xref: /linux/arch/arm64/Kconfig (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
34	select ARCH_HAS_KEEPINITRD
35	select ARCH_HAS_MEMBARRIER_SYNC_CORE
36	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
37	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
38	select ARCH_HAS_PTE_DEVMAP
39	select ARCH_HAS_PTE_SPECIAL
40	select ARCH_HAS_HW_PTE_YOUNG
41	select ARCH_HAS_SETUP_DMA_OPS
42	select ARCH_HAS_SET_DIRECT_MAP
43	select ARCH_HAS_SET_MEMORY
44	select ARCH_STACKWALK
45	select ARCH_HAS_STRICT_KERNEL_RWX
46	select ARCH_HAS_STRICT_MODULE_RWX
47	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
48	select ARCH_HAS_SYNC_DMA_FOR_CPU
49	select ARCH_HAS_SYSCALL_WRAPPER
50	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
51	select ARCH_HAS_ZONE_DMA_SET if EXPERT
52	select ARCH_HAVE_ELF_PROT
53	select ARCH_HAVE_NMI_SAFE_CMPXCHG
54	select ARCH_HAVE_TRACE_MMIO_ACCESS
55	select ARCH_INLINE_READ_LOCK if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
72	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
80	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
81	select ARCH_KEEP_MEMBLOCK
82	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
83	select ARCH_USE_CMPXCHG_LOCKREF
84	select ARCH_USE_GNU_PROPERTY
85	select ARCH_USE_MEMTEST
86	select ARCH_USE_QUEUED_RWLOCKS
87	select ARCH_USE_QUEUED_SPINLOCKS
88	select ARCH_USE_SYM_ANNOTATIONS
89	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
90	select ARCH_SUPPORTS_HUGETLBFS
91	select ARCH_SUPPORTS_MEMORY_FAILURE
92	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
93	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
94	select ARCH_SUPPORTS_LTO_CLANG_THIN
95	select ARCH_SUPPORTS_CFI_CLANG
96	select ARCH_SUPPORTS_ATOMIC_RMW
97	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
98	select ARCH_SUPPORTS_NUMA_BALANCING
99	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
100	select ARCH_SUPPORTS_PER_VMA_LOCK
101	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
102	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
103	select ARCH_WANT_DEFAULT_BPF_JIT
104	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
105	select ARCH_WANT_FRAME_POINTERS
106	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
107	select ARCH_WANT_LD_ORPHAN_WARN
108	select ARCH_WANTS_EXECMEM_LATE if EXECMEM
109	select ARCH_WANTS_NO_INSTR
110	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
111	select ARCH_HAS_UBSAN
112	select ARM_AMBA
113	select ARM_ARCH_TIMER
114	select ARM_GIC
115	select AUDIT_ARCH_COMPAT_GENERIC
116	select ARM_GIC_V2M if PCI
117	select ARM_GIC_V3
118	select ARM_GIC_V3_ITS if PCI
119	select ARM_PSCI_FW
120	select BUILDTIME_TABLE_SORT
121	select CLONE_BACKWARDS
122	select COMMON_CLK
123	select CPU_PM if (SUSPEND || CPU_IDLE)
124	select CPUMASK_OFFSTACK if NR_CPUS > 256
125	select CRC32
126	select DCACHE_WORD_ACCESS
127	select DYNAMIC_FTRACE if FUNCTION_TRACER
128	select DMA_BOUNCE_UNALIGNED_KMALLOC
129	select DMA_DIRECT_REMAP
130	select EDAC_SUPPORT
131	select FRAME_POINTER
132	select FUNCTION_ALIGNMENT_4B
133	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
134	select GENERIC_ALLOCATOR
135	select GENERIC_ARCH_TOPOLOGY
136	select GENERIC_CLOCKEVENTS_BROADCAST
137	select GENERIC_CPU_AUTOPROBE
138	select GENERIC_CPU_DEVICES
139	select GENERIC_CPU_VULNERABILITIES
140	select GENERIC_EARLY_IOREMAP
141	select GENERIC_IDLE_POLL_SETUP
142	select GENERIC_IOREMAP
143	select GENERIC_IRQ_IPI
144	select GENERIC_IRQ_PROBE
145	select GENERIC_IRQ_SHOW
146	select GENERIC_IRQ_SHOW_LEVEL
147	select GENERIC_LIB_DEVMEM_IS_ALLOWED
148	select GENERIC_PCI_IOMAP
149	select GENERIC_PTDUMP
150	select GENERIC_SCHED_CLOCK
151	select GENERIC_SMP_IDLE_THREAD
152	select GENERIC_TIME_VSYSCALL
153	select GENERIC_GETTIMEOFDAY
154	select GENERIC_VDSO_TIME_NS
155	select HARDIRQS_SW_RESEND
156	select HAS_IOPORT
157	select HAVE_MOVE_PMD
158	select HAVE_MOVE_PUD
159	select HAVE_PCI
160	select HAVE_ACPI_APEI if (ACPI && EFI)
161	select HAVE_ALIGNED_STRUCT_PAGE
162	select HAVE_ARCH_AUDITSYSCALL
163	select HAVE_ARCH_BITREVERSE
164	select HAVE_ARCH_COMPILER_H
165	select HAVE_ARCH_HUGE_VMALLOC
166	select HAVE_ARCH_HUGE_VMAP
167	select HAVE_ARCH_JUMP_LABEL
168	select HAVE_ARCH_JUMP_LABEL_RELATIVE
169	select HAVE_ARCH_KASAN
170	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
171	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
172	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
173	# Some instrumentation may be unsound, hence EXPERT
174	select HAVE_ARCH_KCSAN if EXPERT
175	select HAVE_ARCH_KFENCE
176	select HAVE_ARCH_KGDB
177	select HAVE_ARCH_MMAP_RND_BITS
178	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
179	select HAVE_ARCH_PREL32_RELOCATIONS
180	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
181	select HAVE_ARCH_SECCOMP_FILTER
182	select HAVE_ARCH_STACKLEAK
183	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
184	select HAVE_ARCH_TRACEHOOK
185	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
186	select HAVE_ARCH_VMAP_STACK
187	select HAVE_ARM_SMCCC
188	select HAVE_ASM_MODVERSIONS
189	select HAVE_EBPF_JIT
190	select HAVE_C_RECORDMCOUNT
191	select HAVE_CMPXCHG_DOUBLE
192	select HAVE_CMPXCHG_LOCAL
193	select HAVE_CONTEXT_TRACKING_USER
194	select HAVE_DEBUG_KMEMLEAK
195	select HAVE_DMA_CONTIGUOUS
196	select HAVE_DYNAMIC_FTRACE
197	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
198		if $(cc-option,-fpatchable-function-entry=2)
199	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
200		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
201	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
202		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
203		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
204	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
205		if DYNAMIC_FTRACE_WITH_ARGS
206	select HAVE_SAMPLE_FTRACE_DIRECT
207	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
208	select HAVE_EFFICIENT_UNALIGNED_ACCESS
209	select HAVE_GUP_FAST
210	select HAVE_FTRACE_MCOUNT_RECORD
211	select HAVE_FUNCTION_TRACER
212	select HAVE_FUNCTION_ERROR_INJECTION
213	select HAVE_FUNCTION_GRAPH_RETVAL if HAVE_FUNCTION_GRAPH_TRACER
214	select HAVE_FUNCTION_GRAPH_TRACER
215	select HAVE_GCC_PLUGINS
216	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
217		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
218	select HAVE_HW_BREAKPOINT if PERF_EVENTS
219	select HAVE_IOREMAP_PROT
220	select HAVE_IRQ_TIME_ACCOUNTING
221	select HAVE_MOD_ARCH_SPECIFIC
222	select HAVE_NMI
223	select HAVE_PERF_EVENTS
224	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
225	select HAVE_PERF_REGS
226	select HAVE_PERF_USER_STACK_DUMP
227	select HAVE_PREEMPT_DYNAMIC_KEY
228	select HAVE_REGS_AND_STACK_ACCESS_API
229	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
230	select HAVE_FUNCTION_ARG_ACCESS_API
231	select MMU_GATHER_RCU_TABLE_FREE
232	select HAVE_RSEQ
233	select HAVE_RUST if CPU_LITTLE_ENDIAN
234	select HAVE_STACKPROTECTOR
235	select HAVE_SYSCALL_TRACEPOINTS
236	select HAVE_KPROBES
237	select HAVE_KRETPROBES
238	select HAVE_GENERIC_VDSO
239	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
240	select IRQ_DOMAIN
241	select IRQ_FORCED_THREADING
242	select KASAN_VMALLOC if KASAN
243	select LOCK_MM_AND_FIND_VMA
244	select MODULES_USE_ELF_RELA
245	select NEED_DMA_MAP_STATE
246	select NEED_SG_DMA_LENGTH
247	select OF
248	select OF_EARLY_FLATTREE
249	select PCI_DOMAINS_GENERIC if PCI
250	select PCI_ECAM if (ACPI && PCI)
