1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * arch/arm/kernel/kprobes-test.c
4 *
5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6 */
7
8 /*
9 * This file contains test code for ARM kprobes.
10 *
11 * The top level function run_all_tests() executes tests for all of the
12 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
13 * fall into two categories; run_api_tests() checks basic functionality of the
14 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
15 * instruction decoding and simulation.
16 *
17 * run_test_cases() first checks the kprobes decoding table for self consistency
18 * (using table_test()) then executes a series of test cases for each of the CPU
19 * instruction forms. coverage_start() and coverage_end() are used to verify
20 * that these test cases cover all of the possible combinations of instructions
21 * described by the kprobes decoding tables.
22 *
23 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
24 * which use the macros defined in kprobes-test.h. The rest of this
25 * documentation will describe the operation of the framework used by these
26 * test cases.
27 */
28
29 /*
30 * TESTING METHODOLOGY
31 * -------------------
32 *
33 * The methodology used to test an ARM instruction 'test_insn' is to use
34 * inline assembler like:
35 *
36 * test_before: nop
37 * test_case: test_insn
38 * test_after: nop
39 *
40 * When the test case is run a kprobe is placed of each nop. The
41 * post-handler of the test_before probe is used to modify the saved CPU
42 * register context to that which we require for the test case. The
43 * pre-handler of the of the test_after probe saves a copy of the CPU
44 * register context. In this way we can execute test_insn with a specific
45 * register context and see the results afterwards.
46 *
47 * To actually test the kprobes instruction emulation we perform the above
48 * step a second time but with an additional kprobe on the test_case
49 * instruction itself. If the emulation is accurate then the results seen
50 * by the test_after probe will be identical to the first run which didn't
51 * have a probe on test_case.
52 *
53 * Each test case is run several times with a variety of variations in the
54 * flags value of stored in CPSR, and for Thumb code, different ITState.
55 *
56 * For instructions which can modify PC, a second test_after probe is used
57 * like this:
58 *
59 * test_before: nop
60 * test_case: test_insn
61 * test_after: nop
62 * b test_done
63 * test_after2: nop
64 * test_done:
65 *
66 * The test case is constructed such that test_insn branches to
67 * test_after2, or, if testing a conditional instruction, it may just
68 * continue to test_after. The probes inserted at both locations let us
69 * determine which happened. A similar approach is used for testing
70 * backwards branches...
71 *
72 * b test_before
73 * b test_done @ helps to cope with off by 1 branches
74 * test_after2: nop
75 * b test_done
76 * test_before: nop
77 * test_case: test_insn
78 * test_after: nop
79 * test_done:
80 *
81 * The macros used to generate the assembler instructions describe above
82 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
83 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
84 * 99 represent: test_before, test_case, test_after2 and test_done.
85 *
86 * FRAMEWORK
87 * ---------
88 *
89 * Each test case is wrapped between the pair of macros TESTCASE_START and
90 * TESTCASE_END. As well as performing the inline assembler boilerplate,
91 * these call out to the kprobes_test_case_start() and
92 * kprobes_test_case_end() functions which drive the execution of the test
93 * case. The specific arguments to use for each test case are stored as
94 * inline data constructed using the various TEST_ARG_* macros. Putting
95 * this all together, a simple test case may look like:
96 *
97 * TESTCASE_START("Testing mov r0, r7")
98 * TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
99 * TEST_ARG_END("")
100 * TEST_INSTRUCTION("mov r0, r7")
101 * TESTCASE_END
102 *
103 * Note, in practice the single convenience macro TEST_R would be used for this
104 * instead.
105 *
106 * The above would expand to assembler looking something like:
107 *
108 * @ TESTCASE_START
109 * bl __kprobes_test_case_start
110 * .pushsection .rodata
111 * "10:
112 * .ascii "mov r0, r7" @ text title for test case
113 * .byte 0
114 * .popsection
115 * @ start of inline data...
116 * .word 10b @ pointer to title in .rodata section
117 *
118 * @ TEST_ARG_REG
119 * .byte ARG_TYPE_REG
120 * .byte 7
121 * .short 0
122 * .word 0x1234567
123 *
124 * @ TEST_ARG_END
125 * .byte ARG_TYPE_END
126 * .byte TEST_ISA @ flags, including ISA being tested
127 * .short 50f-0f @ offset of 'test_before'
128 * .short 2f-0f @ offset of 'test_after2' (if relevent)
129 * .short 99f-0f @ offset of 'test_done'
130 * @ start of test case code...
131 * 0:
132 * .code TEST_ISA @ switch to ISA being tested
133 *
134 * @ TEST_INSTRUCTION
135 * 50: nop @ location for 'test_before' probe
136 * 1: mov r0, r7 @ the test case instruction 'test_insn'
137 * nop @ location for 'test_after' probe
138 *
139 * // TESTCASE_END
140 * 2:
141 * 99: bl __kprobes_test_case_end_##TEST_ISA
142 * .code NONMAL_ISA
143 *
144 * When the above is execute the following happens...
145 *
146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
147 * for a stack buffer and calls the C function kprobes_test_case_start().
148 * This C function will do some initial processing of the inline data and
149 * setup some global state. It then inserts the test_before and test_after
150 * kprobes and returns a value which causes the assembler wrapper to jump
151 * to the start of the test case code, (local label '0').
152 *
153 * When the test case code executes, the test_before probe will be hit and
154 * test_before_post_handler will call setup_test_context(). This fills the
155 * stack buffer and CPU registers with a test pattern and then processes
156 * the test case arguments. In our example there is one TEST_ARG_REG which
157 * indicates that R7 should be loaded with the value 0x12345678.
158 *
159 * When the test_before probe ends, the test case continues and executes
160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
161 * pre-handler for this (test_after_pre_handler) will save a copy of the
162 * CPU register context. This should now have R0 holding the same value as
163 * R7.
164 *
165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
166 * an assembler wrapper which switches back to the ISA used by the test
167 * code and calls the C function kprobes_test_case_end().
168 *
169 * For each run through the test case, test_case_run_count is incremented
170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
171 * register and stack buffer contents from the test case just run. It then
172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
173 * value to cause the test case code to be re-run.
174 *
175 * For odd numbered runs, kprobes_test_case_end() compares the register and
176 * stack buffer contents to those that were saved on the previous even
177 * numbered run (the one without the kprobe on test_insn). These should be
178 * the same if the kprobe instruction simulation routine is correct.
