1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2019 Peter Tribble. 28 */ 29 30 #include <sys/machsystm.h> 31 #include <sys/cpu_module.h> 32 #include <sys/dtrace.h> 33 #include <sys/cpu_sgnblk_defs.h> 34 #include <sys/mach_descrip.h> 35 #include <sys/ldoms.h> 36 #include <sys/hypervisor_api.h> 37 #include <sys/soft_state.h> 38 #include <sys/mpo.h> 39 40 /* 41 * Useful for disabling MP bring-up for an MP capable kernel 42 * (a kernel that was built with MP defined) 43 */ 44 int use_mp = 1; /* set to come up mp */ 45 46 /* 47 * Init CPU info - get CPU type info for processor_info system call. 48 */ 49 void 50 init_cpu_info(struct cpu *cp) 51 { 52 processor_info_t *pi = &cp->cpu_type_info; 53 int cpuid = cp->cpu_id; 54 struct cpu_node *cpunode = &cpunodes[cpuid]; 55 56 cp->cpu_fpowner = NULL; /* not used for V9 */ 57 58 /* 59 * Get clock-frequency property from cpunodes[] for the CPU. 60 */ 61 pi->pi_clock = (cpunode->clock_freq + 500000) / 1000000; 62 63 /* 64 * Current frequency in Hz. 65 */ 66 cp->cpu_curr_clock = cpunode->clock_freq; 67 68 /* 69 * Supported frequencies. 70 */ 71 cpu_set_supp_freqs(cp, NULL); 72 73 (void) strcpy(pi->pi_processor_type, "sparcv9"); 74 (void) strcpy(pi->pi_fputypes, "sparcv9"); 75 76 /* 77 * cpu0 is always initialized at boot time, but it can be initialized 78 * again if it is dynamically removed and then re-added. We check if 79 * we are booting by verifying cpu_list. During boot, cpu0 is already 80 * in cpu_list when this function is called. When a cpu is dynamically 81 * added (after the boot) then it is added to cpu_list after this 82 * function is called. 83 */ 84 if (cpuid == cpu0.cpu_id && ncpus == 1 && cpu_list[0].cpu_id == cpuid) { 85 /* 86 * cpu0 starts out running. Other cpus are 87 * still in OBP land and we will leave them 88 * alone for now. 89 */ 90 CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cpuid); 91 /* 92 * On first cpu setup, tell hv we are booting 93 */ 94 mach_set_soft_state(SIS_TRANSITION, 95 &SOLARIS_SOFT_STATE_BOOT_MSG); 96 #ifdef lint 97 cpuid = cpuid; 98 #endif /* lint */ 99 } 100 } 101 102 /* 103 * Routine used to cleanup a CPU that has been powered off. This will 104 * destroy all per-cpu information related to this cpu. 105 */ 106 int 107 mp_cpu_unconfigure(int cpuid) 108 { 109 int retval; 110 extern void empty_cpu(int); 111 extern int cleanup_cpu_common(int); 112 113 ASSERT(MUTEX_HELD(&cpu_lock)); 114 115 retval = cleanup_cpu_common(cpuid); 116 117 empty_cpu(cpuid); 118 119 mpo_cpu_remove(cpuid); 120 121 return (retval); 122 } 123 124 struct mp_find_cpu_arg { 125 int cpuid; /* set by mp_cpu_configure() */ 126 dev_info_t *dip; /* set by mp_find_cpu() */ 127 }; 128 129 int 130 mp_find_cpu(dev_info_t *dip, void *arg) 131 { 132 struct mp_find_cpu_arg *target = (struct mp_find_cpu_arg *)arg; 133 char *type; 134 int rv = DDI_WALK_CONTINUE; 135 int cpuid; 136 137 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 138 DDI_PROP_DONTPASS, "device_type", &type)) 139 return (DDI_WALK_CONTINUE); 140 141 if (strcmp(type, "cpu") != 0) 142 goto out; 143 144 cpuid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 145 DDI_PROP_DONTPASS, "reg", -1); 146 147 if (cpuid == -1) { 148 cmn_err(CE_PANIC, "reg prop not found in cpu node"); 149 } 150 151 cpuid = PROM_CFGHDL_TO_CPUID(cpuid); 152 153 if (cpuid != target->cpuid) 154 goto