1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
4 *
5 * Copyright (C) 2015 - 2018 Linaro Ltd.
6 * Copyright (C) 2023 Google LLC.
7 */
8
9 #include <asm/hwcap.h>
10 #include <asm/neon.h>
11 #include <asm/simd.h>
12 #include <linux/unaligned.h>
13 #include <crypto/aes.h>
14 #include <crypto/gcm.h>
15 #include <crypto/b128ops.h>
16 #include <crypto/cryptd.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/internal/simd.h>
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/gf128mul.h>
22 #include <crypto/scatterwalk.h>
23 #include <linux/cpufeature.h>
24 #include <linux/crypto.h>
25 #include <linux/jump_label.h>
26 #include <linux/module.h>
27
28 MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions");
29 MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>");
30 MODULE_LICENSE("GPL");
31 MODULE_ALIAS_CRYPTO("ghash");
32 MODULE_ALIAS_CRYPTO("gcm(aes)");
33 MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))");
34
35 #define GHASH_BLOCK_SIZE 16
36 #define GHASH_DIGEST_SIZE 16
37
38 #define RFC4106_NONCE_SIZE 4
39
40 struct ghash_key {
41 be128 k;
42 u64 h[][2];
43 };
44
45 struct gcm_key {
46 u64 h[4][2];
47 u32 rk[AES_MAX_KEYLENGTH_U32];
48 int rounds;
49 u8 nonce[]; // for RFC4106 nonce
50 };
51
52 struct ghash_desc_ctx {
53 u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
54 u8 buf[GHASH_BLOCK_SIZE];
55 u32 count;
56 };
57
58 struct ghash_async_ctx {
59 struct cryptd_ahash *cryptd_tfm;
60 };
61
62 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
63 u64 const h[][2], const char *head);
64
65 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
66 u64 const h[][2], const char *head);
67
68 static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64);
69
ghash_init(struct shash_desc * desc)70 static int ghash_init(struct shash_desc *desc)
71 {
72 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
73
74 *ctx = (struct ghash_desc_ctx){};
75 return 0;
76 }
77
ghash_do_update(int blocks,u64 dg[],const char * src,struct ghash_key * key,const char * head)78 static void ghash_do_update(int blocks, u64 dg[], const char *src,
79 struct ghash_key *key, const char *head)
80 {
81 if (likely(crypto_simd_usable())) {
82 kernel_neon_begin();
83 if (static_branch_likely(&use_p64))
84 pmull_ghash_update_p64(blocks, dg, src, key->h, head);
85 else
86 pmull_ghash_update_p8(blocks, dg, src, key->h, head);
87 kernel_neon_end();
88 } else {
89 be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
90
91 do {
92 const u8 *in = src;
93
94 if (head) {
95 in = head;
96 blocks++;
97 head = NULL;
98 } else {
99 src += GHASH_BLOCK_SIZE;
100 }
101
102 crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
103 gf128mul_lle(&dst, &key->k);
104 } while (--blocks);
105
106 dg[0] = be64_to_cpu(dst.b);
107 dg[1] = be64_to_cpu(dst.a);
108 }
109 }
110
ghash_update(struct shash_desc * desc,const u8 * src,unsigned int len)111 static int ghash_update(struct shash_desc *desc, const u8 *src,
112 unsigned int len)
113 {
114 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
115 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
116
117 ctx->count += len;
118
119 if ((partial + len) >= GHASH_BLOCK_SIZE) {
120 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
121 int blocks;
122
123 if (partial) {
124 int p = GHASH_BLOCK_SIZE - partial;
125
126 memcpy(ctx->buf + partial, src, p);
127 src += p;
128 len -= p;
129 }
130
131 blocks = len / GHASH_BLOCK_SIZE;
132 len %= GHASH_BLOCK_SIZE;
133
134 ghash_do_update(blocks, ctx->digest, src, key,
135 partial ? ctx->buf : NULL);
136 src += blocks * GHASH_BLOCK_SIZE;
137 partial = 0;
138 }
139 if (len)
140 memcpy(ctx->buf + partial, src, len);
141 return 0;
142 }
143
ghash_final(struct shash_desc * desc,u8 * dst)144 static int ghash_final(struct shash_desc *desc, u8 *dst)
145 {
146 struct ghash_desc_ctx *ctx = shash_desc_ctx(desc);
147 unsigned int partial = ctx->count % GHASH_BLOCK_SIZE;
148
149 if (partial) {
150 struct ghash_key *key = crypto_shash_ctx(desc->tfm);
151
152 memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
153 ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
154 }
155 put_unaligned_be64(ctx->digest[1], dst);
156 put_unaligned_be64(ctx->digest[0], dst + 8);
157