179 *
180 * The pair of test case runs is repeated with different combinations of
181 * flag values in CPSR and, for Thumb, different ITState. This is
182 * controlled by test_context_cpsr().
183 *
184 * BUILDING TEST CASES
185 * -------------------
186 *
187 *
188 * As an aid to building test cases, the stack buffer is initialised with
189 * some special values:
190 *
191 * [SP+13*4] Contains SP+120. This can be used to test instructions
192 * which load a value into SP.
193 *
194 * [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
195 * this holds the target address of the branch, 'test_after2'.
196 * This can be used to test instructions which load a PC value
197 * from memory.
198 */
199
200 #include <linux/kernel.h>
201 #include <linux/module.h>
202 #include <linux/slab.h>
203 #include <linux/sched/clock.h>
204 #include <linux/kprobes.h>
205 #include <linux/errno.h>
206 #include <linux/stddef.h>
207 #include <linux/bug.h>
208 #include <asm/opcodes.h>
209
210 #include "core.h"
211 #include "test-core.h"
212 #include "../decode-arm.h"
213 #include "../decode-thumb.h"
214
215
216 #define BENCHMARKING 1
217
218
219 /*
220 * Test basic API
221 */
222
223 static bool test_regs_ok;
224 static int test_func_instance;
225 static int pre_handler_called;
226 static int post_handler_called;
227 static int kretprobe_handler_called;
228 static int tests_failed;
229
230 #define FUNC_ARG1 0x12345678
231 #define FUNC_ARG2 0xabcdef
232
233
234 #ifndef CONFIG_THUMB2_KERNEL
235
236 #define RET(reg) "mov pc, "#reg
237
238 long arm_func(long r0, long r1);
239
__arm_kprobes_test_func(void)240 static void __used __naked __arm_kprobes_test_func(void)
241 {
242 __asm__ __volatile__ (
243 ".arm \n\t"
244 ".type arm_func, %%function \n\t"
245 "arm_func: \n\t"
246 "adds r0, r0, r1 \n\t"
247 "mov pc, lr \n\t"
248 ".code "NORMAL_ISA /* Back to Thumb if necessary */
249 : : : "r0", "r1", "cc"
250 );
251 }
252
253 #else /* CONFIG_THUMB2_KERNEL */
254
255 #define RET(reg) "bx "#reg
256
257 long thumb16_func(long r0, long r1);
258 long thumb32even_func(long r0, long r1);
259 long thumb32odd_func(long r0, long r1);
260
__thumb_kprobes_test_funcs(void)261 static void __used __naked __thumb_kprobes_test_funcs(void)
262 {
263 __asm__ __volatile__ (
264 ".type thumb16_func, %%function \n\t"
265 "thumb16_func: \n\t"
266 "adds.n r0, r0, r1 \n\t"
267 "bx lr \n\t"
268
269 ".align \n\t"
270 ".type thumb32even_func, %%function \n\t"
271 "thumb32even_func: \n\t"
272 "adds.w r0, r0, r1 \n\t"
273 "bx lr \n\t"
274
275 ".align \n\t"
276 "nop.n \n\t"
277 ".type thumb32odd_func, %%function \n\t"
278 "thumb32odd_func: \n\t"
279 "adds.w r0, r0, r1 \n\t"
280 "bx lr \n\t"
281
282 : : : "r0", "r1", "cc"
283 );
284 }
285
286 #endif /* CONFIG_THUMB2_KERNEL */
287
288
call_test_func(long (* func)(long,long),bool check_test_regs)289 static int call_test_func(long (*func)(long, long), bool check_test_regs)
290 {
291 long ret;
292
293 ++test_func_instance;
294 test_regs_ok = false;
295
296 ret = (*func)(FUNC_ARG1, FUNC_ARG2);
297 if (ret != FUNC_ARG1 + FUNC_ARG2) {
298 pr_err("FAIL: call_test_func: func returned %lx\n", ret);
299 return false;
300 }
301
302 if (check_test_regs && !test_regs_ok) {
303 pr_err("FAIL: test regs not OK\n");
304 return false;
305 }
306
307 return true;
308 }
309
pre_handler(struct kprobe * p,struct pt_regs * regs)310 static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
311 {
312 pre_handler_called = test_func_instance;
313 if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
314 test_regs_ok = true;
315 return 0;
316 }
317
post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)318 static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
319 unsigned long flags)
320 {
321 post_handler_called = test_func_instance;
322 if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
323 test_regs_ok = false;
324 }
325
326 static struct kprobe the_kprobe = {
327 .addr = 0,
328 .pre_handler = pre_handler,
329 .post_handler = post_handler
330 };
331
test_kprobe(long (* func)(long,long))332 static int test_kprobe(long (*func)(long, long))
333 {
334 int ret;
335
336 the_kprobe.addr = (kprobe_opcode_t *)func;
337 ret = register_kprobe(&the_kprobe);
338 if (ret < 0) {
339 pr_err("FAIL: register_kprobe failed with %d\n", ret);
340 return ret;
341 }
342
343 ret = call_test_func(func, true);
344
345 unregister_kprobe(&the_kprobe);
346 the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
347
348 if (!ret)
349 return -EINVAL;
350 if (pre_handler_called != test_func_instance) {
351 pr_err("FAIL: kprobe pre_handler not called\n");
352 return -EINVAL;
353 }
354 if (post_handler_called != test_func_instance) {
355 pr_err("FAIL: kprobe post_handler not called\n");
