xref: /linux/arch/arm64/Kconfig (revision 0b3bc3354eb9ad36719a044726092750a2ba01ff)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CRC32
25	select ARCH_HAS_CRC_T10DIF if KERNEL_MODE_NEON
26	select ARCH_HAS_CURRENT_STACK_POINTER
27	select ARCH_HAS_DEBUG_VIRTUAL
28	select ARCH_HAS_DEBUG_VM_PGTABLE
29	select ARCH_HAS_DMA_OPS if XEN
30	select ARCH_HAS_DMA_PREP_COHERENT
31	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
32	select ARCH_HAS_FAST_MULTIPLIER
33	select ARCH_HAS_FORTIFY_SOURCE
34	select ARCH_HAS_GCOV_PROFILE_ALL
35	select ARCH_HAS_GIGANTIC_PAGE
36	select ARCH_HAS_KCOV
37	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
38	select ARCH_HAS_KEEPINITRD
39	select ARCH_HAS_MEMBARRIER_SYNC_CORE
40	select ARCH_HAS_MEM_ENCRYPT
41	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
42	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
43	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
44	select ARCH_HAS_PTE_DEVMAP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_MEM_ENCRYPT
51	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
52	select ARCH_STACKWALK
53	select ARCH_HAS_STRICT_KERNEL_RWX
54	select ARCH_HAS_STRICT_MODULE_RWX
55	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
56	select ARCH_HAS_SYNC_DMA_FOR_CPU
57	select ARCH_HAS_SYSCALL_WRAPPER
58	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
59	select ARCH_HAS_ZONE_DMA_SET if EXPERT
60	select ARCH_HAVE_ELF_PROT
61	select ARCH_HAVE_NMI_SAFE_CMPXCHG
62	select ARCH_HAVE_TRACE_MMIO_ACCESS
63	select ARCH_INLINE_READ_LOCK if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
89	select ARCH_KEEP_MEMBLOCK
90	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
91	select ARCH_USE_CMPXCHG_LOCKREF
92	select ARCH_USE_GNU_PROPERTY
93	select ARCH_USE_MEMTEST
94	select ARCH_USE_QUEUED_RWLOCKS
95	select ARCH_USE_QUEUED_SPINLOCKS
96	select ARCH_USE_SYM_ANNOTATIONS
97	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
98	select ARCH_SUPPORTS_HUGETLBFS
99	select ARCH_SUPPORTS_MEMORY_FAILURE
100	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
101	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
102	select ARCH_SUPPORTS_LTO_CLANG_THIN
103	select ARCH_SUPPORTS_CFI_CLANG
104	select ARCH_SUPPORTS_ATOMIC_RMW
105	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
106	select ARCH_SUPPORTS_NUMA_BALANCING
107	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
108	select ARCH_SUPPORTS_PER_VMA_LOCK
109	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
110	select ARCH_SUPPORTS_RT
111	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
112	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
113	select ARCH_WANT_DEFAULT_BPF_JIT
114	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
115	select ARCH_WANT_FRAME_POINTERS
116	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
117	select ARCH_WANT_LD_ORPHAN_WARN
118	select ARCH_WANTS_EXECMEM_LATE
119	select ARCH_WANTS_NO_INSTR
120	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
121	select ARCH_HAS_UBSAN
122	select ARM_AMBA
123	select ARM_ARCH_TIMER
124	select ARM_GIC
125	select AUDIT_ARCH_COMPAT_GENERIC
126	select ARM_GIC_V2M if PCI
127	select ARM_GIC_V3
128	select ARM_GIC_V3_ITS if PCI
129	select ARM_PSCI_FW
130	select BUILDTIME_TABLE_SORT
131	select CLONE_BACKWARDS
132	select COMMON_CLK
133	select CPU_PM if (SUSPEND || CPU_IDLE)
134	select CPUMASK_OFFSTACK if NR_CPUS > 256
135	select CRC32
136	select DCACHE_WORD_ACCESS
137	select DYNAMIC_FTRACE if FUNCTION_TRACER
138	select DMA_BOUNCE_UNALIGNED_KMALLOC
139	select DMA_DIRECT_REMAP
140	select EDAC_SUPPORT
141	select FRAME_POINTER
142	select FUNCTION_ALIGNMENT_4B
143	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
144	select GENERIC_ALLOCATOR
145	select GENERIC_ARCH_TOPOLOGY
146	select GENERIC_CLOCKEVENTS_BROADCAST
147	select GENERIC_CPU_AUTOPROBE
148	select GENERIC_CPU_DEVICES
149	select GENERIC_CPU_VULNERABILITIES
150	select GENERIC_EARLY_IOREMAP
151	select GENERIC_IDLE_POLL_SETUP
152	select GENERIC_IOREMAP
153	select GENERIC_IRQ_IPI
154	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
155	select GENERIC_IRQ_PROBE
156	select GENERIC_IRQ_SHOW
157	select GENERIC_IRQ_SHOW_LEVEL
158	select GENERIC_LIB_DEVMEM_IS_ALLOWED
159	select GENERIC_PCI_IOMAP
160	select GENERIC_PTDUMP
161	select GENERIC_SCHED_CLOCK
162	select GENERIC_SMP_IDLE_THREAD
163	select GENERIC_TIME_VSYSCALL
164	select GENERIC_GETTIMEOFDAY
165	select GENERIC_VDSO_DATA_STORE
166	select GENERIC_VDSO_TIME_NS
167	select HARDIRQS_SW_RESEND
168	select HAS_IOPORT
169	select HAVE_MOVE_PMD
170	select HAVE_MOVE_PUD
171	select HAVE_PCI
172	select HAVE_ACPI_APEI if (ACPI && EFI)
173	select HAVE_ALIGNED_STRUCT_PAGE
174	select HAVE_ARCH_AUDITSYSCALL
175	select HAVE_ARCH_BITREVERSE
176	select HAVE_ARCH_COMPILER_H
177	select HAVE_ARCH_HUGE_VMALLOC
178	select HAVE_ARCH_HUGE_VMAP
179	select HAVE_ARCH_JUMP_LABEL
180	select HAVE_ARCH_JUMP_LABEL_RELATIVE
181	select HAVE_ARCH_KASAN
182	select HAVE_ARCH_KASAN_VMALLOC
183	select HAVE_ARCH_KASAN_SW_TAGS
184	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
185	# Some instrumentation may be unsound, hence EXPERT
186	select HAVE_ARCH_KCSAN if EXPERT
187	select HAVE_ARCH_KFENCE
188	select HAVE_ARCH_KGDB
189	select HAVE_ARCH_MMAP_RND_BITS
190	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
191	select HAVE_ARCH_PREL32_RELOCATIONS
192	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
193	select HAVE_ARCH_SECCOMP_FILTER
194	select HAVE_ARCH_STACKLEAK
195	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
196	select HAVE_ARCH_TRACEHOOK
197	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
198	select HAVE_ARCH_VMAP_STACK
199	select HAVE_ARM_SMCCC
200	select HAVE_ASM_MODVERSIONS
201	select HAVE_EBPF_JIT
202	select HAVE_C_RECORDMCOUNT
203	select HAVE_CMPXCHG_DOUBLE
204	select HAVE_CMPXCHG_LOCAL
205	select HAVE_CONTEXT_TRACKING_USER
206	select HAVE_DEBUG_KMEMLEAK
207	select HAVE_DMA_CONTIGUOUS
208	select HAVE_DYNAMIC_FTRACE
209	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
210		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
211		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
212	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
213		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
214	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
215		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
216		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
217	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
218		if DYNAMIC_FTRACE_WITH_ARGS
219	select HAVE_SAMPLE_FTRACE_DIRECT
220	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
221	select HAVE_EFFICIENT_UNALIGNED_ACCESS
222	select HAVE_GUP_FAST
223	select HAVE_FTRACE_GRAPH_FUNC
224	select HAVE_FTRACE_MCOUNT_RECORD
225	select HAVE_FUNCTION_TRACER
226	select HAVE_FUNCTION_ERROR_INJECTION
227	select HAVE_FUNCTION_GRAPH_FREGS
228	select HAVE_FUNCTION_GRAPH_TRACER
229	select HAVE_FUNCTION_GRAPH_RETVAL
230	select HAVE_GCC_PLUGINS
231	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
232		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
233	select HAVE_HW_BREAKPOINT if PERF_EVENTS
234	select HAVE_IOREMAP_PROT
235	select HAVE_IRQ_TIME_ACCOUNTING
236	select HAVE_MOD_ARCH_SPECIFIC
237	select HAVE_NMI
238	select HAVE_PERF_EVENTS
239	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
240	select HAVE_PERF_REGS
241	select HAVE_PERF_USER_STACK_DUMP
242	select HAVE_PREEMPT_DYNAMIC_KEY
243	select HAVE_REGS_AND_STACK_ACCESS_API
244	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
245	select HAVE_FUNCTION_ARG_ACCESS_API
246	select MMU_GATHER_RCU_TABLE_FREE
247	select HAVE_RSEQ
248	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
249	select HAVE_STACKPROTECTOR
250	select HAVE_SYSCALL_TRACEPOINTS
251	select HAVE_KPROBES
252	select HAVE_KRETPROBES
253	select HAVE_GENERIC_VDSO
254	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
255	select IRQ_DOMAIN
256	select IRQ_FORCED_THREADING
257	select KASAN_VMALLOC if KASAN
258	select LOCK_MM_AND_FIND_VMA
259	select MODULES_USE_ELF_RELA
260	select NEED_DMA_MAP_STATE
261	select NEED_SG_DMA_LENGTH
262	select OF
263	select OF_EARLY_FLATTREE
264	select PCI_DOMAINS_GENERIC if PCI
265	select PCI_ECAM if (ACPI && PCI)
266	select PCI_SYSCALL if PCI
267	select POWER_RESET
268	select POWER_SUPPLY
269	select SPARSE_IRQ
270	select SWIOTLB
271	select SYSCTL_EXCEPTION_TRACE
272	select THREAD_INFO_IN_TASK
273	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
274	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
275	select TRACE_IRQFLAGS_SUPPORT
276	select TRACE_IRQFLAGS_NMI_SUPPORT
277	select HAVE_SOFTIRQ_ON_OWN_STACK
278	select USER_STACKTRACE_SUPPORT
279	select VDSO_GETRANDOM
280	help
281	  ARM 64-bit (AArch64) Linux support.
282
283config RUSTC_SUPPORTS_ARM64
284	def_bool y
285	depends on CPU_LITTLE_ENDIAN
286	# Shadow call stack is only supported on certain rustc versions.
