/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* Portions Copyright 2007 Shivakumar GN */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Generic pseudo-filesystem routines. * * There are significant similarities between the implementation of certain file * system entry points across different filesystems. While one could attempt to * "choke up on the bat" and incorporate common functionality into a VOP * preamble or postamble, such an approach is limited in the benefit it can * provide. In this file we instead define a toolkit of routines which can be * called from a filesystem (with in-kernel pseudo-filesystems being the focus * of the exercise) in a more component-like fashion. * * There are three basic classes of routines: * * 1) Lowlevel support routines * * These routines are designed to play a support role for existing * pseudo-filesystems (such as procfs). They simplify common tasks, * without enforcing the filesystem to hand over management to GFS. The * routines covered are: * * gfs_readdir_init() * gfs_readdir_emit() * gfs_readdir_emitn() * gfs_readdir_pred() * gfs_readdir_fini() * gfs_lookup_dot() * * 2) Complete GFS management * * These routines take a more active role in management of the * pseudo-filesystem. They handle the relationship between vnode private * data and VFS data, as well as the relationship between vnodes in the * directory hierarchy. * * In order to use these interfaces, the first member of every private * v_data must be a gfs_file_t or a gfs_dir_t. This hands over all control * to GFS. * * gfs_file_create() * gfs_dir_create() * gfs_root_create() * * gfs_file_inactive() * gfs_dir_inactive() * gfs_dir_lookup() * gfs_dir_readdir() * * gfs_vop_inactive() * gfs_vop_lookup() * gfs_vop_readdir() * gfs_vop_map() */ /* * gfs_make_opsvec: take an array of vnode type definitions and create * their vnodeops_t structures * * This routine takes an array of gfs_opsvec_t's. It could * alternatively take an array of gfs_opsvec_t*'s, which would allow * vnode types to be completely defined in files external to the caller * of gfs_make_opsvec(). As it stands, much more sharing takes place -- * both the caller and the vnode type provider need to access gfsv_ops * and gfsv_template, and the caller also needs to know gfsv_name. */ int gfs_make_opsvec(gfs_opsvec_t *vec) { int error, i; for (i = 0; ; i++) { if (vec[i].gfsv_name == NULL) return (0); error = vn_make_ops(vec[i].gfsv_name, vec[i].gfsv_template, vec[i].gfsv_ops); if (error) break; } cmn_err(CE_WARN, "gfs_make_opsvec: bad vnode ops template for '%s'", vec[i].gfsv_name); for (i--; i >= 0; i--) { vn_freevnodeops(*vec[i].gfsv_ops); *vec[i].gfsv_ops = NULL; } return (error); } /* * Low level directory routines * * These routines provide some simple abstractions for reading directories. * They are designed to be used by existing pseudo filesystems (namely procfs) * that already have a complicated management infrastructure. */ /* * gfs_readdir_init: initiate a generic readdir * st - a pointer to an uninitialized gfs_readdir_state_t structure * name_max - the directory's maximum file name length * ureclen - the exported file-space record length (1 for non-legacy FSs) * uiop - the uiop passed to readdir * parent - the parent directory's inode * self - this directory's inode * * Returns 0 or a non-zero errno. * * Typical VOP_READDIR usage of gfs_readdir_*: * * if ((error = gfs_readdir_init(...)) != 0) * return (error); * eof = 0; * while ((error = gfs_readdir_pred(..., &voffset)) != 0) { * if (!consumer_entry_at(voffset)) * voffset = consumer_next_entry(voffset); * if (consumer_eof(voffset)) { * eof = 1 * break; * } * if ((error = gfs_readdir_emit(..., voffset, * consumer_ino(voffset), consumer_name(voffset))) != 0) * break; * } * return (gfs_readdir_fini(..., error, eofp, eof)); * * As you can see, a zero result from gfs_readdir_pred() or * gfs_readdir_emit() indicates that processing should continue, * whereas a non-zero result indicates that the loop should terminate. * Most consumers need do nothing more than let gfs_readdir_fini() * determine what the cause of failure was and return the appropriate * value. */ int gfs_readdir_init(gfs_readdir_state_t *st, int name_max, int ureclen, uio_t *uiop, ino64_t parent, ino64_t self) { if (uiop->uio_loffset < 0 || uiop->uio_resid <= 0 || (uiop->uio_loffset % ureclen) != 0) return (EINVAL); st->grd_ureclen = ureclen; st->grd_oresid = uiop->uio_resid; st->grd_namlen = name_max; st->grd_dirent = kmem_zalloc(DIRENT64_RECLEN(st->grd_namlen), KM_SLEEP); st->grd_parent = parent; st->grd_self = self; return (0); } /* * gfs_readdir_emit_int: internal routine to emit directory entry * * st - the current readdir state, which must have d_ino and d_name * set * uiop - caller-supplied uio pointer * next - the offset of the next entry */ static int gfs_readdir_emit_int(gfs_readdir_state_t *st, uio_t *uiop, offset_t next) { int reclen; reclen = DIRENT64_RECLEN(strlen(st->grd_dirent->d_name)); if (reclen > uiop->uio_resid) { /* * Error if no entries were returned yet */ if (uiop->uio_resid == st->grd_oresid) return (EINVAL); return (-1); } st->grd_dirent->d_off = next; st->grd_dirent->d_reclen = (ushort_t)reclen; if (uiomove((caddr_t)st->grd_dirent, reclen, UIO_READ, uiop)) return (EFAULT); uiop->uio_loffset = next; return (0); } /* * gfs_readdir_emit: emit a directory entry * voff - the virtual offset (obtained from gfs_readdir_pred) * ino - the entry's inode * name - the entry's name * * Returns a 0 on success, a non-zero errno on failure, or -1 if the * readdir loop should terminate. A non-zero result (either errno or * -1) from this function is typically passed directly to * gfs_readdir_fini(). */ int gfs_readdir_emit(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff, ino64_t ino, const char *name) { offset_t off = (voff + 2) * st->grd_ureclen; st->grd_dirent->d_ino = ino; (void) strncpy(st->grd_dirent->d_name, name, st->grd_namlen); /* * Inter-entry offsets are invalid, so we assume a record size of * grd_ureclen and explicitly set the offset appropriately. */ return (gfs_readdir_emit_int(st, uiop, off + st->grd_ureclen)); } /* * gfs_readdir_emitn: like gfs_readdir_emit(), but takes an integer * instead of a string for the entry's name. */ int gfs_readdir_emitn(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff, ino64_t ino, unsigned long num) { char buf[40]; numtos(num, buf); return (gfs_readdir_emit(st, uiop, voff, ino, buf)); } /* * gfs_readdir_pred: readdir loop predicate * voffp - a pointer in which the next virtual offset should be stored * * Returns a 0 on success, a non-zero errno on failure, or -1 if the * readdir loop should terminate. A non-zero result (either errno or * -1) from this function is typically passed directly to * gfs_readdir_fini(). */ int gfs_readdir_pred(gfs_readdir_state_t *st, uio_t *uiop, offset_t *voffp) { offset_t off, voff; int error; top: if (uiop->uio_resid <= 0) return (-1); off = uiop->uio_loffset / st->grd_ureclen; voff = off - 2; if (off == 0) { if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_self, ".")) == 0) goto top; } else if (off == 1) { if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_parent, "..")) == 