356 return -EINVAL;
357 }
358 if (!call_test_func(func, false))
359 return -EINVAL;
360 if (pre_handler_called == test_func_instance ||
361 post_handler_called == test_func_instance) {
362 pr_err("FAIL: probe called after unregistering\n");
363 return -EINVAL;
364 }
365
366 return 0;
367 }
368
369 static int __kprobes
kretprobe_handler(struct kretprobe_instance * ri,struct pt_regs * regs)370 kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
371 {
372 kretprobe_handler_called = test_func_instance;
373 if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
374 test_regs_ok = true;
375 return 0;
376 }
377
378 static struct kretprobe the_kretprobe = {
379 .handler = kretprobe_handler,
380 };
381
test_kretprobe(long (* func)(long,long))382 static int test_kretprobe(long (*func)(long, long))
383 {
384 int ret;
385
386 the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
387 ret = register_kretprobe(&the_kretprobe);
388 if (ret < 0) {
389 pr_err("FAIL: register_kretprobe failed with %d\n", ret);
390 return ret;
391 }
392
393 ret = call_test_func(func, true);
394
395 unregister_kretprobe(&the_kretprobe);
396 the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
397
398 if (!ret)
399 return -EINVAL;
400 if (kretprobe_handler_called != test_func_instance) {
401 pr_err("FAIL: kretprobe handler not called\n");
402 return -EINVAL;
403 }
404 if (!call_test_func(func, false))
405 return -EINVAL;
406 if (kretprobe_handler_called == test_func_instance) {
407 pr_err("FAIL: kretprobe called after unregistering\n");
408 return -EINVAL;
409 }
410
411 return 0;
412 }
413
run_api_tests(long (* func)(long,long))414 static int run_api_tests(long (*func)(long, long))
415 {
416 int ret;
417
418 pr_info(" kprobe\n");
419 ret = test_kprobe(func);
420 if (ret < 0)
421 return ret;
422
423 pr_info(" kretprobe\n");
424 ret = test_kretprobe(func);
425 if (ret < 0)
426 return ret;
427
428 return 0;
429 }
430
431
432 /*
433 * Benchmarking
434 */
435
436 #if BENCHMARKING
437
benchmark_nop(void)438 static void __naked benchmark_nop(void)
439 {
440 __asm__ __volatile__ (
441 "nop \n\t"
442 RET(lr)" \n\t"
443 );
444 }
445
446 #ifdef CONFIG_THUMB2_KERNEL
447 #define wide ".w"
448 #else
449 #define wide
450 #endif
451
benchmark_pushpop1(void)452 static void __naked benchmark_pushpop1(void)
453 {
454 __asm__ __volatile__ (
455 "stmdb"wide" sp!, {r3-r11,lr} \n\t"
456 "ldmia"wide" sp!, {r3-r11,pc}"
457 );
458 }
459
benchmark_pushpop2(void)460 static void __naked benchmark_pushpop2(void)
461 {
462 __asm__ __volatile__ (
463 "stmdb"wide" sp!, {r0-r8,lr} \n\t"
464 "ldmia"wide" sp!, {r0-r8,pc}"
465 );
466 }
467
benchmark_pushpop3(void)468 static void __naked benchmark_pushpop3(void)
469 {
470 __asm__ __volatile__ (
471 "stmdb"wide" sp!, {r4,lr} \n\t"
472 "ldmia"wide" sp!, {r4,pc}"
473 );
474 }
475
benchmark_pushpop4(void)476 static void __naked benchmark_pushpop4(void)
477 {
478 __asm__ __volatile__ (
479 "stmdb"wide" sp!, {r0,lr} \n\t"
480 "ldmia"wide" sp!, {r0,pc}"
481 );
482 }
483
484
485 #ifdef CONFIG_THUMB2_KERNEL
486
benchmark_pushpop_thumb(void)487 static void __naked benchmark_pushpop_thumb(void)
488 {
489 __asm__ __volatile__ (
490 "push.n {r0-r7,lr} \n\t"
491 "pop.n {r0-r7,pc}"
492 );
493 }
494
495 #endif
496
497 static int __kprobes
benchmark_pre_handler(struct kprobe * p,struct pt_regs * regs)498 benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
499 {
500 return 0;
501 }
502
benchmark(void (* fn)(void))503 static int benchmark(void(*fn)(void))
504 {
505 unsigned n, i, t, t0;
506
507 for (n = 1000; ; n *= 2) {
508 t0 = sched_clock();
509 for (i = n; i > 0; --i)
510 fn();
511 t = sched_clock() - t0;
512 if (t >= 250000000)
513 break; /* Stop once we took more than 0.25 seconds */
514 }
515 return t / n; /* Time for one iteration in nanoseconds */
516 };
517
kprobe_benchmark(void (* fn)(void),unsigned offset)518 static int kprobe_benchmark(void(*fn)(void), unsigned offset)
519 {
520 struct kprobe k = {
521 .addr = (kprobe_opcode_t *)((uintptr_t)fn + offset),
522 .pre_handler = benchmark_pre_handler,
523 };
524
525 int ret = register_kprobe(&k);
526 if (ret < 0) {
527 pr_err("FAIL: register_kprobe failed with %d\n", ret);
528 return ret;
529 }
530
531 ret = benchmark(fn);
532
533 unregister_kprobe(&k);
534 return ret;
535 };
536
537 struct benchmarks {
538 void (*fn)(void);
539 unsigned offset;
540 const char *title;
541 };
542
run_benchmarks(void)543 static int run_benchmarks(void)
544 {
545 int ret;
546 struct benchmarks list[] = {
547 {&benchmark_nop, 0, "nop"},
548 /*
549 * benchmark_pushpop{1,3} will have the optimised
550 * instruction emulation, whilst benchmark_pushpop{2,4} will
551 * be the equivalent unoptimised instructions.