287	#
288	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
289	# required due to use of the -Zfixed-x18 flag.
290	#
291	# Otherwise, rustc version 1.82+ is required due to use of the
292	# -Zsanitizer=shadow-call-stack flag.
293	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
294
295config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
296	def_bool CC_IS_CLANG
297	# https://github.com/ClangBuiltLinux/linux/issues/1507
298	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
299
300config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
301	def_bool CC_IS_GCC
302	depends on $(cc-option,-fpatchable-function-entry=2)
303
304config 64BIT
305	def_bool y
306
307config MMU
308	def_bool y
309
310config ARM64_CONT_PTE_SHIFT
311	int
312	default 5 if PAGE_SIZE_64KB
313	default 7 if PAGE_SIZE_16KB
314	default 4
315
316config ARM64_CONT_PMD_SHIFT
317	int
318	default 5 if PAGE_SIZE_64KB
319	default 5 if PAGE_SIZE_16KB
320	default 4
321
322config ARCH_MMAP_RND_BITS_MIN
323	default 14 if PAGE_SIZE_64KB
324	default 16 if PAGE_SIZE_16KB
325	default 18
326
327# max bits determined by the following formula:
328#  VA_BITS - PAGE_SHIFT - 3
329config ARCH_MMAP_RND_BITS_MAX
330	default 19 if ARM64_VA_BITS=36
331	default 24 if ARM64_VA_BITS=39
332	default 27 if ARM64_VA_BITS=42
333	default 30 if ARM64_VA_BITS=47
334	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
335	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
336	default 33 if ARM64_VA_BITS=48
337	default 14 if ARM64_64K_PAGES
338	default 16 if ARM64_16K_PAGES
339	default 18
340
341config ARCH_MMAP_RND_COMPAT_BITS_MIN
342	default 7 if ARM64_64K_PAGES
343	default 9 if ARM64_16K_PAGES
344	default 11
345
346config ARCH_MMAP_RND_COMPAT_BITS_MAX
347	default 16
348
349config NO_IOPORT_MAP
350	def_bool y if !PCI
351
352config STACKTRACE_SUPPORT
353	def_bool y
354
355config ILLEGAL_POINTER_VALUE
356	hex
357	default 0xdead000000000000
358
359config LOCKDEP_SUPPORT
360	def_bool y
361
362config GENERIC_BUG
363	def_bool y
364	depends on BUG
365
366config GENERIC_BUG_RELATIVE_POINTERS
367	def_bool y
368	depends on GENERIC_BUG
369
370config GENERIC_HWEIGHT
371	def_bool y
372
373config GENERIC_CSUM
374	def_bool y
375
376config GENERIC_CALIBRATE_DELAY
377	def_bool y
378
379config SMP
380	def_bool y
381
382config KERNEL_MODE_NEON
383	def_bool y
384
385config FIX_EARLYCON_MEM
386	def_bool y
387
388config PGTABLE_LEVELS
389	int
390	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
391	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
392	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
393	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
394	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
395	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
396	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
397	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
398
399config ARCH_SUPPORTS_UPROBES
400	def_bool y
401
402config ARCH_PROC_KCORE_TEXT
403	def_bool y
404
405config BROKEN_GAS_INST
406	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
407
408config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
409	bool
410	# Clang's __builtin_return_address() strips the PAC since 12.0.0
411	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
412	default y if CC_IS_CLANG
413	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
414	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
415	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
416	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
417	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
418	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
419	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
420	default n
421
422config KASAN_SHADOW_OFFSET
423	hex
424	depends on KASAN_GENERIC || KASAN_SW_TAGS
425	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
426	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
427	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
428	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
429	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
430	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
431	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
432	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
433	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
434	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
435	default 0xffffffffffffffff
436
437config UNWIND_TABLES
438	bool
439
440source "arch/arm64/Kconfig.platforms"
441
442menu "Kernel Features"
443
444menu "ARM errata workarounds via the alternatives framework"
445
446config AMPERE_ERRATUM_AC03_CPU_38
447        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
448	default y
449	help
450	  This option adds an alternative code sequence to work around Ampere
451	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
452
453	  The affected design reports FEAT_HAFDBS as not implemented in
454	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
455	  as required by the architecture. The unadvertised HAFDBS
456	  implementation suffers from an additional erratum where hardware
457	  A/D updates can occur after a PTE has been marked invalid.
458
459	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
460	  which avoids enabling unadvertised hardware Access Flag management
461	  at stage-2.
462
463	  If unsure, say Y.
464
465config ARM64_WORKAROUND_CLEAN_CACHE
466	bool
467
468config ARM64_ERRATUM_826319
469	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
470	default y
471	select ARM64_WORKAROUND_CLEAN_CACHE
472	help
473	  This option adds an alternative code sequence to work around ARM
474	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
475	  AXI master interface and an L2 cache.
476
477	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
478	  and is unable to accept a certain write via this interface, it will
479	  not progress on read data presented on the read data channel and the
480	  system can deadlock.
481
482	  The workaround promotes data cache clean instructions to
483	  data cache clean-and-invalidate.
484	  Please note that this does not necessarily enable the workaround,
485	  as it depends on the alternative framework, which will only patch
486	  the kernel if an affected CPU is detected.
487
488	  If unsure, say Y.
489
490config ARM64_ERRATUM_827319
491	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
492	default y
493	select ARM64_WORKAROUND_CLEAN_CACHE
494	help
495	  This option adds an alternative code sequence to work around ARM
496	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
497	  master interface and an L2 cache.
498
499	  Under certain conditions this erratum can cause a clean line eviction
500	  to occur at the same time as another transaction to the same address
501	  on the AMBA 5 CHI interface, which can cause data corruption if the
502	  interconnect reorders the two transactions.
503
504	  The workaround promotes data cache clean instructions to
505	  data cache clean-and-invalidate.
506	  Please note that this does not necessarily enable the workaround,
507	  as it depends on the alternative framework, which will only patch
508	  the kernel if an affected CPU is detected.
509
510	  If unsure, say Y.
511
512config ARM64_ERRATUM_824069
513	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
514	default y
515	select ARM64_WORKAROUND_CLEAN_CACHE
516	help
517	  This option adds an alternative code sequence to work around ARM
518	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
519	  to a coherent interconnect.
520
521	  If a Cortex-A53 processor is executing a store or prefetch for
522	  write instruction at the same time as a processor in another
523	  cluster is executing a cache maintenance operation to the same
524	  address, then this erratum might cause a clean cache line to be
525	  incorrectly marked as dirty.
526
527	  The workaround promotes data cache clean instructions to
528	  data cache clean-and-invalidate.
529	  Please note that this option does not necessarily enable the
530	  workaround, as it depends on the alternative framework, which will
531	  only patch the kernel if an affected CPU is detected.
532
533	  If unsure, say Y.
534
535config ARM64_ERRATUM_819472
536	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
537	default y
538	select ARM64_WORKAROUND_CLEAN_CACHE
539	help
540	  This option adds an alternative code sequence to work around ARM
541	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
542	  present when it is connected to a coherent interconnect.
543
544	  If the processor is executing a load and store exclusive sequence at
545	  the same time as a processor in another cluster is executing a cache
546	  maintenance operation to the same address, then this erratum might
547	  cause data corruption.
548
549	  The workaround promotes data cache clean instructions to
550	  data cache clean-and-invalidate.
551	  Please note that this does not necessarily enable the workaround,
552	  as it depends on the alternative framework, which will only patch
553	  the kernel if an affected CPU is detected.
554
555	  If unsure, say Y.
556
557config ARM64_ERRATUM_832075
558	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
559	default y
560	help
561	  This option adds an alternative code sequence to work around ARM
562	  erratum 832075 on Cortex-A57 parts up to r1p2.
563
564	  Affected Cortex-A57 parts might deadlock when exclusive load/store
565	  instructions to Write-Back memory are mixed with Device loads.
566
567	  The workaround is to promote device loads to use Load-Acquire
568	  semantics.
569	  Please note that this does not necessarily enable the workaround,
570	  as it depends on the alternative framework, which will only patch
571	  the kernel if an affected CPU is detected.
572
573	  If unsure, say Y.
574
575config ARM64_ERRATUM_834220
576	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
577	depends on KVM
578	help
579	  This option adds an alternative code sequence to work around ARM
580	  erratum 834220 on Cortex-A57 parts up to r1p2.
581
582	  Affected Cortex-A57 parts might report a Stage 2 translation
583	  fault as the result of a Stage 1 fault for load crossing a
584	  page boundary when there is a permission or device memory
585	  alignment fault at Stage 1 and a translation fault at Stage 2.
586
587	  The workaround is to verify that the Stage 1 translation
588	  doesn't generate a fault before handling the Stage 2 fault.
589	  Please note that this does not necessarily enable the workaround,
590	  as it depends on the alternative framework, which will only patch
591	  the kernel if an affected CPU is detected.
592
593	  If unsure, say N.
594
595config ARM64_ERRATUM_1742098
596	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
597	depends on COMPAT
598	default y
599	help
600	  This option removes the AES hwcap for aarch32 user-space to
601	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
602
603	  Affected parts may corrupt the AES state if an interrupt is
604	  taken between a pair of AES instructions. These instructions
605	  are only present if the cryptography extensions are present.
606	  All software should have a fallback implementation for CPUs
607	  that don't implement the cryptography extensions.
608
609	  If unsure, say Y.
610
611config ARM64_ERRATUM_845719
612	bool "Cortex-A53: 845719: a load might read incorrect data"
613	depends on COMPAT
614	default y
615	help
616	  This option adds an alternative code sequence to work around ARM
617	  erratum 845719 on Cortex-A53 parts up to r0p4.
618
619	  When running a compat (AArch32) userspace on an affected Cortex-A53
620	  part, a load at EL0 from a virtual address that matches the bottom 32
621	  bits of the virtual address used by a recent load at (AArch64) EL1
622	  might return incorrect data.
