xref: /linux/arch/arm64/Kconfig (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_CLOCKSOURCE_DATA
13	select ARCH_HAS_DEBUG_VIRTUAL
14	select ARCH_HAS_DEVMEM_IS_ALLOWED
15	select ARCH_HAS_DMA_PREP_COHERENT
16	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
17	select ARCH_HAS_FAST_MULTIPLIER
18	select ARCH_HAS_FORTIFY_SOURCE
19	select ARCH_HAS_GCOV_PROFILE_ALL
20	select ARCH_HAS_GIGANTIC_PAGE
21	select ARCH_HAS_KCOV
22	select ARCH_HAS_KEEPINITRD
23	select ARCH_HAS_MEMBARRIER_SYNC_CORE
24	select ARCH_HAS_PTE_DEVMAP
25	select ARCH_HAS_PTE_SPECIAL
26	select ARCH_HAS_SETUP_DMA_OPS
27	select ARCH_HAS_SET_DIRECT_MAP
28	select ARCH_HAS_SET_MEMORY
29	select ARCH_HAS_STRICT_KERNEL_RWX
30	select ARCH_HAS_STRICT_MODULE_RWX
31	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
32	select ARCH_HAS_SYNC_DMA_FOR_CPU
33	select ARCH_HAS_SYSCALL_WRAPPER
34	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
35	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
36	select ARCH_HAVE_NMI_SAFE_CMPXCHG
37	select ARCH_INLINE_READ_LOCK if !PREEMPTION
38	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
39	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
40	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
41	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
42	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
43	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
44	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
45	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
46	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
47	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
48	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
49	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
50	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
51	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
52	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
53	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
54	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
55	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
56	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
57	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
59	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
60	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
61	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
63	select ARCH_KEEP_MEMBLOCK
64	select ARCH_USE_CMPXCHG_LOCKREF
65	select ARCH_USE_QUEUED_RWLOCKS
66	select ARCH_USE_QUEUED_SPINLOCKS
67	select ARCH_SUPPORTS_MEMORY_FAILURE
68	select ARCH_SUPPORTS_ATOMIC_RMW
69	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
70	select ARCH_SUPPORTS_NUMA_BALANCING
71	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
72	select ARCH_WANT_DEFAULT_BPF_JIT
73	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
74	select ARCH_WANT_FRAME_POINTERS
75	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
76	select ARCH_HAS_UBSAN_SANITIZE_ALL
77	select ARM_AMBA
78	select ARM_ARCH_TIMER
79	select ARM_GIC
80	select AUDIT_ARCH_COMPAT_GENERIC
81	select ARM_GIC_V2M if PCI
82	select ARM_GIC_V3
83	select ARM_GIC_V3_ITS if PCI
84	select ARM_PSCI_FW
85	select BUILDTIME_TABLE_SORT
86	select CLONE_BACKWARDS
87	select COMMON_CLK
88	select CPU_PM if (SUSPEND || CPU_IDLE)
89	select CRC32
90	select DCACHE_WORD_ACCESS
91	select DMA_DIRECT_REMAP
92	select EDAC_SUPPORT
93	select FRAME_POINTER
94	select GENERIC_ALLOCATOR
95	select GENERIC_ARCH_TOPOLOGY
96	select GENERIC_CLOCKEVENTS
97	select GENERIC_CLOCKEVENTS_BROADCAST
98	select GENERIC_CPU_AUTOPROBE
99	select GENERIC_CPU_VULNERABILITIES
100	select GENERIC_EARLY_IOREMAP
101	select GENERIC_IDLE_POLL_SETUP
102	select GENERIC_IRQ_MULTI_HANDLER
103	select GENERIC_IRQ_PROBE
104	select GENERIC_IRQ_SHOW
105	select GENERIC_IRQ_SHOW_LEVEL
106	select GENERIC_PCI_IOMAP
107	select GENERIC_PTDUMP
108	select GENERIC_SCHED_CLOCK
109	select GENERIC_SMP_IDLE_THREAD
110	select GENERIC_STRNCPY_FROM_USER
111	select GENERIC_STRNLEN_USER
112	select GENERIC_TIME_VSYSCALL
113	select GENERIC_GETTIMEOFDAY
114	select HANDLE_DOMAIN_IRQ
115	select HARDIRQS_SW_RESEND
116	select HAVE_PCI
117	select HAVE_ACPI_APEI if (ACPI && EFI)
118	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
119	select HAVE_ARCH_AUDITSYSCALL
120	select HAVE_ARCH_BITREVERSE
121	select HAVE_ARCH_HUGE_VMAP
122	select HAVE_ARCH_JUMP_LABEL
123	select HAVE_ARCH_JUMP_LABEL_RELATIVE
124	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
125	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
126	select HAVE_ARCH_KGDB
127	select HAVE_ARCH_MMAP_RND_BITS
128	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
129	select HAVE_ARCH_PREL32_RELOCATIONS
130	select HAVE_ARCH_SECCOMP_FILTER
131	select HAVE_ARCH_STACKLEAK
132	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
133	select HAVE_ARCH_TRACEHOOK
134	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
135	select HAVE_ARCH_VMAP_STACK
136	select HAVE_ARM_SMCCC
137	select HAVE_ASM_MODVERSIONS
138	select HAVE_EBPF_JIT
139	select HAVE_C_RECORDMCOUNT
140	select HAVE_CMPXCHG_DOUBLE
141	select HAVE_CMPXCHG_LOCAL
142	select HAVE_CONTEXT_TRACKING
143	select HAVE_COPY_THREAD_TLS
144	select HAVE_DEBUG_BUGVERBOSE
145	select HAVE_DEBUG_KMEMLEAK
146	select HAVE_DMA_CONTIGUOUS
147	select HAVE_DYNAMIC_FTRACE
148	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
149		if $(cc-option,-fpatchable-function-entry=2)
150	select HAVE_EFFICIENT_UNALIGNED_ACCESS
151	select HAVE_FAST_GUP
152	select HAVE_FTRACE_MCOUNT_RECORD
153	select HAVE_FUNCTION_TRACER
154	select HAVE_FUNCTION_ERROR_INJECTION
155	select HAVE_FUNCTION_GRAPH_TRACER
156	select HAVE_GCC_PLUGINS
157	select HAVE_HW_BREAKPOINT if PERF_EVENTS
158	select HAVE_IRQ_TIME_ACCOUNTING
159	select HAVE_MEMBLOCK_NODE_MAP if NUMA
160	select HAVE_NMI
161	select HAVE_PATA_PLATFORM
162	select HAVE_PERF_EVENTS
163	select HAVE_PERF_REGS
164	select HAVE_PERF_USER_STACK_DUMP
165	select HAVE_REGS_AND_STACK_ACCESS_API
166	select HAVE_FUNCTION_ARG_ACCESS_API
167	select HAVE_FUTEX_CMPXCHG if FUTEX
168	select MMU_GATHER_RCU_TABLE_FREE
169	select HAVE_RSEQ
170	select HAVE_STACKPROTECTOR
171	select HAVE_SYSCALL_TRACEPOINTS
172	select HAVE_KPROBES
173	select HAVE_KRETPROBES
174	select HAVE_GENERIC_VDSO
175	select IOMMU_DMA if IOMMU_SUPPORT
176	select IRQ_DOMAIN
177	select IRQ_FORCED_THREADING
178	select MODULES_USE_ELF_RELA
179	select NEED_DMA_MAP_STATE
180	select NEED_SG_DMA_LENGTH
181	select OF
182	select OF_EARLY_FLATTREE
183	select PCI_DOMAINS_GENERIC if PCI
184	select PCI_ECAM if (ACPI && PCI)
