xref: /linux/arch/arm/crypto/crct10dif-ce-core.S (revision fcb3ad4366b9c810cbb9da34c076a9a52d8aa1e0)
1//
2// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
3//
4// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
5// Copyright (C) 2019 Google LLC <ebiggers@google.com>
6//
7// This program is free software; you can redistribute it and/or modify
8// it under the terms of the GNU General Public License version 2 as
9// published by the Free Software Foundation.
10//
11
12// Derived from the x86 version:
13//
14// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
15//
16// Copyright (c) 2013, Intel Corporation
17//
18// Authors:
19//     Erdinc Ozturk <erdinc.ozturk@intel.com>
20//     Vinodh Gopal <vinodh.gopal@intel.com>
21//     James Guilford <james.guilford@intel.com>
22//     Tim Chen <tim.c.chen@linux.intel.com>
23//
24// This software is available to you under a choice of one of two
25// licenses.  You may choose to be licensed under the terms of the GNU
26// General Public License (GPL) Version 2, available from the file
27// COPYING in the main directory of this source tree, or the
28// OpenIB.org BSD license below:
29//
30// Redistribution and use in source and binary forms, with or without
31// modification, are permitted provided that the following conditions are
32// met:
33//
34// * Redistributions of source code must retain the above copyright
35//   notice, this list of conditions and the following disclaimer.
36//
37// * Redistributions in binary form must reproduce the above copyright
38//   notice, this list of conditions and the following disclaimer in the
39//   documentation and/or other materials provided with the
40//   distribution.
41//
42// * Neither the name of the Intel Corporation nor the names of its
43//   contributors may be used to endorse or promote products derived from
44//   this software without specific prior written permission.
45//
46//
47// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
48// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
50// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
51// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
52// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
54// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
55// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
56// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
57// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58//
59//       Reference paper titled "Fast CRC Computation for Generic
60//	Polynomials Using PCLMULQDQ Instruction"
61//       URL: http://www.intel.com/content/dam/www/public/us/en/documents
62//  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
63//
64
65#include <linux/linkage.h>
66#include <asm/assembler.h>
67
68#ifdef CONFIG_CPU_ENDIAN_BE8
69#define CPU_LE(code...)
70#else
71#define CPU_LE(code...)		code
72#endif
73
74	.text
75	.arch		armv8-a
76	.fpu		crypto-neon-fp-armv8
77
78	init_crc	.req	r0
79	buf		.req	r1
80	len		.req	r2
81
82	fold_consts_ptr	.req	ip
83
84	q0l		.req	d0
85	q0h		.req	d1
86	q1l		.req	d2
87	q1h		.req	d3
88	q2l		.req	d4
89	q2h		.req	d5
90	q3l		.req	d6
91	q3h		.req	d7
92	q4l		.req	d8
93	q4h		.req	d9
94	q5l		.req	d10
95	q5h		.req	d11
96	q6l		.req	d12
97	q6h		.req	d13
98	q7l		.req	d14
99	q7h		.req	d15
100	q8l		.req	d16
101	q8h		.req	d17
102	q9l		.req	d18
103	q9h		.req	d19
104	q10l		.req	d20
105	q10h		.req	d21
106	q11l		.req	d22
107	q11h		.req	d23
108	q12l		.req	d24
109	q12h		.req	d25
110
111	FOLD_CONSTS	.req	q10
112	FOLD_CONST_L	.req	q10l
113	FOLD_CONST_H	.req	q10h
114
115	/*
116	 * Pairwise long polynomial multiplication of two 16-bit values
117	 *
118	 *   { w0, w1 }, { y0, y1 }
119	 *
120	 * by two 64-bit values
121	 *
122	 *   { x0, x1, x2, x3, x4, x5, x6, x7 }, { z0, z1, z2, z3, z4, z5, z6, z7 }
123	 *
124	 * where each vector element is a byte, ordered from least to most
125	 * significant. The resulting 80-bit vectors are XOR'ed together.