251	select PCI_SYSCALL if PCI
252	select POWER_RESET
253	select POWER_SUPPLY
254	select SPARSE_IRQ
255	select SWIOTLB
256	select SYSCTL_EXCEPTION_TRACE
257	select THREAD_INFO_IN_TASK
258	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
259	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
260	select TRACE_IRQFLAGS_SUPPORT
261	select TRACE_IRQFLAGS_NMI_SUPPORT
262	select HAVE_SOFTIRQ_ON_OWN_STACK
263	select USER_STACKTRACE_SUPPORT
264	help
265	  ARM 64-bit (AArch64) Linux support.
266
267config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
268	def_bool CC_IS_CLANG
269	# https://github.com/ClangBuiltLinux/linux/issues/1507
270	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
271	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
272
273config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
274	def_bool CC_IS_GCC
275	depends on $(cc-option,-fpatchable-function-entry=2)
276	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
277
278config 64BIT
279	def_bool y
280
281config MMU
282	def_bool y
283
284config ARM64_CONT_PTE_SHIFT
285	int
286	default 5 if PAGE_SIZE_64KB
287	default 7 if PAGE_SIZE_16KB
288	default 4
289
290config ARM64_CONT_PMD_SHIFT
291	int
292	default 5 if PAGE_SIZE_64KB
293	default 5 if PAGE_SIZE_16KB
294	default 4
295
296config ARCH_MMAP_RND_BITS_MIN
297	default 14 if PAGE_SIZE_64KB
298	default 16 if PAGE_SIZE_16KB
299	default 18
300
301# max bits determined by the following formula:
302#  VA_BITS - PAGE_SHIFT - 3
303config ARCH_MMAP_RND_BITS_MAX
304	default 19 if ARM64_VA_BITS=36
305	default 24 if ARM64_VA_BITS=39
306	default 27 if ARM64_VA_BITS=42
307	default 30 if ARM64_VA_BITS=47
308	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
309	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
310	default 33 if ARM64_VA_BITS=48
311	default 14 if ARM64_64K_PAGES
312	default 16 if ARM64_16K_PAGES
313	default 18
314
315config ARCH_MMAP_RND_COMPAT_BITS_MIN
316	default 7 if ARM64_64K_PAGES
317	default 9 if ARM64_16K_PAGES
318	default 11
319
320config ARCH_MMAP_RND_COMPAT_BITS_MAX
321	default 16
322
323config NO_IOPORT_MAP
324	def_bool y if !PCI
325
326config STACKTRACE_SUPPORT
327	def_bool y
328
329config ILLEGAL_POINTER_VALUE
330	hex
331	default 0xdead000000000000
332
333config LOCKDEP_SUPPORT
334	def_bool y
335
336config GENERIC_BUG
337	def_bool y
338	depends on BUG
339
340config GENERIC_BUG_RELATIVE_POINTERS
341	def_bool y
342	depends on GENERIC_BUG
343
344config GENERIC_HWEIGHT
345	def_bool y
346
347config GENERIC_CSUM
348	def_bool y
349
350config GENERIC_CALIBRATE_DELAY
351	def_bool y
352
353config SMP
354	def_bool y
355
356config KERNEL_MODE_NEON
357	def_bool y
358
359config FIX_EARLYCON_MEM
360	def_bool y
361
362config PGTABLE_LEVELS
363	int
364	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
365	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
366	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
367	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
368	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
369	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
370	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
371	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
372
373config ARCH_SUPPORTS_UPROBES
374	def_bool y
375
376config ARCH_PROC_KCORE_TEXT
377	def_bool y
378
379config BROKEN_GAS_INST
380	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
381
382config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
383	bool
384	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
385	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
386	default y if CC_IS_CLANG
387	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
388	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
389	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
390	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
391	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
392	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
393	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
394	default n
395
396config KASAN_SHADOW_OFFSET
397	hex
398	depends on KASAN_GENERIC || KASAN_SW_TAGS
399	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
400	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
401	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
402	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
403	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
404	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
405	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
406	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
407	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
408	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
409	default 0xffffffffffffffff
410
411config UNWIND_TABLES
412	bool
413
414source "arch/arm64/Kconfig.platforms"
415
416menu "Kernel Features"
417
418menu "ARM errata workarounds via the alternatives framework"
419
420config AMPERE_ERRATUM_AC03_CPU_38
421        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
422	default y
423	help
424	  This option adds an alternative code sequence to work around Ampere
425	  erratum AC03_CPU_38 on AmpereOne.
426
427	  The affected design reports FEAT_HAFDBS as not implemented in
428	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
429	  as required by the architecture. The unadvertised HAFDBS
430	  implementation suffers from an additional erratum where hardware
431	  A/D updates can occur after a PTE has been marked invalid.
432
433	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
434	  which avoids enabling unadvertised hardware Access Flag management
435	  at stage-2.
436
437	  If unsure, say Y.
438
439config ARM64_WORKAROUND_CLEAN_CACHE
440	bool
441
442config ARM64_ERRATUM_826319
443	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
444	default y
445	select ARM64_WORKAROUND_CLEAN_CACHE
446	help
447	  This option adds an alternative code sequence to work around ARM
448	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
449	  AXI master interface and an L2 cache.
450
451	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
452	  and is unable to accept a certain write via this interface, it will
453	  not progress on read data presented on the read data channel and the
454	  system can deadlock.
455
456	  The workaround promotes data cache clean instructions to
457	  data cache clean-and-invalidate.
458	  Please note that this does not necessarily enable the workaround,
459	  as it depends on the alternative framework, which will only patch
460	  the kernel if an affected CPU is detected.
461
462	  If unsure, say Y.
463
464config ARM64_ERRATUM_827319
465	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
466	default y
467	select ARM64_WORKAROUND_CLEAN_CACHE
468	help
469	  This option adds an alternative code sequence to work around ARM
470	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
471	  master interface and an L2 cache.
472
473	  Under certain conditions this erratum can cause a clean line eviction
474	  to occur at the same time as another transaction to the same address
475	  on the AMBA 5 CHI interface, which can cause data corruption if the
476	  interconnect reorders the two transactions.
477
478	  The workaround promotes data cache clean instructions to
479	  data cache clean-and-invalidate.
480	  Please note that this does not necessarily enable the workaround,
481	  as it depends on the alternative framework, which will only patch
482	  the kernel if an affected CPU is detected.
483
484	  If unsure, say Y.
485
486config ARM64_ERRATUM_824069
487	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
488	default y
489	select ARM64_WORKAROUND_CLEAN_CACHE
490	help
491	  This option adds an alternative code sequence to work around ARM
492	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
493	  to a coherent interconnect.
494
495	  If a Cortex-A53 processor is executing a store or prefetch for
496	  write instruction at the same time as a processor in another
497	  cluster is executing a cache maintenance operation to the same
498	  address, then this erratum might cause a clean cache line to be
499	  incorrectly marked as dirty.
500
501	  The workaround promotes data cache clean instructions to
502	  data cache clean-and-invalidate.
503	  Please note that this option does not necessarily enable the
504	  workaround, as it depends on the alternative framework, which will
505	  only patch the kernel if an affected CPU is detected.
506
507	  If unsure, say Y.
508
509config ARM64_ERRATUM_819472
510	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
511	default y
512	select ARM64_WORKAROUND_CLEAN_CACHE
513	help
514	  This option adds an alternative code sequence to work around ARM
515	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
516	  present when it is connected to a coherent interconnect.
517
518	  If the processor is executing a load and store exclusive sequence at
519	  the same time as a processor in another cluster is executing a cache
520	  maintenance operation to the same address, then this erratum might
521	  cause data corruption.
522
523	  The workaround promotes data cache clean instructions to
524	  data cache clean-and-invalidate.
525	  Please note that this does not necessarily enable the workaround,
526	  as it depends on the alternative framework, which will only patch
527	  the kernel if an affected CPU is detected.
528
529	  If unsure, say Y.
530
531config ARM64_ERRATUM_832075
532	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
533	default y
534	help
535	  This option adds an alternative code sequence to work around ARM
536	  erratum 832075 on Cortex-A57 parts up to r1p2.
537
538	  Affected Cortex-A57 parts might deadlock when exclusive load/store
539	  instructions to Write-Back memory are mixed with Device loads.
540
541	  The workaround is to promote device loads to use Load-Acquire
542	  semantics.
543	  Please note that this does not necessarily enable the workaround,
544	  as it depends on the alternative framework, which will only patch
545	  the kernel if an affected CPU is detected.
546
547	  If unsure, say Y.
548
549config ARM64_ERRATUM_834220
550	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
551	depends on KVM
552	help
553	  This option adds an alternative code sequence to work around ARM
554	  erratum 834220 on Cortex-A57 parts up to r1p2.
555
556	  Affected Cortex-A57 parts might report a Stage 2 translation
557	  fault as the result of a Stage 1 fault for load crossing a
558	  page boundary when there is a permission or device memory
559	  alignment fault at Stage 1 and a translation fault at Stage 2.
560
561	  The workaround is to verify that the Stage 1 translation
562	  doesn't generate a fault before handling the Stage 2 fault.
563	  Please note that this does not necessarily enable the workaround,
564	  as it depends on the alternative framework, which will only patch
565	  the kernel if an affected CPU is detected.
566
567	  If unsure, say N.
568
569config ARM64_ERRATUM_1742098
570	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
571	depends on COMPAT
572	default y
573	help
574	  This option removes the AES hwcap for aarch32 user-space to
575	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
576
577	  Affected parts may corrupt the AES state if an interrupt is
578	  taken between a pair of AES instructions. These instructions
579	  are only present if the cryptography extensions are present.
580	  All software should have a fallback implementation for CPUs
581	  that don't implement the cryptography extensions.
582
583	  If unsure, say Y.
584
585config ARM64_ERRATUM_845719
586	bool "Cortex-A53: 845719: a load might read incorrect data"
587	depends on COMPAT
588	default y
589	help
590	  This option adds an alternative code sequence to work around ARM
591	  erratum 845719 on Cortex-A53 parts up to r0p4.
592
593	  When running a compat (AArch32) userspace on an affected Cortex-A53
594	  part, a load at EL0 from a virtual address that matches the bottom 32
595	  bits of the virtual address used by a recent load at (AArch64) EL1
596	  might return incorrect data.
597
598	  The workaround is to write the contextidr_el1 register on exception
599	  return to a 32-bit task.