552 */
553 {&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
554 {&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
555 {&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
556 {&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
557 {&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
558 {&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
559 {&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
560 {&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
561 #ifdef CONFIG_THUMB2_KERNEL
562 {&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"},
563 {&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"},
564 #endif
565 {0}
566 };
567
568 struct benchmarks *b;
569 for (b = list; b->fn; ++b) {
570 ret = kprobe_benchmark(b->fn, b->offset);
571 if (ret < 0)
572 return ret;
573 pr_info(" %dns for kprobe %s\n", ret, b->title);
574 }
575
576 pr_info("\n");
577 return 0;
578 }
579
580 #endif /* BENCHMARKING */
581
582
583 /*
584 * Decoding table self-consistency tests
585 */
586
587 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
588 [DECODE_TYPE_TABLE] = sizeof(struct decode_table),
589 [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
590 [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
591 [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
592 [DECODE_TYPE_OR] = sizeof(struct decode_or),
593 [DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
594 };
595
table_iter(const union decode_item * table,int (* fn)(const struct decode_header *,void *),void * args)596 static int table_iter(const union decode_item *table,
597 int (*fn)(const struct decode_header *, void *),
598 void *args)
599 {
600 const struct decode_header *h = (struct decode_header *)table;
601 int result;
602
603 for (;;) {
604 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
605
606 if (type == DECODE_TYPE_END)
607 return 0;
608
609 result = fn(h, args);
610 if (result)
611 return result;
612
613 h = (struct decode_header *)
614 ((uintptr_t)h + decode_struct_sizes[type]);
615
616 }
617 }
618
table_test_fail(const struct decode_header * h,const char * message)619 static int table_test_fail(const struct decode_header *h, const char* message)
620 {
621
622 pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
623 message, h->mask.bits, h->value.bits);
624 return -EINVAL;
625 }
626
627 struct table_test_args {
628 const union decode_item *root_table;
629 u32 parent_mask;
630 u32 parent_value;
631 };
632
table_test_fn(const struct decode_header * h,void * args)633 static int table_test_fn(const struct decode_header *h, void *args)
634 {
635 struct table_test_args *a = (struct table_test_args *)args;
636 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
637
638 if (h->value.bits & ~h->mask.bits)
639 return table_test_fail(h, "Match value has bits not in mask");
640
641 if ((h->mask.bits & a->parent_mask) != a->parent_mask)
642 return table_test_fail(h, "Mask has bits not in parent mask");
643
644 if ((h->value.bits ^ a->parent_value) & a->parent_mask)
645 return table_test_fail(h, "Value is inconsistent with parent");
646
647 if (type == DECODE_TYPE_TABLE) {
648 struct decode_table *d = (struct decode_table *)h;
649 struct table_test_args args2 = *a;
650 args2.parent_mask = h->mask.bits;
651 args2.parent_value = h->value.bits;
652 return table_iter(d->table.table, table_test_fn, &args2);
653 }
654
655 return 0;
656 }
657
table_test(const union decode_item * table)658 static int table_test(const union decode_item *table)
659 {
660 struct table_test_args args = {
661 .root_table = table,
662 .parent_mask = 0,
663 .parent_value = 0
664 };
665 return table_iter(args.root_table, table_test_fn, &args);
666 }
667
668
669 /*
670 * Decoding table test coverage analysis
671 *
672 * coverage_start() builds a coverage_table which contains a list of
673 * coverage_entry's to match each entry in the specified kprobes instruction
674 * decoding table.
675 *
676 * When test cases are run, coverage_add() is called to process each case.
677 * This looks up the corresponding entry in the coverage_table and sets it as
678 * being matched, as well as clearing the regs flag appropriate for the test.
679 *
680 * After all test cases have been run, coverage_end() is called to check that
681 * all entries in coverage_table have been matched and that all regs flags are
682 * cleared. I.e. that all possible combinations of instructions described by
683 * the kprobes decoding tables have had a test case executed for them.
684 */
685
686 bool coverage_fail;
687
688 #define MAX_COVERAGE_ENTRIES 256
689
690 struct coverage_entry {
691 const struct decode_header *header;
692 unsigned regs;
693 unsigned nesting;
694 char matched;
695 };
696
697 struct coverage_table {
698 struct coverage_entry *base;
699 unsigned num_entries;
700 unsigned nesting;
701 };
702
703 struct coverage_table coverage;
704
705 #define COVERAGE_ANY_REG (1<<0)
706 #define COVERAGE_SP (1<<1)
707 #define COVERAGE_PC (1<<2)
708 #define COVERAGE_PCWB (1<<3)
709
710 static const char coverage_register_lookup[16] = {
711 [REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
712 [REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
713 [REG_TYPE_SP] = COVERAGE_SP,
714 [REG_TYPE_PC] = COVERAGE_PC,
715 [REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP,
716 [REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
717 [REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC,
718 [REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
719 [REG_TYPE_NOPCX] = COVERAGE_ANY_REG,
720 [REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP,
721 };
722
coverage_start_registers(const struct decode_header * h)723 static unsigned coverage_start_registers(const struct decode_header *h)
724 {
725 unsigned regs = 0;
726 int i;
727 for (i = 0; i < 20; i += 4) {
728 int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
729 regs |= coverage_register_lookup[r] << i;
730 }
731 return regs;
732 }
733
coverage_start_fn(const struct decode_header * h,void * args)734 static int coverage_start_fn(const struct decode_header *h, void *args)
735 {
736 struct coverage_table *coverage = (struct coverage_table *)args;
737 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
738 struct coverage_entry *entry = coverage->base + coverage->num_entries;
739
740 if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
741 pr_err("FAIL: Out of space for test coverage data");
742 return -ENOMEM;
743 }
744
745 ++coverage->num_entries;
746
747 entry->header = h;
748 entry->regs = coverage_start_registers(h);
749 entry->nesting = coverage->nesting;
750 entry->matched = false;
751
752 if (type == DECODE_TYPE_TABLE) {
753 struct decode_table *d = (struct decode_table *)h;
754 int ret;
755 ++coverage->nesting;
756 ret = table_iter(d->table.table, coverage_start_fn, coverage);
757 --coverage->nesting;
758 return ret;
759 }
760
761 return 0;
762 }
763
coverage_start(const union decode_item * table)764 static int coverage_start(const union decode_item *table)
765 {
