1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Portions Copyright 2007 Shivakumar GN */ 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/cmn_err.h> 31 #include <sys/debug.h> 32 #include <sys/dirent.h> 33 #include <sys/kmem.h> 34 #include <sys/mman.h> 35 #include <sys/mutex.h> 36 #include <sys/sysmacros.h> 37 #include <sys/systm.h> 38 #include <sys/uio.h> 39 #include <sys/vmsystm.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 43 #include <vm/as.h> 44 #include <vm/seg_vn.h> 45 46 #include <sys/gfs.h> 47 48 /* 49 * Generic pseudo-filesystem routines. 50 * 51 * There are significant similarities between the implementation of certain file 52 * system entry points across different filesystems. While one could attempt to 53 * "choke up on the bat" and incorporate common functionality into a VOP 54 * preamble or postamble, such an approach is limited in the benefit it can 55 * provide. In this file we instead define a toolkit of routines which can be 56 * called from a filesystem (with in-kernel pseudo-filesystems being the focus 57 * of the exercise) in a more component-like fashion. 58 * 59 * There are three basic classes of routines: 60 * 61 * 1) Lowlevel support routines 62 * 63 * These routines are designed to play a support role for existing 64 * pseudo-filesystems (such as procfs). They simplify common tasks, 65 * without enforcing the filesystem to hand over management to GFS. The 66 * routines covered are: 67 * 68 * gfs_readdir_init() 69 * gfs_readdir_emit() 70 * gfs_readdir_emitn() 71 * gfs_readdir_pred() 72 * gfs_readdir_fini() 73 * gfs_lookup_dot() 74 * 75 * 2) Complete GFS management 76 * 77 * These routines take a more active role in management of the 78 * pseudo-filesystem. They handle the relationship between vnode private 79 * data and VFS data, as well as the relationship between vnodes in the 80 * directory hierarchy. 81 * 82 * In order to use these interfaces, the first member of every private 83 * v_data must be a gfs_file_t or a gfs_dir_t. This hands over all control 84 * to GFS. 85 * 86 * gfs_file_create() 87 * gfs_dir_create() 88 * gfs_root_create() 89 * 90 * gfs_file_inactive() 91 * gfs_dir_inactive() 92 * gfs_dir_lookup() 93 * gfs_dir_readdir() 94 * 95 * gfs_vop_inactive() 96 * gfs_vop_lookup() 97 * gfs_vop_readdir() 98 * gfs_vop_map() 99 */ 100 101 /* 102 * gfs_make_opsvec: take an array of vnode type definitions and create 103 * their vnodeops_t structures 104 * 105 * This routine takes an array of gfs_opsvec_t's. It could 106 * alternatively take an array of gfs_opsvec_t*'s, which would allow 107 * vnode types to be completely defined in files external to the caller 108 * of gfs_make_opsvec(). As it stands, much more sharing takes place -- 109 * both the caller and the vnode type provider need to access gfsv_ops 110 * and gfsv_template, and the caller also needs to know gfsv_name. 111 */ 112 int 113 gfs_make_opsvec(gfs_opsvec_t *vec) 114 { 115 int error, i; 116 117 for (i = 0; ; i++) { 118 if (vec[i].gfsv_name == NULL) 119 return (0); 120 error = vn_make_ops(vec[i].gfsv_name, vec[i].gfsv_template, 121 vec[i].gfsv_ops); 122 if (error) 123 break; 124 } 125 126 cmn_err(CE_WARN, "gfs_make_opsvec: bad vnode ops template for '%s'", 127 vec[i].gfsv_name); 128 for (i--; i >= 0; i--) { 129 vn_freevnodeops(*vec[i].gfsv_ops); 130 *vec[i].gfsv_ops = NULL; 131 } 132 return (error); 133 } 134 135 /* 136 * Low level directory routines 137 * 138 * These routines provide some simple abstractions for reading directories. 139 * They are designed to be used by existing pseudo filesystems (namely procfs) 140 * that already have a complicated management infrastructure. 