185	select PCI_SYSCALL if PCI
186	select POWER_RESET
187	select POWER_SUPPLY
188	select SPARSE_IRQ
189	select SWIOTLB
190	select SYSCTL_EXCEPTION_TRACE
191	select THREAD_INFO_IN_TASK
192	help
193	  ARM 64-bit (AArch64) Linux support.
194
195config 64BIT
196	def_bool y
197
198config MMU
199	def_bool y
200
201config ARM64_PAGE_SHIFT
202	int
203	default 16 if ARM64_64K_PAGES
204	default 14 if ARM64_16K_PAGES
205	default 12
206
207config ARM64_CONT_SHIFT
208	int
209	default 5 if ARM64_64K_PAGES
210	default 7 if ARM64_16K_PAGES
211	default 4
212
213config ARCH_MMAP_RND_BITS_MIN
214       default 14 if ARM64_64K_PAGES
215       default 16 if ARM64_16K_PAGES
216       default 18
217
218# max bits determined by the following formula:
219#  VA_BITS - PAGE_SHIFT - 3
220config ARCH_MMAP_RND_BITS_MAX
221       default 19 if ARM64_VA_BITS=36
222       default 24 if ARM64_VA_BITS=39
223       default 27 if ARM64_VA_BITS=42
224       default 30 if ARM64_VA_BITS=47
225       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
226       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
227       default 33 if ARM64_VA_BITS=48
228       default 14 if ARM64_64K_PAGES
229       default 16 if ARM64_16K_PAGES
230       default 18
231
232config ARCH_MMAP_RND_COMPAT_BITS_MIN
233       default 7 if ARM64_64K_PAGES
234       default 9 if ARM64_16K_PAGES
235       default 11
236
237config ARCH_MMAP_RND_COMPAT_BITS_MAX
238       default 16
239
240config NO_IOPORT_MAP
241	def_bool y if !PCI
242
243config STACKTRACE_SUPPORT
244	def_bool y
245
246config ILLEGAL_POINTER_VALUE
247	hex
248	default 0xdead000000000000
249
250config LOCKDEP_SUPPORT
251	def_bool y
252
253config TRACE_IRQFLAGS_SUPPORT
254	def_bool y
255
256config GENERIC_BUG
257	def_bool y
258	depends on BUG
259
260config GENERIC_BUG_RELATIVE_POINTERS
261	def_bool y
262	depends on GENERIC_BUG
263
264config GENERIC_HWEIGHT
265	def_bool y
266
267config GENERIC_CSUM
268        def_bool y
269
270config GENERIC_CALIBRATE_DELAY
271	def_bool y
272
273config ZONE_DMA
274	bool "Support DMA zone" if EXPERT
275	default y
276
277config ZONE_DMA32
278	bool "Support DMA32 zone" if EXPERT
279	default y
280
281config ARCH_ENABLE_MEMORY_HOTPLUG
282	def_bool y
283
284config SMP
285	def_bool y
286
287config KERNEL_MODE_NEON
288	def_bool y
289
290config FIX_EARLYCON_MEM
291	def_bool y
292
293config PGTABLE_LEVELS
294	int
295	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
296	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
297	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
298	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
299	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
300	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
301
302config ARCH_SUPPORTS_UPROBES
303	def_bool y
304
305config ARCH_PROC_KCORE_TEXT
306	def_bool y
307
308config BROKEN_GAS_INST
309	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
310
311config KASAN_SHADOW_OFFSET
312	hex
313	depends on KASAN
314	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
315	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
316	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
317	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
318	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
319	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
320	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
321	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
322	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
323	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
324	default 0xffffffffffffffff
325
326source "arch/arm64/Kconfig.platforms"
327
328menu "Kernel Features"
329
330menu "ARM errata workarounds via the alternatives framework"
331
332config ARM64_WORKAROUND_CLEAN_CACHE
333	bool
334
335config ARM64_ERRATUM_826319
336	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
337	default y
338	select ARM64_WORKAROUND_CLEAN_CACHE
339	help
340	  This option adds an alternative code sequence to work around ARM
341	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
342	  AXI master interface and an L2 cache.
343
344	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
345	  and is unable to accept a certain write via this interface, it will
346	  not progress on read data presented on the read data channel and the
347	  system can deadlock.
348
349	  The workaround promotes data cache clean instructions to
350	  data cache clean-and-invalidate.
351	  Please note that this does not necessarily enable the workaround,
352	  as it depends on the alternative framework, which will only patch
353	  the kernel if an affected CPU is detected.
354
355	  If unsure, say Y.
356
357config ARM64_ERRATUM_827319
358	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
359	default y
360	select ARM64_WORKAROUND_CLEAN_CACHE
361	help
362	  This option adds an alternative code sequence to work around ARM
363	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
364	  master interface and an L2 cache.
365
366	  Under certain conditions this erratum can cause a clean line eviction
367	  to occur at the same time as another transaction to the same address
368	  on the AMBA 5 CHI interface, which can cause data corruption if the
369	  interconnect reorders the two transactions.
370
371	  The workaround promotes data cache clean instructions to
372	  data cache clean-and-invalidate.
373	  Please note that this does not necessarily enable the workaround,
374	  as it depends on the alternative framework, which will only patch
375	  the kernel if an affected CPU is detected.
376
377	  If unsure, say Y.
378
379config ARM64_ERRATUM_824069
380	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
381	default y
382	select ARM64_WORKAROUND_CLEAN_CACHE
383	help
384	  This option adds an alternative code sequence to work around ARM
385	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
386	  to a coherent interconnect.
387
388	  If a Cortex-A53 processor is executing a store or prefetch for
389	  write instruction at the same time as a processor in another
390	  cluster is executing a cache maintenance operation to the same
391	  address, then this erratum might cause a clean cache line to be
392	  incorrectly marked as dirty.
393
394	  The workaround promotes data cache clean instructions to
395	  data cache clean-and-invalidate.
396	  Please note that this option does not necessarily enable the
397	  workaround, as it depends on the alternative framework, which will
398	  only patch the kernel if an affected CPU is detected.
399
400	  If unsure, say Y.
401
402config ARM64_ERRATUM_819472
403	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
404	default y
405	select ARM64_WORKAROUND_CLEAN_CACHE
406	help
407	  This option adds an alternative code sequence to work around ARM
408	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
409	  present when it is connected to a coherent interconnect.
410
411	  If the processor is executing a load and store exclusive sequence at
412	  the same time as a processor in another cluster is executing a cache
413	  maintenance operation to the same address, then this erratum might
414	  cause data corruption.
415
416	  The workaround promotes data cache clean instructions to
417	  data cache clean-and-invalidate.
418	  Please note that this does not necessarily enable the workaround,
419	  as it depends on the alternative framework, which will only patch
420	  the kernel if an affected CPU is detected.
421
422	  If unsure, say Y.
423
424config ARM64_ERRATUM_832075
425	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
426	default y
427	help
428	  This option adds an alternative code sequence to work around ARM
429	  erratum 832075 on Cortex-A57 parts up to r1p2.
430
431	  Affected Cortex-A57 parts might deadlock when exclusive load/store
432	  instructions to Write-Back memory are mixed with Device loads.
433
434	  The workaround is to promote device loads to use Load-Acquire
435	  semantics.
436	  Please note that this does not necessarily enable the workaround,
437	  as it depends on the alternative framework, which will only patch
438	  the kernel if an affected CPU is detected.