623
624	  The workaround is to write the contextidr_el1 register on exception
625	  return to a 32-bit task.
626	  Please note that this does not necessarily enable the workaround,
627	  as it depends on the alternative framework, which will only patch
628	  the kernel if an affected CPU is detected.
629
630	  If unsure, say Y.
631
632config ARM64_ERRATUM_843419
633	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
634	default y
635	help
636	  This option links the kernel with '--fix-cortex-a53-843419' and
637	  enables PLT support to replace certain ADRP instructions, which can
638	  cause subsequent memory accesses to use an incorrect address on
639	  Cortex-A53 parts up to r0p4.
640
641	  If unsure, say Y.
642
643config ARM64_LD_HAS_FIX_ERRATUM_843419
644	def_bool $(ld-option,--fix-cortex-a53-843419)
645
646config ARM64_ERRATUM_1024718
647	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
648	default y
649	help
650	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
651
652	  Affected Cortex-A55 cores (all revisions) could cause incorrect
653	  update of the hardware dirty bit when the DBM/AP bits are updated
654	  without a break-before-make. The workaround is to disable the usage
655	  of hardware DBM locally on the affected cores. CPUs not affected by
656	  this erratum will continue to use the feature.
657
658	  If unsure, say Y.
659
660config ARM64_ERRATUM_1418040
661	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
662	default y
663	depends on COMPAT
664	help
665	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
666	  errata 1188873 and 1418040.
667
668	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
669	  cause register corruption when accessing the timer registers
670	  from AArch32 userspace.
671
672	  If unsure, say Y.
673
674config ARM64_WORKAROUND_SPECULATIVE_AT
675	bool
676
677config ARM64_ERRATUM_1165522
678	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
679	default y
680	select ARM64_WORKAROUND_SPECULATIVE_AT
681	help
682	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
683
684	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
685	  corrupted TLBs by speculating an AT instruction during a guest
686	  context switch.
687
688	  If unsure, say Y.
689
690config ARM64_ERRATUM_1319367
691	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
692	default y
693	select ARM64_WORKAROUND_SPECULATIVE_AT
694	help
695	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
696	  and A72 erratum 1319367
697
698	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
699	  speculating an AT instruction during a guest context switch.
700
701	  If unsure, say Y.
702
703config ARM64_ERRATUM_1530923
704	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
705	default y
706	select ARM64_WORKAROUND_SPECULATIVE_AT
707	help
708	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
709
710	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
711	  corrupted TLBs by speculating an AT instruction during a guest
712	  context switch.
713
714	  If unsure, say Y.
715
716config ARM64_WORKAROUND_REPEAT_TLBI
717	bool
718
719config ARM64_ERRATUM_2441007
720	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
721	select ARM64_WORKAROUND_REPEAT_TLBI
722	help
723	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
724
725	  Under very rare circumstances, affected Cortex-A55 CPUs
726	  may not handle a race between a break-before-make sequence on one
727	  CPU, and another CPU accessing the same page. This could allow a
728	  store to a page that has been unmapped.
729
730	  Work around this by adding the affected CPUs to the list that needs
731	  TLB sequences to be done twice.
732
733	  If unsure, say N.
734
735config ARM64_ERRATUM_1286807
736	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
737	select ARM64_WORKAROUND_REPEAT_TLBI
738	help
739	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
740
741	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
742	  address for a cacheable mapping of a location is being
743	  accessed by a core while another core is remapping the virtual
744	  address to a new physical page using the recommended
745	  break-before-make sequence, then under very rare circumstances
746	  TLBI+DSB completes before a read using the translation being
747	  invalidated has been observed by other observers. The
748	  workaround repeats the TLBI+DSB operation.
749
750	  If unsure, say N.
751
752config ARM64_ERRATUM_1463225
753	bool "Cortex-A76: Software Step might prevent interrupt recognition"
754	default y
755	help
756	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
757
758	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
759	  of a system call instruction (SVC) can prevent recognition of
760	  subsequent interrupts when software stepping is disabled in the
761	  exception handler of the system call and either kernel debugging
762	  is enabled or VHE is in use.
763
764	  Work around the erratum by triggering a dummy step exception
765	  when handling a system call from a task that is being stepped
766	  in a VHE configuration of the kernel.
767
768	  If unsure, say Y.
769
770config ARM64_ERRATUM_1542419
771	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
772	help
773	  This option adds a workaround for ARM Neoverse-N1 erratum
774	  1542419.
775
776	  Affected Neoverse-N1 cores could execute a stale instruction when
777	  modified by another CPU. The workaround depends on a firmware
778	  counterpart.
779
780	  Workaround the issue by hiding the DIC feature from EL0. This
781	  forces user-space to perform cache maintenance.
782
783	  If unsure, say N.
784
785config ARM64_ERRATUM_1508412
786	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
787	default y
788	help
789	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
790
791	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
792	  of a store-exclusive or read of PAR_EL1 and a load with device or
793	  non-cacheable memory attributes. The workaround depends on a firmware
794	  counterpart.
795
796	  KVM guests must also have the workaround implemented or they can
797	  deadlock the system.
798
799	  Work around the issue by inserting DMB SY barriers around PAR_EL1
800	  register reads and warning KVM users. The DMB barrier is sufficient
801	  to prevent a speculative PAR_EL1 read.
802
803	  If unsure, say Y.
804
805config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
806	bool
807
808config ARM64_ERRATUM_2051678
809	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
810	default y
811	help
812	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
813	  Affected Cortex-A510 might not respect the ordering rules for
814	  hardware update of the page table's dirty bit. The workaround
815	  is to not enable the feature on affected CPUs.
816
817	  If unsure, say Y.
818
819config ARM64_ERRATUM_2077057
820	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
821	default y
822	help
823	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
824	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
825	  expected, but a Pointer Authentication trap is taken instead. The
826	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
827	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
828
829	  This can only happen when EL2 is stepping EL1.
830
831	  When these conditions occur, the SPSR_EL2 value is unchanged from the
832	  previous guest entry, and can be restored from the in-memory copy.
833
834	  If unsure, say Y.
835
836config ARM64_ERRATUM_2658417
837	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
838	default y
839	help
840	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
841	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
842	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
843	  A510 CPUs are using shared neon hardware. As the sharing is not
844	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
845	  user-space should not be using these instructions.
846
847	  If unsure, say Y.
848
849config ARM64_ERRATUM_2119858
850	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
851	default y
852	depends on CORESIGHT_TRBE
853	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
854	help
855	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
856
857	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
858	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
859	  the event of a WRAP event.
860
861	  Work around the issue by always making sure we move the TRBPTR_EL1 by
862	  256 bytes before enabling the buffer and filling the first 256 bytes of
863	  the buffer with ETM ignore packets upon disabling.
864
865	  If unsure, say Y.
866
867config ARM64_ERRATUM_2139208
868	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
869	default y
870	depends on CORESIGHT_TRBE
871	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
872	help
873	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
874
875	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
876	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
877	  the event of a WRAP event.
878
879	  Work around the issue by always making sure we move the TRBPTR_EL1 by
880	  256 bytes before enabling the buffer and filling the first 256 bytes of
881	  the buffer with ETM ignore packets upon disabling.
882
883	  If unsure, say Y.
884
885config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
886	bool
887
888config ARM64_ERRATUM_2054223
889	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
890	default y
891	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
892	help
893	  Enable workaround for ARM Cortex-A710 erratum 2054223
894
895	  Affected cores may fail to flush the trace data on a TSB instruction, when
896	  the PE is in trace prohibited state. This will cause losing a few bytes
897	  of the trace cached.
898
899	  Workaround is to issue two TSB consecutively on affected cores.
900
901	  If unsure, say Y.
902
903config ARM64_ERRATUM_2067961
904	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
905	default y
906	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
907	help
908	  Enable workaround for ARM Neoverse-N2 erratum 2067961
909
910	  Affected cores may fail to flush the trace data on a TSB instruction, when
911	  the PE is in trace prohibited state. This will cause losing a few bytes
912	  of the trace cached.
913
914	  Workaround is to issue two TSB consecutively on affected cores.
915
916	  If unsure, say Y.
917
918config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
919	bool
920
921config ARM64_ERRATUM_2253138
922	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
923	depends on CORESIGHT_TRBE
924	default y
925	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
926	help
927	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
928
929	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
930	  for TRBE. Under some conditions, the TRBE might generate a write to the next
931	  virtually addressed page following the last page of the TRBE address space
932	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
933
934	  Work around this in the driver by always making sure that there is a
935	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
936
937	  If unsure, say Y.
938
939config ARM64_ERRATUM_2224489
940	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
941	depends on CORESIGHT_TRBE
942	default y
943	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
944	help
945	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
946
947	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
948	  for TRBE. Under some conditions, the TRBE might generate a write to the next
949	  virtually addressed page following the last page of the TRBE address space
950	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
951
952	  Work around this in the driver by always making sure that there is a
953	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
954
955	  If unsure, say Y.
956
957config ARM64_ERRATUM_2441009
958	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
959	select ARM64_WORKAROUND_REPEAT_TLBI
960	help
961	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
962
963	  Under very rare circumstances, affected Cortex-A510 CPUs
964	  may not handle a race between a break-before-make sequence on one
965	  CPU, and another CPU accessing the same page. This could allow a
966	  store to a page that has been unmapped.
967
968	  Work around this by adding the affected CPUs to the list that needs
969	  TLB sequences to be done twice.
970
971	  If unsure, say N.
972
973config ARM64_ERRATUM_2064142
974	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
975	depends on CORESIGHT_TRBE
976	default y
977	help
978	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
979
980	  Affected Cortex-A510 core might fail to write into system registers after the
981	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
982	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
983	  and TRBTRG_EL1 will be ignored and will not be effected.
984
985	  Work around this in the driver by executing TSB CSYNC and DSB after collection
986	  is stopped and before performing a system register write to one of the affected
987	  registers.
988
989	  If unsure, say Y.
990
991config ARM64_ERRATUM_2038923
992	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
993	depends on CORESIGHT_TRBE
994	default y
995	help
996	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
997
998	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
999	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1000	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1001	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1002	  execution changes from a context, in which trace is prohibited to one where it
1003	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1004	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1005	  the trace buffer state might be corrupted.