141 */ 142 143 /* 144 * gfs_readdir_init: initiate a generic readdir 145 * st - a pointer to an uninitialized gfs_readdir_state_t structure 146 * name_max - the directory's maximum file name length 147 * ureclen - the exported file-space record length (1 for non-legacy FSs) 148 * uiop - the uiop passed to readdir 149 * parent - the parent directory's inode 150 * self - this directory's inode 151 * 152 * Returns 0 or a non-zero errno. 153 * 154 * Typical VOP_READDIR usage of gfs_readdir_*: 155 * 156 * if ((error = gfs_readdir_init(...)) != 0) 157 * return (error); 158 * eof = 0; 159 * while ((error = gfs_readdir_pred(..., &voffset)) != 0) { 160 * if (!consumer_entry_at(voffset)) 161 * voffset = consumer_next_entry(voffset); 162 * if (consumer_eof(voffset)) { 163 * eof = 1 164 * break; 165 * } 166 * if ((error = gfs_readdir_emit(..., voffset, 167 * consumer_ino(voffset), consumer_name(voffset))) != 0) 168 * break; 169 * } 170 * return (gfs_readdir_fini(..., error, eofp, eof)); 171 * 172 * As you can see, a zero result from gfs_readdir_pred() or 173 * gfs_readdir_emit() indicates that processing should continue, 174 * whereas a non-zero result indicates that the loop should terminate. 175 * Most consumers need do nothing more than let gfs_readdir_fini() 176 * determine what the cause of failure was and return the appropriate 177 * value. 178 */ 179 int 180 gfs_readdir_init(gfs_readdir_state_t *st, int name_max, int ureclen, 181 uio_t *uiop, ino64_t parent, ino64_t self) 182 { 183 if (uiop->uio_loffset < 0 || uiop->uio_resid <= 0 || 184 (uiop->uio_loffset % ureclen) != 0) 185 return (EINVAL); 186 187 st->grd_ureclen = ureclen; 188 st->grd_oresid = uiop->uio_resid; 189 st->grd_namlen = name_max; 190 st->grd_dirent = kmem_zalloc(DIRENT64_RECLEN(st->grd_namlen), KM_SLEEP); 191 st->grd_parent = parent; 192 st->grd_self = self; 193 194 return (0); 195 } 196 197 /* 198 * gfs_readdir_emit_int: internal routine to emit directory entry 199 * 200 * st - the current readdir state, which must have d_ino and d_name 201 * set 202 * uiop - caller-supplied uio pointer 203 * next - the offset of the next entry 204 */ 205 static int 206 gfs_readdir_emit_int(gfs_readdir_state_t *st, uio_t *uiop, offset_t next) 207 { 208 int reclen; 209 210 reclen = DIRENT64_RECLEN(strlen(st->grd_dirent->d_name)); 211 212 if (reclen > uiop->uio_resid) { 213 /* 214 * Error if no entries were returned yet 215 */ 216 if (uiop->uio_resid == st->grd_oresid) 217 return (EINVAL); 218 return (-1); 219 } 220 221 st->grd_dirent->d_off = next; 222 st->grd_dirent->d_reclen = (ushort_t)reclen; 223 224 if (uiomove((caddr_t)st->grd_dirent, reclen, UIO_READ, uiop)) 225 return (EFAULT); 226 227 uiop->uio_loffset = next; 228 229 return (0); 230 } 231 232 /* 233 * gfs_readdir_emit: emit a directory entry 234 * voff - the virtual offset (obtained from gfs_readdir_pred) 235 * ino - the entry's inode 236 * name - the entry's name 237 * 238 * Returns a 0 on success, a non-zero errno on failure, or -1 if the 239 * readdir loop should terminate. A non-zero result (either errno or 240 * -1) from this function is typically passed directly to 241 * gfs_readdir_fini(). 242 */ 243 int 244 gfs_readdir_emit(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff, 245 ino64_t ino, const char *name) 246 { 247 offset_t off = (voff + 2) * st->grd_ureclen; 248 249 st->grd_dirent->d_ino = ino; 250 (void) strncpy(st->grd_dirent->d_name, name, st->grd_namlen); 251 252 /* 253 * Inter-entry offsets are invalid, so we assume a record size of 254 * grd_ureclen and explicitly set the offset appropriately. 