600	  Please note that this does not necessarily enable the workaround,
601	  as it depends on the alternative framework, which will only patch
602	  the kernel if an affected CPU is detected.
603
604	  If unsure, say Y.
605
606config ARM64_ERRATUM_843419
607	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
608	default y
609	help
610	  This option links the kernel with '--fix-cortex-a53-843419' and
611	  enables PLT support to replace certain ADRP instructions, which can
612	  cause subsequent memory accesses to use an incorrect address on
613	  Cortex-A53 parts up to r0p4.
614
615	  If unsure, say Y.
616
617config ARM64_LD_HAS_FIX_ERRATUM_843419
618	def_bool $(ld-option,--fix-cortex-a53-843419)
619
620config ARM64_ERRATUM_1024718
621	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
622	default y
623	help
624	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
625
626	  Affected Cortex-A55 cores (all revisions) could cause incorrect
627	  update of the hardware dirty bit when the DBM/AP bits are updated
628	  without a break-before-make. The workaround is to disable the usage
629	  of hardware DBM locally on the affected cores. CPUs not affected by
630	  this erratum will continue to use the feature.
631
632	  If unsure, say Y.
633
634config ARM64_ERRATUM_1418040
635	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
636	default y
637	depends on COMPAT
638	help
639	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
640	  errata 1188873 and 1418040.
641
642	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
643	  cause register corruption when accessing the timer registers
644	  from AArch32 userspace.
645
646	  If unsure, say Y.
647
648config ARM64_WORKAROUND_SPECULATIVE_AT
649	bool
650
651config ARM64_ERRATUM_1165522
652	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
653	default y
654	select ARM64_WORKAROUND_SPECULATIVE_AT
655	help
656	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
657
658	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
659	  corrupted TLBs by speculating an AT instruction during a guest
660	  context switch.
661
662	  If unsure, say Y.
663
664config ARM64_ERRATUM_1319367
665	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
666	default y
667	select ARM64_WORKAROUND_SPECULATIVE_AT
668	help
669	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
670	  and A72 erratum 1319367
671
672	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
673	  speculating an AT instruction during a guest context switch.
674
675	  If unsure, say Y.
676
677config ARM64_ERRATUM_1530923
678	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
679	default y
680	select ARM64_WORKAROUND_SPECULATIVE_AT
681	help
682	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
683
684	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
685	  corrupted TLBs by speculating an AT instruction during a guest
686	  context switch.
687
688	  If unsure, say Y.
689
690config ARM64_WORKAROUND_REPEAT_TLBI
691	bool
692
693config ARM64_ERRATUM_2441007
694	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
695	select ARM64_WORKAROUND_REPEAT_TLBI
696	help
697	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
698
699	  Under very rare circumstances, affected Cortex-A55 CPUs
700	  may not handle a race between a break-before-make sequence on one
701	  CPU, and another CPU accessing the same page. This could allow a
702	  store to a page that has been unmapped.
703
704	  Work around this by adding the affected CPUs to the list that needs
705	  TLB sequences to be done twice.
706
707	  If unsure, say N.
708
709config ARM64_ERRATUM_1286807
710	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
711	select ARM64_WORKAROUND_REPEAT_TLBI
712	help
713	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
714
715	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
716	  address for a cacheable mapping of a location is being
717	  accessed by a core while another core is remapping the virtual
718	  address to a new physical page using the recommended
719	  break-before-make sequence, then under very rare circumstances
720	  TLBI+DSB completes before a read using the translation being
721	  invalidated has been observed by other observers. The
722	  workaround repeats the TLBI+DSB operation.
723
724	  If unsure, say N.
725
726config ARM64_ERRATUM_1463225
727	bool "Cortex-A76: Software Step might prevent interrupt recognition"
728	default y
729	help
730	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
731
732	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
733	  of a system call instruction (SVC) can prevent recognition of
734	  subsequent interrupts when software stepping is disabled in the
735	  exception handler of the system call and either kernel debugging
736	  is enabled or VHE is in use.
737
738	  Work around the erratum by triggering a dummy step exception
739	  when handling a system call from a task that is being stepped
740	  in a VHE configuration of the kernel.
741
742	  If unsure, say Y.
743
744config ARM64_ERRATUM_1542419
745	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
746	help
747	  This option adds a workaround for ARM Neoverse-N1 erratum
748	  1542419.
749
750	  Affected Neoverse-N1 cores could execute a stale instruction when
751	  modified by another CPU. The workaround depends on a firmware
752	  counterpart.
753
754	  Workaround the issue by hiding the DIC feature from EL0. This
755	  forces user-space to perform cache maintenance.
756
757	  If unsure, say N.
758
759config ARM64_ERRATUM_1508412
760	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
761	default y
762	help
763	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
764
765	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
766	  of a store-exclusive or read of PAR_EL1 and a load with device or
767	  non-cacheable memory attributes. The workaround depends on a firmware
768	  counterpart.
769
770	  KVM guests must also have the workaround implemented or they can
771	  deadlock the system.
772
773	  Work around the issue by inserting DMB SY barriers around PAR_EL1
774	  register reads and warning KVM users. The DMB barrier is sufficient
775	  to prevent a speculative PAR_EL1 read.
776
777	  If unsure, say Y.
778
779config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
780	bool
781
782config ARM64_ERRATUM_2051678
783	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
784	default y
785	help
786	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
787	  Affected Cortex-A510 might not respect the ordering rules for
788	  hardware update of the page table's dirty bit. The workaround
789	  is to not enable the feature on affected CPUs.
790
791	  If unsure, say Y.
792
793config ARM64_ERRATUM_2077057
794	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
795	default y
796	help
797	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
798	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
799	  expected, but a Pointer Authentication trap is taken instead. The
800	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
801	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
802
803	  This can only happen when EL2 is stepping EL1.
804
805	  When these conditions occur, the SPSR_EL2 value is unchanged from the
806	  previous guest entry, and can be restored from the in-memory copy.
807
808	  If unsure, say Y.
809
810config ARM64_ERRATUM_2658417
811	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
812	default y
813	help
814	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
815	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
816	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
817	  A510 CPUs are using shared neon hardware. As the sharing is not
818	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
819	  user-space should not be using these instructions.
820
821	  If unsure, say Y.
822
823config ARM64_ERRATUM_2119858
824	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
825	default y
826	depends on CORESIGHT_TRBE
827	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
828	help
829	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
830
831	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
832	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
833	  the event of a WRAP event.
834
835	  Work around the issue by always making sure we move the TRBPTR_EL1 by
836	  256 bytes before enabling the buffer and filling the first 256 bytes of
837	  the buffer with ETM ignore packets upon disabling.
838
839	  If unsure, say Y.
840
841config ARM64_ERRATUM_2139208
842	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
843	default y
844	depends on CORESIGHT_TRBE
845	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
846	help
847	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
848
849	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
850	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
851	  the event of a WRAP event.
852
853	  Work around the issue by always making sure we move the TRBPTR_EL1 by
854	  256 bytes before enabling the buffer and filling the first 256 bytes of
855	  the buffer with ETM ignore packets upon disabling.
856
857	  If unsure, say Y.
858
859config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
860	bool
861
862config ARM64_ERRATUM_2054223
863	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
864	default y
865	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
866	help
867	  Enable workaround for ARM Cortex-A710 erratum 2054223
868
869	  Affected cores may fail to flush the trace data on a TSB instruction, when
870	  the PE is in trace prohibited state. This will cause losing a few bytes
871	  of the trace cached.
872
873	  Workaround is to issue two TSB consecutively on affected cores.
874
875	  If unsure, say Y.
876
877config ARM64_ERRATUM_2067961
878	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
879	default y
880	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
881	help
882	  Enable workaround for ARM Neoverse-N2 erratum 2067961
883
884	  Affected cores may fail to flush the trace data on a TSB instruction, when
885	  the PE is in trace prohibited state. This will cause losing a few bytes
886	  of the trace cached.
887
888	  Workaround is to issue two TSB consecutively on affected cores.
889
890	  If unsure, say Y.
891
892config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
893	bool
894
895config ARM64_ERRATUM_2253138
896	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
897	depends on CORESIGHT_TRBE
898	default y
899	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
900	help
901	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
902
903	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
904	  for TRBE. Under some conditions, the TRBE might generate a write to the next
905	  virtually addressed page following the last page of the TRBE address space
906	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
907
908	  Work around this in the driver by always making sure that there is a
909	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
910
911	  If unsure, say Y.
912
913config ARM64_ERRATUM_2224489
914	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
915	depends on CORESIGHT_TRBE
916	default y
917	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
918	help
919	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
920
921	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
922	  for TRBE. Under some conditions, the TRBE might generate a write to the next
923	  virtually addressed page following the last page of the TRBE address space
924	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
925
926	  Work around this in the driver by always making sure that there is a
927	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
928
929	  If unsure, say Y.
930
931config ARM64_ERRATUM_2441009
932	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
933	select ARM64_WORKAROUND_REPEAT_TLBI
934	help
935	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
936
937	  Under very rare circumstances, affected Cortex-A510 CPUs
938	  may not handle a race between a break-before-make sequence on one
939	  CPU, and another CPU accessing the same page. This could allow a
940	  store to a page that has been unmapped.
941
942	  Work around this by adding the affected CPUs to the list that needs
943	  TLB sequences to be done twice.
944
945	  If unsure, say N.
946
947config ARM64_ERRATUM_2064142
948	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
949	depends on CORESIGHT_TRBE
950	default y
951	help
952	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
953
954	  Affected Cortex-A510 core might fail to write into system registers after the
955	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
956	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
957	  and TRBTRG_EL1 will be ignored and will not be effected.
958
959	  Work around this in the driver by executing TSB CSYNC and DSB after collection
960	  is stopped and before performing a system register write to one of the affected
961	  registers.