766 coverage.base = kmalloc_array(MAX_COVERAGE_ENTRIES,
767 sizeof(struct coverage_entry),
768 GFP_KERNEL);
769 coverage.num_entries = 0;
770 coverage.nesting = 0;
771 return table_iter(table, coverage_start_fn, &coverage);
772 }
773
774 static void
coverage_add_registers(struct coverage_entry * entry,kprobe_opcode_t insn)775 coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
776 {
777 int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
778 int i;
779 for (i = 0; i < 20; i += 4) {
780 enum decode_reg_type reg_type = (regs >> i) & 0xf;
781 int reg = (insn >> i) & 0xf;
782 int flag;
783
784 if (!reg_type)
785 continue;
786
787 if (reg == 13)
788 flag = COVERAGE_SP;
789 else if (reg == 15)
790 flag = COVERAGE_PC;
791 else
792 flag = COVERAGE_ANY_REG;
793 entry->regs &= ~(flag << i);
794
795 switch (reg_type) {
796
797 case REG_TYPE_NONE:
798 case REG_TYPE_ANY:
799 case REG_TYPE_SAMEAS16:
800 break;
801
802 case REG_TYPE_SP:
803 if (reg != 13)
804 return;
805 break;
806
807 case REG_TYPE_PC:
808 if (reg != 15)
809 return;
810 break;
811
812 case REG_TYPE_NOSP:
813 if (reg == 13)
814 return;
815 break;
816
817 case REG_TYPE_NOSPPC:
818 case REG_TYPE_NOSPPCX:
819 if (reg == 13 || reg == 15)
820 return;
821 break;
822
823 case REG_TYPE_NOPCWB:
824 if (!is_writeback(insn))
825 break;
826 if (reg == 15) {
827 entry->regs &= ~(COVERAGE_PCWB << i);
828 return;
829 }
830 break;
831
832 case REG_TYPE_NOPC:
833 case REG_TYPE_NOPCX:
834 if (reg == 15)
835 return;
836 break;
837 }
838
839 }
840 }
841
coverage_add(kprobe_opcode_t insn)842 static void coverage_add(kprobe_opcode_t insn)
843 {
844 struct coverage_entry *entry = coverage.base;
845 struct coverage_entry *end = coverage.base + coverage.num_entries;
846 bool matched = false;
847 unsigned nesting = 0;
848
849 for (; entry < end; ++entry) {
850 const struct decode_header *h = entry->header;
851 enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
852
853 if (entry->nesting > nesting)
854 continue; /* Skip sub-table we didn't match */
855
856 if (entry->nesting < nesting)
857 break; /* End of sub-table we were scanning */
858
859 if (!matched) {
860 if ((insn & h->mask.bits) != h->value.bits)
861 continue;
862 entry->matched = true;
863 }
864
865 switch (type) {
866
867 case DECODE_TYPE_TABLE:
868 ++nesting;
869 break;
870
871 case DECODE_TYPE_CUSTOM:
872 case DECODE_TYPE_SIMULATE:
873 case DECODE_TYPE_EMULATE:
874 coverage_add_registers(entry, insn);
875 return;
876
877 case DECODE_TYPE_OR:
878 matched = true;
879 break;
880
881 case DECODE_TYPE_REJECT:
882 default:
883 return;
884 }
885
886 }
887 }
888
coverage_end(void)889 static void coverage_end(void)
890 {
891 struct coverage_entry *entry = coverage.base;
892 struct coverage_entry *end = coverage.base + coverage.num_entries;
893
894 for (; entry < end; ++entry) {
895 u32 mask = entry->header->mask.bits;
896 u32 value = entry->header->value.bits;
897
898 if (entry->regs) {
899 pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
900 mask, value, entry->regs);
901 coverage_fail = true;
902 }
903 if (!entry->matched) {
904 pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
905 mask, value);
906 coverage_fail = true;
907 }
908 }
909
910 kfree(coverage.base);
911 }
912
913
914 /*
915 * Framework for instruction set test cases
916 */
917
__kprobes_test_case_start(void)918 void __naked __kprobes_test_case_start(void)
919 {
920 __asm__ __volatile__ (
921 "mov r2, sp \n\t"
922 "bic r3, r2, #7 \n\t"
923 "mov sp, r3 \n\t"
924 "stmdb sp!, {r2-r11} \n\t"
925 "sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
926 "bic r0, lr, #1 @ r0 = inline data \n\t"
927 "mov r1, sp \n\t"
928 "bl kprobes_test_case_start \n\t"
929 RET(r0)" \n\t"
930 );
931 }
932
933 #ifndef CONFIG_THUMB2_KERNEL
934
__kprobes_test_case_end_32(void)935 void __naked __kprobes_test_case_end_32(void)
936 {
937 __asm__ __volatile__ (
938 "mov r4, lr \n\t"
939 "bl kprobes_test_case_end \n\t"
940 "cmp r0, #0 \n\t"
941 "movne pc, r0 \n\t"
942 "mov r0, r4 \n\t"
943 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
944 "ldmia sp!, {r2-r11} \n\t"
945 "mov sp, r2 \n\t"
946 "mov pc, r0 \n\t"
947 );
948 }
949
950 #else /* CONFIG_THUMB2_KERNEL */
951
__kprobes_test_case_end_16(void)952 void __naked __kprobes_test_case_end_16(void)
953 {
954 __asm__ __volatile__ (
955 "mov r4, lr \n\t"
956 "bl kprobes_test_case_end \n\t"
957 "cmp r0, #0 \n\t"
958 "bxne r0 \n\t"
959 "mov r0, r4 \n\t"
960 "add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
961 "ldmia sp!, {r2-r11} \n\t"
962 "mov sp, r2 \n\t"
963 "bx r0 \n\t"
964 );
965 }
966
__kprobes_test_case_end_32(void)967 void __naked __kprobes_test_case_end_32(void)
968 {
969 __asm__ __volatile__ (
970 ".arm \n\t"
971 "orr lr, lr, #1 @ will return to Thumb code \n\t"
972 "ldr pc, 1f \n\t"
973 "1: \n\t"
974 ".word __kprobes_test_case_end_16 \n\t"
975 );
976 }
977
978 #endif
979
980
981 int kprobe_test_flags;
982 int kprobe_test_cc_position;
983
984 static int test_try_count;
985 static int test_pass_count;
986 static int test_fail_count;
987
988 static struct pt_regs initial_regs;
989 static struct pt_regs expected_regs;
990 static struct pt_regs result_regs;
991
992 static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
993
994 static const char *current_title;
995 static struct test_arg *current_args;
996 static u32 *current_stack;
997 static uintptr_t current_branch_target;
998
999 static uintptr_t current_code_start;
1000 static kprobe_opcode_t current_instruction;
1001
1002
1003 #define TEST_CASE_PASSED -1
1004 #define TEST_CASE_FAILED -2
1005
1006 static int test_case_run_count;
1007 static bool test_case_is_thumb;
1008 static int test_instance;
1009
test_check_cc(int cc,unsigned long cpsr)1010 static unsigned long test_check_cc(int cc, unsigned long cpsr)
1011 {
1012 int ret = arm_check_condition(cc << 28, cpsr);
1013
1014 return (ret != ARM_OPCODE_CONDTEST_FAIL);
1015 }
1016
1017 static int is_last_scenario;
1018 static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1019 static int memory_needs_checking;
1020
test_context_cpsr(int scenario)1021 static unsigned long test_context_cpsr(int scenario)
1022 {
1023 unsigned long cpsr;
1024
1025 probe_should_run = 1;
1026
1027 /* Default case is that we cycle through 16 combinations of flags */
1028 cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1029 cpsr |= (scenario & 0xf) << 16; /* GE flags */
1030 cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1031
1032 if (!test_case_is_thumb) {
1033 /* Testing ARM code */
1034 int cc = current_instruction >> 28;
1035
1036 probe_should_run = test_check_cc(cc, cpsr) != 0;
1037 if (scenario == 15)
1038 is_last_scenario = true;
1039
1040 } else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1041 /* Testing Thumb code without setting ITSTATE */
1042 if (kprobe_test_cc_position) {
1043 int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1044 probe_should_run = test_check_cc(cc, cpsr) != 0;
1045 }
1046
1047 if (scenario == 15)
1048 is_last_scenario = true;
1049