255 */ 256 return (gfs_readdir_emit_int(st, uiop, off + st->grd_ureclen)); 257 } 258 259 /* 260 * gfs_readdir_emitn: like gfs_readdir_emit(), but takes an integer 261 * instead of a string for the entry's name. 262 */ 263 int 264 gfs_readdir_emitn(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff, 265 ino64_t ino, unsigned long num) 266 { 267 char buf[40]; 268 269 numtos(num, buf); 270 return (gfs_readdir_emit(st, uiop, voff, ino, buf)); 271 } 272 273 /* 274 * gfs_readdir_pred: readdir loop predicate 275 * voffp - a pointer in which the next virtual offset should be stored 276 * 277 * Returns a 0 on success, a non-zero errno on failure, or -1 if the 278 * readdir loop should terminate. A non-zero result (either errno or 279 * -1) from this function is typically passed directly to 280 * gfs_readdir_fini(). 281 */ 282 int 283 gfs_readdir_pred(gfs_readdir_state_t *st, uio_t *uiop, offset_t *voffp) 284 { 285 offset_t off, voff; 286 int error; 287 288 top: 289 if (uiop->uio_resid <= 0) 290 return (-1); 291 292 off = uiop->uio_loffset / st->grd_ureclen; 293 voff = off - 2; 294 if (off == 0) { 295 if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_self, 296 ".")) == 0) 297 goto top; 298 } else if (off == 1) { 299 if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_parent, 300 "..")) == 0) 301 goto top; 302 } else { 303 *voffp = voff; 304 return (0); 305 } 306 307 return (error); 308 } 309 310 /* 311 * gfs_readdir_fini: generic readdir cleanup 312 * error - if positive, an error to return 313 * eofp - the eofp passed to readdir 314 * eof - the eof value 315 * 316 * Returns a 0 on success, a non-zero errno on failure. This result 317 * should be returned from readdir. 318 */ 319 int 320 gfs_readdir_fini(gfs_readdir_state_t *st, int error, int *eofp, int eof) 321 { 322 kmem_free(st->grd_dirent, DIRENT64_RECLEN(st->grd_namlen)); 323 if (error > 0) 324 return (error); 325 if (eofp) 326 *eofp = eof; 327 return (0); 328 } 329 330 /* 331 * gfs_lookup_dot 332 * 333 * Performs a basic check for "." and ".." directory entries. 334 */ 335 int 336 gfs_lookup_dot(vnode_t **vpp, vnode_t *dvp, vnode_t *pvp, const char *nm) 337 { 338 if (*nm == '\0' || strcmp(nm, ".") == 0) { 339 VN_HOLD(dvp); 340 *vpp = dvp; 341 return (0); 342 } else if (strcmp(nm, "..") == 0) { 343 if (pvp == NULL) { 344 ASSERT(dvp->v_flag & VROOT); 345 VN_HOLD(dvp); 346 *vpp = dvp; 347 } else { 348 VN_HOLD(pvp); 349 *vpp = pvp; 350 } 351 return (0); 352 } 353 354 return (-1); 355 } 356 357 /* 358 * gfs_file_create(): create a new GFS file 359 * 360 * size - size of private data structure (v_data) 361 * pvp - parent vnode (GFS directory) 362 * ops - vnode operations vector 363 * 364 * In order to use this interface, the parent vnode must have been created by 365 * gfs_dir_create(), and the private data stored in v_data must have a 366 * 'gfs_file_t' as its first field. 367 * 368 * Given these constraints, this routine will automatically: 369 * 370 * - Allocate v_data for the vnode 371 * - Initialize necessary fields in the vnode 372 * - Hold the parent 373 */ 374 vnode_t * 375 gfs_file_create(size_t size, vnode_t *pvp, vnodeops_t *ops) 376 { 377 gfs_file_t *fp; 378 vnode_t *vp; 379 380 /* 381 * Allocate vnode and internal data structure 382 */ 383 fp = kmem_zalloc(size, KM_SLEEP); 384 vp = vn_alloc(KM_SLEEP); 385 386 /* 387 * Set up various pointers 388 */ 389 fp->gfs_vnode = vp; 390 fp->gfs_parent = pvp; 391 vp->v_data = fp; 392 fp->gfs_size = size; 393 fp->gfs_type = GFS_FILE; 394 395 /* 396 * Initialize vnode and hold parent. 