962
963	  If unsure, say Y.
964
965config ARM64_ERRATUM_2038923
966	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
967	depends on CORESIGHT_TRBE
968	default y
969	help
970	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
971
972	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
973	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
974	  might be corrupted. This happens after TRBE buffer has been enabled by setting
975	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
976	  execution changes from a context, in which trace is prohibited to one where it
977	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
978	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
979	  the trace buffer state might be corrupted.
980
981	  Work around this in the driver by preventing an inconsistent view of whether the
982	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
983	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
984	  two ISB instructions if no ERET is to take place.
985
986	  If unsure, say Y.
987
988config ARM64_ERRATUM_1902691
989	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
990	depends on CORESIGHT_TRBE
991	default y
992	help
993	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
994
995	  Affected Cortex-A510 core might cause trace data corruption, when being written
996	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
997	  trace data.
998
999	  Work around this problem in the driver by just preventing TRBE initialization on
1000	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1001	  on such implementations. This will cover the kernel for any firmware that doesn't
1002	  do this already.
1003
1004	  If unsure, say Y.
1005
1006config ARM64_ERRATUM_2457168
1007	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1008	depends on ARM64_AMU_EXTN
1009	default y
1010	help
1011	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1012
1013	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1014	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1015	  incorrectly giving a significantly higher output value.
1016
1017	  Work around this problem by returning 0 when reading the affected counter in
1018	  key locations that results in disabling all users of this counter. This effect
1019	  is the same to firmware disabling affected counters.
1020
1021	  If unsure, say Y.
1022
1023config ARM64_ERRATUM_2645198
1024	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1025	default y
1026	help
1027	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1028
1029	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1030	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1031	  next instruction abort caused by permission fault.
1032
1033	  Only user-space does executable to non-executable permission transition via
1034	  mprotect() system call. Workaround the problem by doing a break-before-make
1035	  TLB invalidation, for all changes to executable user space mappings.
1036
1037	  If unsure, say Y.
1038
1039config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1040	bool
1041
1042config ARM64_ERRATUM_2966298
1043	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1044	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1045	default y
1046	help
1047	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1048
1049	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1050	  load might leak data from a privileged level via a cache side channel.
1051
1052	  Work around this problem by executing a TLBI before returning to EL0.
1053
1054	  If unsure, say Y.
1055
1056config ARM64_ERRATUM_3117295
1057	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1058	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1059	default y
1060	help
1061	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1062
1063	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1064	  load might leak data from a privileged level via a cache side channel.
1065
1066	  Work around this problem by executing a TLBI before returning to EL0.
1067
1068	  If unsure, say Y.
1069
1070config ARM64_WORKAROUND_SPECULATIVE_SSBS
1071	bool
1072
1073config ARM64_ERRATUM_3194386
1074	bool "Cortex-X4: 3194386: workaround for MSR SSBS not self-synchronizing"
1075	select ARM64_WORKAROUND_SPECULATIVE_SSBS
1076	default y
1077	help
1078	  This option adds the workaround for ARM Cortex-X4 erratum 3194386.
1079
1080	  On affected cores "MSR SSBS, #0" instructions may not affect
1081	  subsequent speculative instructions, which may permit unexepected
1082	  speculative store bypassing.
1083
1084	  Work around this problem by placing a speculation barrier after
1085	  kernel changes to SSBS. The presence of the SSBS special-purpose
1086	  register is hidden from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such
1087	  that userspace will use the PR_SPEC_STORE_BYPASS prctl to change
1088	  SSBS.
1089
1090	  If unsure, say Y.
1091
1092config ARM64_ERRATUM_3312417
1093	bool "Neoverse-V3: 3312417: workaround for MSR SSBS not self-synchronizing"
1094	select ARM64_WORKAROUND_SPECULATIVE_SSBS
1095	default y
1096	help
1097	  This option adds the workaround for ARM Neoverse-V3 erratum 3312417.
1098
1099	  On affected cores "MSR SSBS, #0" instructions may not affect
1100	  subsequent speculative instructions, which may permit unexepected
1101	  speculative store bypassing.
1102
1103	  Work around this problem by placing a speculation barrier after
1104	  kernel changes to SSBS. The presence of the SSBS special-purpose
1105	  register is hidden from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such
1106	  that userspace will use the PR_SPEC_STORE_BYPASS prctl to change
1107	  SSBS.
1108
1109	  If unsure, say Y.
1110
1111
1112config CAVIUM_ERRATUM_22375
1113	bool "Cavium erratum 22375, 24313"
1114	default y
1115	help
1116	  Enable workaround for errata 22375 and 24313.
1117
1118	  This implements two gicv3-its errata workarounds for ThunderX. Both
1119	  with a small impact affecting only ITS table allocation.
1120
1121	    erratum 22375: only alloc 8MB table size
1122	    erratum 24313: ignore memory access type
1123
1124	  The fixes are in ITS initialization and basically ignore memory access
1125	  type and table size provided by the TYPER and BASER registers.
1126
1127	  If unsure, say Y.
1128
1129config CAVIUM_ERRATUM_23144
1130	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1131	depends on NUMA
1132	default y
1133	help
1134	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1135
1136	  If unsure, say Y.
1137
1138config CAVIUM_ERRATUM_23154
1139	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1140	default y
1141	help
1142	  The ThunderX GICv3 implementation requires a modified version for
1143	  reading the IAR status to ensure data synchronization
1144	  (access to icc_iar1_el1 is not sync'ed before and after).
1145
1146	  It also suffers from erratum 38545 (also present on Marvell's
1147	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1148	  spuriously presented to the CPU interface.
1149
1150	  If unsure, say Y.
1151
1152config CAVIUM_ERRATUM_27456
1153	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1154	default y
1155	help
1156	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1157	  instructions may cause the icache to become corrupted if it
1158	  contains data for a non-current ASID.  The fix is to
1159	  invalidate the icache when changing the mm context.
1160
1161	  If unsure, say Y.
1162
1163config CAVIUM_ERRATUM_30115
1164	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1165	default y
1166	help
1167	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1168	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1169	  interrupts in host. Trapping both GICv3 group-0 and group-1
1170	  accesses sidesteps the issue.
1171
1172	  If unsure, say Y.
1173
1174config CAVIUM_TX2_ERRATUM_219
1175	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1176	default y
1177	help
1178	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1179	  TTBR update and the corresponding context synchronizing operation can
1180	  cause a spurious Data Abort to be delivered to any hardware thread in
1181	  the CPU core.
1182
1183	  Work around the issue by avoiding the problematic code sequence and
1184	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1185	  trap handler performs the corresponding register access, skips the
1186	  instruction and ensures context synchronization by virtue of the
1187	  exception return.
1188
1189	  If unsure, say Y.
1190
1191config FUJITSU_ERRATUM_010001
1192	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1193	default y
1194	help
1195	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1196	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1197	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1198	  This fault occurs under a specific hardware condition when a
1199	  load/store instruction performs an address translation using:
1200	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1201	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1202	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1203	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1204
1205	  The workaround is to ensure these bits are clear in TCR_ELx.
1206	  The workaround only affects the Fujitsu-A64FX.
1207
1208	  If unsure, say Y.
1209
1210config HISILICON_ERRATUM_161600802
1211	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1212	default y
1213	help
1214	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1215	  when issued ITS commands such as VMOVP and VMAPP, and requires
1216	  a 128kB offset to be applied to the target address in this commands.
1217
1218	  If unsure, say Y.
1219
1220config QCOM_FALKOR_ERRATUM_1003
1221	bool "Falkor E1003: Incorrect translation due to ASID change"
1222	default y
1223	help
1224	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1225	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1226	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1227	  then only for entries in the walk cache, since the leaf translation
1228	  is unchanged. Work around the erratum by invalidating the walk cache
1229	  entries for the trampoline before entering the kernel proper.
1230
1231config QCOM_FALKOR_ERRATUM_1009
1232	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1233	default y
1234	select ARM64_WORKAROUND_REPEAT_TLBI
1235	help
1236	  On Falkor v1, the CPU may prematurely complete a DSB following a
1237	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1238	  one more time to fix the issue.
1239
1240	  If unsure, say Y.
1241
1242config QCOM_QDF2400_ERRATUM_0065
1243	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1244	default y
1245	help
1246	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1247	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1248	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1249
1250	  If unsure, say Y.
1251
1252config QCOM_FALKOR_ERRATUM_E1041
1253	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1254	default y
1255	help
1256	  Falkor CPU may speculatively fetch instructions from an improper
1257	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1258	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1259
1260	  If unsure, say Y.
1261
1262config NVIDIA_CARMEL_CNP_ERRATUM
1263	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1264	default y
1265	help
1266	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1267	  invalidate shared TLB entries installed by a different core, as it would
1268	  on standard ARM cores.
1269
1270	  If unsure, say Y.
1271
1272config ROCKCHIP_ERRATUM_3588001
1273	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1274	default y
1275	help
1276	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1277	  This means, that its sharability feature may not be used, even though it
1278	  is supported by the IP itself.
1279
1280	  If unsure, say Y.
1281
1282config SOCIONEXT_SYNQUACER_PREITS
1283	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1284	default y
1285	help
1286	  Socionext Synquacer SoCs implement a separate h/w block to generate
1287	  MSI doorbell writes with non-zero values for the device ID.
1288
1289	  If unsure, say Y.
1290
1291endmenu # "ARM errata workarounds via the alternatives framework"
1292
1293choice
1294	prompt "Page size"
1295	default ARM64_4K_PAGES
1296	help
1297	  Page size (translation granule) configuration.
1298
1299config ARM64_4K_PAGES
1300	bool "4KB"
1301	select HAVE_PAGE_SIZE_4KB
1302	help
1303	  This feature enables 4KB pages support.
1304
1305config ARM64_16K_PAGES
1306	bool "16KB"
1307	select HAVE_PAGE_SIZE_16KB
1308	help
1309	  The system will use 16KB pages support. AArch32 emulation
1310	  requires applications compiled with 16K (or a multiple of 16K)
1311	  aligned segments.