1006
1007	  Work around this in the driver by preventing an inconsistent view of whether the
1008	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1009	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1010	  two ISB instructions if no ERET is to take place.
1011
1012	  If unsure, say Y.
1013
1014config ARM64_ERRATUM_1902691
1015	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1016	depends on CORESIGHT_TRBE
1017	default y
1018	help
1019	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1020
1021	  Affected Cortex-A510 core might cause trace data corruption, when being written
1022	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1023	  trace data.
1024
1025	  Work around this problem in the driver by just preventing TRBE initialization on
1026	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1027	  on such implementations. This will cover the kernel for any firmware that doesn't
1028	  do this already.
1029
1030	  If unsure, say Y.
1031
1032config ARM64_ERRATUM_2457168
1033	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1034	depends on ARM64_AMU_EXTN
1035	default y
1036	help
1037	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1038
1039	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1040	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1041	  incorrectly giving a significantly higher output value.
1042
1043	  Work around this problem by returning 0 when reading the affected counter in
1044	  key locations that results in disabling all users of this counter. This effect
1045	  is the same to firmware disabling affected counters.
1046
1047	  If unsure, say Y.
1048
1049config ARM64_ERRATUM_2645198
1050	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1051	default y
1052	help
1053	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1054
1055	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1056	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1057	  next instruction abort caused by permission fault.
1058
1059	  Only user-space does executable to non-executable permission transition via
1060	  mprotect() system call. Workaround the problem by doing a break-before-make
1061	  TLB invalidation, for all changes to executable user space mappings.
1062
1063	  If unsure, say Y.
1064
1065config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1066	bool
1067
1068config ARM64_ERRATUM_2966298
1069	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1070	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1071	default y
1072	help
1073	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1074
1075	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1076	  load might leak data from a privileged level via a cache side channel.
1077
1078	  Work around this problem by executing a TLBI before returning to EL0.
1079
1080	  If unsure, say Y.
1081
1082config ARM64_ERRATUM_3117295
1083	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1084	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1085	default y
1086	help
1087	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1088
1089	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1090	  load might leak data from a privileged level via a cache side channel.
1091
1092	  Work around this problem by executing a TLBI before returning to EL0.
1093
1094	  If unsure, say Y.
1095
1096config ARM64_ERRATUM_3194386
1097	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1098	default y
1099	help
1100	  This option adds the workaround for the following errata:
1101
1102	  * ARM Cortex-A76 erratum 3324349
1103	  * ARM Cortex-A77 erratum 3324348
1104	  * ARM Cortex-A78 erratum 3324344
1105	  * ARM Cortex-A78C erratum 3324346
1106	  * ARM Cortex-A78C erratum 3324347
1107	  * ARM Cortex-A710 erratam 3324338
1108	  * ARM Cortex-A715 errartum 3456084
1109	  * ARM Cortex-A720 erratum 3456091
1110	  * ARM Cortex-A725 erratum 3456106
1111	  * ARM Cortex-X1 erratum 3324344
1112	  * ARM Cortex-X1C erratum 3324346
1113	  * ARM Cortex-X2 erratum 3324338
1114	  * ARM Cortex-X3 erratum 3324335
1115	  * ARM Cortex-X4 erratum 3194386
1116	  * ARM Cortex-X925 erratum 3324334
1117	  * ARM Neoverse-N1 erratum 3324349
1118	  * ARM Neoverse N2 erratum 3324339
1119	  * ARM Neoverse-N3 erratum 3456111
1120	  * ARM Neoverse-V1 erratum 3324341
1121	  * ARM Neoverse V2 erratum 3324336
1122	  * ARM Neoverse-V3 erratum 3312417
1123
1124	  On affected cores "MSR SSBS, #0" instructions may not affect
1125	  subsequent speculative instructions, which may permit unexepected
1126	  speculative store bypassing.
1127
1128	  Work around this problem by placing a Speculation Barrier (SB) or
1129	  Instruction Synchronization Barrier (ISB) after kernel changes to
1130	  SSBS. The presence of the SSBS special-purpose register is hidden
1131	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1132	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1133
1134	  If unsure, say Y.
1135
1136config CAVIUM_ERRATUM_22375
1137	bool "Cavium erratum 22375, 24313"
1138	default y
1139	help
1140	  Enable workaround for errata 22375 and 24313.
1141
1142	  This implements two gicv3-its errata workarounds for ThunderX. Both
1143	  with a small impact affecting only ITS table allocation.
1144
1145	    erratum 22375: only alloc 8MB table size
1146	    erratum 24313: ignore memory access type
1147
1148	  The fixes are in ITS initialization and basically ignore memory access
1149	  type and table size provided by the TYPER and BASER registers.
1150
1151	  If unsure, say Y.
1152
1153config CAVIUM_ERRATUM_23144
1154	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1155	depends on NUMA
1156	default y
1157	help
1158	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1159
1160	  If unsure, say Y.
1161
1162config CAVIUM_ERRATUM_23154
1163	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1164	default y
1165	help
1166	  The ThunderX GICv3 implementation requires a modified version for
1167	  reading the IAR status to ensure data synchronization
1168	  (access to icc_iar1_el1 is not sync'ed before and after).
1169
1170	  It also suffers from erratum 38545 (also present on Marvell's
1171	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1172	  spuriously presented to the CPU interface.
1173
1174	  If unsure, say Y.
1175
1176config CAVIUM_ERRATUM_27456
1177	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1178	default y
1179	help
1180	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1181	  instructions may cause the icache to become corrupted if it
1182	  contains data for a non-current ASID.  The fix is to
1183	  invalidate the icache when changing the mm context.
1184
1185	  If unsure, say Y.
1186
1187config CAVIUM_ERRATUM_30115
1188	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1189	default y
1190	help
1191	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1192	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1193	  interrupts in host. Trapping both GICv3 group-0 and group-1
1194	  accesses sidesteps the issue.
1195
1196	  If unsure, say Y.
1197
1198config CAVIUM_TX2_ERRATUM_219
1199	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1200	default y
1201	help
1202	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1203	  TTBR update and the corresponding context synchronizing operation can
1204	  cause a spurious Data Abort to be delivered to any hardware thread in
1205	  the CPU core.
1206
1207	  Work around the issue by avoiding the problematic code sequence and
1208	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1209	  trap handler performs the corresponding register access, skips the
1210	  instruction and ensures context synchronization by virtue of the
1211	  exception return.
1212
1213	  If unsure, say Y.
1214
1215config FUJITSU_ERRATUM_010001
1216	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1217	default y
1218	help
1219	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1220	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1221	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1222	  This fault occurs under a specific hardware condition when a
1223	  load/store instruction performs an address translation using:
1224	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1225	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1226	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1227	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1228
1229	  The workaround is to ensure these bits are clear in TCR_ELx.
1230	  The workaround only affects the Fujitsu-A64FX.
1231
1232	  If unsure, say Y.
1233
1234config HISILICON_ERRATUM_161600802
1235	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1236	default y
1237	help
1238	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1239	  when issued ITS commands such as VMOVP and VMAPP, and requires
1240	  a 128kB offset to be applied to the target address in this commands.
1241
1242	  If unsure, say Y.
1243
1244config HISILICON_ERRATUM_162100801
1245	bool "Hip09 162100801 erratum support"
1246	default y
1247	help
1248	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1249	  during unmapping operation, which will cause some vSGIs lost.
1250	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1251	  after VMOVP.
1252
1253	  If unsure, say Y.
1254
1255config QCOM_FALKOR_ERRATUM_1003
1256	bool "Falkor E1003: Incorrect translation due to ASID change"
1257	default y
1258	help
1259	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1260	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1261	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1262	  then only for entries in the walk cache, since the leaf translation
1263	  is unchanged. Work around the erratum by invalidating the walk cache
1264	  entries for the trampoline before entering the kernel proper.
1265
1266config QCOM_FALKOR_ERRATUM_1009
1267	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1268	default y
1269	select ARM64_WORKAROUND_REPEAT_TLBI
1270	help
1271	  On Falkor v1, the CPU may prematurely complete a DSB following a
1272	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1273	  one more time to fix the issue.
1274
1275	  If unsure, say Y.
1276
1277config QCOM_QDF2400_ERRATUM_0065
1278	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1279	default y
1280	help
1281	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1282	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1283	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1284
1285	  If unsure, say Y.
1286
1287config QCOM_FALKOR_ERRATUM_E1041
1288	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1289	default y
1290	help
1291	  Falkor CPU may speculatively fetch instructions from an improper
1292	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1293	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1294
1295	  If unsure, say Y.
1296
1297config NVIDIA_CARMEL_CNP_ERRATUM
1298	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1299	default y
1300	help
1301	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1302	  invalidate shared TLB entries installed by a different core, as it would
1303	  on standard ARM cores.
1304
1305	  If unsure, say Y.
1306
1307config ROCKCHIP_ERRATUM_3588001
1308	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1309	default y
1310	help
1311	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1312	  This means, that its sharability feature may not be used, even though it
1313	  is supported by the IP itself.
1314
1315	  If unsure, say Y.
1316
1317config SOCIONEXT_SYNQUACER_PREITS
1318	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1319	default y
1320	help
1321	  Socionext Synquacer SoCs implement a separate h/w block to generate
1322	  MSI doorbell writes with non-zero values for the device ID.
1323
1324	  If unsure, say Y.
1325
1326endmenu # "ARM errata workarounds via the alternatives framework"
1327
1328choice
1329	prompt "Page size"
1330	default ARM64_4K_PAGES
1331	help
1332	  Page size (translation granule) configuration.
1333
1334config ARM64_4K_PAGES
1335	bool "4KB"
1336	select HAVE_PAGE_SIZE_4KB
1337	help
1338	  This feature enables 4KB pages support.
1339
1340config ARM64_16K_PAGES
1341	bool "16KB"
1342	select HAVE_PAGE_SIZE_16KB
1343	help
1344	  The system will use 16KB pages support. AArch32 emulation
1345	  requires applications compiled with 16K (or a multiple of 16K)
1346	  aligned segments.
1347
1348config ARM64_64K_PAGES
1349	bool "64KB"
1350	select HAVE_PAGE_SIZE_64KB
1351	help
1352	  This feature enables 64KB pages support (4KB by default)
1353	  allowing only two levels of page tables and faster TLB
1354	  look-up. AArch32 emulation requires applications compiled
1355	  with 64K aligned segments.