439
440	  If unsure, say Y.
441
442config ARM64_ERRATUM_834220
443	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
444	depends on KVM
445	default y
446	help
447	  This option adds an alternative code sequence to work around ARM
448	  erratum 834220 on Cortex-A57 parts up to r1p2.
449
450	  Affected Cortex-A57 parts might report a Stage 2 translation
451	  fault as the result of a Stage 1 fault for load crossing a
452	  page boundary when there is a permission or device memory
453	  alignment fault at Stage 1 and a translation fault at Stage 2.
454
455	  The workaround is to verify that the Stage 1 translation
456	  doesn't generate a fault before handling the Stage 2 fault.
457	  Please note that this does not necessarily enable the workaround,
458	  as it depends on the alternative framework, which will only patch
459	  the kernel if an affected CPU is detected.
460
461	  If unsure, say Y.
462
463config ARM64_ERRATUM_845719
464	bool "Cortex-A53: 845719: a load might read incorrect data"
465	depends on COMPAT
466	default y
467	help
468	  This option adds an alternative code sequence to work around ARM
469	  erratum 845719 on Cortex-A53 parts up to r0p4.
470
471	  When running a compat (AArch32) userspace on an affected Cortex-A53
472	  part, a load at EL0 from a virtual address that matches the bottom 32
473	  bits of the virtual address used by a recent load at (AArch64) EL1
474	  might return incorrect data.
475
476	  The workaround is to write the contextidr_el1 register on exception
477	  return to a 32-bit task.
478	  Please note that this does not necessarily enable the workaround,
479	  as it depends on the alternative framework, which will only patch
480	  the kernel if an affected CPU is detected.
481
482	  If unsure, say Y.
483
484config ARM64_ERRATUM_843419
485	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
486	default y
487	select ARM64_MODULE_PLTS if MODULES
488	help
489	  This option links the kernel with '--fix-cortex-a53-843419' and
490	  enables PLT support to replace certain ADRP instructions, which can
491	  cause subsequent memory accesses to use an incorrect address on
492	  Cortex-A53 parts up to r0p4.
493
494	  If unsure, say Y.
495
496config ARM64_ERRATUM_1024718
497	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
498	default y
499	help
500	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
501
502	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
503	  update of the hardware dirty bit when the DBM/AP bits are updated
504	  without a break-before-make. The workaround is to disable the usage
505	  of hardware DBM locally on the affected cores. CPUs not affected by
506	  this erratum will continue to use the feature.
507
508	  If unsure, say Y.
509
510config ARM64_ERRATUM_1418040
511	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
512	default y
513	depends on COMPAT
514	help
515	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
516	  errata 1188873 and 1418040.
517
518	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
519	  cause register corruption when accessing the timer registers
520	  from AArch32 userspace.
521
522	  If unsure, say Y.
523
524config ARM64_WORKAROUND_SPECULATIVE_AT_VHE
525	bool
526
527config ARM64_ERRATUM_1165522
528	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
529	default y
530	select ARM64_WORKAROUND_SPECULATIVE_AT_VHE
531	help
532	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
533
534	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
535	  corrupted TLBs by speculating an AT instruction during a guest
536	  context switch.
537
538	  If unsure, say Y.
539
540config ARM64_ERRATUM_1530923
541	bool "Cortex-A55: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
542	default y
543	select ARM64_WORKAROUND_SPECULATIVE_AT_VHE
544	help
545	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
546
547	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
548	  corrupted TLBs by speculating an AT instruction during a guest
549	  context switch.
550
551	  If unsure, say Y.
552
553config ARM64_ERRATUM_1286807
554	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
555	default y
556	select ARM64_WORKAROUND_REPEAT_TLBI
557	help
558	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
559
560	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
561	  address for a cacheable mapping of a location is being
562	  accessed by a core while another core is remapping the virtual
563	  address to a new physical page using the recommended
564	  break-before-make sequence, then under very rare circumstances
565	  TLBI+DSB completes before a read using the translation being
566	  invalidated has been observed by other observers. The
567	  workaround repeats the TLBI+DSB operation.
568
569config ARM64_WORKAROUND_SPECULATIVE_AT_NVHE
570	bool
571
572config ARM64_ERRATUM_1319367
573	bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
574	default y
575	select ARM64_WORKAROUND_SPECULATIVE_AT_NVHE
576	help
577	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
578	  and A72 erratum 1319367
579
580	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
581	  speculating an AT instruction during a guest context switch.
582
583	  If unsure, say Y.
584
585config ARM64_ERRATUM_1463225
586	bool "Cortex-A76: Software Step might prevent interrupt recognition"
587	default y
588	help
589	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
590
591	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
592	  of a system call instruction (SVC) can prevent recognition of
593	  subsequent interrupts when software stepping is disabled in the
594	  exception handler of the system call and either kernel debugging
595	  is enabled or VHE is in use.
596
597	  Work around the erratum by triggering a dummy step exception
598	  when handling a system call from a task that is being stepped
599	  in a VHE configuration of the kernel.
600
601	  If unsure, say Y.
602
603config ARM64_ERRATUM_1542419
604	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
605	default y
606	help
607	  This option adds a workaround for ARM Neoverse-N1 erratum
608	  1542419.
609
610	  Affected Neoverse-N1 cores could execute a stale instruction when
611	  modified by another CPU. The workaround depends on a firmware
612	  counterpart.
613
614	  Workaround the issue by hiding the DIC feature from EL0. This
615	  forces user-space to perform cache maintenance.
616
617	  If unsure, say Y.
618
619config CAVIUM_ERRATUM_22375
620	bool "Cavium erratum 22375, 24313"
621	default y
622	help
623	  Enable workaround for errata 22375 and 24313.
624
625	  This implements two gicv3-its errata workarounds for ThunderX. Both
626	  with a small impact affecting only ITS table allocation.
627
628	    erratum 22375: only alloc 8MB table size
629	    erratum 24313: ignore memory access type
630
631	  The fixes are in ITS initialization and basically ignore memory access
632	  type and table size provided by the TYPER and BASER registers.
633
634	  If unsure, say Y.
635
636config CAVIUM_ERRATUM_23144
637	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
638	depends on NUMA
639	default y
640	help
641	  ITS SYNC command hang for cross node io and collections/cpu mapping.
642
643	  If unsure, say Y.
644
645config CAVIUM_ERRATUM_23154
646	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
647	default y
648	help
649	  The gicv3 of ThunderX requires a modified version for
650	  reading the IAR status to ensure data synchronization
651	  (access to icc_iar1_el1 is not sync'ed before and after).
652
653	  If unsure, say Y.
654
655config CAVIUM_ERRATUM_27456
656	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
657	default y
658	help
659	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
660	  instructions may cause the icache to become corrupted if it
661	  contains data for a non-current ASID.  The fix is to
662	  invalidate the icache when changing the mm context.
663
664	  If unsure, say Y.
665
666config CAVIUM_ERRATUM_30115
667	bool "Cavium erratum 30115: Guest may disable interrupts in host"
668	default y
669	help
670	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
671	  1.2, and T83 Pass 1.0, KVM guest execution may disable
672	  interrupts in host. Trapping both GICv3 group-0 and group-1
673	  accesses sidesteps the issue.
674
675	  If unsure, say Y.
676
677config CAVIUM_TX2_ERRATUM_219
678	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
679	default y
680	help
681	  On Cavium ThunderX2, a load, store or prefetch instruction between a
682	  TTBR update and the corresponding context synchronizing operation can
683	  cause a spurious Data Abort to be delivered to any hardware thread in
684	  the CPU core.