1312
1313config ARM64_64K_PAGES
1314	bool "64KB"
1315	select HAVE_PAGE_SIZE_64KB
1316	help
1317	  This feature enables 64KB pages support (4KB by default)
1318	  allowing only two levels of page tables and faster TLB
1319	  look-up. AArch32 emulation requires applications compiled
1320	  with 64K aligned segments.
1321
1322endchoice
1323
1324choice
1325	prompt "Virtual address space size"
1326	default ARM64_VA_BITS_52
1327	help
1328	  Allows choosing one of multiple possible virtual address
1329	  space sizes. The level of translation table is determined by
1330	  a combination of page size and virtual address space size.
1331
1332config ARM64_VA_BITS_36
1333	bool "36-bit" if EXPERT
1334	depends on PAGE_SIZE_16KB
1335
1336config ARM64_VA_BITS_39
1337	bool "39-bit"
1338	depends on PAGE_SIZE_4KB
1339
1340config ARM64_VA_BITS_42
1341	bool "42-bit"
1342	depends on PAGE_SIZE_64KB
1343
1344config ARM64_VA_BITS_47
1345	bool "47-bit"
1346	depends on PAGE_SIZE_16KB
1347
1348config ARM64_VA_BITS_48
1349	bool "48-bit"
1350
1351config ARM64_VA_BITS_52
1352	bool "52-bit"
1353	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1354	help
1355	  Enable 52-bit virtual addressing for userspace when explicitly
1356	  requested via a hint to mmap(). The kernel will also use 52-bit
1357	  virtual addresses for its own mappings (provided HW support for
1358	  this feature is available, otherwise it reverts to 48-bit).
1359
1360	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1361	  ARMv8.3 Pointer Authentication will result in the PAC being
1362	  reduced from 7 bits to 3 bits, which may have a significant
1363	  impact on its susceptibility to brute-force attacks.
1364
1365	  If unsure, select 48-bit virtual addressing instead.
1366
1367endchoice
1368
1369config ARM64_FORCE_52BIT
1370	bool "Force 52-bit virtual addresses for userspace"
1371	depends on ARM64_VA_BITS_52 && EXPERT
1372	help
1373	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1374	  to maintain compatibility with older software by providing 48-bit VAs
1375	  unless a hint is supplied to mmap.
1376
1377	  This configuration option disables the 48-bit compatibility logic, and
1378	  forces all userspace addresses to be 52-bit on HW that supports it. One
1379	  should only enable this configuration option for stress testing userspace
1380	  memory management code. If unsure say N here.
1381
1382config ARM64_VA_BITS
1383	int
1384	default 36 if ARM64_VA_BITS_36
1385	default 39 if ARM64_VA_BITS_39
1386	default 42 if ARM64_VA_BITS_42
1387	default 47 if ARM64_VA_BITS_47
1388	default 48 if ARM64_VA_BITS_48
1389	default 52 if ARM64_VA_BITS_52
1390
1391choice
1392	prompt "Physical address space size"
1393	default ARM64_PA_BITS_48
1394	help
1395	  Choose the maximum physical address range that the kernel will
1396	  support.
1397
1398config ARM64_PA_BITS_48
1399	bool "48-bit"
1400	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1401
1402config ARM64_PA_BITS_52
1403	bool "52-bit"
1404	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1405	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1406	help
1407	  Enable support for a 52-bit physical address space, introduced as
1408	  part of the ARMv8.2-LPA extension.
1409
1410	  With this enabled, the kernel will also continue to work on CPUs that
1411	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1412	  minor performance overhead).
1413
1414endchoice
1415
1416config ARM64_PA_BITS
1417	int
1418	default 48 if ARM64_PA_BITS_48
1419	default 52 if ARM64_PA_BITS_52
1420
1421config ARM64_LPA2
1422	def_bool y
1423	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1424
1425choice
1426	prompt "Endianness"
1427	default CPU_LITTLE_ENDIAN
1428	help
1429	  Select the endianness of data accesses performed by the CPU. Userspace
1430	  applications will need to be compiled and linked for the endianness
1431	  that is selected here.
1432
1433config CPU_BIG_ENDIAN
1434	bool "Build big-endian kernel"
1435	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1436	depends on AS_IS_GNU || AS_VERSION >= 150000
1437	help
1438	  Say Y if you plan on running a kernel with a big-endian userspace.
1439
1440config CPU_LITTLE_ENDIAN
1441	bool "Build little-endian kernel"
1442	help
1443	  Say Y if you plan on running a kernel with a little-endian userspace.
1444	  This is usually the case for distributions targeting arm64.
1445
1446endchoice
1447
1448config SCHED_MC
1449	bool "Multi-core scheduler support"
1450	help
1451	  Multi-core scheduler support improves the CPU scheduler's decision
1452	  making when dealing with multi-core CPU chips at a cost of slightly
1453	  increased overhead in some places. If unsure say N here.
1454
1455config SCHED_CLUSTER
1456	bool "Cluster scheduler support"
1457	help
1458	  Cluster scheduler support improves the CPU scheduler's decision
1459	  making when dealing with machines that have clusters of CPUs.
1460	  Cluster usually means a couple of CPUs which are placed closely
1461	  by sharing mid-level caches, last-level cache tags or internal
1462	  busses.
1463
1464config SCHED_SMT
1465	bool "SMT scheduler support"
1466	help
1467	  Improves the CPU scheduler's decision making when dealing with
1468	  MultiThreading at a cost of slightly increased overhead in some
1469	  places. If unsure say N here.
1470
1471config NR_CPUS
1472	int "Maximum number of CPUs (2-4096)"
1473	range 2 4096
1474	default "512"
1475
1476config HOTPLUG_CPU
1477	bool "Support for hot-pluggable CPUs"
1478	select GENERIC_IRQ_MIGRATION
1479	help
1480	  Say Y here to experiment with turning CPUs off and on.  CPUs
1481	  can be controlled through /sys/devices/system/cpu.
1482
1483# Common NUMA Features
1484config NUMA
1485	bool "NUMA Memory Allocation and Scheduler Support"
1486	select GENERIC_ARCH_NUMA
1487	select ACPI_NUMA if ACPI
1488	select OF_NUMA
1489	select HAVE_SETUP_PER_CPU_AREA
1490	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1491	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1492	select USE_PERCPU_NUMA_NODE_ID
1493	help
1494	  Enable NUMA (Non-Uniform Memory Access) support.
1495
1496	  The kernel will try to allocate memory used by a CPU on the
1497	  local memory of the CPU and add some more
1498	  NUMA awareness to the kernel.
1499
1500config NODES_SHIFT
1501	int "Maximum NUMA Nodes (as a power of 2)"
1502	range 1 10
1503	default "4"
1504	depends on NUMA
1505	help
1506	  Specify the maximum number of NUMA Nodes available on the target
1507	  system.  Increases memory reserved to accommodate various tables.
1508
1509source "kernel/Kconfig.hz"
1510
1511config ARCH_SPARSEMEM_ENABLE
1512	def_bool y
1513	select SPARSEMEM_VMEMMAP_ENABLE
1514	select SPARSEMEM_VMEMMAP
1515
1516config HW_PERF_EVENTS
1517	def_bool y
1518	depends on ARM_PMU
1519
1520# Supported by clang >= 7.0 or GCC >= 12.0.0
1521config CC_HAVE_SHADOW_CALL_STACK
1522	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1523
1524config PARAVIRT
1525	bool "Enable paravirtualization code"
1526	help
1527	  This changes the kernel so it can modify itself when it is run
1528	  under a hypervisor, potentially improving performance significantly
1529	  over full virtualization.
1530
1531config PARAVIRT_TIME_ACCOUNTING
1532	bool "Paravirtual steal time accounting"
1533	select PARAVIRT
1534	help
1535	  Select this option to enable fine granularity task steal time
1536	  accounting. Time spent executing other tasks in parallel with
1537	  the current vCPU is discounted from the vCPU power. To account for
1538	  that, there can be a small performance impact.
1539
1540	  If in doubt, say N here.
1541
1542config ARCH_SUPPORTS_KEXEC
1543	def_bool PM_SLEEP_SMP
1544
1545config ARCH_SUPPORTS_KEXEC_FILE
1546	def_bool y
1547
1548config ARCH_SELECTS_KEXEC_FILE
1549	def_bool y
1550	depends on KEXEC_FILE
1551	select HAVE_IMA_KEXEC if IMA
1552
1553config ARCH_SUPPORTS_KEXEC_SIG
1554	def_bool y
1555
1556config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1557	def_bool y
1558
1559config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1560	def_bool y
1561
1562config ARCH_SUPPORTS_CRASH_DUMP
1563	def_bool y
1564
1565config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1566	def_bool CRASH_RESERVE
1567
1568config TRANS_TABLE
1569	def_bool y
1570	depends on HIBERNATION || KEXEC_CORE
1571
1572config XEN_DOM0
1573	def_bool y
1574	depends on XEN
1575
1576config XEN
1577	bool "Xen guest support on ARM64"
1578	depends on ARM64 && OF
1579	select SWIOTLB_XEN
1580	select PARAVIRT
1581	help
1582	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1583
1584# include/linux/mmzone.h requires the following to be true:
1585#
1586#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1587#
1588# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1589#
1590#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1591# ----+-------------------+--------------+----------------------+-------------------------+
1592# 4K  |       27          |      12      |       15             |         10              |
1593# 16K |       27          |      14      |       13             |         11              |
1594# 64K |       29          |      16      |       13             |         13              |
1595config ARCH_FORCE_MAX_ORDER
1596	int
1597	default "13" if ARM64_64K_PAGES
1598	default "11" if ARM64_16K_PAGES
1599	default "10"
1600	help
1601	  The kernel page allocator limits the size of maximal physically
1602	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1603	  defines the maximal power of two of number of pages that can be
1604	  allocated as a single contiguous block. This option allows
1605	  overriding the default setting when ability to allocate very
1606	  large blocks of physically contiguous memory is required.
