1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Copyright 2019 Peter Tribble.
28 */
29
30 #include <sys/machsystm.h>
31 #include <sys/cpu_module.h>
32 #include <sys/dtrace.h>
33 #include <sys/cpu_sgnblk_defs.h>
34 #include <sys/mach_descrip.h>
35 #include <sys/ldoms.h>
36 #include <sys/hypervisor_api.h>
37 #include <sys/soft_state.h>
38 #include <sys/mpo.h>
39
40 /*
41 * Useful for disabling MP bring-up for an MP capable kernel
42 * (a kernel that was built with MP defined)
43 */
44 int use_mp = 1; /* set to come up mp */
45
46 /*
47 * Init CPU info - get CPU type info for processor_info system call.
48 */
49 void
init_cpu_info(struct cpu * cp)50 init_cpu_info(struct cpu *cp)
51 {
52 processor_info_t *pi = &cp->cpu_type_info;
53 int cpuid = cp->cpu_id;
54 struct cpu_node *cpunode = &cpunodes[cpuid];
55
56 cp->cpu_fpowner = NULL; /* not used for V9 */
57
58 /*
59 * Get clock-frequency property from cpunodes[] for the CPU.
60 */
61 pi->pi_clock = (cpunode->clock_freq + 500000) / 1000000;
62
63 /*
64 * Current frequency in Hz.
65 */
66 cp->cpu_curr_clock = cpunode->clock_freq;
67
68 /*
69 * Supported frequencies.
70 */
71 cpu_set_supp_freqs(cp, NULL);
72
73 (void) strcpy(pi->pi_processor_type, "sparcv9");
74 (void) strcpy(pi->pi_fputypes, "sparcv9");
75
76 /*
77 * cpu0 is always initialized at boot time, but it can be initialized
78 * again if it is dynamically removed and then re-added. We check if
79 * we are booting by verifying cpu_list. During boot, cpu0 is already
80 * in cpu_list when this function is called. When a cpu is dynamically
81 * added (after the boot) then it is added to cpu_list after this
82 * function is called.
83 */
84 if (cpuid == cpu0.cpu_id && ncpus == 1 && cpu_list[0].cpu_id == cpuid) {
85 /*
86 * cpu0 starts out running. Other cpus are
87 * still in OBP land and we will leave them
88 * alone for now.
89 */
90 CPU_SIGNATURE(OS_SIG, SIGST_RUN, SIGSUBST_NULL, cpuid);
91 /*
92 * On first cpu setup, tell hv we are booting
93 */
94 mach_set_soft_state(SIS_TRANSITION,
95 &SOLARIS_SOFT_STATE_BOOT_MSG);
96 #ifdef lint
97 cpuid = cpuid;
98 #endif /* lint */
99 }
100 }
101
102 /*
103 * Routine used to cleanup a CPU that has been powered off. This will
104 * destroy all per-cpu information related to this cpu.
105 */
106 int
mp_cpu_unconfigure(int cpuid)107 mp_cpu_unconfigure(int cpuid)
108 {
109 int retval;
110 extern void empty_cpu(int);
111 extern int cleanup_cpu_common(int);
112
113 ASSERT(MUTEX_HELD(&cpu_lock));
114
115 retval = cleanup_cpu_common(cpuid);
116
117 empty_cpu(cpuid);
118
119 mpo_cpu_remove(cpuid);
120
121 return (retval);
122 }
123
124 struct mp_find_cpu_arg {
125 int cpuid; /* set by mp_cpu_configure() */
126 dev_info_t *dip; /* set by mp_find_cpu() */
127 };
128
129 int
mp_find_cpu(dev_info_t * dip,void * arg)130 mp_find_cpu(dev_info_t *dip, void *arg)
131 {
132 struct mp_find_cpu_arg *target = (struct mp_find_cpu_arg *)arg;
133 char *type;
134 int rv = DDI_WALK_CONTINUE;
135 int cpuid;
136
137 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
138 DDI_PROP_DONTPASS, "device_type", &type))
139 return (DDI_WALK_CONTINUE);
140
141 if (strcmp(type, "cpu") != 0)
142 goto out;
143
144 cpuid = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
145 DDI_PROP_DONTPASS, "reg", -1);
146
147 if (cpuid == -1) {
148 cmn_err(CE_PANIC, "reg prop not found in cpu node");
149 }
150
151 cpuid = PROM_CFGHDL_TO_CPUID(cpuid);
152
153 if (cpuid != target->cpuid)
154 goto out;
155
156 /* Found it */
157 rv = DDI_WALK_TERMINATE;
158 target->dip = dip;
159
160 out:
161 ddi_prop_free(type);
162 return (rv);
163 }
164
165 /*
166 * Routine used to setup a newly inserted CPU in preparation for starting
167 * it running code.
