the ARM64 ACPI parking protocol. If disabled 2039 the kernel will not allow booting through the ARM64 ACPI parking 2040 protocol even if the corresponding data is present in the ACPI 2041 MADT table. 2042 2043config CMDLINE 2044 string "Default kernel command string" 2045 default "" 2046 help 2047 Provide a set of default command-line options at build time by 2048 entering them here. As a minimum, you should specify the the 2049 root device (e.g. root=/dev/nfs). 2050 2051choice 2052 prompt "Kernel command line type" if CMDLINE != "" 2053 default CMDLINE_FROM_BOOTLOADER 2054 help 2055 Choose how the kernel will handle the provided default kernel 2056 command line string. 2057 2058config CMDLINE_FROM_BOOTLOADER 2059 bool "Use bootloader kernel arguments if available" 2060 help 2061 Uses the command-line options passed by the boot loader. If 2062 the boot loader doesn't provide any, the default kernel command 2063 string provided in CMDLINE will be used. 2064 2065config CMDLINE_FORCE 2066 bool "Always use the default kernel command string" 2067 help 2068 Always use the default kernel command string, even if the boot 2069 loader passes other arguments to the kernel. 2070 This is useful if you cannot or don't want to change the 2071 command-line options your boot loader passes to the kernel. 2072 2073endchoice 2074 2075config EFI_STUB 2076 bool 2077 2078config EFI 2079 bool "UEFI runtime support" 2080 depends on OF && !CPU_BIG_ENDIAN 2081 depends on KERNEL_MODE_NEON 2082 select ARCH_SUPPORTS_ACPI 2083 select LIBFDT 2084 select UCS2_STRING 2085 select EFI_PARAMS_FROM_FDT 2086 select EFI_RUNTIME_WRAPPERS 2087 select EFI_STUB 2088 select EFI_GENERIC_STUB 2089 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2090 default y 2091 help 2092 This option provides support for runtime services provided 2093 by UEFI firmware (such as non-volatile variables, realtime 2094 clock, and platform reset). A UEFI stub is also provided to 2095 allow the kernel to be booted as an EFI application. This 2096 is only useful on systems that have UEFI firmware. 2097 2098config DMI 2099 bool "Enable support for SMBIOS (DMI) tables" 2100 depends on EFI 2101 default y 2102 help 2103 This enables SMBIOS/DMI feature for systems. 2104 2105 This option is only useful on systems that have UEFI firmware. 2106 However, even with this option, the resultant kernel should 2107 continue to boot on existing non-UEFI platforms. 2108 2109endmenu 2110 2111config SYSVIPC_COMPAT 2112 def_bool y 2113 depends on COMPAT && SYSVIPC 2114 2115menu "Power management options" 2116 2117source "kernel/power/Kconfig" 2118 2119config ARCH_HIBERNATION_POSSIBLE 2120 def_bool y 2121 depends on CPU_PM 2122 2123config ARCH_HIBERNATION_HEADER 2124 def_bool y 2125 depends on HIBERNATION 2126 2127config ARCH_SUSPEND_POSSIBLE 2128 def_bool y 2129 2130endmenu 2131 2132menu "CPU Power Management" 2133 2134source "drivers/cpuidle/Kconfig" 2135 2136source "drivers/cpufreq/Kconfig" 2137 2138endmenu 2139 2140source "drivers/acpi/Kconfig" 2141 2142source "arch/arm64/kvm/Kconfig" 2143 2144if CRYPTO 2145source "arch/arm64/crypto/Kconfig" 2146endif 2147