1607
1608	  The maximal size of allocation cannot exceed the size of the
1609	  section, so the value of MAX_PAGE_ORDER should satisfy
1610
1611	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1612
1613	  Don't change if unsure.
1614
1615config UNMAP_KERNEL_AT_EL0
1616	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1617	default y
1618	help
1619	  Speculation attacks against some high-performance processors can
1620	  be used to bypass MMU permission checks and leak kernel data to
1621	  userspace. This can be defended against by unmapping the kernel
1622	  when running in userspace, mapping it back in on exception entry
1623	  via a trampoline page in the vector table.
1624
1625	  If unsure, say Y.
1626
1627config MITIGATE_SPECTRE_BRANCH_HISTORY
1628	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1629	default y
1630	help
1631	  Speculation attacks against some high-performance processors can
1632	  make use of branch history to influence future speculation.
1633	  When taking an exception from user-space, a sequence of branches
1634	  or a firmware call overwrites the branch history.
1635
1636config RODATA_FULL_DEFAULT_ENABLED
1637	bool "Apply r/o permissions of VM areas also to their linear aliases"
1638	default y
1639	help
1640	  Apply read-only attributes of VM areas to the linear alias of
1641	  the backing pages as well. This prevents code or read-only data
1642	  from being modified (inadvertently or intentionally) via another
1643	  mapping of the same memory page. This additional enhancement can
1644	  be turned off at runtime by passing rodata=[off|on] (and turned on
1645	  with rodata=full if this option is set to 'n')
1646
1647	  This requires the linear region to be mapped down to pages,
1648	  which may adversely affect performance in some cases.
1649
1650config ARM64_SW_TTBR0_PAN
1651	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1652	help
1653	  Enabling this option prevents the kernel from accessing
1654	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1655	  zeroed area and reserved ASID. The user access routines
1656	  restore the valid TTBR0_EL1 temporarily.
1657
1658config ARM64_TAGGED_ADDR_ABI
1659	bool "Enable the tagged user addresses syscall ABI"
1660	default y
1661	help
1662	  When this option is enabled, user applications can opt in to a
1663	  relaxed ABI via prctl() allowing tagged addresses to be passed
1664	  to system calls as pointer arguments. For details, see
1665	  Documentation/arch/arm64/tagged-address-abi.rst.
1666
1667menuconfig COMPAT
1668	bool "Kernel support for 32-bit EL0"
1669	depends on ARM64_4K_PAGES || EXPERT
1670	select HAVE_UID16
1671	select OLD_SIGSUSPEND3
1672	select COMPAT_OLD_SIGACTION
1673	help
1674	  This option enables support for a 32-bit EL0 running under a 64-bit
1675	  kernel at EL1. AArch32-specific components such as system calls,
1676	  the user helper functions, VFP support and the ptrace interface are
1677	  handled appropriately by the kernel.
1678
1679	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1680	  that you will only be able to execute AArch32 binaries that were compiled
1681	  with page size aligned segments.
1682
1683	  If you want to execute 32-bit userspace applications, say Y.
1684
1685if COMPAT
1686
1687config KUSER_HELPERS
1688	bool "Enable kuser helpers page for 32-bit applications"
1689	default y
1690	help
1691	  Warning: disabling this option may break 32-bit user programs.
1692
1693	  Provide kuser helpers to compat tasks. The kernel provides
1694	  helper code to userspace in read only form at a fixed location
1695	  to allow userspace to be independent of the CPU type fitted to
1696	  the system. This permits binaries to be run on ARMv4 through
1697	  to ARMv8 without modification.
1698
1699	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1700
1701	  However, the fixed address nature of these helpers can be used
1702	  by ROP (return orientated programming) authors when creating
1703	  exploits.
1704
1705	  If all of the binaries and libraries which run on your platform
1706	  are built specifically for your platform, and make no use of
1707	  these helpers, then you can turn this option off to hinder
1708	  such exploits. However, in that case, if a binary or library
1709	  relying on those helpers is run, it will not function correctly.
1710
1711	  Say N here only if you are absolutely certain that you do not
1712	  need these helpers; otherwise, the safe option is to say Y.
1713
1714config COMPAT_VDSO
1715	bool "Enable vDSO for 32-bit applications"
1716	depends on !CPU_BIG_ENDIAN
1717	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1718	select GENERIC_COMPAT_VDSO
1719	default y
1720	help
1721	  Place in the process address space of 32-bit applications an
1722	  ELF shared object providing fast implementations of gettimeofday
1723	  and clock_gettime.
1724
1725	  You must have a 32-bit build of glibc 2.22 or later for programs
1726	  to seamlessly take advantage of this.
1727
1728config THUMB2_COMPAT_VDSO
1729	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1730	depends on COMPAT_VDSO
1731	default y
1732	help
1733	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1734	  otherwise with '-marm'.
1735
1736config COMPAT_ALIGNMENT_FIXUPS
1737	bool "Fix up misaligned multi-word loads and stores in user space"
1738
1739menuconfig ARMV8_DEPRECATED
1740	bool "Emulate deprecated/obsolete ARMv8 instructions"
1741	depends on SYSCTL
1742	help
1743	  Legacy software support may require certain instructions
1744	  that have been deprecated or obsoleted in the architecture.
1745
1746	  Enable this config to enable selective emulation of these
1747	  features.
1748
1749	  If unsure, say Y
1750
1751if ARMV8_DEPRECATED
1752
1753config SWP_EMULATION
1754	bool "Emulate SWP/SWPB instructions"
1755	help
1756	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1757	  they are always undefined. Say Y here to enable software
1758	  emulation of these instructions for userspace using LDXR/STXR.
1759	  This feature can be controlled at runtime with the abi.swp
1760	  sysctl which is disabled by default.
1761
1762	  In some older versions of glibc [<=2.8] SWP is used during futex
1763	  trylock() operations with the assumption that the code will not
1764	  be preempted. This invalid assumption may be more likely to fail
1765	  with SWP emulation enabled, leading to deadlock of the user
1766	  application.
1767
1768	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1769	  on an external transaction monitoring block called a global
1770	  monitor to maintain update atomicity. If your system does not
1771	  implement a global monitor, this option can cause programs that
1772	  perform SWP operations to uncached memory to deadlock.
1773
1774	  If unsure, say Y
1775
1776config CP15_BARRIER_EMULATION
1777	bool "Emulate CP15 Barrier instructions"
1778	help
1779	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1780	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1781	  strongly recommended to use the ISB, DSB, and DMB
1782	  instructions instead.
1783
1784	  Say Y here to enable software emulation of these
1785	  instructions for AArch32 userspace code. When this option is
1786	  enabled, CP15 barrier usage is traced which can help
1787	  identify software that needs updating. This feature can be
1788	  controlled at runtime with the abi.cp15_barrier sysctl.
1789
1790	  If unsure, say Y
1791
1792config SETEND_EMULATION
1793	bool "Emulate SETEND instruction"
1794	help
1795	  The SETEND instruction alters the data-endianness of the
1796	  AArch32 EL0, and is deprecated in ARMv8.
1797
1798	  Say Y here to enable software emulation of the instruction
1799	  for AArch32 userspace code. This feature can be controlled
1800	  at runtime with the abi.setend sysctl.
1801
1802	  Note: All the cpus on the system must have mixed endian support at EL0
1803	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1804	  endian - is hotplugged in after this feature has been enabled, there could
1805	  be unexpected results in the applications.
1806
1807	  If unsure, say Y
1808endif # ARMV8_DEPRECATED
1809
1810endif # COMPAT
1811
1812menu "ARMv8.1 architectural features"
1813
1814config ARM64_HW_AFDBM
1815	bool "Support for hardware updates of the Access and Dirty page flags"
1816	default y
1817	help
1818	  The ARMv8.1 architecture extensions introduce support for
1819	  hardware updates of the access and dirty information in page
1820	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1821	  capable processors, accesses to pages with PTE_AF cleared will
1822	  set this bit instead of raising an access flag fault.
1823	  Similarly, writes to read-only pages with the DBM bit set will
1824	  clear the read-only bit (AP[2]) instead of raising a
1825	  permission fault.
1826
1827	  Kernels built with this configuration option enabled continue
1828	  to work on pre-ARMv8.1 hardware and the performance impact is
1829	  minimal. If unsure, say Y.
1830
1831config ARM64_PAN
1832	bool "Enable support for Privileged Access Never (PAN)"
1833	default y
1834	help
1835	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1836	  prevents the kernel or hypervisor from accessing user-space (EL0)
1837	  memory directly.
1838
1839	  Choosing this option will cause any unprotected (not using
1840	  copy_to_user et al) memory access to fail with a permission fault.
1841
1842	  The feature is detected at runtime, and will remain as a 'nop'
1843	  instruction if the cpu does not implement the feature.
1844
1845config AS_HAS_LSE_ATOMICS
1846	def_bool $(as-instr,.arch_extension lse)
1847
1848config ARM64_LSE_ATOMICS
1849	bool
1850	default ARM64_USE_LSE_ATOMICS
1851	depends on AS_HAS_LSE_ATOMICS
1852
1853config ARM64_USE_LSE_ATOMICS
1854	bool "Atomic instructions"
1855	default y
1856	help
1857	  As part of the Large System Extensions, ARMv8.1 introduces new
1858	  atomic instructions that are designed specifically to scale in
1859	  very large systems.