126	 *
127	 * This can be implemented using 8x8 long polynomial multiplication, by
128	 * reorganizing the input so that each pairwise 8x8 multiplication
129	 * produces one of the terms from the decomposition below, and
130	 * combining the results of each rank and shifting them into place.
131	 *
132	 * Rank
133	 *  0            w0*x0 ^              |        y0*z0 ^
134	 *  1       (w0*x1 ^ w1*x0) <<  8 ^   |   (y0*z1 ^ y1*z0) <<  8 ^
135	 *  2       (w0*x2 ^ w1*x1) << 16 ^   |   (y0*z2 ^ y1*z1) << 16 ^
136	 *  3       (w0*x3 ^ w1*x2) << 24 ^   |   (y0*z3 ^ y1*z2) << 24 ^
137	 *  4       (w0*x4 ^ w1*x3) << 32 ^   |   (y0*z4 ^ y1*z3) << 32 ^
138	 *  5       (w0*x5 ^ w1*x4) << 40 ^   |   (y0*z5 ^ y1*z4) << 40 ^
139	 *  6       (w0*x6 ^ w1*x5) << 48 ^   |   (y0*z6 ^ y1*z5) << 48 ^
140	 *  7       (w0*x7 ^ w1*x6) << 56 ^   |   (y0*z7 ^ y1*z6) << 56 ^
141	 *  8            w1*x7      << 64     |        y1*z7      << 64
142	 *
143	 * The inputs can be reorganized into
144	 *
145	 *   { w0, w0, w0, w0, y0, y0, y0, y0 }, { w1, w1, w1, w1, y1, y1, y1, y1 }
146	 *   { x0, x2, x4, x6, z0, z2, z4, z6 }, { x1, x3, x5, x7, z1, z3, z5, z7 }
147	 *
148	 * and after performing 8x8->16 bit long polynomial multiplication of
149	 * each of the halves of the first vector with those of the second one,
150	 * we obtain the following four vectors of 16-bit elements:
151	 *
152	 *   a := { w0*x0, w0*x2, w0*x4, w0*x6 }, { y0*z0, y0*z2, y0*z4, y0*z6 }
153	 *   b := { w0*x1, w0*x3, w0*x5, w0*x7 }, { y0*z1, y0*z3, y0*z5, y0*z7 }
154	 *   c := { w1*x0, w1*x2, w1*x4, w1*x6 }, { y1*z0, y1*z2, y1*z4, y1*z6 }
155	 *   d := { w1*x1, w1*x3, w1*x5, w1*x7 }, { y1*z1, y1*z3, y1*z5, y1*z7 }
156	 *
157	 * Results b and c can be XORed together, as the vector elements have
158	 * matching ranks. Then, the final XOR can be pulled forward, and
159	 * applied between the halves of each of the remaining three vectors,
160	 * which are then shifted into place, and XORed together to produce the
161	 * final 80-bit result.
162	 */
163        .macro		pmull16x64_p8, v16, v64
164	vext.8		q11, \v64, \v64, #1
165	vld1.64		{q12}, [r4, :128]
166	vuzp.8		q11, \v64
167	vtbl.8		d24, {\v16\()_L-\v16\()_H}, d24
168	vtbl.8		d25, {\v16\()_L-\v16\()_H}, d25
169	bl		__pmull16x64_p8
170	veor		\v64, q12, q14
171        .endm
172
173__pmull16x64_p8:
174	vmull.p8	q13, d23, d24
175	vmull.p8	q14, d23, d25
176	vmull.p8	q15, d22, d24
177	vmull.p8	q12, d22, d25
178
179	veor		q14, q14, q15
180	veor		d24, d24, d25
181	veor		d26, d26, d27
182	veor		d28, d28, d29
183	vmov.i32	d25, #0
184	vmov.i32	d29, #0
185	vext.8		q12, q12, q12, #14
186	vext.8		q14, q14, q14, #15
187	veor		d24, d24, d26
188	bx		lr
189ENDPROC(__pmull16x64_p8)
190
191        .macro		pmull16x64_p64, v16, v64
192	vmull.p64	q11, \v64\()l, \v16\()_L
193	vmull.p64	\v64, \v64\()h, \v16\()_H
194	veor		\v64, \v64, q11
195	.endm
196
197	// Fold reg1, reg2 into the next 32 data bytes, storing the result back
198	// into reg1, reg2.