1356
1357endchoice
1358
1359choice
1360	prompt "Virtual address space size"
1361	default ARM64_VA_BITS_52
1362	help
1363	  Allows choosing one of multiple possible virtual address
1364	  space sizes. The level of translation table is determined by
1365	  a combination of page size and virtual address space size.
1366
1367config ARM64_VA_BITS_36
1368	bool "36-bit" if EXPERT
1369	depends on PAGE_SIZE_16KB
1370
1371config ARM64_VA_BITS_39
1372	bool "39-bit"
1373	depends on PAGE_SIZE_4KB
1374
1375config ARM64_VA_BITS_42
1376	bool "42-bit"
1377	depends on PAGE_SIZE_64KB
1378
1379config ARM64_VA_BITS_47
1380	bool "47-bit"
1381	depends on PAGE_SIZE_16KB
1382
1383config ARM64_VA_BITS_48
1384	bool "48-bit"
1385
1386config ARM64_VA_BITS_52
1387	bool "52-bit"
1388	help
1389	  Enable 52-bit virtual addressing for userspace when explicitly
1390	  requested via a hint to mmap(). The kernel will also use 52-bit
1391	  virtual addresses for its own mappings (provided HW support for
1392	  this feature is available, otherwise it reverts to 48-bit).
1393
1394	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1395	  ARMv8.3 Pointer Authentication will result in the PAC being
1396	  reduced from 7 bits to 3 bits, which may have a significant
1397	  impact on its susceptibility to brute-force attacks.
1398
1399	  If unsure, select 48-bit virtual addressing instead.
1400
1401endchoice
1402
1403config ARM64_FORCE_52BIT
1404	bool "Force 52-bit virtual addresses for userspace"
1405	depends on ARM64_VA_BITS_52 && EXPERT
1406	help
1407	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1408	  to maintain compatibility with older software by providing 48-bit VAs
1409	  unless a hint is supplied to mmap.
1410
1411	  This configuration option disables the 48-bit compatibility logic, and
1412	  forces all userspace addresses to be 52-bit on HW that supports it. One
1413	  should only enable this configuration option for stress testing userspace
1414	  memory management code. If unsure say N here.
1415
1416config ARM64_VA_BITS
1417	int
1418	default 36 if ARM64_VA_BITS_36
1419	default 39 if ARM64_VA_BITS_39
1420	default 42 if ARM64_VA_BITS_42
1421	default 47 if ARM64_VA_BITS_47
1422	default 48 if ARM64_VA_BITS_48
1423	default 52 if ARM64_VA_BITS_52
1424
1425choice
1426	prompt "Physical address space size"
1427	default ARM64_PA_BITS_48
1428	help
1429	  Choose the maximum physical address range that the kernel will
1430	  support.
1431
1432config ARM64_PA_BITS_48
1433	bool "48-bit"
1434	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1435
1436config ARM64_PA_BITS_52
1437	bool "52-bit"
1438	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1439	help
1440	  Enable support for a 52-bit physical address space, introduced as
1441	  part of the ARMv8.2-LPA extension.
1442
1443	  With this enabled, the kernel will also continue to work on CPUs that
1444	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1445	  minor performance overhead).
1446
1447endchoice
1448
1449config ARM64_PA_BITS
1450	int
1451	default 48 if ARM64_PA_BITS_48
1452	default 52 if ARM64_PA_BITS_52
1453
1454config ARM64_LPA2
1455	def_bool y
1456	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1457
1458choice
1459	prompt "Endianness"
1460	default CPU_LITTLE_ENDIAN
1461	help
1462	  Select the endianness of data accesses performed by the CPU. Userspace
1463	  applications will need to be compiled and linked for the endianness
1464	  that is selected here.
1465
1466config CPU_BIG_ENDIAN
1467	bool "Build big-endian kernel"
1468	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1469	depends on AS_IS_GNU || AS_VERSION >= 150000
1470	help
1471	  Say Y if you plan on running a kernel with a big-endian userspace.
1472
1473config CPU_LITTLE_ENDIAN
1474	bool "Build little-endian kernel"
1475	help
1476	  Say Y if you plan on running a kernel with a little-endian userspace.
1477	  This is usually the case for distributions targeting arm64.
1478
1479endchoice
1480
1481config SCHED_MC
1482	bool "Multi-core scheduler support"
1483	help
1484	  Multi-core scheduler support improves the CPU scheduler's decision
1485	  making when dealing with multi-core CPU chips at a cost of slightly
1486	  increased overhead in some places. If unsure say N here.
1487
1488config SCHED_CLUSTER
1489	bool "Cluster scheduler support"
1490	help
1491	  Cluster scheduler support improves the CPU scheduler's decision
1492	  making when dealing with machines that have clusters of CPUs.
1493	  Cluster usually means a couple of CPUs which are placed closely
1494	  by sharing mid-level caches, last-level cache tags or internal
1495	  busses.
1496
1497config SCHED_SMT
1498	bool "SMT scheduler support"
1499	help
1500	  Improves the CPU scheduler's decision making when dealing with
1501	  MultiThreading at a cost of slightly increased overhead in some
1502	  places. If unsure say N here.
1503
1504config NR_CPUS
1505	int "Maximum number of CPUs (2-4096)"
1506	range 2 4096
1507	default "512"
1508
1509config HOTPLUG_CPU
1510	bool "Support for hot-pluggable CPUs"
1511	select GENERIC_IRQ_MIGRATION
1512	help
1513	  Say Y here to experiment with turning CPUs off and on.  CPUs
1514	  can be controlled through /sys/devices/system/cpu.
1515
1516# Common NUMA Features
1517config NUMA
1518	bool "NUMA Memory Allocation and Scheduler Support"
1519	select GENERIC_ARCH_NUMA
1520	select OF_NUMA
1521	select HAVE_SETUP_PER_CPU_AREA
1522	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1523	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1524	select USE_PERCPU_NUMA_NODE_ID
1525	help
1526	  Enable NUMA (Non-Uniform Memory Access) support.
1527
1528	  The kernel will try to allocate memory used by a CPU on the
1529	  local memory of the CPU and add some more
1530	  NUMA awareness to the kernel.
1531
1532config NODES_SHIFT
1533	int "Maximum NUMA Nodes (as a power of 2)"
1534	range 1 10
1535	default "4"
1536	depends on NUMA
1537	help
1538	  Specify the maximum number of NUMA Nodes available on the target
1539	  system.  Increases memory reserved to accommodate various tables.
1540
1541source "kernel/Kconfig.hz"
1542
1543config ARCH_SPARSEMEM_ENABLE
1544	def_bool y
1545	select SPARSEMEM_VMEMMAP_ENABLE
1546	select SPARSEMEM_VMEMMAP
1547
1548config HW_PERF_EVENTS
1549	def_bool y
1550	depends on ARM_PMU
1551
1552# Supported by clang >= 7.0 or GCC >= 12.0.0
1553config CC_HAVE_SHADOW_CALL_STACK
1554	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1555
1556config PARAVIRT
1557	bool "Enable paravirtualization code"
1558	help
1559	  This changes the kernel so it can modify itself when it is run
1560	  under a hypervisor, potentially improving performance significantly
1561	  over full virtualization.
1562
1563config PARAVIRT_TIME_ACCOUNTING
1564	bool "Paravirtual steal time accounting"
1565	select PARAVIRT
1566	help
1567	  Select this option to enable fine granularity task steal time
1568	  accounting. Time spent executing other tasks in parallel with
1569	  the current vCPU is discounted from the vCPU power. To account for
1570	  that, there can be a small performance impact.
1571
1572	  If in doubt, say N here.
1573
1574config ARCH_SUPPORTS_KEXEC
1575	def_bool PM_SLEEP_SMP
1576
1577config ARCH_SUPPORTS_KEXEC_FILE
1578	def_bool y
1579
1580config ARCH_SELECTS_KEXEC_FILE
1581	def_bool y
1582	depends on KEXEC_FILE
1583	select HAVE_IMA_KEXEC if IMA
1584
1585config ARCH_SUPPORTS_KEXEC_SIG
1586	def_bool y
1587
1588config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1589	def_bool y
1590
1591config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1592	def_bool y
1593
1594config ARCH_SUPPORTS_CRASH_DUMP
1595	def_bool y
1596
1597config ARCH_DEFAULT_CRASH_DUMP
1598	def_bool y
1599
1600config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1601	def_bool CRASH_RESERVE
1602
1603config TRANS_TABLE
1604	def_bool y
1605	depends on HIBERNATION || KEXEC_CORE
1606
1607config XEN_DOM0
1608	def_bool y
1609	depends on XEN
1610
1611config XEN
1612	bool "Xen guest support on ARM64"
1613	depends on ARM64 && OF
1614	select SWIOTLB_XEN
1615	select PARAVIRT
1616	help
1617	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1618
1619# include/linux/mmzone.h requires the following to be true:
1620#
1621#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1622#
1623# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1624#
1625#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1626# ----+-------------------+--------------+----------------------+-------------------------+
1627# 4K  |       27          |      12      |       15             |         10              |
1628# 16K |       27          |      14      |       13             |         11              |
1629# 64K |       29          |      16      |       13             |         13              |
1630config ARCH_FORCE_MAX_ORDER
1631	int
1632	default "13" if ARM64_64K_PAGES
1633	default "11" if ARM64_16K_PAGES
1634	default "10"
1635	help
1636	  The kernel page allocator limits the size of maximal physically
1637	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1638	  defines the maximal power of two of number of pages that can be
1639	  allocated as a single contiguous block. This option allows
1640	  overriding the default setting when ability to allocate very
1641	  large blocks of physically contiguous memory is required.
1642
1643	  The maximal size of allocation cannot exceed the size of the
1644	  section, so the value of MAX_PAGE_ORDER should satisfy
1645
1646	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1647
1648	  Don't change if unsure.
1649
1650config UNMAP_KERNEL_AT_EL0
1651	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1652	default y
1653	help
1654	  Speculation attacks against some high-performance processors can
1655	  be used to bypass MMU permission checks and leak kernel data to
1656	  userspace. This can be defended against by unmapping the kernel
1657	  when running in userspace, mapping it back in on exception entry
1658	  via a trampoline page in the vector table.