158 *ctx = (struct ghash_desc_ctx){};
159 return 0;
160 }
161
ghash_reflect(u64 h[],const be128 * k)162 static void ghash_reflect(u64 h[], const be128 *k)
163 {
164 u64 carry = be64_to_cpu(k->a) >> 63;
165
166 h[0] = (be64_to_cpu(k->b) << 1) | carry;
167 h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
168
169 if (carry)
170 h[1] ^= 0xc200000000000000UL;
171 }
172
ghash_setkey(struct crypto_shash * tfm,const u8 * inkey,unsigned int keylen)173 static int ghash_setkey(struct crypto_shash *tfm,
174 const u8 *inkey, unsigned int keylen)
175 {
176 struct ghash_key *key = crypto_shash_ctx(tfm);
177
178 if (keylen != GHASH_BLOCK_SIZE)
179 return -EINVAL;
180
181 /* needed for the fallback */
182 memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
183 ghash_reflect(key->h[0], &key->k);
184
185 if (static_branch_likely(&use_p64)) {
186 be128 h = key->k;
187
188 gf128mul_lle(&h, &key->k);
189 ghash_reflect(key->h[1], &h);
190
191 gf128mul_lle(&h, &key->k);
192 ghash_reflect(key->h[2], &h);
193
194 gf128mul_lle(&h, &key->k);
195 ghash_reflect(key->h[3], &h);
196 }
197 return 0;
198 }
199
200 static struct shash_alg ghash_alg = {
201 .digestsize = GHASH_DIGEST_SIZE,
202 .init = ghash_init,
203 .update = ghash_update,
204 .final = ghash_final,
205 .setkey = ghash_setkey,
206 .descsize = sizeof(struct ghash_desc_ctx),
207
208 .base.cra_name = "ghash",
209 .base.cra_driver_name = "ghash-ce-sync",
210 .base.cra_priority = 300 - 1,
211 .base.cra_blocksize = GHASH_BLOCK_SIZE,
212 .base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]),
213 .base.cra_module = THIS_MODULE,
214 };
215
ghash_async_init(struct ahash_request * req)216 static int ghash_async_init(struct ahash_request *req)
217 {
218 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
219 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
220 struct ahash_request *cryptd_req = ahash_request_ctx(req);
221 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
222 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
223 struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
224
225 desc->tfm = child;
226 return crypto_shash_init(desc);
227 }
228
ghash_async_update(struct ahash_request * req)229 static int ghash_async_update(struct ahash_request *req)
230 {
231 struct ahash_request *cryptd_req = ahash_request_ctx(req);
232 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
233 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
234 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
235
236 if (!crypto_simd_usable() ||
237 (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
238 memcpy(cryptd_req, req, sizeof(*req));
239 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
240 return crypto_ahash_update(cryptd_req);
241 } else {
242 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
243 return shash_ahash_update(req, desc);
244 }
245 }
246
ghash_async_final(struct ahash_request * req)247 static int ghash_async_final(struct ahash_request *req)
248 {
249 struct ahash_request *cryptd_req = ahash_request_ctx(req);
250 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
251 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
252 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
253
254 if (!crypto_simd_usable() ||
255 (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
256 memcpy(cryptd_req, req, sizeof(*req));
257 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
258 return crypto_ahash_final(cryptd_req);
259 } else {
260 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
261 return crypto_shash_final(desc, req->result);
262 }
263 }
264
ghash_async_digest(struct ahash_request * req)265 static int ghash_async_digest(struct ahash_request *req)
266 {
267 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
268 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
269 struct ahash_request *cryptd_req = ahash_request_ctx(req);
270 struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm;
271
272 if (!crypto_simd_usable() ||
273 (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) {
274 memcpy(cryptd_req, req, sizeof(*req));
275 ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base);
276 return crypto_ahash_digest(cryptd_req);
277 } else {