685
686	  Work around the issue by avoiding the problematic code sequence and
687	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
688	  trap handler performs the corresponding register access, skips the
689	  instruction and ensures context synchronization by virtue of the
690	  exception return.
691
692	  If unsure, say Y.
693
694config QCOM_FALKOR_ERRATUM_1003
695	bool "Falkor E1003: Incorrect translation due to ASID change"
696	default y
697	help
698	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
699	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
700	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
701	  then only for entries in the walk cache, since the leaf translation
702	  is unchanged. Work around the erratum by invalidating the walk cache
703	  entries for the trampoline before entering the kernel proper.
704
705config ARM64_WORKAROUND_REPEAT_TLBI
706	bool
707
708config QCOM_FALKOR_ERRATUM_1009
709	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
710	default y
711	select ARM64_WORKAROUND_REPEAT_TLBI
712	help
713	  On Falkor v1, the CPU may prematurely complete a DSB following a
714	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
715	  one more time to fix the issue.
716
717	  If unsure, say Y.
718
719config QCOM_QDF2400_ERRATUM_0065
720	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
721	default y
722	help
723	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
724	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
725	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
726
727	  If unsure, say Y.
728
729config SOCIONEXT_SYNQUACER_PREITS
730	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
731	default y
732	help
733	  Socionext Synquacer SoCs implement a separate h/w block to generate
734	  MSI doorbell writes with non-zero values for the device ID.
735
736	  If unsure, say Y.
737
738config HISILICON_ERRATUM_161600802
739	bool "Hip07 161600802: Erroneous redistributor VLPI base"
740	default y
741	help
742	  The HiSilicon Hip07 SoC uses the wrong redistributor base
743	  when issued ITS commands such as VMOVP and VMAPP, and requires
744	  a 128kB offset to be applied to the target address in this commands.
745
746	  If unsure, say Y.
747
748config QCOM_FALKOR_ERRATUM_E1041
749	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
750	default y
751	help
752	  Falkor CPU may speculatively fetch instructions from an improper
753	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
754	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
755
756	  If unsure, say Y.
757
758config FUJITSU_ERRATUM_010001
759	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
760	default y
761	help
762	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
763	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
764	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
765	  This fault occurs under a specific hardware condition when a
766	  load/store instruction performs an address translation using:
767	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
768	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
769	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
770	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
771
772	  The workaround is to ensure these bits are clear in TCR_ELx.
773	  The workaround only affects the Fujitsu-A64FX.
774
775	  If unsure, say Y.
776
777endmenu
778
779
780choice
781	prompt "Page size"
782	default ARM64_4K_PAGES
783	help
784	  Page size (translation granule) configuration.
785
786config ARM64_4K_PAGES
787	bool "4KB"
788	help
789	  This feature enables 4KB pages support.
790
791config ARM64_16K_PAGES
792	bool "16KB"
793	help
794	  The system will use 16KB pages support. AArch32 emulation
795	  requires applications compiled with 16K (or a multiple of 16K)
796	  aligned segments.
797
798config ARM64_64K_PAGES
799	bool "64KB"
800	help
801	  This feature enables 64KB pages support (4KB by default)
802	  allowing only two levels of page tables and faster TLB
803	  look-up. AArch32 emulation requires applications compiled
804	  with 64K aligned segments.
805
806endchoice
807
808choice
809	prompt "Virtual address space size"
810	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
811	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
812	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
813	help
814	  Allows choosing one of multiple possible virtual address
815	  space sizes. The level of translation table is determined by
816	  a combination of page size and virtual address space size.
817
818config ARM64_VA_BITS_36
819	bool "36-bit" if EXPERT
820	depends on ARM64_16K_PAGES
821
822config ARM64_VA_BITS_39
823	bool "39-bit"
824	depends on ARM64_4K_PAGES
825
826config ARM64_VA_BITS_42
827	bool "42-bit"
828	depends on ARM64_64K_PAGES
829
830config ARM64_VA_BITS_47
831	bool "47-bit"
832	depends on ARM64_16K_PAGES
833
834config ARM64_VA_BITS_48
835	bool "48-bit"
836
837config ARM64_VA_BITS_52
838	bool "52-bit"
839	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
840	help
841	  Enable 52-bit virtual addressing for userspace when explicitly
842	  requested via a hint to mmap(). The kernel will also use 52-bit
843	  virtual addresses for its own mappings (provided HW support for
844	  this feature is available, otherwise it reverts to 48-bit).
845
846	  NOTE: Enabling 52-bit virtual addressing in conjunction with
847	  ARMv8.3 Pointer Authentication will result in the PAC being
848	  reduced from 7 bits to 3 bits, which may have a significant
849	  impact on its susceptibility to brute-force attacks.
850
851	  If unsure, select 48-bit virtual addressing instead.
852
853endchoice
854
855config ARM64_FORCE_52BIT
856	bool "Force 52-bit virtual addresses for userspace"
857	depends on ARM64_VA_BITS_52 && EXPERT
858	help
859	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
860	  to maintain compatibility with older software by providing 48-bit VAs
861	  unless a hint is supplied to mmap.
862
863	  This configuration option disables the 48-bit compatibility logic, and
864	  forces all userspace addresses to be 52-bit on HW that supports it. One
865	  should only enable this configuration option for stress testing userspace
866	  memory management code. If unsure say N here.
867
868config ARM64_VA_BITS
869	int
870	default 36 if ARM64_VA_BITS_36
871	default 39 if ARM64_VA_BITS_39
872	default 42 if ARM64_VA_BITS_42
873	default 47 if ARM64_VA_BITS_47
874	default 48 if ARM64_VA_BITS_48
875	default 52 if ARM64_VA_BITS_52
876
877choice
878	prompt "Physical address space size"
879	default ARM64_PA_BITS_48
880	help
881	  Choose the maximum physical address range that the kernel will
882	  support.
883
884config ARM64_PA_BITS_48
885	bool "48-bit"
886
887config ARM64_PA_BITS_52
888	bool "52-bit (ARMv8.2)"
889	depends on ARM64_64K_PAGES
890	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
891	help
892	  Enable support for a 52-bit physical address space, introduced as
893	  part of the ARMv8.2-LPA extension.
894
895	  With this enabled, the kernel will also continue to work on CPUs that
896	  do not support ARMv8.2-LPA, but with some added memory overhead (and
897	  minor performance overhead).
898
899endchoice
900
901config ARM64_PA_BITS
902	int
903	default 48 if ARM64_PA_BITS_48
904	default 52 if ARM64_PA_BITS_52
905
906choice
907	prompt "Endianness"
908	default CPU_LITTLE_ENDIAN
909	help
910	  Select the endianness of data accesses performed by the CPU. Userspace
911	  applications will need to be compiled and linked for the endianness
912	  that is selected here.
913
914config CPU_BIG_ENDIAN
915       bool "Build big-endian kernel"
916       help
917	  Say Y if you plan on running a kernel with a big-endian userspace.
918
919config CPU_LITTLE_ENDIAN
920	bool "Build little-endian kernel"
921	help
922	  Say Y if you plan on running a kernel with a little-endian userspace.
923	  This is usually the case for distributions targeting arm64.
924
925endchoice
926
927config SCHED_MC
928	bool "Multi-core scheduler support"
929	help
930	  Multi-core scheduler support improves the CPU scheduler's decision
931	  making when dealing with multi-core CPU chips at a cost of slightly
932	  increased overhead in some places. If unsure say N here.
933
934config SCHED_SMT
935	bool "SMT scheduler support"
936	help
937	  Improves the CPU scheduler's decision making when dealing with
938	  MultiThreading at a cost of slightly increased overhead in some
939	  places. If unsure say N here.