199	.macro		fold_32_bytes, reg1, reg2, p
200	vld1.64		{q8-q9}, [buf]!
201
202	pmull16x64_\p	FOLD_CONST, \reg1
203	pmull16x64_\p	FOLD_CONST, \reg2
204
205CPU_LE(	vrev64.8	q8, q8	)
206CPU_LE(	vrev64.8	q9, q9	)
207	vswp		q8l, q8h
208	vswp		q9l, q9h
209
210	veor.8		\reg1, \reg1, q8
211	veor.8		\reg2, \reg2, q9
212	.endm
213
214	// Fold src_reg into dst_reg, optionally loading the next fold constants
215	.macro		fold_16_bytes, src_reg, dst_reg, p, load_next_consts
216	pmull16x64_\p	FOLD_CONST, \src_reg
217	.ifnb		\load_next_consts
218	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
219	.endif
220	veor.8		\dst_reg, \dst_reg, \src_reg
221	.endm
222
223	.macro		crct10dif, p
224	// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
225	cmp		len, #256
226	blt		.Lless_than_256_bytes\@
227
228	mov_l		fold_consts_ptr, .Lfold_across_128_bytes_consts
229
230	// Load the first 128 data bytes.  Byte swapping is necessary to make
231	// the bit order match the polynomial coefficient order.
232	vld1.64		{q0-q1}, [buf]!
233	vld1.64		{q2-q3}, [buf]!
234	vld1.64		{q4-q5}, [buf]!
235	vld1.64		{q6-q7}, [buf]!
236CPU_LE(	vrev64.8	q0, q0	)
237CPU_LE(	vrev64.8	q1, q1	)
238CPU_LE(	vrev64.8	q2, q2	)
239CPU_LE(	vrev64.8	q3, q3	)
240CPU_LE(	vrev64.8	q4, q4	)
241CPU_LE(	vrev64.8	q5, q5	)
242CPU_LE(	vrev64.8	q6, q6	)
243CPU_LE(	vrev64.8	q7, q7	)
244	vswp		q0l, q0h
245	vswp		q1l, q1h
246	vswp		q2l, q2h
247	vswp		q3l, q3h
248	vswp		q4l, q4h
249	vswp		q5l, q5h
250	vswp		q6l, q6h
251	vswp		q7l, q7h
252
253	// XOR the first 16 data *bits* with the initial CRC value.
254	vmov.i8		q8h, #0
255	vmov.u16	q8h[3], init_crc
256	veor		q0h, q0h, q8h
257
258	// Load the constants for folding across 128 bytes.
259	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
260
261	// Subtract 128 for the 128 data bytes just consumed.  Subtract another
262	// 128 to simplify the termination condition of the following loop.
263	sub		len, len, #256
264
265	// While >= 128 data bytes remain (not counting q0-q7), fold the 128
266	// bytes q0-q7 into them, storing the result back into q0-q7.
267.Lfold_128_bytes_loop\@:
268	fold_32_bytes	q0, q1, \p
269	fold_32_bytes	q2, q3, \p
270	fold_32_bytes	q4, q5, \p
271	fold_32_bytes	q6, q7, \p
272	subs		len, len, #128
273	bge		.Lfold_128_bytes_loop\@
274
275	// Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
276
277	// Fold across 64 bytes.