1860
1861	  Say Y here to make use of these instructions for the in-kernel
1862	  atomic routines. This incurs a small overhead on CPUs that do
1863	  not support these instructions and requires the kernel to be
1864	  built with binutils >= 2.25 in order for the new instructions
1865	  to be used.
1866
1867endmenu # "ARMv8.1 architectural features"
1868
1869menu "ARMv8.2 architectural features"
1870
1871config AS_HAS_ARMV8_2
1872	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1873
1874config AS_HAS_SHA3
1875	def_bool $(as-instr,.arch armv8.2-a+sha3)
1876
1877config ARM64_PMEM
1878	bool "Enable support for persistent memory"
1879	select ARCH_HAS_PMEM_API
1880	select ARCH_HAS_UACCESS_FLUSHCACHE
1881	help
1882	  Say Y to enable support for the persistent memory API based on the
1883	  ARMv8.2 DCPoP feature.
1884
1885	  The feature is detected at runtime, and the kernel will use DC CVAC
1886	  operations if DC CVAP is not supported (following the behaviour of
1887	  DC CVAP itself if the system does not define a point of persistence).
1888
1889config ARM64_RAS_EXTN
1890	bool "Enable support for RAS CPU Extensions"
1891	default y
1892	help
1893	  CPUs that support the Reliability, Availability and Serviceability
1894	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1895	  errors, classify them and report them to software.
1896
1897	  On CPUs with these extensions system software can use additional
1898	  barriers to determine if faults are pending and read the
1899	  classification from a new set of registers.
1900
1901	  Selecting this feature will allow the kernel to use these barriers
1902	  and access the new registers if the system supports the extension.
1903	  Platform RAS features may additionally depend on firmware support.
1904
1905config ARM64_CNP
1906	bool "Enable support for Common Not Private (CNP) translations"
1907	default y
1908	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1909	help
1910	  Common Not Private (CNP) allows translation table entries to
1911	  be shared between different PEs in the same inner shareable
1912	  domain, so the hardware can use this fact to optimise the
1913	  caching of such entries in the TLB.
1914
1915	  Selecting this option allows the CNP feature to be detected
1916	  at runtime, and does not affect PEs that do not implement
1917	  this feature.
1918
1919endmenu # "ARMv8.2 architectural features"
1920
1921menu "ARMv8.3 architectural features"
1922
1923config ARM64_PTR_AUTH
1924	bool "Enable support for pointer authentication"
1925	default y
1926	help
1927	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1928	  instructions for signing and authenticating pointers against secret
1929	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1930	  and other attacks.
1931
1932	  This option enables these instructions at EL0 (i.e. for userspace).
1933	  Choosing this option will cause the kernel to initialise secret keys
1934	  for each process at exec() time, with these keys being
1935	  context-switched along with the process.
1936
1937	  The feature is detected at runtime. If the feature is not present in
1938	  hardware it will not be advertised to userspace/KVM guest nor will it
1939	  be enabled.
1940
1941	  If the feature is present on the boot CPU but not on a late CPU, then
1942	  the late CPU will be parked. Also, if the boot CPU does not have
1943	  address auth and the late CPU has then the late CPU will still boot
1944	  but with the feature disabled. On such a system, this option should
1945	  not be selected.
1946
1947config ARM64_PTR_AUTH_KERNEL
1948	bool "Use pointer authentication for kernel"
1949	default y
1950	depends on ARM64_PTR_AUTH
1951	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1952	# Modern compilers insert a .note.gnu.property section note for PAC
1953	# which is only understood by binutils starting with version 2.33.1.
1954	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1955	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1956	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1957	help
1958	  If the compiler supports the -mbranch-protection or
1959	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1960	  will cause the kernel itself to be compiled with return address
1961	  protection. In this case, and if the target hardware is known to
1962	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1963	  disabled with minimal loss of protection.
1964
1965	  This feature works with FUNCTION_GRAPH_TRACER option only if
1966	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1967
1968config CC_HAS_BRANCH_PROT_PAC_RET
1969	# GCC 9 or later, clang 8 or later
1970	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1971
1972config CC_HAS_SIGN_RETURN_ADDRESS
1973	# GCC 7, 8
1974	def_bool $(cc-option,-msign-return-address=all)
1975
1976config AS_HAS_ARMV8_3
1977	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1978
1979config AS_HAS_CFI_NEGATE_RA_STATE
1980	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1981
1982config AS_HAS_LDAPR
1983	def_bool $(as-instr,.arch_extension rcpc)
1984
1985endmenu # "ARMv8.3 architectural features"
1986
1987menu "ARMv8.4 architectural features"
1988
1989config ARM64_AMU_EXTN
1990	bool "Enable support for the Activity Monitors Unit CPU extension"
1991	default y
1992	help
1993	  The activity monitors extension is an optional extension introduced
1994	  by the ARMv8.4 CPU architecture. This enables support for version 1
1995	  of the activity monitors architecture, AMUv1.
1996
1997	  To enable the use of this extension on CPUs that implement it, say Y.
1998
1999	  Note that for architectural reasons, firmware _must_ implement AMU
2000	  support when running on CPUs that present the activity monitors
2001	  extension. The required support is present in:
2002	    * Version 1.5 and later of the ARM Trusted Firmware
2003
2004	  For kernels that have this configuration enabled but boot with broken
2005	  firmware, you may need to say N here until the firmware is fixed.
2006	  Otherwise you may experience firmware panics or lockups when
2007	  accessing the counter registers. Even if you are not observing these
2008	  symptoms, the values returned by the register reads might not
2009	  correctly reflect reality. Most commonly, the value read will be 0,
2010	  indicating that the counter is not enabled.
2011
2012config AS_HAS_ARMV8_4
2013	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2014
2015config ARM64_TLB_RANGE
2016	bool "Enable support for tlbi range feature"
2017	default y
2018	depends on AS_HAS_ARMV8_4
2019	help
2020	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2021	  range of input addresses.
2022
2023	  The feature introduces new assembly instructions, and they were
2024	  support when binutils >= 2.30.
2025
2026endmenu # "ARMv8.4 architectural features"
2027
2028menu "ARMv8.5 architectural features"
2029
2030config AS_HAS_ARMV8_5
2031	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2032
2033config ARM64_BTI
2034	bool "Branch Target Identification support"
2035	default y
2036	help
2037	  Branch Target Identification (part of the ARMv8.5 Extensions)
2038	  provides a mechanism to limit the set of locations to which computed
2039	  branch instructions such as BR or BLR can jump.
2040
2041	  To make use of BTI on CPUs that support it, say Y.
2042
2043	  BTI is intended to provide complementary protection to other control
2044	  flow integrity protection mechanisms, such as the Pointer
2045	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2046	  For this reason, it does not make sense to enable this option without
2047	  also enabling support for pointer authentication.  Thus, when
2048	  enabling this option you should also select ARM64_PTR_AUTH=y.
2049
2050	  Userspace binaries must also be specifically compiled to make use of
2051	  this mechanism.  If you say N here or the hardware does not support
2052	  BTI, such binaries can still run, but you get no additional
2053	  enforcement of branch destinations.
2054
2055config ARM64_BTI_KERNEL
2056	bool "Use Branch Target Identification for kernel"
2057	default y
2058	depends on ARM64_BTI
2059	depends on ARM64_PTR_AUTH_KERNEL
2060	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2061	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2062	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2063	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2064	depends on !CC_IS_GCC
2065	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2066	help
2067	  Build the kernel with Branch Target Identification annotations
2068	  and enable enforcement of this for kernel code. When this option
2069	  is enabled and the system supports BTI all kernel code including
2070	  modular code must have BTI enabled.
2071
2072config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2073	# GCC 9 or later, clang 8 or later
2074	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2075
2076config ARM64_E0PD
2077	bool "Enable support for E0PD"
2078	default y
2079	help
2080	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2081	  that EL0 accesses made via TTBR1 always fault in constant time,
2082	  providing similar benefits to KASLR as those provided by KPTI, but
2083	  with lower overhead and without disrupting legitimate access to
2084	  kernel memory such as SPE.
2085
2086	  This option enables E0PD for TTBR1 where available.
2087
2088config ARM64_AS_HAS_MTE
2089	# Initial support for MTE went in binutils 2.32.0, checked with
2090	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2091	# as a late addition to the final architecture spec (LDGM/STGM)
2092	# is only supported in the newer 2.32.x and 2.33 binutils
2093	# versions, hence the extra "stgm" instruction check below.
2094	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2095
2096config ARM64_MTE
2097	bool "Memory Tagging Extension support"
2098	default y
2099	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2100	depends on AS_HAS_ARMV8_5
2101	depends on AS_HAS_LSE_ATOMICS
2102	# Required for tag checking in the uaccess routines
2103	depends on ARM64_PAN
2104	select ARCH_HAS_SUBPAGE_FAULTS
2105	select ARCH_USES_HIGH_VMA_FLAGS
2106	select ARCH_USES_PG_ARCH_X
2107	help
2108	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2109	  architectural support for run-time, always-on detection of
2110	  various classes of memory error to aid with software debugging
2111	  to eliminate vulnerabilities arising from memory-unsafe
2112	  languages.
2113
2114	  This option enables the support for the Memory Tagging
2115	  Extension at EL0 (i.e. for userspace).
2116
2117	  Selecting this option allows the feature to be detected at
2118	  runtime. Any secondary CPU not implementing this feature will
2119	  not be allowed a late bring-up.