1050 } else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1051 /* Testing Thumb code with all combinations of ITSTATE */
1052 unsigned x = (scenario >> 4);
1053 unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1054 unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */
1055
1056 if (mask > 0x1f) {
1057 /* Finish by testing state from instruction 'itt al' */
1058 cond_base = 7;
1059 mask = 0x4;
1060 if ((scenario & 0xf) == 0xf)
1061 is_last_scenario = true;
1062 }
1063
1064 cpsr |= cond_base << 13; /* ITSTATE<7:5> */
1065 cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
1066 cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
1067 cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */
1068 cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
1069 cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */
1070
1071 probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1072
1073 } else {
1074 /* Testing Thumb code with several combinations of ITSTATE */
1075 switch (scenario) {
1076 case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1077 cpsr = 0x00000800;
1078 probe_should_run = 0;
1079 break;
1080 case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1081 cpsr = 0xf0007800;
1082 probe_should_run = 0;
1083 break;
1084 case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1085 cpsr = 0x00009800;
1086 break;
1087 case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1088 cpsr = 0xf0002800;
1089 is_last_scenario = true;
1090 break;
1091 }
1092 }
1093
1094 return cpsr;
1095 }
1096
setup_test_context(struct pt_regs * regs)1097 static void setup_test_context(struct pt_regs *regs)
1098 {
1099 int scenario = test_case_run_count>>1;
1100 unsigned long val;
1101 struct test_arg *args;
1102 int i;
1103
1104 is_last_scenario = false;
1105 memory_needs_checking = false;
1106
1107 /* Initialise test memory on stack */
1108 val = (scenario & 1) ? VALM : ~VALM;
1109 for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1110 current_stack[i] = val + (i << 8);
1111 /* Put target of branch on stack for tests which load PC from memory */
1112 if (current_branch_target)
1113 current_stack[15] = current_branch_target;
1114 /* Put a value for SP on stack for tests which load SP from memory */
1115 current_stack[13] = (u32)current_stack + 120;
1116
1117 /* Initialise register values to their default state */
1118 val = (scenario & 2) ? VALR : ~VALR;
1119 for (i = 0; i < 13; ++i)
1120 regs->uregs[i] = val ^ (i << 8);
1121 regs->ARM_lr = val ^ (14 << 8);
1122 regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1123 regs->ARM_cpsr |= test_context_cpsr(scenario);
1124
1125 /* Perform testcase specific register setup */
1126 args = current_args;
1127 for (; args[0].type != ARG_TYPE_END; ++args)
1128 switch (args[0].type) {
1129 case ARG_TYPE_REG: {
1130 struct test_arg_regptr *arg =
1131 (struct test_arg_regptr *)args;
1132 regs->uregs[arg->reg] = arg->val;
1133 break;
1134 }
1135 case ARG_TYPE_PTR: {
1136 struct test_arg_regptr *arg =
1137 (struct test_arg_regptr *)args;
1138 regs->uregs[arg->reg] =
1139 (unsigned long)current_stack + arg->val;
1140 memory_needs_checking = true;
1141 /*
1142 * Test memory at an address below SP is in danger of
1143 * being altered by an interrupt occurring and pushing
1144 * data onto the stack. Disable interrupts to stop this.
1145 */
1146 if (arg->reg == 13)
1147 regs->ARM_cpsr |= PSR_I_BIT;
1148 break;
1149 }
1150 case ARG_TYPE_MEM: {
1151 struct test_arg_mem *arg = (struct test_arg_mem *)args;
1152 current_stack[arg->index] = arg->val;
1153 break;
1154 }
1155 default:
1156 break;
1157 }
1158 }
1159
1160 struct test_probe {
1161 struct kprobe kprobe;
1162 bool registered;
1163 int hit;
1164 };
1165
unregister_test_probe(struct test_probe * probe)1166 static void unregister_test_probe(struct test_probe *probe)
1167 {
1168 if (probe->registered) {
1169 unregister_kprobe(&probe->kprobe);
1170 probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1171 }
1172 probe->registered = false;
1173 }
1174
register_test_probe(struct test_probe * probe)1175 static int register_test_probe(struct test_probe *probe)
1176 {
1177 int ret;
1178
1179 if (probe->registered)
1180 BUG();
1181
1182 ret = register_kprobe(&probe->kprobe);
1183 if (ret >= 0) {
1184 probe->registered = true;
1185 probe->hit = -1;
1186 }
1187 return ret;
1188 }
1189
1190 static int __kprobes
test_before_pre_handler(struct kprobe * p,struct pt_regs * regs)1191 test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1192 {
1193 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1194 return 0;
1195 }
1196
1197 static void __kprobes
test_before_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1198 test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1199 unsigned long flags)
1200 {
1201 setup_test_context(regs);
1202 initial_regs = *regs;
1203 initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1204 }
1205
1206 static int __kprobes
test_case_pre_handler(struct kprobe * p,struct pt_regs * regs)1207 test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1208 {
1209 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1210 return 0;
1211 }
1212
1213 static int __kprobes
test_after_pre_handler(struct kprobe * p,struct pt_regs * regs)1214 test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1215 {
1216 struct test_arg *args;
1217
1218 if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1219 return 0; /* Already run for this test instance */
1220
1221 result_regs = *regs;
1222
1223 /* Mask out results which are indeterminate */
1224 result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1225 for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1226 if (args[0].type == ARG_TYPE_REG_MASKED) {
1227 struct test_arg_regptr *arg =
1228 (struct test_arg_regptr *)args;
1229 result_regs.uregs[arg->reg] &= arg->val;
1230 }
1231
1232 /* Undo any changes done to SP by the test case */
1233 regs->ARM_sp = (unsigned long)current_stack;
1234 /* Enable interrupts in case setup_test_context disabled them */
1235 regs->ARM_cpsr &= ~PSR_I_BIT;
1236
1237 container_of(p, struct test_probe, kprobe)->hit = test_instance;
1238 return 0;
1239 }
1240
1241 static struct test_probe test_before_probe = {
1242 .kprobe.pre_handler = test_before_pre_handler,
1243 .kprobe.post_handler = test_before_post_handler,
1244 };
1245
1246 static struct test_probe test_case_probe = {
1247 .kprobe.pre_handler = test_case_pre_handler,
1248 };
1249
1250 static struct test_probe test_after_probe = {
1251 .kprobe.pre_handler = test_after_pre_handler,
1252 };
1253
1254 static struct test_probe test_after2_probe = {
1255 .kprobe.pre_handler = test_after_pre_handler,
1256 };
1257
test_case_cleanup(void)1258 static void test_case_cleanup(void)
1259 {
1260 unregister_test_probe(&test_before_probe);
1261 unregister_test_probe(&test_case_probe);
1262 unregister_test_probe(&test_after_probe);
1263 unregister_test_probe(&test_after2_probe);
1264 }
1265
print_registers(struct pt_regs * regs)1266 static void print_registers(struct pt_regs *regs)
1267 {