0) goto top; } else { *voffp = voff; return (0); } return (error); } /* * gfs_readdir_fini: generic readdir cleanup * error - if positive, an error to return * eofp - the eofp passed to readdir * eof - the eof value * * Returns a 0 on success, a non-zero errno on failure. This result * should be returned from readdir. */ int gfs_readdir_fini(gfs_readdir_state_t *st, int error, int *eofp, int eof) { kmem_free(st->grd_dirent, DIRENT64_RECLEN(st->grd_namlen)); if (error > 0) return (error); if (eofp) *eofp = eof; return (0); } /* * gfs_lookup_dot * * Performs a basic check for "." and ".." directory entries. */ int gfs_lookup_dot(vnode_t **vpp, vnode_t *dvp, vnode_t *pvp, const char *nm) { if (*nm == '\0' || strcmp(nm, ".") == 0) { VN_HOLD(dvp); *vpp = dvp; return (0); } else if (strcmp(nm, "..") == 0) { if (pvp == NULL) { ASSERT(dvp->v_flag & VROOT); VN_HOLD(dvp); *vpp = dvp; } else { VN_HOLD(pvp); *vpp = pvp; } return (0); } return (-1); } /* * gfs_file_create(): create a new GFS file * * size - size of private data structure (v_data) * pvp - parent vnode (GFS directory) * ops - vnode operations vector * * In order to use this interface, the parent vnode must have been created by * gfs_dir_create(), and the private data stored in v_data must have a * 'gfs_file_t' as its first field. * * Given these constraints, this routine will automatically: * * - Allocate v_data for the vnode * - Initialize necessary fields in the vnode * - Hold the parent */ vnode_t * gfs_file_create(size_t size, vnode_t *pvp, vnodeops_t *ops) { gfs_file_t *fp; vnode_t *vp; /* * Allocate vnode and internal data structure */ fp = kmem_zalloc(size, KM_SLEEP); vp = vn_alloc(KM_SLEEP); /* * Set up various pointers */ fp->gfs_vnode = vp; fp->gfs_parent = pvp; vp->v_data = fp; fp->gfs_size = size; fp->gfs_type = GFS_FILE; /* * Initialize vnode and hold parent. */ vn_setops(vp, ops); if (pvp) { VN_SET_VFS_TYPE_DEV(vp, pvp->v_vfsp, VREG, 0); VN_HOLD(pvp); } return (vp); } /* * gfs_dir_create: creates a new directory in the parent * * size - size of private data structure (v_data) * pvp - parent vnode (GFS directory) * ops - vnode operations vector * entries - NULL-terminated list of static entries (if any) * maxlen - maximum length of a directory entry * readdir_cb - readdir callback (see gfs_dir_readdir) * inode_cb - inode callback (see gfs_dir_readdir) * lookup_cb - lookup callback (see gfs_dir_lookup) * * In order to use this function, the first member of the private vnode * structure (v_data) must be a gfs_dir_t. For each directory, there are * static entries, defined when the structure is initialized, and dynamic * entries, retrieved through callbacks. * * If a directory has static entries, then it must supply a inode callback, * which will compute the inode number based on the parent and the index. * For a directory with dynamic entries, the caller must supply a readdir * callback and a lookup callback. If a static lookup fails, we fall back to * the supplied lookup callback, if any. * * This function also performs the same initialization as gfs_file_create(). */ vnode_t * gfs_dir_create(size_t struct_size, vnode_t *pvp, vnodeops_t *ops, gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen, gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb) { vnode_t *vp; gfs_dir_t *dp; gfs_dirent_t *de; vp = gfs_file_create(struct_size, pvp, ops); vp->v_type = VDIR; dp = vp->v_data; dp->gfsd_file.gfs_type = GFS_DIR; dp->gfsd_maxlen = maxlen; if (entries != NULL) { for (de = entries; de->gfse_name != NULL; de++) dp->gfsd_nstatic++; dp->gfsd_static = kmem_alloc( dp->gfsd_nstatic * sizeof (gfs_dirent_t), KM_SLEEP); bcopy(entries, dp->gfsd_static, dp->gfsd_nstatic * sizeof (gfs_dirent_t)); } dp->gfsd_readdir = readdir_cb; dp->gfsd_lookup = lookup_cb; dp->gfsd_inode = inode_cb; mutex_init(&dp->gfsd_lock, NULL, MUTEX_DEFAULT, NULL); return (vp); } /* * gfs_root_create(): create a root vnode for a GFS filesystem * * Similar to gfs_dir_create(), this creates a root vnode for a filesystem. The * only difference is that it takes a vfs_t instead of a vnode_t as its parent. */ vnode_t * gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino, gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen, gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb) { vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb, maxlen, readdir_cb, lookup_cb); /* Manually set the inode */ ((gfs_file_t *)vp->v_data)->gfs_ino = ino; VFS_HOLD(vfsp); VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0); vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT; return (vp); } /* * gfs_file_inactive() * * Called from the VOP_INACTIVE() routine. If necessary, this routine will * remove the given vnode from the parent directory and clean up any references * in the VFS layer. * * If the vnode was not removed (due to a race with vget), then NULL is * returned. Otherwise, a pointer to the private data is returned. */ void * gfs_file_inactive(vnode_t *vp) { int i; gfs_dirent_t *ge = NULL; gfs_file_t *fp = vp->v_data; gfs_dir_t *dp = NULL; void *data; if (fp->gfs_parent == NULL) goto found; dp = fp->gfs_parent->v_data; /* * First, see if this vnode is cached in the parent. */ gfs_dir_lock(dp); /* * Find it in the set of static entries. */ for (i = 0; i < dp->gfsd_nstatic; i++) { ge = &dp->gfsd_static[i]; if (ge->gfse_vnode == vp) goto found; } /* * If 'ge' is NULL, then it is a dynamic entry. */ ge = NULL; found: mutex_enter(&vp->v_lock); if (vp->v_count == 1) { /* * Really remove this vnode */ data = vp->v_data; if (ge != NULL) { /* * If this was a statically cached entry, simply set the * cached vnode to NULL. */ ge->gfse_vnode = NULL; } mutex_exit(&vp->v_lock); /* * Free vnode and release parent */ if (fp->gfs_parent) { gfs_dir_unlock(dp); VN_RELE(fp->gfs_parent); } else { ASSERT(vp->v_vfsp != NULL); VFS_RELE(vp->v_vfsp); } vn_free(vp); } else { vp->v_count--; data = NULL; mutex_exit(&vp->v_lock); if (dp) gfs_dir_unlock(dp); } return (data); } /* * gfs_dir_inactive() * * Same as above, but for directories. */ void * gfs_dir_inactive(vnode_t *vp) { gfs_dir_t *dp; ASSERT(vp->v_type == VDIR); if ((dp = gfs_file_inactive(vp)) != NULL) { mutex_destroy(&dp->gfsd_lock); if (dp->gfsd_nstatic) kmem_free(dp->gfsd_static, dp->gfsd_nstatic * sizeof (gfs_dirent_t)); } return (dp); } /* * gfs_dir_lookup() * * Looks up the given name in the directory and returns the corresponding vnode, * if found. * * First, we search statically defined entries, if any. If a match is found, * and GFS_CACHE_VNODE is set and the vnode exists, we simply return the * existing vnode. Otherwise, we call the static entry's callback routine, * caching the result if necessary. * * If no static entry is found, we invoke the lookup callback, if any. The * arguments to this callback are: * * int gfs_lookup_cb(vnode_t *pvp, const char *nm, vnode_t **vpp); * * pvp - parent vnode * nm - name of entry * vpp - pointer to resulting vnode * * Returns 0 on success, non-zero on error. */ int gfs_dir_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp) { int i; gfs_dirent_t *ge; vnode_t *vp; gfs_dir_t *dp = dvp->v_data; int ret = 0; ASSERT(dvp->v_type == VDIR); if (gfs_lookup_dot(vpp, dvp, dp->gfsd_file.gfs_parent, nm) == 0) return (0); gfs_dir_lock(dp); /* * Search static entries. */ for (i = 0; i < dp->gfsd_nstatic; i++) { ge = &dp->gfsd_static[i]; if (strcmp(ge->gfse_name, nm) == 0) { if (ge->gfse_vnode) { ASSERT(ge->gfse_flags & GFS_CACHE_VNODE); vp = ge->gfse_vnode; VN_HOLD(vp); goto out; } /* * We drop the directory lock, as the constructor will * need to do KM_SLEEP allocations. If we return from * the constructor only to find that a parallel * operation has completed, and GFS_CACHE_VNODE is set * for this entry, we discard the result in favor of the * cached vnode. */ gfs_dir_unlock(dp); vp = ge->gfse_ctor(dvp); gfs_dir_lock(dp); ((gfs_file_t *)vp->v_data)->gfs_index = i; /* Set the inode according to the callback. */ ((gfs_file_t *)vp->v_data)->gfs_ino = dp->gfsd_inode(dvp, i); if (ge->gfse_flags & GFS_CACHE_VNODE) { if (ge->gfse_vnode == NULL) { ge->gfse_vnode = vp; } else { /* * A parallel constructor beat us to it; * return existing vnode. We have to be * careful because we can't release the * current vnode while holding the * directory lock; its inactive routine * will try to lock this directory. */ vnode_t *oldvp = vp; vp = ge->gfse_vnode; VN_HOLD(vp); gfs_dir_unlock(dp); VN_RELE(oldvp); gfs_dir_lock(dp); } } goto out; } } /* * See if there is a dynamic constructor. */ if (dp->gfsd_lookup) { ino64_t ino; gfs_file_t *fp; /* * Once again, drop the directory lock, as the lookup routine * will need to allocate memory, or otherwise deadlock on this * directory. */ gfs_dir_unlock(dp); ret = dp->gfsd_lookup(dvp, nm, &vp, &ino); gfs_dir_lock(dp); if (ret != 0) goto out; fp = (gfs_file_t *)vp->v_data; fp->gfs_index = -1; fp->gfs_ino = ino; } else { /* * No static entry found, and there is no lookup callback, so * return ENOENT. */ ret = ENOENT; } out: gfs_dir_unlock(dp); if (ret == 0) *vpp = vp; else *vpp = NULL; return (ret); } /* * gfs_dir_readdir: does a readdir() on the given directory * * dvp - directory vnode * uiop - uio structure * eofp - eof pointer * data - arbitrary data passed to readdir callback * * This routine does all the readdir() dirty work. Even so, the caller must * supply two callbacks in order to get full compatibility. * * If the directory contains static entries, an inode callback must be * specified. This avoids having to create every vnode and call VOP_GETATTR() * when reading the directory. This function has the following arguments: * * ino_t gfs_inode_cb(vnode_t *vp, int index); * * vp - vnode for the directory * index - index in original gfs_dirent_t array * * Returns the inode number for the given entry. * * For directories with dynamic entries, a readdir callback must be provided. * This is significantly more complex, thanks to the particulars of * VOP_READDIR(). * * int gfs_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, * offset_t *off, offset_t *nextoff, void *data) * * vp - directory vnode * dp - directory entry, sized according to maxlen given to * gfs_dir_create(). callback must fill in d_name and * d_ino. * eofp - callback must set to 1 when EOF has been reached * off - on entry, the last offset read from the directory. Callback * must set to the offset of the current entry, typically left * untouched. * nextoff - callback must set to offset of next entry. Typically * (off + 1) * data - caller-supplied data * * Return 0 on success, or error on failure. */ int gfs_dir_readdir(vnode_t *dvp, uio_t *uiop, int *eofp, void *data) { gfs_readdir_state_t gstate; int error, eof = 0; ino64_t ino, pino; offset_t