2120
2121	  Userspace binaries that want to use this feature must
2122	  explicitly opt in. The mechanism for the userspace is
2123	  described in:
2124
2125	  Documentation/arch/arm64/memory-tagging-extension.rst.
2126
2127endmenu # "ARMv8.5 architectural features"
2128
2129menu "ARMv8.7 architectural features"
2130
2131config ARM64_EPAN
2132	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2133	default y
2134	depends on ARM64_PAN
2135	help
2136	  Enhanced Privileged Access Never (EPAN) allows Privileged
2137	  Access Never to be used with Execute-only mappings.
2138
2139	  The feature is detected at runtime, and will remain disabled
2140	  if the cpu does not implement the feature.
2141endmenu # "ARMv8.7 architectural features"
2142
2143config ARM64_SVE
2144	bool "ARM Scalable Vector Extension support"
2145	default y
2146	help
2147	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2148	  execution state which complements and extends the SIMD functionality
2149	  of the base architecture to support much larger vectors and to enable
2150	  additional vectorisation opportunities.
2151
2152	  To enable use of this extension on CPUs that implement it, say Y.
2153
2154	  On CPUs that support the SVE2 extensions, this option will enable
2155	  those too.
2156
2157	  Note that for architectural reasons, firmware _must_ implement SVE
2158	  support when running on SVE capable hardware.  The required support
2159	  is present in:
2160
2161	    * version 1.5 and later of the ARM Trusted Firmware
2162	    * the AArch64 boot wrapper since commit 5e1261e08abf
2163	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2164
2165	  For other firmware implementations, consult the firmware documentation
2166	  or vendor.
2167
2168	  If you need the kernel to boot on SVE-capable hardware with broken
2169	  firmware, you may need to say N here until you get your firmware
2170	  fixed.  Otherwise, you may experience firmware panics or lockups when
2171	  booting the kernel.  If unsure and you are not observing these
2172	  symptoms, you should assume that it is safe to say Y.
2173
2174config ARM64_SME
2175	bool "ARM Scalable Matrix Extension support"
2176	default y
2177	depends on ARM64_SVE
2178	help
2179	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2180	  execution state which utilises a substantial subset of the SVE
2181	  instruction set, together with the addition of new architectural
2182	  register state capable of holding two dimensional matrix tiles to
2183	  enable various matrix operations.
2184
2185config ARM64_PSEUDO_NMI
2186	bool "Support for NMI-like interrupts"
2187	select ARM_GIC_V3
2188	help
2189	  Adds support for mimicking Non-Maskable Interrupts through the use of
2190	  GIC interrupt priority. This support requires version 3 or later of
2191	  ARM GIC.
2192
2193	  This high priority configuration for interrupts needs to be
2194	  explicitly enabled by setting the kernel parameter
2195	  "irqchip.gicv3_pseudo_nmi" to 1.
2196
2197	  If unsure, say N
2198
2199if ARM64_PSEUDO_NMI
2200config ARM64_DEBUG_PRIORITY_MASKING
2201	bool "Debug interrupt priority masking"
2202	help
2203	  This adds runtime checks to functions enabling/disabling
2204	  interrupts when using priority masking. The additional checks verify
2205	  the validity of ICC_PMR_EL1 when calling concerned functions.
2206
2207	  If unsure, say N
2208endif # ARM64_PSEUDO_NMI
2209
2210config RELOCATABLE
2211	bool "Build a relocatable kernel image" if EXPERT
2212	select ARCH_HAS_RELR
2213	default y
2214	help
2215	  This builds the kernel as a Position Independent Executable (PIE),
2216	  which retains all relocation metadata required to relocate the
2217	  kernel binary at runtime to a different virtual address than the
2218	  address it was linked at.
2219	  Since AArch64 uses the RELA relocation format, this requires a
2220	  relocation pass at runtime even if the kernel is loaded at the
2221	  same address it was linked at.
2222
2223config RANDOMIZE_BASE
2224	bool "Randomize the address of the kernel image"
2225	select RELOCATABLE
2226	help
2227	  Randomizes the virtual address at which the kernel image is
2228	  loaded, as a security feature that deters exploit attempts
2229	  relying on knowledge of the location of kernel internals.
2230
2231	  It is the bootloader's job to provide entropy, by passing a
2232	  random u64 value in /chosen/kaslr-seed at kernel entry.
2233
2234	  When booting via the UEFI stub, it will invoke the firmware's
2235	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2236	  to the kernel proper. In addition, it will randomise the physical
2237	  location of the kernel Image as well.
2238
2239	  If unsure, say N.
2240
2241config RANDOMIZE_MODULE_REGION_FULL
2242	bool "Randomize the module region over a 2 GB range"
2243	depends on RANDOMIZE_BASE
2244	default y
2245	help
2246	  Randomizes the location of the module region inside a 2 GB window
2247	  covering the core kernel. This way, it is less likely for modules
2248	  to leak information about the location of core kernel data structures
2249	  but it does imply that function calls between modules and the core
2250	  kernel will need to be resolved via veneers in the module PLT.
2251
2252	  When this option is not set, the module region will be randomized over
2253	  a limited range that contains the [_stext, _etext] interval of the
2254	  core kernel, so branch relocations are almost always in range unless
2255	  the region is exhausted. In this particular case of region
2256	  exhaustion, modules might be able to fall back to a larger 2GB area.
2257
2258config CC_HAVE_STACKPROTECTOR_SYSREG
2259	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2260
2261config STACKPROTECTOR_PER_TASK
2262	def_bool y
2263	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2264
2265config UNWIND_PATCH_PAC_INTO_SCS
2266	bool "Enable shadow call stack dynamically using code patching"
2267	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2268	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2269	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2270	depends on SHADOW_CALL_STACK
2271	select UNWIND_TABLES
2272	select DYNAMIC_SCS
2273
2274config ARM64_CONTPTE
2275	bool "Contiguous PTE mappings for user memory" if EXPERT
2276	depends on TRANSPARENT_HUGEPAGE
2277	default y
2278	help
2279	  When enabled, user mappings are configured using the PTE contiguous
2280	  bit, for any mappings that meet the size and alignment requirements.
2281	  This reduces TLB pressure and improves performance.
2282
2283endmenu # "Kernel Features"
2284
2285menu "Boot options"
2286
2287config ARM64_ACPI_PARKING_PROTOCOL
2288	bool "Enable support for the ARM64 ACPI parking protocol"
2289	depends on ACPI
2290	help
2291	  Enable support for the ARM64 ACPI parking protocol. If disabled
2292	  the kernel will not allow booting through the ARM64 ACPI parking
2293	  protocol even if the corresponding data is present in the ACPI
2294	  MADT table.
2295
2296config CMDLINE
2297	string "Default kernel command string"
2298	default ""
2299	help
2300	  Provide a set of default command-line options at build time by
2301	  entering them here. As a minimum, you should specify the the
2302	  root device (e.g. root=/dev/nfs).
2303
2304choice
2305	prompt "Kernel command line type" if CMDLINE != ""
2306	default CMDLINE_FROM_BOOTLOADER
2307	help
2308	  Choose how the kernel will handle the provided default kernel
2309	  command line string.
2310
2311config CMDLINE_FROM_BOOTLOADER
2312	bool "Use bootloader kernel arguments if available"
2313	help
2314	  Uses the command-line options passed by the boot loader. If
2315	  the boot loader doesn't provide any, the default kernel command
2316	  string provided in CMDLINE will be used.
2317
2318config CMDLINE_FORCE
2319	bool "Always use the default kernel command string"
2320	help
2321	  Always use the default kernel command string, even if the boot
2322	  loader passes other arguments to the kernel.
2323	  This is useful if you cannot or don't want to change the
2324	  command-line options your boot loader passes to the kernel.
2325
2326endchoice
2327
2328config EFI_STUB
2329	bool
2330
2331config EFI
2332	bool "UEFI runtime support"
2333	depends on OF && !CPU_BIG_ENDIAN
2334	depends on KERNEL_MODE_NEON
2335	select ARCH_SUPPORTS_ACPI
2336	select LIBFDT
2337	select UCS2_STRING
2338	select EFI_PARAMS_FROM_FDT
2339	select EFI_RUNTIME_WRAPPERS
2340	select EFI_STUB
2341	select EFI_GENERIC_STUB
2342	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2343	default y
2344	help
2345	  This option provides support for runtime services provided
2346	  by UEFI firmware (such as non-volatile variables, realtime
2347	  clock, and platform reset). A UEFI stub is also provided to
2348	  allow the kernel to be booted as an EFI application. This
2349	  is only useful on systems that have UEFI firmware.
2350
2351config DMI
2352	bool "Enable support for SMBIOS (DMI) tables"
2353	depends on EFI
2354	default y
2355	help
2356	  This enables SMBIOS/DMI feature for systems.
2357
2358	  This option is only useful on systems that have UEFI firmware.
2359	  However, even with this option, the resultant kernel should
2360	  continue to boot on existing non-UEFI platforms.
2361
2362endmenu # "Boot options"
2363
2364menu "Power management options"
2365
2366source "kernel/power/Kconfig"
2367
2368config ARCH_HIBERNATION_POSSIBLE
2369	def_bool y
2370	depends on CPU_PM
2371
2372config ARCH_HIBERNATION_HEADER
2373	def_bool y
2374	depends on HIBERNATION
2375
2376config ARCH_SUSPEND_POSSIBLE
2377	def_bool y
2378
2379endmenu # "Power management options"
2380
2381menu "CPU Power Management"
2382
2383source "drivers/cpuidle/Kconfig"
2384
2385source "drivers/cpufreq/Kconfig"
2386
2387endmenu # "CPU Power Management"
2388
2389source "drivers/acpi/Kconfig"
2390
2391source "arch/arm64/kvm/Kconfig"
2392
2393