397 */ 398 vn_setops(vp, ops); 399 if (pvp) { 400 VN_SET_VFS_TYPE_DEV(vp, pvp->v_vfsp, VREG, 0); 401 VN_HOLD(pvp); 402 } 403 404 return (vp); 405 } 406 407 /* 408 * gfs_dir_create: creates a new directory in the parent 409 * 410 * size - size of private data structure (v_data) 411 * pvp - parent vnode (GFS directory) 412 * ops - vnode operations vector 413 * entries - NULL-terminated list of static entries (if any) 414 * maxlen - maximum length of a directory entry 415 * readdir_cb - readdir callback (see gfs_dir_readdir) 416 * inode_cb - inode callback (see gfs_dir_readdir) 417 * lookup_cb - lookup callback (see gfs_dir_lookup) 418 * 419 * In order to use this function, the first member of the private vnode 420 * structure (v_data) must be a gfs_dir_t. For each directory, there are 421 * static entries, defined when the structure is initialized, and dynamic 422 * entries, retrieved through callbacks. 423 * 424 * If a directory has static entries, then it must supply a inode callback, 425 * which will compute the inode number based on the parent and the index. 426 * For a directory with dynamic entries, the caller must supply a readdir 427 * callback and a lookup callback. If a static lookup fails, we fall back to 428 * the supplied lookup callback, if any. 429 * 430 * This function also performs the same initialization as gfs_file_create(). 431 */ 432 vnode_t * 433 gfs_dir_create(size_t struct_size, vnode_t *pvp, vnodeops_t *ops, 434 gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen, 435 gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb) 436 { 437 vnode_t *vp; 438 gfs_dir_t *dp; 439 gfs_dirent_t *de; 440 441 vp = gfs_file_create(struct_size, pvp, ops); 442 vp->v_type = VDIR; 443 444 dp = vp->v_data; 445 dp->gfsd_file.gfs_type = GFS_DIR; 446 dp->gfsd_maxlen = maxlen; 447 448 if (entries != NULL) { 449 for (de = entries; de->gfse_name != NULL; de++) 450 dp->gfsd_nstatic++; 451 452 dp->gfsd_static = kmem_alloc( 453 dp->gfsd_nstatic * sizeof (gfs_dirent_t), KM_SLEEP); 454 bcopy(entries, dp->gfsd_static, 455 dp->gfsd_nstatic * sizeof (gfs_dirent_t)); 456 } 457 458 dp->gfsd_readdir = readdir_cb; 459 dp->gfsd_lookup = lookup_cb; 460 dp->gfsd_inode = inode_cb; 461 462 mutex_init(&dp->gfsd_lock, NULL, MUTEX_DEFAULT, NULL); 463 464 return (vp); 465 } 466 467 /* 468 * gfs_root_create(): create a root vnode for a GFS filesystem 469 * 470 * Similar to gfs_dir_create(), this creates a root vnode for a filesystem. The 471 * only difference is that it takes a vfs_t instead of a vnode_t as its parent. 472 */ 473 vnode_t * 474 gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino, 475 gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen, 476 gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb) 477 { 478 vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb, 479 maxlen, readdir_cb, lookup_cb); 480 481 /* Manually set the inode */ 482 ((gfs_file_t *)vp->v_data)->gfs_ino = ino; 483 484 VFS_HOLD(vfsp); 485 VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0); 486 vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT; 487 488 return (vp); 489 } 490 491 /* 492 * gfs_file_inactive() 493 * 494 * Called from the VOP_INACTIVE() routine. If necessary, this routine will 495 * remove the given vnode from the parent directory and clean up any references 496 * in the VFS layer. 497 * 498 * If the vnode was not removed (due to a race with vget), then NULL is 499 * returned. Otherwise, a pointer to the private data is returned. 500 */ 501 void * 502 gfs_file_inactive(vnode_t *vp) 503 { 504 int i; 505 gfs_dirent_t *ge = NULL; 506 gfs_file_t *fp = vp->v_data; 507 gfs_dir_t *dp = NULL; 508 void *data; 509 510 if (fp->gfs_parent == NULL) 511 goto found; 512 513 dp = fp->gfs_parent->v_data; 514 515 /* 516 * First, see if this vnode is cached in the parent. 