940
941config NR_CPUS
942	int "Maximum number of CPUs (2-4096)"
943	range 2 4096
944	default "256"
945
946config HOTPLUG_CPU
947	bool "Support for hot-pluggable CPUs"
948	select GENERIC_IRQ_MIGRATION
949	help
950	  Say Y here to experiment with turning CPUs off and on.  CPUs
951	  can be controlled through /sys/devices/system/cpu.
952
953# Common NUMA Features
954config NUMA
955	bool "Numa Memory Allocation and Scheduler Support"
956	select ACPI_NUMA if ACPI
957	select OF_NUMA
958	help
959	  Enable NUMA (Non Uniform Memory Access) support.
960
961	  The kernel will try to allocate memory used by a CPU on the
962	  local memory of the CPU and add some more
963	  NUMA awareness to the kernel.
964
965config NODES_SHIFT
966	int "Maximum NUMA Nodes (as a power of 2)"
967	range 1 10
968	default "2"
969	depends on NEED_MULTIPLE_NODES
970	help
971	  Specify the maximum number of NUMA Nodes available on the target
972	  system.  Increases memory reserved to accommodate various tables.
973
974config USE_PERCPU_NUMA_NODE_ID
975	def_bool y
976	depends on NUMA
977
978config HAVE_SETUP_PER_CPU_AREA
979	def_bool y
980	depends on NUMA
981
982config NEED_PER_CPU_EMBED_FIRST_CHUNK
983	def_bool y
984	depends on NUMA
985
986config HOLES_IN_ZONE
987	def_bool y
988
989source "kernel/Kconfig.hz"
990
991config ARCH_SUPPORTS_DEBUG_PAGEALLOC
992	def_bool y
993
994config ARCH_SPARSEMEM_ENABLE
995	def_bool y
996	select SPARSEMEM_VMEMMAP_ENABLE
997
998config ARCH_SPARSEMEM_DEFAULT
999	def_bool ARCH_SPARSEMEM_ENABLE
1000
1001config ARCH_SELECT_MEMORY_MODEL
1002	def_bool ARCH_SPARSEMEM_ENABLE
1003
1004config ARCH_FLATMEM_ENABLE
1005	def_bool !NUMA
1006
1007config HAVE_ARCH_PFN_VALID
1008	def_bool y
1009
1010config HW_PERF_EVENTS
1011	def_bool y
1012	depends on ARM_PMU
1013
1014config SYS_SUPPORTS_HUGETLBFS
1015	def_bool y
1016
1017config ARCH_WANT_HUGE_PMD_SHARE
1018
1019config ARCH_HAS_CACHE_LINE_SIZE
1020	def_bool y
1021
1022config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1023	def_bool y if PGTABLE_LEVELS > 2
1024
1025config SECCOMP
1026	bool "Enable seccomp to safely compute untrusted bytecode"
1027	---help---
1028	  This kernel feature is useful for number crunching applications
1029	  that may need to compute untrusted bytecode during their
1030	  execution. By using pipes or other transports made available to
1031	  the process as file descriptors supporting the read/write
1032	  syscalls, it's possible to isolate those applications in
1033	  their own address space using seccomp. Once seccomp is
1034	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1035	  and the task is only allowed to execute a few safe syscalls
1036	  defined by each seccomp mode.
1037
1038config PARAVIRT
1039	bool "Enable paravirtualization code"
1040	help
1041	  This changes the kernel so it can modify itself when it is run
1042	  under a hypervisor, potentially improving performance significantly
1043	  over full virtualization.
1044
1045config PARAVIRT_TIME_ACCOUNTING
1046	bool "Paravirtual steal time accounting"
1047	select PARAVIRT
1048	help
1049	  Select this option to enable fine granularity task steal time
1050	  accounting. Time spent executing other tasks in parallel with
1051	  the current vCPU is discounted from the vCPU power. To account for
1052	  that, there can be a small performance impact.
1053
1054	  If in doubt, say N here.
1055
1056config KEXEC
1057	depends on PM_SLEEP_SMP
1058	select KEXEC_CORE
1059	bool "kexec system call"
1060	---help---
1061	  kexec is a system call that implements the ability to shutdown your
1062	  current kernel, and to start another kernel.  It is like a reboot
1063	  but it is independent of the system firmware.   And like a reboot
1064	  you can start any kernel with it, not just Linux.
1065
1066config KEXEC_FILE
1067	bool "kexec file based system call"
1068	select KEXEC_CORE
1069	help
1070	  This is new version of kexec system call. This system call is
1071	  file based and takes file descriptors as system call argument
1072	  for kernel and initramfs as opposed to list of segments as
1073	  accepted by previous system call.
1074
1075config KEXEC_SIG
1076	bool "Verify kernel signature during kexec_file_load() syscall"
1077	depends on KEXEC_FILE
1078	help
1079	  Select this option to verify a signature with loaded kernel
1080	  image. If configured, any attempt of loading a image without
1081	  valid signature will fail.
1082
1083	  In addition to that option, you need to enable signature
1084	  verification for the corresponding kernel image type being
1085	  loaded in order for this to work.
1086
1087config KEXEC_IMAGE_VERIFY_SIG
1088	bool "Enable Image signature verification support"
1089	default y
1090	depends on KEXEC_SIG
1091	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1092	help
1093	  Enable Image signature verification support.
1094
1095comment "Support for PE file signature verification disabled"
1096	depends on KEXEC_SIG
1097	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1098
1099config CRASH_DUMP
1100	bool "Build kdump crash kernel"
1101	help
1102	  Generate crash dump after being started by kexec. This should
1103	  be normally only set in special crash dump kernels which are
1104	  loaded in the main kernel with kexec-tools into a specially
1105	  reserved region and then later executed after a crash by
1106	  kdump/kexec.
1107
1108	  For more details see Documentation/admin-guide/kdump/kdump.rst
1109
1110config XEN_DOM0
1111	def_bool y
1112	depends on XEN
1113
1114config XEN
1115	bool "Xen guest support on ARM64"
1116	depends on ARM64 && OF
1117	select SWIOTLB_XEN
1118	select PARAVIRT
1119	help
1120	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1121
1122config FORCE_MAX_ZONEORDER
1123	int
1124	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1125	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1126	default "11"
1127	help
1128	  The kernel memory allocator divides physically contiguous memory
1129	  blocks into "zones", where each zone is a power of two number of
1130	  pages.  This option selects the largest power of two that the kernel
1131	  keeps in the memory allocator.  If you need to allocate very large
1132	  blocks of physically contiguous memory, then you may need to
1133	  increase this value.
1134
1135	  This config option is actually maximum order plus one. For example,
1136	  a value of 11 means that the largest free memory block is 2^10 pages.
1137
1138	  We make sure that we can allocate upto a HugePage size for each configuration.
1139	  Hence we have :
1140		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1141
1142	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1143	  4M allocations matching the default size used by generic code.
1144
1145config UNMAP_KERNEL_AT_EL0
1146	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1147	default y
1148	help
1149	  Speculation attacks against some high-performance processors can
1150	  be used to bypass MMU permission checks and leak kernel data to
1151	  userspace. This can be defended against by unmapping the kernel
1152	  when running in userspace, mapping it back in on exception entry
1153	  via a trampoline page in the vector table.
1154
1155	  If unsure, say Y.
1156
1157config HARDEN_BRANCH_PREDICTOR
1158	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1159	default y
1160	help
1161	  Speculation attacks against some high-performance processors rely on
1162	  being able to manipulate the branch predictor for a victim context by
1163	  executing aliasing branches in the attacker context.  Such attacks
1164	  can be partially mitigated against by clearing internal branch
1165	  predictor state and limiting the prediction logic in some situations.