1659
1660	  If unsure, say Y.
1661
1662config MITIGATE_SPECTRE_BRANCH_HISTORY
1663	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1664	default y
1665	help
1666	  Speculation attacks against some high-performance processors can
1667	  make use of branch history to influence future speculation.
1668	  When taking an exception from user-space, a sequence of branches
1669	  or a firmware call overwrites the branch history.
1670
1671config RODATA_FULL_DEFAULT_ENABLED
1672	bool "Apply r/o permissions of VM areas also to their linear aliases"
1673	default y
1674	help
1675	  Apply read-only attributes of VM areas to the linear alias of
1676	  the backing pages as well. This prevents code or read-only data
1677	  from being modified (inadvertently or intentionally) via another
1678	  mapping of the same memory page. This additional enhancement can
1679	  be turned off at runtime by passing rodata=[off|on] (and turned on
1680	  with rodata=full if this option is set to 'n')
1681
1682	  This requires the linear region to be mapped down to pages,
1683	  which may adversely affect performance in some cases.
1684
1685config ARM64_SW_TTBR0_PAN
1686	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1687	depends on !KCSAN
1688	select ARM64_PAN
1689	help
1690	  Enabling this option prevents the kernel from accessing
1691	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1692	  zeroed area and reserved ASID. The user access routines
1693	  restore the valid TTBR0_EL1 temporarily.
1694
1695config ARM64_TAGGED_ADDR_ABI
1696	bool "Enable the tagged user addresses syscall ABI"
1697	default y
1698	help
1699	  When this option is enabled, user applications can opt in to a
1700	  relaxed ABI via prctl() allowing tagged addresses to be passed
1701	  to system calls as pointer arguments. For details, see
1702	  Documentation/arch/arm64/tagged-address-abi.rst.
1703
1704menuconfig COMPAT
1705	bool "Kernel support for 32-bit EL0"
1706	depends on ARM64_4K_PAGES || EXPERT
1707	select HAVE_UID16
1708	select OLD_SIGSUSPEND3
1709	select COMPAT_OLD_SIGACTION
1710	help
1711	  This option enables support for a 32-bit EL0 running under a 64-bit
1712	  kernel at EL1. AArch32-specific components such as system calls,
1713	  the user helper functions, VFP support and the ptrace interface are
1714	  handled appropriately by the kernel.
1715
1716	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1717	  that you will only be able to execute AArch32 binaries that were compiled
1718	  with page size aligned segments.
1719
1720	  If you want to execute 32-bit userspace applications, say Y.
1721
1722if COMPAT
1723
1724config KUSER_HELPERS
1725	bool "Enable kuser helpers page for 32-bit applications"
1726	default y
1727	help
1728	  Warning: disabling this option may break 32-bit user programs.
1729
1730	  Provide kuser helpers to compat tasks. The kernel provides
1731	  helper code to userspace in read only form at a fixed location
1732	  to allow userspace to be independent of the CPU type fitted to
1733	  the system. This permits binaries to be run on ARMv4 through
1734	  to ARMv8 without modification.
1735
1736	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1737
1738	  However, the fixed address nature of these helpers can be used
1739	  by ROP (return orientated programming) authors when creating
1740	  exploits.
1741
1742	  If all of the binaries and libraries which run on your platform
1743	  are built specifically for your platform, and make no use of
1744	  these helpers, then you can turn this option off to hinder
1745	  such exploits. However, in that case, if a binary or library
1746	  relying on those helpers is run, it will not function correctly.
1747
1748	  Say N here only if you are absolutely certain that you do not
1749	  need these helpers; otherwise, the safe option is to say Y.
1750
1751config COMPAT_VDSO
1752	bool "Enable vDSO for 32-bit applications"
1753	depends on !CPU_BIG_ENDIAN
1754	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1755	select GENERIC_COMPAT_VDSO
1756	default y
1757	help
1758	  Place in the process address space of 32-bit applications an
1759	  ELF shared object providing fast implementations of gettimeofday
1760	  and clock_gettime.
1761
1762	  You must have a 32-bit build of glibc 2.22 or later for programs
1763	  to seamlessly take advantage of this.
1764
1765config THUMB2_COMPAT_VDSO
1766	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1767	depends on COMPAT_VDSO
1768	default y
1769	help
1770	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1771	  otherwise with '-marm'.
1772
1773config COMPAT_ALIGNMENT_FIXUPS
1774	bool "Fix up misaligned multi-word loads and stores in user space"
1775
1776menuconfig ARMV8_DEPRECATED
1777	bool "Emulate deprecated/obsolete ARMv8 instructions"
1778	depends on SYSCTL
1779	help
1780	  Legacy software support may require certain instructions
1781	  that have been deprecated or obsoleted in the architecture.
1782
1783	  Enable this config to enable selective emulation of these
1784	  features.
1785
1786	  If unsure, say Y
1787
1788if ARMV8_DEPRECATED
1789
1790config SWP_EMULATION
1791	bool "Emulate SWP/SWPB instructions"
1792	help
1793	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1794	  they are always undefined. Say Y here to enable software
1795	  emulation of these instructions for userspace using LDXR/STXR.
1796	  This feature can be controlled at runtime with the abi.swp
1797	  sysctl which is disabled by default.
1798
1799	  In some older versions of glibc [<=2.8] SWP is used during futex
1800	  trylock() operations with the assumption that the code will not
1801	  be preempted. This invalid assumption may be more likely to fail
1802	  with SWP emulation enabled, leading to deadlock of the user
1803	  application.
1804
1805	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1806	  on an external transaction monitoring block called a global
1807	  monitor to maintain update atomicity. If your system does not
1808	  implement a global monitor, this option can cause programs that
1809	  perform SWP operations to uncached memory to deadlock.
1810
1811	  If unsure, say Y
1812
1813config CP15_BARRIER_EMULATION
1814	bool "Emulate CP15 Barrier instructions"
1815	help
1816	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1817	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1818	  strongly recommended to use the ISB, DSB, and DMB
1819	  instructions instead.
1820
1821	  Say Y here to enable software emulation of these
1822	  instructions for AArch32 userspace code. When this option is
1823	  enabled, CP15 barrier usage is traced which can help
1824	  identify software that needs updating. This feature can be
1825	  controlled at runtime with the abi.cp15_barrier sysctl.
1826
1827	  If unsure, say Y
1828
1829config SETEND_EMULATION
1830	bool "Emulate SETEND instruction"
1831	help
1832	  The SETEND instruction alters the data-endianness of the
1833	  AArch32 EL0, and is deprecated in ARMv8.
1834
1835	  Say Y here to enable software emulation of the instruction
1836	  for AArch32 userspace code. This feature can be controlled
1837	  at runtime with the abi.setend sysctl.
1838
1839	  Note: All the cpus on the system must have mixed endian support at EL0
1840	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1841	  endian - is hotplugged in after this feature has been enabled, there could
1842	  be unexpected results in the applications.
1843
1844	  If unsure, say Y
1845endif # ARMV8_DEPRECATED
1846
1847endif # COMPAT
1848
1849menu "ARMv8.1 architectural features"
1850
1851config ARM64_HW_AFDBM
1852	bool "Support for hardware updates of the Access and Dirty page flags"
1853	default y
1854	help
1855	  The ARMv8.1 architecture extensions introduce support for
1856	  hardware updates of the access and dirty information in page
1857	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1858	  capable processors, accesses to pages with PTE_AF cleared will
1859	  set this bit instead of raising an access flag fault.
1860	  Similarly, writes to read-only pages with the DBM bit set will
1861	  clear the read-only bit (AP[2]) instead of raising a
1862	  permission fault.
1863
1864	  Kernels built with this configuration option enabled continue
1865	  to work on pre-ARMv8.1 hardware and the performance impact is
1866	  minimal. If unsure, say Y.
1867
1868config ARM64_PAN
1869	bool "Enable support for Privileged Access Never (PAN)"
1870	default y
1871	help
1872	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1873	  prevents the kernel or hypervisor from accessing user-space (EL0)
1874	  memory directly.
1875
1876	  Choosing this option will cause any unprotected (not using
1877	  copy_to_user et al) memory access to fail with a permission fault.
1878
1879	  The feature is detected at runtime, and will remain as a 'nop'
1880	  instruction if the cpu does not implement the feature.
1881
1882config AS_HAS_LSE_ATOMICS
1883	def_bool $(as-instr,.arch_extension lse)
1884
1885config ARM64_LSE_ATOMICS
1886	bool
1887	default ARM64_USE_LSE_ATOMICS
1888	depends on AS_HAS_LSE_ATOMICS
1889
1890config ARM64_USE_LSE_ATOMICS
1891	bool "Atomic instructions"
1892	default y
1893	help
1894	  As part of the Large System Extensions, ARMv8.1 introduces new
1895	  atomic instructions that are designed specifically to scale in
1896	  very large systems.
1897
1898	  Say Y here to make use of these instructions for the in-kernel
1899	  atomic routines. This incurs a small overhead on CPUs that do
1900	  not support these instructions and requires the kernel to be
1901	  built with binutils >= 2.25 in order for the new instructions
1902	  to be used.
1903
1904endmenu # "ARMv8.1 architectural features"
1905
1906menu "ARMv8.2 architectural features"
1907
1908config AS_HAS_ARMV8_2
1909	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1910
1911config AS_HAS_SHA3
1912	def_bool $(as-instr,.arch armv8.2-a+sha3)
1913
1914config ARM64_PMEM
1915	bool "Enable support for persistent memory"
1916	select ARCH_HAS_PMEM_API
1917	select ARCH_HAS_UACCESS_FLUSHCACHE
1918	help
1919	  Say Y to enable support for the persistent memory API based on the
1920	  ARMv8.2 DCPoP feature.
1921
1922	  The feature is detected at runtime, and the kernel will use DC CVAC
1923	  operations if DC CVAP is not supported (following the behaviour of
1924	  DC CVAP itself if the system does not define a point of persistence).
1925
1926config ARM64_RAS_EXTN
1927	bool "Enable support for RAS CPU Extensions"
1928	default y
1929	help
1930	  CPUs that support the Reliability, Availability and Serviceability
1931	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1932	  errors, classify them and report them to software.
1933
1934	  On CPUs with these extensions system software can use additional
1935	  barriers to determine if faults are pending and read the
1936	  classification from a new set of registers.