278	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
279	fold_16_bytes	q0, q4, \p
280	fold_16_bytes	q1, q5, \p
281	fold_16_bytes	q2, q6, \p
282	fold_16_bytes	q3, q7, \p, 1
283	// Fold across 32 bytes.
284	fold_16_bytes	q4, q6, \p
285	fold_16_bytes	q5, q7, \p, 1
286	// Fold across 16 bytes.
287	fold_16_bytes	q6, q7, \p
288
289	// Add 128 to get the correct number of data bytes remaining in 0...127
290	// (not counting q7), following the previous extra subtraction by 128.
291	// Then subtract 16 to simplify the termination condition of the
292	// following loop.
293	adds		len, len, #(128-16)
294
295	// While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
296	// into them, storing the result back into q7.
297	blt		.Lfold_16_bytes_loop_done\@
298.Lfold_16_bytes_loop\@:
299	pmull16x64_\p	FOLD_CONST, q7
300	vld1.64		{q0}, [buf]!
301CPU_LE(	vrev64.8	q0, q0	)
302	vswp		q0l, q0h
303	veor.8		q7, q7, q0
304	subs		len, len, #16
305	bge		.Lfold_16_bytes_loop\@
306
307.Lfold_16_bytes_loop_done\@:
308	// Add 16 to get the correct number of data bytes remaining in 0...15
309	// (not counting q7), following the previous extra subtraction by 16.
310	adds		len, len, #16
311	beq		.Lreduce_final_16_bytes\@
312
313.Lhandle_partial_segment\@:
314	// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
315	// 16 bytes are in q7 and the rest are the remaining data in 'buf'.  To
316	// do this without needing a fold constant for each possible 'len',
317	// redivide the bytes into a first chunk of 'len' bytes and a second
318	// chunk of 16 bytes, then fold the first chunk into the second.
319
320	// q0 = last 16 original data bytes
321	add		buf, buf, len
322	sub		buf, buf, #16
323	vld1.64		{q0}, [buf]
324CPU_LE(	vrev64.8	q0, q0	)
325	vswp		q0l, q0h
326
327	// q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
328	mov_l		r1, .Lbyteshift_table + 16
329	sub		r1, r1, len
330	vld1.8		{q2}, [r1]
331	vtbl.8		q1l, {q7l-q7h}, q2l
332	vtbl.8		q1h, {q7l-q7h}, q2h
333
334	// q3 = first chunk: q7 right-shifted by '16-len' bytes.
335	vmov.i8		q3, #0x80
336	veor.8		q2, q2, q3
337	vtbl.8		q3l, {q7l-q7h}, q2l
338	vtbl.8		q3h, {q7l-q7h}, q2h
339
340	// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
341	vshr.s8		q2, q2, #7
342
343	// q2 = second chunk: 'len' bytes from q0 (low-order bytes),
344	// then '16-len' bytes from q1 (high-order bytes).
345	vbsl.8		q2, q1, q0
346
347	// Fold the first chunk into the second chunk, storing the result in q7.
348	pmull16x64_\p	FOLD_CONST, q3
349	veor.8		q7, q3, q2
350	b		.Lreduce_final_16_bytes\@
351
352.Lless_than_256_bytes\@:
353	// Checksumming a buffer of length 16...255 bytes
354
355	mov_l		fold_consts_ptr, .Lfold_across_16_bytes_consts
356
357	// Load the first 16 data bytes.
358	vld1.64		{q7}, [buf]!
359CPU_LE(	vrev64.8	q7, q7	)
360	vswp		q7l, q7h
361
362	// XOR the first 16 data *bits* with the initial CRC value.
363	vmov.i8		q0h, #0
364	vmov.u16	q0h[3], init_crc
365	veor.8		q7h, q7h, q0h
366
367	// Load the fold-across-16-bytes constants.