1268 pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
1269 regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1270 pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
1271 regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1272 pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
1273 regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1274 pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
1275 regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1276 pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1277 }
1278
print_memory(u32 * mem,size_t size)1279 static void print_memory(u32 *mem, size_t size)
1280 {
1281 int i;
1282 for (i = 0; i < size / sizeof(u32); i += 4)
1283 pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1284 mem[i+2], mem[i+3]);
1285 }
1286
expected_memory_size(u32 * sp)1287 static size_t expected_memory_size(u32 *sp)
1288 {
1289 size_t size = sizeof(expected_memory);
1290 int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1291 if (offset > 0)
1292 size -= offset;
1293 return size;
1294 }
1295
test_case_failed(const char * message)1296 static void test_case_failed(const char *message)
1297 {
1298 test_case_cleanup();
1299
1300 pr_err("FAIL: %s\n", message);
1301 pr_err("FAIL: Test %s\n", current_title);
1302 pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1303 }
1304
next_instruction(unsigned long pc)1305 static unsigned long next_instruction(unsigned long pc)
1306 {
1307 #ifdef CONFIG_THUMB2_KERNEL
1308 if ((pc & 1) &&
1309 !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1310 return pc + 2;
1311 else
1312 #endif
1313 return pc + 4;
1314 }
1315
kprobes_test_case_start(const char ** title,void * stack)1316 static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1317 {
1318 struct test_arg *args;
1319 struct test_arg_end *end_arg;
1320 unsigned long test_code;
1321
1322 current_title = *title++;
1323 args = (struct test_arg *)title;
1324 current_args = args;
1325 current_stack = stack;
1326
1327 ++test_try_count;
1328
1329 while (args->type != ARG_TYPE_END)
1330 ++args;
1331 end_arg = (struct test_arg_end *)args;
1332
1333 test_code = (unsigned long)(args + 1); /* Code starts after args */
1334
1335 test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1336 if (test_case_is_thumb)
1337 test_code |= 1;
1338
1339 current_code_start = test_code;
1340
1341 current_branch_target = 0;
1342 if (end_arg->branch_offset != end_arg->end_offset)
1343 current_branch_target = test_code + end_arg->branch_offset;
1344
1345 test_code += end_arg->code_offset;
1346 test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1347
1348 test_code = next_instruction(test_code);
1349 test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1350
1351 if (test_case_is_thumb) {
1352 u16 *p = (u16 *)(test_code & ~1);
1353 current_instruction = __mem_to_opcode_thumb16(p[0]);
1354 if (is_wide_instruction(current_instruction)) {
1355 u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1356 current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1357 }
1358 } else {
1359 current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1360 }
1361
1362 if (current_title[0] == '.')
1363 verbose("%s\n", current_title);
1364 else
1365 verbose("%s\t@ %0*x\n", current_title,
1366 test_case_is_thumb ? 4 : 8,
1367 current_instruction);
1368
1369 test_code = next_instruction(test_code);
1370 test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1371
1372 if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1373 if (!test_case_is_thumb ||
1374 is_wide_instruction(current_instruction)) {
1375 test_case_failed("expected 16-bit instruction");
1376 goto fail;
1377 }
1378 } else {
1379 if (test_case_is_thumb &&
1380 !is_wide_instruction(current_instruction)) {
1381 test_case_failed("expected 32-bit instruction");
1382 goto fail;
1383 }
1384 }
1385
1386 coverage_add(current_instruction);
1387
1388 if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1389 if (register_test_probe(&test_case_probe) < 0)
1390 goto pass;
1391 test_case_failed("registered probe for unsupported instruction");
1392 goto fail;
1393 }
1394
1395 if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1396 if (register_test_probe(&test_case_probe) >= 0)
1397 goto pass;
1398 test_case_failed("couldn't register probe for supported instruction");
1399 goto fail;
1400 }
1401
1402 if (register_test_probe(&test_before_probe) < 0) {
1403 test_case_failed("register test_before_probe failed");
1404 goto fail;
1405 }
1406 if (register_test_probe(&test_after_probe) < 0) {
1407 test_case_failed("register test_after_probe failed");
1408 goto fail;
1409 }
1410 if (current_branch_target) {
1411 test_after2_probe.kprobe.addr =
1412 (kprobe_opcode_t *)current_branch_target;
1413 if (register_test_probe(&test_after2_probe) < 0) {
1414 test_case_failed("register test_after2_probe failed");
1415 goto fail;
1416 }
1417 }
1418
1419 /* Start first run of test case */
1420 test_case_run_count = 0;
1421 ++test_instance;
1422 return current_code_start;
1423 pass:
1424 test_case_run_count = TEST_CASE_PASSED;
1425 return (uintptr_t)test_after_probe.kprobe.addr;
1426 fail:
1427 test_case_run_count = TEST_CASE_FAILED;
1428 return (uintptr_t)test_after_probe.kprobe.addr;
1429 }
1430
check_test_results(void)1431 static bool check_test_results(void)
1432 {
1433 size_t mem_size = 0;
1434 u32 *mem = 0;
1435
1436 if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1437 test_case_failed("registers differ");
1438 goto fail;
1439 }
1440
1441 if (memory_needs_checking) {
1442 mem = (u32 *)result_regs.ARM_sp;
1443 mem_size = expected_memory_size(mem);
1444 if (memcmp(expected_memory, mem, mem_size)) {
1445 test_case_failed("test memory differs");
1446 goto fail;
1447 }
1448 }
1449
1450 return true;
1451
1452 fail:
1453 pr_err("initial_regs:\n");
1454 print_registers(&initial_regs);
1455 pr_err("expected_regs:\n");
1456 print_registers(&expected_regs);
1457 pr_err("result_regs:\n");
1458 print_registers(&result_regs);
1459
1460 if (mem) {
1461 pr_err("expected_memory:\n");
1462 print_memory(expected_memory, mem_size);
1463 pr_err("result_memory:\n");
1464 print_memory(mem, mem_size);
1465 }
1466
1467 return false;
1468 }
1469
kprobes_test_case_end(void)1470 static uintptr_t __used kprobes_test_case_end(void)
1471 {
1472 if (test_case_run_count < 0) {
1473 if (test_case_run_count == TEST_CASE_PASSED)
1474 /* kprobes_test_case_start did all the needed testing */
1475 goto pass;
1476 else
1477 /* kprobes_test_case_start failed */
1478 goto fail;
1479 }
1480
1481 if (test_before_probe.hit != test_instance) {
1482 test_case_failed("test_before_handler not run");
1483 goto fail;
1484 }
1485
1486 if (test_after_probe.hit != test_instance &&
1487 test_after2_probe.hit != test_instance) {
1488 test_case_failed("test_after_handler not run");
1489 goto fail;
1490 }
1491
1492 /*
1493 * Even numbered test runs ran without a probe on the test case so
1494 * we can gather reference results. The subsequent odd numbered run
1495 * will have the probe inserted.