out; 155 156 /* Found it */ 157 rv = DDI_WALK_TERMINATE; 158 target->dip = dip; 159 160 out: 161 ddi_prop_free(type); 162 return (rv); 163 } 164 165 /* 166 * Routine used to setup a newly inserted CPU in preparation for starting 167 * it running code. 168 */ 169 int 170 mp_cpu_configure(int cpuid) 171 { 172 md_t *mdp; 173 mde_cookie_t rootnode, cpunode = MDE_INVAL_ELEM_COOKIE; 174 int listsz, i; 175 mde_cookie_t *listp = NULL; 176 int num_nodes; 177 uint64_t cpuid_prop; 178 cpu_t *cpu; 179 processorid_t id; 180 181 ASSERT(MUTEX_HELD(&cpu_lock)); 182 183 if ((mdp = md_get_handle()) == NULL) 184 return (ENODEV); 185 186 rootnode = md_root_node(mdp); 187 188 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 189 190 num_nodes = md_node_count(mdp); 191 192 ASSERT(num_nodes > 0); 193 194 listsz = num_nodes * sizeof (mde_cookie_t); 195 listp = kmem_zalloc(listsz, KM_SLEEP); 196 197 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "cpu"), 198 md_find_name(mdp, "fwd"), listp); 199 200 if (num_nodes < 0) 201 return (ENODEV); 202 203 for (i = 0; i < num_nodes; i++) { 204 if (md_get_prop_val(mdp, listp[i], "id", &cpuid_prop)) 205 break; 206 if (cpuid_prop == (uint64_t)cpuid) { 207 cpunode = listp[i]; 208 break; 209 } 210 } 211 212 if (cpunode == MDE_INVAL_ELEM_COOKIE) 213 return (ENODEV); 214 215 kmem_free(listp, listsz); 216 217 mpo_cpu_add(mdp, cpuid); 218 219 /* 220 * Note: uses cpu_lock to protect cpunodes 221 * which will be modified inside of fill_cpu and 222 * setup_exec_unit_mappings. 223 */ 224 fill_cpu(mdp, cpunode); 225 226 /* 227 * Adding a CPU may cause the execution unit sharing 228 * relationships to change. Update the mappings in 229 * the cpunode structures. 230 */ 231 setup_chip_mappings(mdp); 232 setup_exec_unit_mappings(mdp); 233 234 /* propagate the updated mappings to the CPU structures */ 235 for (id = 0; id < NCPU; id++) { 236 if ((cpu = cpu_get(id)) == NULL) 237 continue; 238 239 cpu_map_exec_units(cpu); 240 } 241 242 (void) md_fini_handle(mdp); 243 244 if ((i = setup_cpu_common(cpuid)) != 0) { 245 (void) cleanup_cpu_common(cpuid); 246 return (i); 247 } 248 249 return (0); 250 } 251 252 /* 253 * Platform-specific actions to be taken when all cpus are running 254 * in the OS. 255 */ 256 void 257 cpu_mp_init(void) 258 { 259 extern void recalc_xc_timeouts(); 260 extern int cif_cpu_mp_ready; 261 262 /* N.B. This must happen after xc_init() has run. */ 263 recalc_xc_timeouts(); 264 265 if (!domaining_enabled()) 266 return; 267 268 cif_cpu_mp_ready = 1; 269 } 270 271 void 272 populate_idstr(struct cpu *cp) 273 { 274 char buf[CPU_IDSTRLEN]; 275 struct cpu_node *cpunode; 276 processor_info_t *pi; 277 278 cpunode = &cpunodes[cp->cpu_id]; 279 pi = &cp->cpu_type_info; 280 if (cp->cpu_m.cpu_chip == CPU_CHIPID_INVALID) { 281 (void) snprintf(buf, sizeof (buf), 282 "%s (cpuid %d, clock %d MHz)", 283 cpunode->name, cpunode->cpuid, pi->pi_clock); 284 } else { 285 (void) snprintf(buf, sizeof (buf), 286 "%s (chipid %d, clock %d MHz)", 287 cpunode->name, cp->cpu_m.cpu_chip, pi->pi_clock); 288 } 289 290 cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 291 (void) strcpy(cp->cpu_idstr, buf); 292 293 cp->cpu_brandstr = kmem_alloc(strlen(cpunode->name) + 1, KM_SLEEP); 294 (void) strcpy(cp->cpu_brandstr, cpunode->name); 295 296 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 297 } 298