517 */ 518 gfs_dir_lock(dp); 519 520 /* 521 * Find it in the set of static entries. 522 */ 523 for (i = 0; i < dp->gfsd_nstatic; i++) { 524 ge = &dp->gfsd_static[i]; 525 526 if (ge->gfse_vnode == vp) 527 goto found; 528 } 529 530 /* 531 * If 'ge' is NULL, then it is a dynamic entry. 532 */ 533 ge = NULL; 534 535 found: 536 mutex_enter(&vp->v_lock); 537 if (vp->v_count == 1) { 538 /* 539 * Really remove this vnode 540 */ 541 data = vp->v_data; 542 if (ge != NULL) { 543 /* 544 * If this was a statically cached entry, simply set the 545 * cached vnode to NULL. 546 */ 547 ge->gfse_vnode = NULL; 548 } 549 mutex_exit(&vp->v_lock); 550 551 /* 552 * Free vnode and release parent 553 */ 554 if (fp->gfs_parent) { 555 gfs_dir_unlock(dp); 556 VN_RELE(fp->gfs_parent); 557 } else { 558 ASSERT(vp->v_vfsp != NULL); 559 VFS_RELE(vp->v_vfsp); 560 } 561 vn_free(vp); 562 } else { 563 vp->v_count--; 564 data = NULL; 565 mutex_exit(&vp->v_lock); 566 if (dp) 567 gfs_dir_unlock(dp); 568 } 569 570 return (data); 571 } 572 573 /* 574 * gfs_dir_inactive() 575 * 576 * Same as above, but for directories. 577 */ 578 void * 579 gfs_dir_inactive(vnode_t *vp) 580 { 581 gfs_dir_t *dp; 582 583 ASSERT(vp->v_type == VDIR); 584 585 if ((dp = gfs_file_inactive(vp)) != NULL) { 586 mutex_destroy(&dp->gfsd_lock); 587 if (dp->gfsd_nstatic) 588 kmem_free(dp->gfsd_static, 589 dp->gfsd_nstatic * sizeof (gfs_dirent_t)); 590 } 591 592 return (dp); 593 } 594 595 /* 596 * gfs_dir_lookup() 597 * 598 * Looks up the given name in the directory and returns the corresponding vnode, 599 * if found. 600 * 601 * First, we search statically defined entries, if any. If a match is found, 602 * and GFS_CACHE_VNODE is set and the vnode exists, we simply return the 603 * existing vnode. Otherwise, we call the static entry's callback routine, 604 * caching the result if necessary. 605 * 606 * If no static entry is found, we invoke the lookup callback, if any. The 607 * arguments to this callback are: 608 * 609 * int gfs_lookup_cb(vnode_t *pvp, const char *nm, vnode_t **vpp); 610 * 611 * pvp - parent vnode 612 * nm - name of entry 613 * vpp - pointer to resulting vnode 614 * 615 * Returns 0 on success, non-zero on error. 616 */ 617 int 618 gfs_dir_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp) 619 { 620 int i; 621 gfs_dirent_t *ge; 622 vnode_t *vp; 623 gfs_dir_t *dp = dvp->v_data; 624 int ret = 0; 625 626 ASSERT(dvp->v_type == VDIR); 627 628 if (gfs_lookup_dot(vpp, dvp, dp->gfsd_file.gfs_parent, nm) == 0) 629 return (0); 630 631 gfs_dir_lock(dp); 632 633 /* 634 * Search static entries. 635 */ 636 for (i = 0; i < dp->gfsd_nstatic; i++) { 637 ge = &dp->gfsd_static[i]; 638 639 if (strcmp(ge->gfse_name, nm) == 0) { 640 if (ge->gfse_vnode) { 641 ASSERT(ge->gfse_flags & GFS_CACHE_VNODE); 642 vp = ge->gfse_vnode; 643 VN_HOLD(vp); 644 goto out; 645 } 646 647 /* 648 * We drop the directory lock, as the constructor will 649 * need to do KM_SLEEP allocations. If we return from 650 * the constructor only to find that a parallel 651 * operation has completed, and GFS_CACHE_VNODE is set 652 * for this entry, we discard the result in favor of the 653 * cached vnode. 654 */ 655 gfs_dir_unlock(dp); 656 vp = ge->gfse_ctor(dvp); 657 gfs_dir_lock(dp); 658 659 ((gfs_file_t *)vp->v_data)->gfs_index = i; 660 661 /* Set the inode according to the callback. */ 662 ((gfs_file_t *)vp->v_data)->gfs_ino = 663 dp->gfsd_inode(dvp, i); 664 665 if (ge->gfse_flags & GFS_CACHE_VNODE) { 666 if (ge->gfse_vnode == NULL) { 667 ge->gfse_vnode = vp; 668 } else { 669 /* 670 * A parallel constructor beat us to it; 671 * return existing vnode. We have to be 672 * careful because we can't release the 673 * current vnode while holding the 674 * directory lock; its inactive routine 675 * will try to lock this directory. 