368	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
369
370	cmp		len, #16
371	beq		.Lreduce_final_16_bytes\@	// len == 16
372	subs		len, len, #32
373	addlt		len, len, #16
374	blt		.Lhandle_partial_segment\@	// 17 <= len <= 31
375	b		.Lfold_16_bytes_loop\@		// 32 <= len <= 255
376
377.Lreduce_final_16_bytes\@:
378	.endm
379
380//
381// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
382//
383// Assumes len >= 16.
384//
385ENTRY(crc_t10dif_pmull64)
386	crct10dif	p64
387
388	// Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
389
390	// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
391	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
392
393	// Fold the high 64 bits into the low 64 bits, while also multiplying by
394	// x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
395	// whose low 48 bits are 0.
396	vmull.p64	q0, q7h, FOLD_CONST_H	// high bits * x^48 * (x^80 mod G(x))
397	veor.8		q0h, q0h, q7l		// + low bits * x^64
398
399	// Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
400	// value congruent to x^64 * M(x) and whose low 48 bits are 0.
401	vmov.i8		q1, #0
402	vmov		s4, s3			// extract high 32 bits
403	vmov		s3, s5			// zero high 32 bits
404	vmull.p64	q1, q1l, FOLD_CONST_L	// high 32 bits * x^48 * (x^48 mod G(x))
405	veor.8		q0, q0, q1		// + low bits
406
407	// Load G(x) and floor(x^48 / G(x)).
408	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]
409
410	// Use Barrett reduction to compute the final CRC value.
411	vmull.p64	q1, q0h, FOLD_CONST_H	// high 32 bits * floor(x^48 / G(x))
412	vshr.u64	q1l, q1l, #32		// /= x^32
413	vmull.p64	q1, q1l, FOLD_CONST_L	// *= G(x)
414	vshr.u64	q0l, q0l, #48
415	veor.8		q0l, q0l, q1l		// + low 16 nonzero bits
416	// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
417
418	vmov.u16	r0, q0l[0]
419	bx		lr
420ENDPROC(crc_t10dif_pmull64)
421
422ENTRY(crc_t10dif_pmull8)
423	push		{r4, lr}
424	mov_l		r4, .L16x64perm
425
426	crct10dif	p8
427
428CPU_LE(	vrev64.8	q7, q7	)
429	vswp		q7l, q7h
430	vst1.64		{q7}, [r3, :128]
431	pop		{r4, pc}
432ENDPROC(crc_t10dif_pmull8)
433
434	.section	".rodata", "a"
435	.align		4
436
437// Fold constants precomputed from the polynomial 0x18bb7
438// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
439.Lfold_across_128_bytes_consts:
440	.quad		0x0000000000006123	// x^(8*128)	mod G(x)
441	.quad		0x0000000000002295	// x^(8*128+64)	mod G(x)
442// .Lfold_across_64_bytes_consts:
443	.quad		0x0000000000001069	// x^(4*128)	mod G(x)
444	.quad		0x000000000000dd31	// x^(4*128+64)	mod G(x)
445// .Lfold_across_32_bytes_consts:
446	.quad		0x000000000000857d	// x^(2*128)	mod G(x)
447	.quad		0x0000000000007acc	// x^(2*128+64)	mod G(x)
448.Lfold_across_16_bytes_consts:
449	.quad		0x000000000000a010	// x^(1*128)	mod G(x)
450	.quad		0x0000000000001faa	// x^(1*128+64)	mod G(x)
451// .Lfinal_fold_consts:
452	.quad		0x1368000000000000	// x^48 * (x^48 mod G(x))
453	.quad		0x2d56000000000000	// x^48 * (x^80 mod G(x))
454// .Lbarrett_reduction_consts:
455	.quad		0x0000000000018bb7	// G(x)
456	.quad		0x00000001f65a57f8	// floor(x^48 / G(x))
457
458// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
459// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
460// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
461.Lbyteshift_table:
462	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
463	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
464	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
465	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0
466
467.L16x64perm:
468	.quad		0x808080800000000, 0x909090901010101
469