278 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
279 struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm);
280
281 desc->tfm = child;
282 return shash_ahash_digest(req, desc);
283 }
284 }
285
ghash_async_import(struct ahash_request * req,const void * in)286 static int ghash_async_import(struct ahash_request *req, const void *in)
287 {
288 struct ahash_request *cryptd_req = ahash_request_ctx(req);
289 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
290 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
291 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
292
293 desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm);
294
295 return crypto_shash_import(desc, in);
296 }
297
ghash_async_export(struct ahash_request * req,void * out)298 static int ghash_async_export(struct ahash_request *req, void *out)
299 {
300 struct ahash_request *cryptd_req = ahash_request_ctx(req);
301 struct shash_desc *desc = cryptd_shash_desc(cryptd_req);
302
303 return crypto_shash_export(desc, out);
304 }
305
ghash_async_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)306 static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key,
307 unsigned int keylen)
308 {
309 struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm);
310 struct crypto_ahash *child = &ctx->cryptd_tfm->base;
311
312 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
313 crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm)
314 & CRYPTO_TFM_REQ_MASK);
315 return crypto_ahash_setkey(child, key, keylen);
316 }
317
ghash_async_init_tfm(struct crypto_tfm * tfm)318 static int ghash_async_init_tfm(struct crypto_tfm *tfm)
319 {
320 struct cryptd_ahash *cryptd_tfm;
321 struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
322
323 cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0);
324 if (IS_ERR(cryptd_tfm))
325 return PTR_ERR(cryptd_tfm);
326 ctx->cryptd_tfm = cryptd_tfm;
327 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
328 sizeof(struct ahash_request) +
329 crypto_ahash_reqsize(&cryptd_tfm->base));
330
331 return 0;
332 }
333
ghash_async_exit_tfm(struct crypto_tfm * tfm)334 static void ghash_async_exit_tfm(struct crypto_tfm *tfm)
335 {
336 struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm);
337
338 cryptd_free_ahash(ctx->cryptd_tfm);
339 }
340
341 static struct ahash_alg ghash_async_alg = {
342 .init = ghash_async_init,
343 .update = ghash_async_update,
344 .final = ghash_async_final,
345 .setkey = ghash_async_setkey,
346 .digest = ghash_async_digest,
347 .import = ghash_async_import,
348 .export = ghash_async_export,
349 .halg.digestsize = GHASH_DIGEST_SIZE,
350 .halg.statesize = sizeof(struct ghash_desc_ctx),
351 .halg.base = {
352 .cra_name = "ghash",
353 .cra_driver_name = "ghash-ce",
354 .cra_priority = 300,
355 .cra_flags = CRYPTO_ALG_ASYNC,
356 .cra_blocksize = GHASH_BLOCK_SIZE,
357 .cra_ctxsize = sizeof(struct ghash_async_ctx),
358 .cra_module = THIS_MODULE,
359 .cra_init = ghash_async_init_tfm,
360 .cra_exit = ghash_async_exit_tfm,
361 },
362 };
363
364
365 void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src,
366 struct gcm_key const *k, char *dst,
367 const char *iv, int rounds, u32 counter);
368
369 void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag,
370 struct gcm_key const *k, char *head,
371 const char *iv, int rounds, u32 counter);
372
373 void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src,
374 struct gcm_key const *k, char *dst,
375 const char *iv, int rounds, u32 counter);
376
377 int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag,
378 struct gcm_key const *k, char *head,
379 const char *iv, int rounds, u32 counter,
380 const char *otag, int authsize);
381
gcm_aes_setkey(struct crypto_aead * tfm,const u8 * inkey,unsigned int keylen)382 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
383 unsigned int keylen)
384 {
385 struct gcm_key *ctx = crypto_aead_ctx(tfm);
386 struct crypto_aes_ctx aes_ctx;
387 be128 h, k;
388 int ret;
389
390 ret = aes_expandkey(&aes_ctx, inkey, keylen);
391 if (ret)
392 return -EINVAL;
393
394 aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){});
395
396 memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk));
397 ctx->rounds = 6 + keylen / 4;