676 */ 677 vnode_t *oldvp = vp; 678 vp = ge->gfse_vnode; 679 VN_HOLD(vp); 680 681 gfs_dir_unlock(dp); 682 VN_RELE(oldvp); 683 gfs_dir_lock(dp); 684 } 685 } 686 687 goto out; 688 } 689 } 690 691 /* 692 * See if there is a dynamic constructor. 693 */ 694 if (dp->gfsd_lookup) { 695 ino64_t ino; 696 gfs_file_t *fp; 697 698 /* 699 * Once again, drop the directory lock, as the lookup routine 700 * will need to allocate memory, or otherwise deadlock on this 701 * directory. 702 */ 703 gfs_dir_unlock(dp); 704 ret = dp->gfsd_lookup(dvp, nm, &vp, &ino); 705 gfs_dir_lock(dp); 706 if (ret != 0) 707 goto out; 708 709 fp = (gfs_file_t *)vp->v_data; 710 fp->gfs_index = -1; 711 fp->gfs_ino = ino; 712 } else { 713 /* 714 * No static entry found, and there is no lookup callback, so 715 * return ENOENT. 716 */ 717 ret = ENOENT; 718 } 719 720 out: 721 gfs_dir_unlock(dp); 722 723 if (ret == 0) 724 *vpp = vp; 725 else 726 *vpp = NULL; 727 728 return (ret); 729 } 730 731 /* 732 * gfs_dir_readdir: does a readdir() on the given directory 733 * 734 * dvp - directory vnode 735 * uiop - uio structure 736 * eofp - eof pointer 737 * data - arbitrary data passed to readdir callback 738 * 739 * This routine does all the readdir() dirty work. Even so, the caller must 740 * supply two callbacks in order to get full compatibility. 741 * 742 * If the directory contains static entries, an inode callback must be 743 * specified. This avoids having to create every vnode and call VOP_GETATTR() 744 * when reading the directory. This function has the following arguments: 745 * 746 * ino_t gfs_inode_cb(vnode_t *vp, int index); 747 * 748 * vp - vnode for the directory 749 * index - index in original gfs_dirent_t array 750 * 751 * Returns the inode number for the given entry. 752 * 753 * For directories with dynamic entries, a readdir callback must be provided. 754 * This is significantly more complex, thanks to the particulars of 755 * VOP_READDIR(). 756 * 757 * int gfs_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 758 * offset_t *off, offset_t *nextoff, void *data) 759 * 760 * vp - directory vnode 761 * dp - directory entry, sized according to maxlen given to 762 * gfs_dir_create(). callback must fill in d_name and 763 * d_ino. 764 * eofp - callback must set to 1 when EOF has been reached 765 * off - on entry, the last offset read from the directory. Callback 766 * must set to the offset of the current entry, typically left 767 * untouched. 768 * nextoff - callback must set to offset of next entry. Typically 769 * (off + 1) 770 * data - caller-supplied data 771 * 772 * Return 0 on success, or error on failure. 773 */ 774 int 775 gfs_dir_readdir(vnode_t *dvp, uio_t *uiop, int *eofp, void *data) 776 { 777 gfs_readdir_state_t gstate; 778 int error, eof = 0; 779 ino64_t ino, pino; 780 offset_t off, next; 781 gfs_dir_t *dp = dvp->v_data; 782 783 ino = dp->gfsd_file.gfs_ino; 784 785 if (dp->gfsd_file.gfs_parent == NULL) 786 pino = ino; /* root of filesystem */ 787 else 788 pino = ((gfs_file_t *) 789 (dp->gfsd_file.gfs_parent->v_data))->gfs_ino; 790 791 if ((error = gfs_readdir_init(&gstate, dp->gfsd_maxlen, 1, uiop, 792 pino, ino)) != 0) 793 return (error); 794 795 while ((error = gfs_readdir_pred(&gstate, uiop, &off)) == 0 && 796 !eof) { 797 798 if (off >= 0 && off < dp->gfsd_nstatic) { 799 ino = dp->gfsd_inode(dvp, off); 800 801 if ((error = gfs_readdir_emit(&gstate, uiop, 802 off, ino, dp->gfsd_static[off].gfse_name)) 803 != 0) 804 break; 805 806 } else if (dp->gfsd_readdir) { 