1937
1938	  Selecting this feature will allow the kernel to use these barriers
1939	  and access the new registers if the system supports the extension.
1940	  Platform RAS features may additionally depend on firmware support.
1941
1942config ARM64_CNP
1943	bool "Enable support for Common Not Private (CNP) translations"
1944	default y
1945	help
1946	  Common Not Private (CNP) allows translation table entries to
1947	  be shared between different PEs in the same inner shareable
1948	  domain, so the hardware can use this fact to optimise the
1949	  caching of such entries in the TLB.
1950
1951	  Selecting this option allows the CNP feature to be detected
1952	  at runtime, and does not affect PEs that do not implement
1953	  this feature.
1954
1955endmenu # "ARMv8.2 architectural features"
1956
1957menu "ARMv8.3 architectural features"
1958
1959config ARM64_PTR_AUTH
1960	bool "Enable support for pointer authentication"
1961	default y
1962	help
1963	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1964	  instructions for signing and authenticating pointers against secret
1965	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1966	  and other attacks.
1967
1968	  This option enables these instructions at EL0 (i.e. for userspace).
1969	  Choosing this option will cause the kernel to initialise secret keys
1970	  for each process at exec() time, with these keys being
1971	  context-switched along with the process.
1972
1973	  The feature is detected at runtime. If the feature is not present in
1974	  hardware it will not be advertised to userspace/KVM guest nor will it
1975	  be enabled.
1976
1977	  If the feature is present on the boot CPU but not on a late CPU, then
1978	  the late CPU will be parked. Also, if the boot CPU does not have
1979	  address auth and the late CPU has then the late CPU will still boot
1980	  but with the feature disabled. On such a system, this option should
1981	  not be selected.
1982
1983config ARM64_PTR_AUTH_KERNEL
1984	bool "Use pointer authentication for kernel"
1985	default y
1986	depends on ARM64_PTR_AUTH
1987	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1988	# Modern compilers insert a .note.gnu.property section note for PAC
1989	# which is only understood by binutils starting with version 2.33.1.
1990	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1991	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1992	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1993	help
1994	  If the compiler supports the -mbranch-protection or
1995	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1996	  will cause the kernel itself to be compiled with return address
1997	  protection. In this case, and if the target hardware is known to
1998	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1999	  disabled with minimal loss of protection.
2000
2001	  This feature works with FUNCTION_GRAPH_TRACER option only if
2002	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2003
2004config CC_HAS_BRANCH_PROT_PAC_RET
2005	# GCC 9 or later, clang 8 or later
2006	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2007
2008config CC_HAS_SIGN_RETURN_ADDRESS
2009	# GCC 7, 8
2010	def_bool $(cc-option,-msign-return-address=all)
2011
2012config AS_HAS_ARMV8_3
2013	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
2014
2015config AS_HAS_CFI_NEGATE_RA_STATE
2016	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2017
2018config AS_HAS_LDAPR
2019	def_bool $(as-instr,.arch_extension rcpc)
2020
2021endmenu # "ARMv8.3 architectural features"
2022
2023menu "ARMv8.4 architectural features"
2024
2025config ARM64_AMU_EXTN
2026	bool "Enable support for the Activity Monitors Unit CPU extension"
2027	default y
2028	help
2029	  The activity monitors extension is an optional extension introduced
2030	  by the ARMv8.4 CPU architecture. This enables support for version 1
2031	  of the activity monitors architecture, AMUv1.
2032
2033	  To enable the use of this extension on CPUs that implement it, say Y.
2034
2035	  Note that for architectural reasons, firmware _must_ implement AMU
2036	  support when running on CPUs that present the activity monitors
2037	  extension. The required support is present in:
2038	    * Version 1.5 and later of the ARM Trusted Firmware
2039
2040	  For kernels that have this configuration enabled but boot with broken
2041	  firmware, you may need to say N here until the firmware is fixed.
2042	  Otherwise you may experience firmware panics or lockups when
2043	  accessing the counter registers. Even if you are not observing these
2044	  symptoms, the values returned by the register reads might not
2045	  correctly reflect reality. Most commonly, the value read will be 0,
2046	  indicating that the counter is not enabled.
2047
2048config AS_HAS_ARMV8_4
2049	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2050
2051config ARM64_TLB_RANGE
2052	bool "Enable support for tlbi range feature"
2053	default y
2054	depends on AS_HAS_ARMV8_4
2055	help
2056	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2057	  range of input addresses.
2058
2059	  The feature introduces new assembly instructions, and they were
2060	  support when binutils >= 2.30.
2061
2062endmenu # "ARMv8.4 architectural features"
2063
2064menu "ARMv8.5 architectural features"
2065
2066config AS_HAS_ARMV8_5
2067	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2068
2069config ARM64_BTI
2070	bool "Branch Target Identification support"
2071	default y
2072	help
2073	  Branch Target Identification (part of the ARMv8.5 Extensions)
2074	  provides a mechanism to limit the set of locations to which computed
2075	  branch instructions such as BR or BLR can jump.
2076
2077	  To make use of BTI on CPUs that support it, say Y.
2078
2079	  BTI is intended to provide complementary protection to other control
2080	  flow integrity protection mechanisms, such as the Pointer
2081	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2082	  For this reason, it does not make sense to enable this option without
2083	  also enabling support for pointer authentication.  Thus, when
2084	  enabling this option you should also select ARM64_PTR_AUTH=y.
2085
2086	  Userspace binaries must also be specifically compiled to make use of
2087	  this mechanism.  If you say N here or the hardware does not support
2088	  BTI, such binaries can still run, but you get no additional
2089	  enforcement of branch destinations.
2090
2091config ARM64_BTI_KERNEL
2092	bool "Use Branch Target Identification for kernel"
2093	default y
2094	depends on ARM64_BTI
2095	depends on ARM64_PTR_AUTH_KERNEL
2096	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2097	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2098	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2099	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2100	depends on !CC_IS_GCC
2101	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2102	help
2103	  Build the kernel with Branch Target Identification annotations
2104	  and enable enforcement of this for kernel code. When this option
2105	  is enabled and the system supports BTI all kernel code including
2106	  modular code must have BTI enabled.
2107
2108config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2109	# GCC 9 or later, clang 8 or later
2110	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2111
2112config ARM64_E0PD
2113	bool "Enable support for E0PD"
2114	default y
2115	help
2116	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2117	  that EL0 accesses made via TTBR1 always fault in constant time,
2118	  providing similar benefits to KASLR as those provided by KPTI, but
2119	  with lower overhead and without disrupting legitimate access to
2120	  kernel memory such as SPE.
2121
2122	  This option enables E0PD for TTBR1 where available.
2123
2124config ARM64_AS_HAS_MTE
2125	# Initial support for MTE went in binutils 2.32.0, checked with
2126	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2127	# as a late addition to the final architecture spec (LDGM/STGM)
2128	# is only supported in the newer 2.32.x and 2.33 binutils
2129	# versions, hence the extra "stgm" instruction check below.
2130	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2131
2132config ARM64_MTE
2133	bool "Memory Tagging Extension support"
2134	default y
2135	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2136	depends on AS_HAS_ARMV8_5
2137	depends on AS_HAS_LSE_ATOMICS
2138	# Required for tag checking in the uaccess routines
2139	select ARM64_PAN
2140	select ARCH_HAS_SUBPAGE_FAULTS
2141	select ARCH_USES_HIGH_VMA_FLAGS
2142	select ARCH_USES_PG_ARCH_2
2143	select ARCH_USES_PG_ARCH_3
2144	help
2145	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2146	  architectural support for run-time, always-on detection of
2147	  various classes of memory error to aid with software debugging
2148	  to eliminate vulnerabilities arising from memory-unsafe
2149	  languages.
2150
2151	  This option enables the support for the Memory Tagging
2152	  Extension at EL0 (i.e. for userspace).
2153
2154	  Selecting this option allows the feature to be detected at
2155	  runtime. Any secondary CPU not implementing this feature will
2156	  not be allowed a late bring-up.
2157
2158	  Userspace binaries that want to use this feature must
2159	  explicitly opt in. The mechanism for the userspace is
2160	  described in:
2161
2162	  Documentation/arch/arm64/memory-tagging-extension.rst.
2163
2164endmenu # "ARMv8.5 architectural features"
2165
2166menu "ARMv8.7 architectural features"
2167
2168config ARM64_EPAN
2169	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2170	default y
2171	depends on ARM64_PAN
2172	help
2173	  Enhanced Privileged Access Never (EPAN) allows Privileged
2174	  Access Never to be used with Execute-only mappings.
2175
2176	  The feature is detected at runtime, and will remain disabled
2177	  if the cpu does not implement the feature.
2178endmenu # "ARMv8.7 architectural features"
2179
2180config AS_HAS_MOPS
2181	def_bool $(as-instr,.arch_extension mops)
2182
2183menu "ARMv8.9 architectural features"
2184
2185config ARM64_POE
2186	prompt "Permission Overlay Extension"
2187	def_bool y
2188	select ARCH_USES_HIGH_VMA_FLAGS
2189	select ARCH_HAS_PKEYS
2190	help
2191	  The Permission Overlay Extension is used to implement Memory
2192	  Protection Keys. Memory Protection Keys provides a mechanism for
2193	  enforcing page-based protections, but without requiring modification
2194	  of the page tables when an application changes protection domains.
2195
2196	  For details, see Documentation/core-api/protection-keys.rst
2197
2198	  If unsure, say y.
2199
2200config ARCH_PKEY_BITS
2201	int
2202	default 3
2203
2204config ARM64_HAFT
2205	bool "Support for Hardware managed Access Flag for Table Descriptors"
2206	depends on ARM64_HW_AFDBM
2207	default y
2208	help
2209	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2210	  Flag for Table descriptors. When enabled an architectural executed
2211	  memory access will update the Access Flag in each Table descriptor
2212	  which is accessed during the translation table walk and for which
2213	  the Access Flag is 0. The Access Flag of the Table descriptor use
2214	  the same bit of PTE_AF.
2215
2216	  The feature will only be enabled if all the CPUs in the system
2217	  support this feature. If unsure, say Y.