1166
1167	  This config option will take CPU-specific actions to harden the
1168	  branch predictor against aliasing attacks and may rely on specific
1169	  instruction sequences or control bits being set by the system
1170	  firmware.
1171
1172	  If unsure, say Y.
1173
1174config HARDEN_EL2_VECTORS
1175	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1176	default y
1177	help
1178	  Speculation attacks against some high-performance processors can
1179	  be used to leak privileged information such as the vector base
1180	  register, resulting in a potential defeat of the EL2 layout
1181	  randomization.
1182
1183	  This config option will map the vectors to a fixed location,
1184	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1185	  to an attacker does not give away any extra information. This
1186	  only gets enabled on affected CPUs.
1187
1188	  If unsure, say Y.
1189
1190config ARM64_SSBD
1191	bool "Speculative Store Bypass Disable" if EXPERT
1192	default y
1193	help
1194	  This enables mitigation of the bypassing of previous stores
1195	  by speculative loads.
1196
1197	  If unsure, say Y.
1198
1199config RODATA_FULL_DEFAULT_ENABLED
1200	bool "Apply r/o permissions of VM areas also to their linear aliases"
1201	default y
1202	help
1203	  Apply read-only attributes of VM areas to the linear alias of
1204	  the backing pages as well. This prevents code or read-only data
1205	  from being modified (inadvertently or intentionally) via another
1206	  mapping of the same memory page. This additional enhancement can
1207	  be turned off at runtime by passing rodata=[off|on] (and turned on
1208	  with rodata=full if this option is set to 'n')
1209
1210	  This requires the linear region to be mapped down to pages,
1211	  which may adversely affect performance in some cases.
1212
1213config ARM64_SW_TTBR0_PAN
1214	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1215	help
1216	  Enabling this option prevents the kernel from accessing
1217	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1218	  zeroed area and reserved ASID. The user access routines
1219	  restore the valid TTBR0_EL1 temporarily.
1220
1221config ARM64_TAGGED_ADDR_ABI
1222	bool "Enable the tagged user addresses syscall ABI"
1223	default y
1224	help
1225	  When this option is enabled, user applications can opt in to a
1226	  relaxed ABI via prctl() allowing tagged addresses to be passed
1227	  to system calls as pointer arguments. For details, see
1228	  Documentation/arm64/tagged-address-abi.rst.
1229
1230menuconfig COMPAT
1231	bool "Kernel support for 32-bit EL0"
1232	depends on ARM64_4K_PAGES || EXPERT
1233	select COMPAT_BINFMT_ELF if BINFMT_ELF
1234	select HAVE_UID16
1235	select OLD_SIGSUSPEND3
1236	select COMPAT_OLD_SIGACTION
1237	help
1238	  This option enables support for a 32-bit EL0 running under a 64-bit
1239	  kernel at EL1. AArch32-specific components such as system calls,
1240	  the user helper functions, VFP support and the ptrace interface are
1241	  handled appropriately by the kernel.
1242
1243	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1244	  that you will only be able to execute AArch32 binaries that were compiled
1245	  with page size aligned segments.
1246
1247	  If you want to execute 32-bit userspace applications, say Y.
1248
1249if COMPAT
1250
1251config KUSER_HELPERS
1252	bool "Enable kuser helpers page for 32-bit applications"
1253	default y
1254	help
1255	  Warning: disabling this option may break 32-bit user programs.
1256
1257	  Provide kuser helpers to compat tasks. The kernel provides
1258	  helper code to userspace in read only form at a fixed location
1259	  to allow userspace to be independent of the CPU type fitted to
1260	  the system. This permits binaries to be run on ARMv4 through
1261	  to ARMv8 without modification.
1262
1263	  See Documentation/arm/kernel_user_helpers.rst for details.
1264
1265	  However, the fixed address nature of these helpers can be used
1266	  by ROP (return orientated programming) authors when creating
1267	  exploits.
1268
1269	  If all of the binaries and libraries which run on your platform
1270	  are built specifically for your platform, and make no use of
1271	  these helpers, then you can turn this option off to hinder
1272	  such exploits. However, in that case, if a binary or library
1273	  relying on those helpers is run, it will not function correctly.
1274
1275	  Say N here only if you are absolutely certain that you do not
1276	  need these helpers; otherwise, the safe option is to say Y.
1277
1278config COMPAT_VDSO
1279	bool "Enable vDSO for 32-bit applications"
1280	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1281	select GENERIC_COMPAT_VDSO
1282	default y
1283	help
1284	  Place in the process address space of 32-bit applications an
1285	  ELF shared object providing fast implementations of gettimeofday
1286	  and clock_gettime.
1287
1288	  You must have a 32-bit build of glibc 2.22 or later for programs
1289	  to seamlessly take advantage of this.
1290
1291menuconfig ARMV8_DEPRECATED
1292	bool "Emulate deprecated/obsolete ARMv8 instructions"
1293	depends on SYSCTL
1294	help
1295	  Legacy software support may require certain instructions
1296	  that have been deprecated or obsoleted in the architecture.
1297
1298	  Enable this config to enable selective emulation of these
1299	  features.
1300
1301	  If unsure, say Y
1302
1303if ARMV8_DEPRECATED
1304
1305config SWP_EMULATION
1306	bool "Emulate SWP/SWPB instructions"
1307	help
1308	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1309	  they are always undefined. Say Y here to enable software
1310	  emulation of these instructions for userspace using LDXR/STXR.
1311
1312	  In some older versions of glibc [<=2.8] SWP is used during futex
1313	  trylock() operations with the assumption that the code will not
1314	  be preempted. This invalid assumption may be more likely to fail
1315	  with SWP emulation enabled, leading to deadlock of the user
1316	  application.
1317
1318	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1319	  on an external transaction monitoring block called a global
1320	  monitor to maintain update atomicity. If your system does not
1321	  implement a global monitor, this option can cause programs that
1322	  perform SWP operations to uncached memory to deadlock.
1323
1324	  If unsure, say Y
1325
1326config CP15_BARRIER_EMULATION
1327	bool "Emulate CP15 Barrier instructions"
1328	help
1329	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1330	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1331	  strongly recommended to use the ISB, DSB, and DMB
1332	  instructions instead.
1333
1334	  Say Y here to enable software emulation of these
1335	  instructions for AArch32 userspace code. When this option is
1336	  enabled, CP15 barrier usage is traced which can help
1337	  identify software that needs updating.
1338
1339	  If unsure, say Y
1340
1341config SETEND_EMULATION
1342	bool "Emulate SETEND instruction"
1343	help
1344	  The SETEND instruction alters the data-endianness of the
1345	  AArch32 EL0, and is deprecated in ARMv8.
1346
1347	  Say Y here to enable software emulation of the instruction
1348	  for AArch32 userspace code.
1349
1350	  Note: All the cpus on the system must have mixed endian support at EL0
1351	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1352	  endian - is hotplugged in after this feature has been enabled, there could
1353	  be unexpected results in the applications.
1354
1355	  If unsure, say Y
1356endif
1357
1358endif
1359
1360menu "ARMv8.1 architectural features"
1361
1362config ARM64_HW_AFDBM
1363	bool "Support for hardware updates of the Access and Dirty page flags"
1364	default y
1365	help
1366	  The ARMv8.1 architecture extensions introduce support for
1367	  hardware updates of the access and dirty information in page
1368	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1369	  capable processors, accesses to pages with PTE_AF cleared will
1370	  set this bit instead of raising an access flag fault.