807 off -= dp->gfsd_nstatic; 808 809 if ((error = dp->gfsd_readdir(dvp, 810 gstate.grd_dirent, &eof, &off, &next, 811 data)) != 0 || eof) 812 break; 813 814 off += dp->gfsd_nstatic + 2; 815 next += dp->gfsd_nstatic + 2; 816 817 if ((error = gfs_readdir_emit_int(&gstate, uiop, 818 next)) != 0) 819 break; 820 } else { 821 /* 822 * Offset is beyond the end of the static entries, and 823 * we have no dynamic entries. Set EOF. 824 */ 825 eof = 1; 826 } 827 } 828 829 return (gfs_readdir_fini(&gstate, error, eofp, eof)); 830 } 831 832 833 /* 834 * gfs_vop_lookup: VOP_LOOKUP() entry point 835 * 836 * For use directly in vnode ops table. Given a GFS directory, calls 837 * gfs_dir_lookup() as necessary. 838 */ 839 /* ARGSUSED */ 840 int 841 gfs_vop_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 842 int flags, vnode_t *rdir, cred_t *cr) 843 { 844 return (gfs_dir_lookup(dvp, nm, vpp)); 845 } 846 847 /* 848 * gfs_vop_readdir: VOP_READDIR() entry point 849 * 850 * For use directly in vnode ops table. Given a GFS directory, calls 851 * gfs_dir_readdir() as necessary. 852 */ 853 /* ARGSUSED */ 854 int 855 gfs_vop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp) 856 { 857 return (gfs_dir_readdir(vp, uiop, eofp, NULL)); 858 } 859 860 861 /* 862 * gfs_vop_map: VOP_MAP() entry point 863 * 864 * Convenient routine for handling pseudo-files that wish to allow mmap() calls. 865 * This function only works for readonly files, and uses the read function for 866 * the vnode to fill in the data. The mapped data is immediately faulted in and 867 * filled with the necessary data during this call; there are no getpage() or 868 * putpage() routines. 869 */ 870 /* ARGSUSED */ 871 int 872 gfs_vop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 873 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cred) 874 { 875 int rv; 876 ssize_t resid = len; 877 878 /* 879 * Check for bad parameters 880 */ 881 #ifdef _ILP32 882 if (len > MAXOFF_T) 883 return (ENOMEM); 884 #endif 885 if (vp->v_flag & VNOMAP) 886 return (ENOTSUP); 887 if (off > MAXOFF_T) 888 return (EFBIG); 889 if ((long)off < 0 || (long)(off + len) < 0) 890 return (EINVAL); 891 if (vp->v_type != VREG) 892 return (ENODEV); 893 if ((prot & (PROT_EXEC | PROT_WRITE)) != 0) 894 return (EACCES); 895 896 /* 897 * Find appropriate address if needed, otherwise clear address range. 898 */ 899 as_rangelock(as); 900 if ((flags & MAP_FIXED) == 0) { 901 map_addr(addrp, len, (offset_t)off, 1, flags); 902 if (*addrp == NULL) { 903 as_rangeunlock(as); 904 return (ENOMEM); 905 } 906 } else { 907 (void) as_unmap(as, *addrp, len); 908 } 909 910 /* 911 * Create mapping 912 */ 913 rv = as_map(as, *addrp, len, segvn_create, zfod_argsp); 914 as_rangeunlock(as); 915 if (rv != 0) 916 return (rv); 917 918 /* 919 * Fill with data from read() 920 */ 921 rv = vn_rdwr(UIO_READ, vp, *addrp, len, off, UIO_USERSPACE, 922 0, (rlim64_t)0, cred, &resid); 923 924 if (rv == 0 && resid != 0) 925 rv = ENXIO; 926 927 if (rv != 0) { 928 as_rangelock(as); 929 (void) as_unmap(as, *addrp, len); 930 as_rangeunlock(as); 931 } 932 933 return (rv); 934 } 935 936 /* 937 * gfs_vop_inactive: VOP_INACTIVE() entry point 938 * 939 * Given a vnode that is a GFS file or directory, call gfs_file_inactive() or 940 * gfs_dir_inactive() as necessary, and kmem_free()s associated private data. 941 */ 942 /* ARGSUSED */ 943 void 944 gfs_vop_inactive(vnode_t *vp, cred_t *cr) 945 { 946 gfs_file_t *fp = vp->v_data; 947 void *data; 948 949 if (fp->gfs_type == GFS_DIR) 950 data = gfs_dir_inactive(vp); 951 else 952 data = gfs_file_inactive(vp); 953 954 if (data != NULL) 955 kmem_free(data, fp->gfs_size); 956 } 957