398
399 memzero_explicit(&aes_ctx, sizeof(aes_ctx));
400
401 ghash_reflect(ctx->h[0], &k);
402
403 h = k;
404 gf128mul_lle(&h, &k);
405 ghash_reflect(ctx->h[1], &h);
406
407 gf128mul_lle(&h, &k);
408 ghash_reflect(ctx->h[2], &h);
409
410 gf128mul_lle(&h, &k);
411 ghash_reflect(ctx->h[3], &h);
412
413 return 0;
414 }
415
gcm_aes_setauthsize(struct crypto_aead * tfm,unsigned int authsize)416 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
417 {
418 return crypto_gcm_check_authsize(authsize);
419 }
420
gcm_update_mac(u64 dg[],const u8 * src,int count,u8 buf[],int * buf_count,struct gcm_key * ctx)421 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
422 int *buf_count, struct gcm_key *ctx)
423 {
424 if (*buf_count > 0) {
425 int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
426
427 memcpy(&buf[*buf_count], src, buf_added);
428
429 *buf_count += buf_added;
430 src += buf_added;
431 count -= buf_added;
432 }
433
434 if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
435 int blocks = count / GHASH_BLOCK_SIZE;
436
437 pmull_ghash_update_p64(blocks, dg, src, ctx->h,
438 *buf_count ? buf : NULL);
439
440 src += blocks * GHASH_BLOCK_SIZE;
441 count %= GHASH_BLOCK_SIZE;
442 *buf_count = 0;
443 }
444
445 if (count > 0) {
446 memcpy(buf, src, count);
447 *buf_count = count;
448 }
449 }
450
gcm_calculate_auth_mac(struct aead_request * req,u64 dg[],u32 len)451 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
452 {
453 struct crypto_aead *aead = crypto_aead_reqtfm(req);
454 struct gcm_key *ctx = crypto_aead_ctx(aead);
455 u8 buf[GHASH_BLOCK_SIZE];
456 struct scatter_walk walk;
457 int buf_count = 0;
458
459 scatterwalk_start(&walk, req->src);
460
461 do {
462 u32 n = scatterwalk_clamp(&walk, len);
463 u8 *p;
464
465 if (!n) {
466 scatterwalk_start(&walk, sg_next(walk.sg));
467 n = scatterwalk_clamp(&walk, len);
468 }
469
470 p = scatterwalk_map(&walk);
471 gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
472 scatterwalk_unmap(p);
473
474 if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) {
475 kernel_neon_end();
476 kernel_neon_begin();
477 }
478
479 len -= n;
480 scatterwalk_advance(&walk, n);
481 scatterwalk_done(&walk, 0, len);
482 } while (len);
483
484 if (buf_count) {
485 memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
486 pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL);
487 }
488 }
489
gcm_encrypt(struct aead_request * req,const u8 * iv,u32 assoclen)490 static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
491 {
492 struct crypto_aead *aead = crypto_aead_reqtfm(req);
493 struct gcm_key *ctx = crypto_aead_ctx(aead);
494 struct skcipher_walk walk;
495 u8 buf[AES_BLOCK_SIZE];
496 u32 counter = 2;
497 u64 dg[2] = {};
498 be128 lengths;
499 const u8 *src;
500 u8 *tag, *dst;
501 int tail, err;
502
503 if (WARN_ON_ONCE(!may_use_simd()))
504 return -EBUSY;
505
506 err = skcipher_walk_aead_encrypt(&walk, req, false);
507
508 kernel_neon_begin();
509
510 if (assoclen)
511 gcm_calculate_auth_mac(req, dg, assoclen);
512
513 src = walk.src.virt.addr;
514 dst = walk.dst.virt.addr;
515
516 while (walk.nbytes >= AES_BLOCK_SIZE) {
517 int nblocks = walk.nbytes / AES_BLOCK_SIZE;
518
519 pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv,
520 ctx->rounds, counter);
521 counter += nblocks;
522
523 if (walk.nbytes == walk.total) {
524 src += nblocks * AES_BLOCK_SIZE;
525 dst += nblocks * AES_BLOCK_SIZE;
526 break;
527 }
528
529 kernel_neon_end();
530
531 err = skcipher_walk_done(&walk,
532 walk.nbytes % AES_BLOCK_SIZE);
533 if (err)
534 return err;
535
536 src = walk.src.virt.addr;
537 dst = walk.dst.virt.addr;
538
539 kernel_neon_begin();
540 }
541
542
543 lengths.a = cpu_to_be64(assoclen * 8);
544 lengths.b = cpu_to_be64(req->cryptlen * 8);
545
546 tag = (u8 *)&lengths;
547 tail = walk.nbytes % AES_BLOCK_SIZE;
548
549 /*
550 * Bounce via a buffer unless we are encrypting in place and src/dst
551 * are not pointing to the start of the walk buffer. In that case, we
552 * can do a NEON load/xor/store sequence in place as long as we move
553 * the plain/ciphertext and keystream to the start of the register. If
554 * not, do a memcpy() to the end of the buffer so we can reuse the same
555 * logic.