1371	  Similarly, writes to read-only pages with the DBM bit set will
1372	  clear the read-only bit (AP[2]) instead of raising a
1373	  permission fault.
1374
1375	  Kernels built with this configuration option enabled continue
1376	  to work on pre-ARMv8.1 hardware and the performance impact is
1377	  minimal. If unsure, say Y.
1378
1379config ARM64_PAN
1380	bool "Enable support for Privileged Access Never (PAN)"
1381	default y
1382	help
1383	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1384	 prevents the kernel or hypervisor from accessing user-space (EL0)
1385	 memory directly.
1386
1387	 Choosing this option will cause any unprotected (not using
1388	 copy_to_user et al) memory access to fail with a permission fault.
1389
1390	 The feature is detected at runtime, and will remain as a 'nop'
1391	 instruction if the cpu does not implement the feature.
1392
1393config ARM64_LSE_ATOMICS
1394	bool
1395	default ARM64_USE_LSE_ATOMICS
1396	depends on $(as-instr,.arch_extension lse)
1397
1398config ARM64_USE_LSE_ATOMICS
1399	bool "Atomic instructions"
1400	depends on JUMP_LABEL
1401	default y
1402	help
1403	  As part of the Large System Extensions, ARMv8.1 introduces new
1404	  atomic instructions that are designed specifically to scale in
1405	  very large systems.
1406
1407	  Say Y here to make use of these instructions for the in-kernel
1408	  atomic routines. This incurs a small overhead on CPUs that do
1409	  not support these instructions and requires the kernel to be
1410	  built with binutils >= 2.25 in order for the new instructions
1411	  to be used.
1412
1413config ARM64_VHE
1414	bool "Enable support for Virtualization Host Extensions (VHE)"
1415	default y
1416	help
1417	  Virtualization Host Extensions (VHE) allow the kernel to run
1418	  directly at EL2 (instead of EL1) on processors that support
1419	  it. This leads to better performance for KVM, as they reduce
1420	  the cost of the world switch.
1421
1422	  Selecting this option allows the VHE feature to be detected
1423	  at runtime, and does not affect processors that do not
1424	  implement this feature.
1425
1426endmenu
1427
1428menu "ARMv8.2 architectural features"
1429
1430config ARM64_UAO
1431	bool "Enable support for User Access Override (UAO)"
1432	default y
1433	help
1434	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1435	  causes the 'unprivileged' variant of the load/store instructions to
1436	  be overridden to be privileged.
1437
1438	  This option changes get_user() and friends to use the 'unprivileged'
1439	  variant of the load/store instructions. This ensures that user-space
1440	  really did have access to the supplied memory. When addr_limit is
1441	  set to kernel memory the UAO bit will be set, allowing privileged
1442	  access to kernel memory.
1443
1444	  Choosing this option will cause copy_to_user() et al to use user-space
1445	  memory permissions.
1446
1447	  The feature is detected at runtime, the kernel will use the
1448	  regular load/store instructions if the cpu does not implement the
1449	  feature.
1450
1451config ARM64_PMEM
1452	bool "Enable support for persistent memory"
1453	select ARCH_HAS_PMEM_API
1454	select ARCH_HAS_UACCESS_FLUSHCACHE
1455	help
1456	  Say Y to enable support for the persistent memory API based on the
1457	  ARMv8.2 DCPoP feature.
1458
1459	  The feature is detected at runtime, and the kernel will use DC CVAC
1460	  operations if DC CVAP is not supported (following the behaviour of
1461	  DC CVAP itself if the system does not define a point of persistence).
1462
1463config ARM64_RAS_EXTN
1464	bool "Enable support for RAS CPU Extensions"
1465	default y
1466	help
1467	  CPUs that support the Reliability, Availability and Serviceability
1468	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1469	  errors, classify them and report them to software.
1470
1471	  On CPUs with these extensions system software can use additional
1472	  barriers to determine if faults are pending and read the
1473	  classification from a new set of registers.
1474
1475	  Selecting this feature will allow the kernel to use these barriers
1476	  and access the new registers if the system supports the extension.
1477	  Platform RAS features may additionally depend on firmware support.
1478
1479config ARM64_CNP
1480	bool "Enable support for Common Not Private (CNP) translations"
1481	default y
1482	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1483	help
1484	  Common Not Private (CNP) allows translation table entries to
1485	  be shared between different PEs in the same inner shareable
1486	  domain, so the hardware can use this fact to optimise the
1487	  caching of such entries in the TLB.
1488
1489	  Selecting this option allows the CNP feature to be detected
1490	  at runtime, and does not affect PEs that do not implement
1491	  this feature.
1492
1493endmenu
1494
1495menu "ARMv8.3 architectural features"
1496
1497config ARM64_PTR_AUTH
1498	bool "Enable support for pointer authentication"
1499	default y
1500	depends on !KVM || ARM64_VHE
1501	help
1502	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1503	  instructions for signing and authenticating pointers against secret
1504	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1505	  and other attacks.
1506
1507	  This option enables these instructions at EL0 (i.e. for userspace).
1508
1509	  Choosing this option will cause the kernel to initialise secret keys
1510	  for each process at exec() time, with these keys being
1511	  context-switched along with the process.
1512
1513	  The feature is detected at runtime. If the feature is not present in
1514	  hardware it will not be advertised to userspace/KVM guest nor will it
1515	  be enabled. However, KVM guest also require VHE mode and hence
1516	  CONFIG_ARM64_VHE=y option to use this feature.
1517
1518endmenu
1519
1520menu "ARMv8.5 architectural features"
1521
1522config ARM64_E0PD
1523	bool "Enable support for E0PD"
1524	default y
1525	help
1526	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1527	  that EL0 accesses made via TTBR1 always fault in constant time,
1528	  providing similar benefits to KASLR as those provided by KPTI, but
1529	  with lower overhead and without disrupting legitimate access to
1530	  kernel memory such as SPE.
1531
1532	  This option enables E0PD for TTBR1 where available.
1533
1534config ARCH_RANDOM
1535	bool "Enable support for random number generation"
1536	default y
1537	help
1538	  Random number generation (part of the ARMv8.5 Extensions)
1539	  provides a high bandwidth, cryptographically secure
1540	  hardware random number generator.
1541
1542endmenu
1543
1544config ARM64_SVE
1545	bool "ARM Scalable Vector Extension support"
1546	default y
1547	depends on !KVM || ARM64_VHE
1548	help
1549	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1550	  execution state which complements and extends the SIMD functionality
1551	  of the base architecture to support much larger vectors and to enable
1552	  additional vectorisation opportunities.
1553
1554	  To enable use of this extension on CPUs that implement it, say Y.
1555
1556	  On CPUs that support the SVE2 extensions, this option will enable
1557	  those too.
1558
1559	  Note that for architectural reasons, firmware _must_ implement SVE
1560	  support when running on SVE capable hardware.  The required support
1561	  is present in:
1562
1563	    * version 1.5 and later of the ARM Trusted Firmware
1564	    * the AArch64 boot wrapper since commit 5e1261e08abf
1565	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1566
1567	  For other firmware implementations, consult the firmware documentation
1568	  or vendor.
1569
1570	  If you need the kernel to boot on SVE-capable hardware with broken
1571	  firmware, you may need to say N here until you get your firmware
1572	  fixed.  Otherwise, you may experience firmware panics or lockups when
1573	  booting the kernel.  If unsure and you are not observing these
1574	  symptoms, you should assume that it is safe to say Y.