168 */
169 int
mp_cpu_configure(int cpuid)170 mp_cpu_configure(int cpuid)
171 {
172 md_t *mdp;
173 mde_cookie_t rootnode, cpunode = MDE_INVAL_ELEM_COOKIE;
174 int listsz, i;
175 mde_cookie_t *listp = NULL;
176 int num_nodes;
177 uint64_t cpuid_prop;
178 cpu_t *cpu;
179 processorid_t id;
180
181 ASSERT(MUTEX_HELD(&cpu_lock));
182
183 if ((mdp = md_get_handle()) == NULL)
184 return (ENODEV);
185
186 rootnode = md_root_node(mdp);
187
188 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
189
190 num_nodes = md_node_count(mdp);
191
192 ASSERT(num_nodes > 0);
193
194 listsz = num_nodes * sizeof (mde_cookie_t);
195 listp = kmem_zalloc(listsz, KM_SLEEP);
196
197 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "cpu"),
198 md_find_name(mdp, "fwd"), listp);
199
200 if (num_nodes < 0)
201 return (ENODEV);
202
203 for (i = 0; i < num_nodes; i++) {
204 if (md_get_prop_val(mdp, listp[i], "id", &cpuid_prop))
205 break;
206 if (cpuid_prop == (uint64_t)cpuid) {
207 cpunode = listp[i];
208 break;
209 }
210 }
211
212 if (cpunode == MDE_INVAL_ELEM_COOKIE)
213 return (ENODEV);
214
215 kmem_free(listp, listsz);
216
217 mpo_cpu_add(mdp, cpuid);
218
219 /*
220 * Note: uses cpu_lock to protect cpunodes
221 * which will be modified inside of fill_cpu and
222 * setup_exec_unit_mappings.
223 */
224 fill_cpu(mdp, cpunode);
225
226 /*
227 * Adding a CPU may cause the execution unit sharing
228 * relationships to change. Update the mappings in
229 * the cpunode structures.
230 */
231 setup_chip_mappings(mdp);
232 setup_exec_unit_mappings(mdp);
233
234 /* propagate the updated mappings to the CPU structures */
235 for (id = 0; id < NCPU; id++) {
236 if ((cpu = cpu_get(id)) == NULL)
237 continue;
238
239 cpu_map_exec_units(cpu);
240 }
241
242 (void) md_fini_handle(mdp);
243
244 if ((i = setup_cpu_common(cpuid)) != 0) {
245 (void) cleanup_cpu_common(cpuid);
246 return (i);
247 }
248
249 return (0);
250 }
251
252 /*
253 * Platform-specific actions to be taken when all cpus are running
254 * in the OS.
255 */
256 void
cpu_mp_init(void)257 cpu_mp_init(void)
258 {
259 extern void recalc_xc_timeouts();
260 extern int cif_cpu_mp_ready;
261
262 /* N.B. This must happen after xc_init() has run. */
263 recalc_xc_timeouts();
264
265 if (!domaining_enabled())
266 return;
267
268 cif_cpu_mp_ready = 1;
269 }
270
271 void
populate_idstr(struct cpu * cp)272 populate_idstr(struct cpu *cp)
273 {
274 char buf[CPU_IDSTRLEN];
275 struct cpu_node *cpunode;
276 processor_info_t *pi;
277
278 cpunode = &cpunodes[cp->cpu_id];
279 pi = &cp->cpu_type_info;
280 if (cp->cpu_m.cpu_chip == CPU_CHIPID_INVALID) {
281 (void) snprintf(buf, sizeof (buf),
282 "%s (cpuid %d, clock %d MHz)",
283 cpunode->name, cpunode->cpuid, pi->pi_clock);
284 } else {
285 (void) snprintf(buf, sizeof (buf),
286 "%s (chipid %d, clock %d MHz)",
287 cpunode->name, cp->cpu_m.cpu_chip, pi->pi_clock);
288 }
289
290 cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP);
291 (void) strcpy(cp->cpu_idstr, buf);
292
293 cp->cpu_brandstr = kmem_alloc(strlen(cpunode->name) + 1, KM_SLEEP);
294 (void) strcpy(cp->cpu_brandstr, cpunode->name);
295
296 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
297 }
298