556 */
557 if (unlikely(tail && (tail == walk.nbytes || src != dst)))
558 src = memcpy(buf + sizeof(buf) - tail, src, tail);
559
560 pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv,
561 ctx->rounds, counter);
562 kernel_neon_end();
563
564 if (unlikely(tail && src != dst))
565 memcpy(dst, src, tail);
566
567 if (walk.nbytes) {
568 err = skcipher_walk_done(&walk, 0);
569 if (err)
570 return err;
571 }
572
573 /* copy authtag to end of dst */
574 scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
575 crypto_aead_authsize(aead), 1);
576
577 return 0;
578 }
579
gcm_decrypt(struct aead_request * req,const u8 * iv,u32 assoclen)580 static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen)
581 {
582 struct crypto_aead *aead = crypto_aead_reqtfm(req);
583 struct gcm_key *ctx = crypto_aead_ctx(aead);
584 int authsize = crypto_aead_authsize(aead);
585 struct skcipher_walk walk;
586 u8 otag[AES_BLOCK_SIZE];
587 u8 buf[AES_BLOCK_SIZE];
588 u32 counter = 2;
589 u64 dg[2] = {};
590 be128 lengths;
591 const u8 *src;
592 u8 *tag, *dst;
593 int tail, err, ret;
594
595 if (WARN_ON_ONCE(!may_use_simd()))
596 return -EBUSY;
597
598 scatterwalk_map_and_copy(otag, req->src,
599 req->assoclen + req->cryptlen - authsize,
600 authsize, 0);
601
602 err = skcipher_walk_aead_decrypt(&walk, req, false);
603
604 kernel_neon_begin();
605
606 if (assoclen)
607 gcm_calculate_auth_mac(req, dg, assoclen);
608
609 src = walk.src.virt.addr;
610 dst = walk.dst.virt.addr;
611
612 while (walk.nbytes >= AES_BLOCK_SIZE) {
613 int nblocks = walk.nbytes / AES_BLOCK_SIZE;
614
615 pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv,
616 ctx->rounds, counter);
617 counter += nblocks;
618
619 if (walk.nbytes == walk.total) {
620 src += nblocks * AES_BLOCK_SIZE;
621 dst += nblocks * AES_BLOCK_SIZE;
622 break;
623 }
624
625 kernel_neon_end();
626
627 err = skcipher_walk_done(&walk,
628 walk.nbytes % AES_BLOCK_SIZE);
629 if (err)
630 return err;
631
632 src = walk.src.virt.addr;
633 dst = walk.dst.virt.addr;
634
635 kernel_neon_begin();
636 }
637
638 lengths.a = cpu_to_be64(assoclen * 8);
639 lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
640
641 tag = (u8 *)&lengths;
642 tail = walk.nbytes % AES_BLOCK_SIZE;
643
644 if (unlikely(tail && (tail == walk.nbytes || src != dst)))
645 src = memcpy(buf + sizeof(buf) - tail, src, tail);
646
647 ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv,
648 ctx->rounds, counter, otag, authsize);
649 kernel_neon_end();
650
651 if (unlikely(tail && src != dst))
652 memcpy(dst, src, tail);
653
654 if (walk.nbytes) {
655 err = skcipher_walk_done(&walk, 0);
656 if (err)
657 return err;
658 }
659
660 return ret ? -EBADMSG : 0;
661 }
662
gcm_aes_encrypt(struct aead_request * req)663 static int gcm_aes_encrypt(struct aead_request *req)
664 {
665 return gcm_encrypt(req, req->iv, req->assoclen);
666 }
667
gcm_aes_decrypt(struct aead_request * req)668 static int gcm_aes_decrypt(struct aead_request *req)
669 {
670 return gcm_decrypt(req, req->iv, req->assoclen);
671 }
672
rfc4106_setkey(struct crypto_aead * tfm,const u8 * inkey,unsigned int keylen)673 static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
674 unsigned int keylen)
675 {
676 struct gcm_key *ctx = crypto_aead_ctx(tfm);
677 int err;
678
679 keylen -= RFC4106_NONCE_SIZE;
680 err = gcm_aes_setkey(tfm, inkey, keylen);
681 if (err)
682 return err;
683