1575
1576	  CPUs that support SVE are architecturally required to support the
1577	  Virtualization Host Extensions (VHE), so the kernel makes no
1578	  provision for supporting SVE alongside KVM without VHE enabled.
1579	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1580	  KVM in the same kernel image.
1581
1582config ARM64_MODULE_PLTS
1583	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1584	depends on MODULES
1585	select HAVE_MOD_ARCH_SPECIFIC
1586	help
1587	  Allocate PLTs when loading modules so that jumps and calls whose
1588	  targets are too far away for their relative offsets to be encoded
1589	  in the instructions themselves can be bounced via veneers in the
1590	  module's PLT. This allows modules to be allocated in the generic
1591	  vmalloc area after the dedicated module memory area has been
1592	  exhausted.
1593
1594	  When running with address space randomization (KASLR), the module
1595	  region itself may be too far away for ordinary relative jumps and
1596	  calls, and so in that case, module PLTs are required and cannot be
1597	  disabled.
1598
1599	  Specific errata workaround(s) might also force module PLTs to be
1600	  enabled (ARM64_ERRATUM_843419).
1601
1602config ARM64_PSEUDO_NMI
1603	bool "Support for NMI-like interrupts"
1604	select ARM_GIC_V3
1605	help
1606	  Adds support for mimicking Non-Maskable Interrupts through the use of
1607	  GIC interrupt priority. This support requires version 3 or later of
1608	  ARM GIC.
1609
1610	  This high priority configuration for interrupts needs to be
1611	  explicitly enabled by setting the kernel parameter
1612	  "irqchip.gicv3_pseudo_nmi" to 1.
1613
1614	  If unsure, say N
1615
1616if ARM64_PSEUDO_NMI
1617config ARM64_DEBUG_PRIORITY_MASKING
1618	bool "Debug interrupt priority masking"
1619	help
1620	  This adds runtime checks to functions enabling/disabling
1621	  interrupts when using priority masking. The additional checks verify
1622	  the validity of ICC_PMR_EL1 when calling concerned functions.
1623
1624	  If unsure, say N
1625endif
1626
1627config RELOCATABLE
1628	bool
1629	select ARCH_HAS_RELR
1630	help
1631	  This builds the kernel as a Position Independent Executable (PIE),
1632	  which retains all relocation metadata required to relocate the
1633	  kernel binary at runtime to a different virtual address than the
1634	  address it was linked at.
1635	  Since AArch64 uses the RELA relocation format, this requires a
1636	  relocation pass at runtime even if the kernel is loaded at the
1637	  same address it was linked at.
1638
1639config RANDOMIZE_BASE
1640	bool "Randomize the address of the kernel image"
1641	select ARM64_MODULE_PLTS if MODULES
1642	select RELOCATABLE
1643	help
1644	  Randomizes the virtual address at which the kernel image is
1645	  loaded, as a security feature that deters exploit attempts
1646	  relying on knowledge of the location of kernel internals.
1647
1648	  It is the bootloader's job to provide entropy, by passing a
1649	  random u64 value in /chosen/kaslr-seed at kernel entry.
1650
1651	  When booting via the UEFI stub, it will invoke the firmware's
1652	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1653	  to the kernel proper. In addition, it will randomise the physical
1654	  location of the kernel Image as well.
1655
1656	  If unsure, say N.
1657
1658config RANDOMIZE_MODULE_REGION_FULL
1659	bool "Randomize the module region over a 4 GB range"
1660	depends on RANDOMIZE_BASE
1661	default y
1662	help
1663	  Randomizes the location of the module region inside a 4 GB window
1664	  covering the core kernel. This way, it is less likely for modules
1665	  to leak information about the location of core kernel data structures
1666	  but it does imply that function calls between modules and the core
1667	  kernel will need to be resolved via veneers in the module PLT.
1668
1669	  When this option is not set, the module region will be randomized over
1670	  a limited range that contains the [_stext, _etext] interval of the
1671	  core kernel, so branch relocations are always in range.
1672
1673config CC_HAVE_STACKPROTECTOR_SYSREG
1674	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1675
1676config STACKPROTECTOR_PER_TASK
1677	def_bool y
1678	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1679
1680endmenu
1681
1682menu "Boot options"
1683
1684config ARM64_ACPI_PARKING_PROTOCOL
1685	bool "Enable support for the ARM64 ACPI parking protocol"
1686	depends on ACPI
1687	help
1688	  Enable support for the ARM64 ACPI parking protocol. If disabled
1689	  the kernel will not allow booting through the ARM64 ACPI parking
1690	  protocol even if the corresponding data is present in the ACPI
1691	  MADT table.
1692
1693config CMDLINE
1694	string "Default kernel command string"
1695	default ""
1696	help
1697	  Provide a set of default command-line options at build time by
1698	  entering them here. As a minimum, you should specify the the
1699	  root device (e.g. root=/dev/nfs).
1700
1701config CMDLINE_FORCE
1702	bool "Always use the default kernel command string"
1703	depends on CMDLINE != ""
1704	help
1705	  Always use the default kernel command string, even if the boot
1706	  loader passes other arguments to the kernel.
1707	  This is useful if you cannot or don't want to change the
1708	  command-line options your boot loader passes to the kernel.
1709
1710config EFI_STUB
1711	bool
1712
1713config EFI
1714	bool "UEFI runtime support"
1715	depends on OF && !CPU_BIG_ENDIAN
1716	depends on KERNEL_MODE_NEON
1717	select ARCH_SUPPORTS_ACPI
1718	select LIBFDT
1719	select UCS2_STRING
1720	select EFI_PARAMS_FROM_FDT
1721	select EFI_RUNTIME_WRAPPERS
1722	select EFI_STUB
1723	select EFI_ARMSTUB
1724	default y
1725	help
1726	  This option provides support for runtime services provided
1727	  by UEFI firmware (such as non-volatile variables, realtime
1728          clock, and platform reset). A UEFI stub is also provided to
1729	  allow the kernel to be booted as an EFI application. This
1730	  is only useful on systems that have UEFI firmware.
1731
1732config DMI
1733	bool "Enable support for SMBIOS (DMI) tables"
1734	depends on EFI
1735	default y
1736	help
1737	  This enables SMBIOS/DMI feature for systems.
1738
1739	  This option is only useful on systems that have UEFI firmware.
1740	  However, even with this option, the resultant kernel should
1741	  continue to boot on existing non-UEFI platforms.
1742
1743endmenu
1744
1745config SYSVIPC_COMPAT
1746	def_bool y
1747	depends on COMPAT && SYSVIPC
1748
1749config ARCH_ENABLE_HUGEPAGE_MIGRATION
1750	def_bool y
1751	depends on HUGETLB_PAGE && MIGRATION
1752
1753menu "Power management options"
1754
1755source "kernel/power/Kconfig"
1756
1757config ARCH_HIBERNATION_POSSIBLE
1758	def_bool y
1759	depends on CPU_PM
1760
1761config ARCH_HIBERNATION_HEADER
1762	def_bool y
1763	depends on HIBERNATION
1764
1765config ARCH_SUSPEND_POSSIBLE
1766	def_bool y
1767
1768endmenu
1769
1770menu "CPU Power Management"
1771
1772source "drivers/cpuidle/Kconfig"
1773
1774source "drivers/cpufreq/Kconfig"
1775
1776endmenu
1777
1778source "drivers/firmware/Kconfig"
1779
1780source "drivers/acpi/Kconfig"
1781
1782source "arch/arm64/kvm/Kconfig"
1783
1784if CRYPTO
1785source "arch/arm64/crypto/Kconfig"
1786endif
1787