1496 */
1497 if ((test_case_run_count & 1) == 0) {
1498 /* Save results from run without probe */
1499 u32 *mem = (u32 *)result_regs.ARM_sp;
1500 expected_regs = result_regs;
1501 memcpy(expected_memory, mem, expected_memory_size(mem));
1502
1503 /* Insert probe onto test case instruction */
1504 if (register_test_probe(&test_case_probe) < 0) {
1505 test_case_failed("register test_case_probe failed");
1506 goto fail;
1507 }
1508 } else {
1509 /* Check probe ran as expected */
1510 if (probe_should_run == 1) {
1511 if (test_case_probe.hit != test_instance) {
1512 test_case_failed("test_case_handler not run");
1513 goto fail;
1514 }
1515 } else if (probe_should_run == 0) {
1516 if (test_case_probe.hit == test_instance) {
1517 test_case_failed("test_case_handler ran");
1518 goto fail;
1519 }
1520 }
1521
1522 /* Remove probe for any subsequent reference run */
1523 unregister_test_probe(&test_case_probe);
1524
1525 if (!check_test_results())
1526 goto fail;
1527
1528 if (is_last_scenario)
1529 goto pass;
1530 }
1531
1532 /* Do next test run */
1533 ++test_case_run_count;
1534 ++test_instance;
1535 return current_code_start;
1536 fail:
1537 ++test_fail_count;
1538 goto end;
1539 pass:
1540 ++test_pass_count;
1541 end:
1542 test_case_cleanup();
1543 return 0;
1544 }
1545
1546
1547 /*
1548 * Top level test functions
1549 */
1550
run_test_cases(void (* tests)(void),const union decode_item * table)1551 static int run_test_cases(void (*tests)(void), const union decode_item *table)
1552 {
1553 int ret;
1554
1555 pr_info(" Check decoding tables\n");
1556 ret = table_test(table);
1557 if (ret)
1558 return ret;
1559
1560 pr_info(" Run test cases\n");
1561 ret = coverage_start(table);
1562 if (ret)
1563 return ret;
1564
1565 tests();
1566
1567 coverage_end();
1568 return 0;
1569 }
1570
1571
run_all_tests(void)1572 static int __init run_all_tests(void)
1573 {
1574 int ret = 0;
1575
1576 pr_info("Beginning kprobe tests...\n");
1577
1578 #ifndef CONFIG_THUMB2_KERNEL
1579
1580 pr_info("Probe ARM code\n");
1581 ret = run_api_tests(arm_func);
1582 if (ret)
1583 goto out;
1584
1585 pr_info("ARM instruction simulation\n");
1586 ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1587 if (ret)
1588 goto out;
1589
1590 #else /* CONFIG_THUMB2_KERNEL */
1591
1592 pr_info("Probe 16-bit Thumb code\n");
1593 ret = run_api_tests(thumb16_func);
1594 if (ret)
1595 goto out;
1596
1597 pr_info("Probe 32-bit Thumb code, even halfword\n");
1598 ret = run_api_tests(thumb32even_func);
1599 if (ret)
1600 goto out;
1601
1602 pr_info("Probe 32-bit Thumb code, odd halfword\n");
1603 ret = run_api_tests(thumb32odd_func);
1604 if (ret)
1605 goto out;
1606
1607 pr_info("16-bit Thumb instruction simulation\n");
1608 ret = run_test_cases(kprobe_thumb16_test_cases,
1609 probes_decode_thumb16_table);
1610 if (ret)
1611 goto out;
1612
1613 pr_info("32-bit Thumb instruction simulation\n");
1614 ret = run_test_cases(kprobe_thumb32_test_cases,
1615 probes_decode_thumb32_table);
1616 if (ret)
1617 goto out;
1618 #endif
1619
1620 pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1621 test_try_count, test_pass_count, test_fail_count);
1622 if (test_fail_count) {
1623 ret = -EINVAL;
1624 goto out;
1625 }
1626
1627 #if BENCHMARKING
1628 pr_info("Benchmarks\n");
1629 ret = run_benchmarks();
1630 if (ret)
1631 goto out;
1632 #endif
1633
1634 #if __LINUX_ARM_ARCH__ >= 7
1635 /* We are able to run all test cases so coverage should be complete */
1636 if (coverage_fail) {
1637 pr_err("FAIL: Test coverage checks failed\n");
1638 ret = -EINVAL;
1639 goto out;
1640 }
1641 #endif
1642
1643 out:
1644 if (ret == 0)
1645 ret = tests_failed;
1646 if (ret == 0)
1647 pr_info("Finished kprobe tests OK\n");
1648 else
1649 pr_err("kprobe tests failed\n");
1650
1651 return ret;
1652 }
1653
1654
1655 /*
1656 * Module setup
1657 */
1658
1659 #ifdef MODULE
1660
kprobe_test_exit(void)1661 static void __exit kprobe_test_exit(void)
1662 {
1663 }
1664
1665 module_init(run_all_tests)
1666 module_exit(kprobe_test_exit)
1667 MODULE_LICENSE("GPL");
1668
1669 #else /* !MODULE */
1670
1671 late_initcall(run_all_tests);
1672
1673 #endif
1674