684 memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
685 return 0;
686 }
687
rfc4106_setauthsize(struct crypto_aead * tfm,unsigned int authsize)688 static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
689 {
690 return crypto_rfc4106_check_authsize(authsize);
691 }
692
rfc4106_encrypt(struct aead_request * req)693 static int rfc4106_encrypt(struct aead_request *req)
694 {
695 struct crypto_aead *aead = crypto_aead_reqtfm(req);
696 struct gcm_key *ctx = crypto_aead_ctx(aead);
697 u8 iv[GCM_AES_IV_SIZE];
698
699 memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
700 memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
701
702 return crypto_ipsec_check_assoclen(req->assoclen) ?:
703 gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
704 }
705
rfc4106_decrypt(struct aead_request * req)706 static int rfc4106_decrypt(struct aead_request *req)
707 {
708 struct crypto_aead *aead = crypto_aead_reqtfm(req);
709 struct gcm_key *ctx = crypto_aead_ctx(aead);
710 u8 iv[GCM_AES_IV_SIZE];
711
712 memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
713 memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
714
715 return crypto_ipsec_check_assoclen(req->assoclen) ?:
716 gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
717 }
718
719 static struct aead_alg gcm_aes_algs[] = {{
720 .ivsize = GCM_AES_IV_SIZE,
721 .chunksize = AES_BLOCK_SIZE,
722 .maxauthsize = AES_BLOCK_SIZE,
723 .setkey = gcm_aes_setkey,
724 .setauthsize = gcm_aes_setauthsize,
725 .encrypt = gcm_aes_encrypt,
726 .decrypt = gcm_aes_decrypt,
727
728 .base.cra_name = "gcm(aes)",
729 .base.cra_driver_name = "gcm-aes-ce",
730 .base.cra_priority = 400,
731 .base.cra_blocksize = 1,
732 .base.cra_ctxsize = sizeof(struct gcm_key),
733 .base.cra_module = THIS_MODULE,
734 }, {
735 .ivsize = GCM_RFC4106_IV_SIZE,
736 .chunksize = AES_BLOCK_SIZE,
737 .maxauthsize = AES_BLOCK_SIZE,
738 .setkey = rfc4106_setkey,
739 .setauthsize = rfc4106_setauthsize,
740 .encrypt = rfc4106_encrypt,
741 .decrypt = rfc4106_decrypt,
742
743 .base.cra_name = "rfc4106(gcm(aes))",
744 .base.cra_driver_name = "rfc4106-gcm-aes-ce",
745 .base.cra_priority = 400,
746 .base.cra_blocksize = 1,
747 .base.cra_ctxsize = sizeof(struct gcm_key) + RFC4106_NONCE_SIZE,
748 .base.cra_module = THIS_MODULE,
749 }};
750
ghash_ce_mod_init(void)751 static int __init ghash_ce_mod_init(void)
752 {
753 int err;
754
755 if (!(elf_hwcap & HWCAP_NEON))
756 return -ENODEV;
757
758 if (elf_hwcap2 & HWCAP2_PMULL) {
759 err = crypto_register_aeads(gcm_aes_algs,
760 ARRAY_SIZE(gcm_aes_algs));
761 if (err)
762 return err;
763 ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]);
764 static_branch_enable(&use_p64);
765 }
766
767 err = crypto_register_shash(&ghash_alg);
768 if (err)
769 goto err_aead;
770 err = crypto_register_ahash(&ghash_async_alg);
771 if (err)
772 goto err_shash;
773
774 return 0;
775
776 err_shash:
777 crypto_unregister_shash(&ghash_alg);
778 err_aead:
779 if (elf_hwcap2 & HWCAP2_PMULL)
780 crypto_unregister_aeads(gcm_aes_algs,
781 ARRAY_SIZE(gcm_aes_algs));
782 return err;
783 }
784
ghash_ce_mod_exit(void)785 static void __exit ghash_ce_mod_exit(void)
786 {
787 crypto_unregister_ahash(&ghash_async_alg);
788 crypto_unregister_shash(&ghash_alg);
789 if (elf_hwcap2 & HWCAP2_PMULL)
790 crypto_unregister_aeads(gcm_aes_algs,
791 ARRAY_SIZE(gcm_aes_algs));
792 }
793
794 module_init(ghash_ce_mod_init);
795 module_exit(ghash_ce_mod_exit);
796