off, next; gfs_dir_t *dp = dvp->v_data; ino = dp->gfsd_file.gfs_ino; if (dp->gfsd_file.gfs_parent == NULL) pino = ino; /* root of filesystem */ else pino = ((gfs_file_t *) (dp->gfsd_file.gfs_parent->v_data))->gfs_ino; if ((error = gfs_readdir_init(&gstate, dp->gfsd_maxlen, 1, uiop, pino, ino)) != 0) return (error); while ((error = gfs_readdir_pred(&gstate, uiop, &off)) == 0 && !eof) { if (off >= 0 && off < dp->gfsd_nstatic) { ino = dp->gfsd_inode(dvp, off); if ((error = gfs_readdir_emit(&gstate, uiop, off, ino, dp->gfsd_static[off].gfse_name)) != 0) break; } else if (dp->gfsd_readdir) { off -= dp->gfsd_nstatic; if ((error = dp->gfsd_readdir(dvp, gstate.grd_dirent, &eof, &off, &next, data)) != 0 || eof) break; off += dp->gfsd_nstatic + 2; next += dp->gfsd_nstatic + 2; if ((error = gfs_readdir_emit_int(&gstate, uiop, next)) != 0) break; } else { /* * Offset is beyond the end of the static entries, and * we have no dynamic entries. Set EOF. */ eof = 1; } } return (gfs_readdir_fini(&gstate, error, eofp, eof)); } /* * gfs_vop_lookup: VOP_LOOKUP() entry point * * For use directly in vnode ops table. Given a GFS directory, calls * gfs_dir_lookup() as necessary. */ /* ARGSUSED */ int gfs_vop_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, int flags, vnode_t *rdir, cred_t *cr) { return (gfs_dir_lookup(dvp, nm, vpp)); } /* * gfs_vop_readdir: VOP_READDIR() entry point * * For use directly in vnode ops table. Given a GFS directory, calls * gfs_dir_readdir() as necessary. */ /* ARGSUSED */ int gfs_vop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp) { return (gfs_dir_readdir(vp, uiop, eofp, NULL)); } /* * gfs_vop_map: VOP_MAP() entry point * * Convenient routine for handling pseudo-files that wish to allow mmap() calls. * This function only works for readonly files, and uses the read function for * the vnode to fill in the data. The mapped data is immediately faulted in and * filled with the necessary data during this call; there are no getpage() or * putpage() routines. */ /* ARGSUSED */ int gfs_vop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cred) { int rv; ssize_t resid = len; /* * Check for bad parameters */ #ifdef _ILP32 if (len > MAXOFF_T) return (ENOMEM); #endif if (vp->v_flag & VNOMAP) return (ENOTSUP); if (off > MAXOFF_T) return (EFBIG); if ((long)off < 0 || (long)(off + len) < 0) return (EINVAL); if (vp->v_type != VREG) return (ENODEV); if ((prot & (PROT_EXEC | PROT_WRITE)) != 0) return (EACCES); /* * Find appropriate address if needed, otherwise clear address range. */ as_rangelock(as); if ((flags & MAP_FIXED) == 0) { map_addr(addrp, len, (offset_t)off, 1, flags); if (*addrp == NULL) { as_rangeunlock(as); return (ENOMEM); } } else { (void) as_unmap(as, *addrp, len); } /* * Create mapping */ rv = as_map(as, *addrp, len, segvn_create, zfod_argsp); as_rangeunlock(as); if (rv != 0) return (rv); /* * Fill with data from read() */ rv = vn_rdwr(UIO_READ, vp, *addrp, len, off, UIO_USERSPACE, 0, (rlim64_t)0, cred, &resid); if (rv == 0 && resid != 0) rv = ENXIO; if (rv != 0) { as_rangelock(as); (void) as_unmap(as, *addrp, len); as_rangeunlock(as); } return (rv); } /* * gfs_vop_inactive: VOP_INACTIVE() entry point * * Given a vnode that is a GFS file or directory, call gfs_file_inactive() or * gfs_dir_inactive() as necessary, and kmem_free()s associated private data. */ /* ARGSUSED */ void gfs_vop_inactive(vnode_t *vp, cred_t *cr) { gfs_file_t *fp = vp->v_data; void *data; if (fp->gfs_type == GFS_DIR) data = gfs_dir_inactive(vp); else data = gfs_file_inactive(vp); if (data != NULL) kmem_free(data, fp->gfs_size); }