2218
2219endmenu # "ARMv8.9 architectural features"
2220
2221menu "v9.4 architectural features"
2222
2223config ARM64_GCS
2224	bool "Enable support for Guarded Control Stack (GCS)"
2225	default y
2226	select ARCH_HAS_USER_SHADOW_STACK
2227	select ARCH_USES_HIGH_VMA_FLAGS
2228	depends on !UPROBES
2229	help
2230	  Guarded Control Stack (GCS) provides support for a separate
2231	  stack with restricted access which contains only return
2232	  addresses.  This can be used to harden against some attacks
2233	  by comparing return address used by the program with what is
2234	  stored in the GCS, and may also be used to efficiently obtain
2235	  the call stack for applications such as profiling.
2236
2237	  The feature is detected at runtime, and will remain disabled
2238	  if the system does not implement the feature.
2239
2240endmenu # "v9.4 architectural features"
2241
2242config ARM64_SVE
2243	bool "ARM Scalable Vector Extension support"
2244	default y
2245	help
2246	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2247	  execution state which complements and extends the SIMD functionality
2248	  of the base architecture to support much larger vectors and to enable
2249	  additional vectorisation opportunities.
2250
2251	  To enable use of this extension on CPUs that implement it, say Y.
2252
2253	  On CPUs that support the SVE2 extensions, this option will enable
2254	  those too.
2255
2256	  Note that for architectural reasons, firmware _must_ implement SVE
2257	  support when running on SVE capable hardware.  The required support
2258	  is present in:
2259
2260	    * version 1.5 and later of the ARM Trusted Firmware
2261	    * the AArch64 boot wrapper since commit 5e1261e08abf
2262	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2263
2264	  For other firmware implementations, consult the firmware documentation
2265	  or vendor.
2266
2267	  If you need the kernel to boot on SVE-capable hardware with broken
2268	  firmware, you may need to say N here until you get your firmware
2269	  fixed.  Otherwise, you may experience firmware panics or lockups when
2270	  booting the kernel.  If unsure and you are not observing these
2271	  symptoms, you should assume that it is safe to say Y.
2272
2273config ARM64_SME
2274	bool "ARM Scalable Matrix Extension support"
2275	default y
2276	depends on ARM64_SVE
2277	depends on BROKEN
2278	help
2279	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2280	  execution state which utilises a substantial subset of the SVE
2281	  instruction set, together with the addition of new architectural
2282	  register state capable of holding two dimensional matrix tiles to
2283	  enable various matrix operations.
2284
2285config ARM64_PSEUDO_NMI
2286	bool "Support for NMI-like interrupts"
2287	select ARM_GIC_V3
2288	help
2289	  Adds support for mimicking Non-Maskable Interrupts through the use of
2290	  GIC interrupt priority. This support requires version 3 or later of
2291	  ARM GIC.
2292
2293	  This high priority configuration for interrupts needs to be
2294	  explicitly enabled by setting the kernel parameter
2295	  "irqchip.gicv3_pseudo_nmi" to 1.
2296
2297	  If unsure, say N
2298
2299if ARM64_PSEUDO_NMI
2300config ARM64_DEBUG_PRIORITY_MASKING
2301	bool "Debug interrupt priority masking"
2302	help
2303	  This adds runtime checks to functions enabling/disabling
2304	  interrupts when using priority masking. The additional checks verify
2305	  the validity of ICC_PMR_EL1 when calling concerned functions.
2306
2307	  If unsure, say N
2308endif # ARM64_PSEUDO_NMI
2309
2310config RELOCATABLE
2311	bool "Build a relocatable kernel image" if EXPERT
2312	select ARCH_HAS_RELR
2313	default y
2314	help
2315	  This builds the kernel as a Position Independent Executable (PIE),
2316	  which retains all relocation metadata required to relocate the
2317	  kernel binary at runtime to a different virtual address than the
2318	  address it was linked at.
2319	  Since AArch64 uses the RELA relocation format, this requires a
2320	  relocation pass at runtime even if the kernel is loaded at the
2321	  same address it was linked at.
2322
2323config RANDOMIZE_BASE
2324	bool "Randomize the address of the kernel image"
2325	select RELOCATABLE
2326	help
2327	  Randomizes the virtual address at which the kernel image is
2328	  loaded, as a security feature that deters exploit attempts
2329	  relying on knowledge of the location of kernel internals.
2330
2331	  It is the bootloader's job to provide entropy, by passing a
2332	  random u64 value in /chosen/kaslr-seed at kernel entry.
2333
2334	  When booting via the UEFI stub, it will invoke the firmware's
2335	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2336	  to the kernel proper. In addition, it will randomise the physical
2337	  location of the kernel Image as well.
2338
2339	  If unsure, say N.
2340
2341config RANDOMIZE_MODULE_REGION_FULL
2342	bool "Randomize the module region over a 2 GB range"
2343	depends on RANDOMIZE_BASE
2344	default y
2345	help
2346	  Randomizes the location of the module region inside a 2 GB window
2347	  covering the core kernel. This way, it is less likely for modules
2348	  to leak information about the location of core kernel data structures
2349	  but it does imply that function calls between modules and the core
2350	  kernel will need to be resolved via veneers in the module PLT.
2351
2352	  When this option is not set, the module region will be randomized over
2353	  a limited range that contains the [_stext, _etext] interval of the
2354	  core kernel, so branch relocations are almost always in range unless
2355	  the region is exhausted. In this particular case of region
2356	  exhaustion, modules might be able to fall back to a larger 2GB area.
2357
2358config CC_HAVE_STACKPROTECTOR_SYSREG
2359	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2360
2361config STACKPROTECTOR_PER_TASK
2362	def_bool y
2363	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2364
2365config UNWIND_PATCH_PAC_INTO_SCS
2366	bool "Enable shadow call stack dynamically using code patching"
2367	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2368	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2369	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2370	depends on SHADOW_CALL_STACK
2371	select UNWIND_TABLES
2372	select DYNAMIC_SCS
2373
2374config ARM64_CONTPTE
2375	bool "Contiguous PTE mappings for user memory" if EXPERT
2376	depends on TRANSPARENT_HUGEPAGE
2377	default y
2378	help
2379	  When enabled, user mappings are configured using the PTE contiguous
2380	  bit, for any mappings that meet the size and alignment requirements.
2381	  This reduces TLB pressure and improves performance.
2382
2383endmenu # "Kernel Features"
2384
2385menu "Boot options"
2386
2387config ARM64_ACPI_PARKING_PROTOCOL
2388	bool "Enable support for the ARM64 ACPI parking protocol"
2389	depends on ACPI
2390	help
2391	  Enable support for the ARM64 ACPI parking protocol. If disabled
2392	  the kernel will not allow booting through the ARM64 ACPI parking
2393	  protocol even if the corresponding data is present in the ACPI
2394	  MADT table.
2395
2396config CMDLINE
2397	string "Default kernel command string"
2398	default ""
2399	help
2400	  Provide a set of default command-line options at build time by
2401	  entering them here. As a minimum, you should specify the the
2402	  root device (e.g. root=/dev/nfs).
2403
2404choice
2405	prompt "Kernel command line type"
2406	depends on CMDLINE != ""
2407	default CMDLINE_FROM_BOOTLOADER
2408	help
2409	  Choose how the kernel will handle the provided default kernel
2410	  command line string.
2411
2412config CMDLINE_FROM_BOOTLOADER
2413	bool "Use bootloader kernel arguments if available"
2414	help
2415	  Uses the command-line options passed by the boot loader. If
2416	  the boot loader doesn't provide any, the default kernel command
2417	  string provided in CMDLINE will be used.
2418
2419config CMDLINE_FORCE
2420	bool "Always use the default kernel command string"
2421	help
2422	  Always use the default kernel command string, even if the boot
2423	  loader passes other arguments to the kernel.
2424	  This is useful if you cannot or don't want to change the
2425	  command-line options your boot loader passes to the kernel.
2426
2427endchoice
2428
2429config EFI_STUB
2430	bool
2431
2432config EFI
2433	bool "UEFI runtime support"
2434	depends on OF && !CPU_BIG_ENDIAN
2435	depends on KERNEL_MODE_NEON
2436	select ARCH_SUPPORTS_ACPI
2437	select LIBFDT
2438	select UCS2_STRING
2439	select EFI_PARAMS_FROM_FDT
2440	select EFI_RUNTIME_WRAPPERS
2441	select EFI_STUB
2442	select EFI_GENERIC_STUB
2443	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2444	default y
2445	help
2446	  This option provides support for runtime services provided
2447	  by UEFI firmware (such as non-volatile variables, realtime
2448	  clock, and platform reset). A UEFI stub is also provided to
2449	  allow the kernel to be booted as an EFI application. This
2450	  is only useful on systems that have UEFI firmware.
2451
2452config COMPRESSED_INSTALL
2453	bool "Install compressed image by default"
2454	help
2455	  This makes the regular "make install" install the compressed
2456	  image we built, not the legacy uncompressed one.
2457
2458	  You can check that a compressed image works for you by doing
2459	  "make zinstall" first, and verifying that everything is fine
2460	  in your environment before making "make install" do this for
2461	  you.
2462
2463config DMI
2464	bool "Enable support for SMBIOS (DMI) tables"
2465	depends on EFI
2466	default y
2467	help
2468	  This enables SMBIOS/DMI feature for systems.
2469
2470	  This option is only useful on systems that have UEFI firmware.
2471	  However, even with this option, the resultant kernel should
2472	  continue to boot on existing non-UEFI platforms.
2473
2474endmenu # "Boot options"
2475
2476menu "Power management options"
2477
2478source "kernel/power/Kconfig"
2479
2480config ARCH_HIBERNATION_POSSIBLE
2481	def_bool y
2482	depends on CPU_PM
2483
2484config ARCH_HIBERNATION_HEADER
2485	def_bool y
2486	depends on HIBERNATION
2487
2488config ARCH_SUSPEND_POSSIBLE
2489	def_bool y
2490
2491endmenu # "Power management options"
2492
2493menu "CPU Power Management"
2494
2495source "drivers/cpuidle/Kconfig"
2496
2497source "drivers/cpufreq/Kconfig"
2498
2499endmenu # "CPU Power Management"
2500
2501source "drivers/acpi/Kconfig"
2502
2503source "arch/arm64/kvm/Kconfig"
2504
2505