1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /* Portions Copyright 2007 Shivakumar GN */
22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26 /*
27 * Copyright (c) 2017 by Delphix. All rights reserved.
28 */
29
30 #include <sys/types.h>
31 #include <sys/cmn_err.h>
32 #include <sys/debug.h>
33 #include <sys/dirent.h>
34 #include <sys/kmem.h>
35 #include <sys/mman.h>
36 #include <sys/mutex.h>
37 #include <sys/sysmacros.h>
38 #include <sys/systm.h>
39 #include <sys/sunddi.h>
40 #include <sys/uio.h>
41 #include <sys/vmsystm.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44
45 #include <vm/as.h>
46 #include <vm/seg_vn.h>
47
48 #include <sys/gfs.h>
49
50 /*
51 * Generic pseudo-filesystem routines.
52 *
53 * There are significant similarities between the implementation of certain file
54 * system entry points across different filesystems. While one could attempt to
55 * "choke up on the bat" and incorporate common functionality into a VOP
56 * preamble or postamble, such an approach is limited in the benefit it can
57 * provide. In this file we instead define a toolkit of routines which can be
58 * called from a filesystem (with in-kernel pseudo-filesystems being the focus
59 * of the exercise) in a more component-like fashion.
60 *
61 * There are three basic classes of routines:
62 *
63 * 1) Lowlevel support routines
64 *
65 * These routines are designed to play a support role for existing
66 * pseudo-filesystems (such as procfs). They simplify common tasks,
67 * without forcing the filesystem to hand over management to GFS. The
68 * routines covered are:
69 *
70 * gfs_readdir_init()
71 * gfs_readdir_emit()
72 * gfs_readdir_emitn()
73 * gfs_readdir_pred()
74 * gfs_readdir_fini()
75 * gfs_lookup_dot()
76 *
77 * 2) Complete GFS management
78 *
79 * These routines take a more active role in management of the
80 * pseudo-filesystem. They handle the relationship between vnode private
81 * data and VFS data, as well as the relationship between vnodes in the
82 * directory hierarchy.
83 *
84 * In order to use these interfaces, the first member of every private
85 * v_data must be a gfs_file_t or a gfs_dir_t. This hands over all control
86 * to GFS.
87 *
88 * gfs_file_create()
89 * gfs_dir_create()
90 * gfs_root_create()
91 *
92 * gfs_file_inactive()
93 * gfs_dir_inactive()
94 * gfs_dir_lookup()
95 * gfs_dir_readdir()
96 *
97 * gfs_vop_inactive()
98 * gfs_vop_lookup()
99 * gfs_vop_readdir()
100 * gfs_vop_map()
101 *
102 * 3) Single File pseudo-filesystems
103 *
104 * This routine creates a rooted file to be overlayed ontop of another
105 * file in the physical filespace.
106 *
107 * Note that the parent is NULL (actually the vfs), but there is nothing
108 * technically keeping such a file from utilizing the "Complete GFS
109 * management" set of routines.
110 *
111 * gfs_root_create_file()
112 */
113
114 /*
115 * gfs_make_opsvec: take an array of vnode type definitions and create
116 * their vnodeops_t structures
117 *
118 * This routine takes an array of gfs_opsvec_t's. It could
119 * alternatively take an array of gfs_opsvec_t*'s, which would allow
120 * vnode types to be completely defined in files external to the caller
121 * of gfs_make_opsvec(). As it stands, much more sharing takes place --
122 * both the caller and the vnode type provider need to access gfsv_ops
123 * and gfsv_template, and the caller also needs to know gfsv_name.
124 */
125 int
gfs_make_opsvec(gfs_opsvec_t * vec)126 gfs_make_opsvec(gfs_opsvec_t *vec)
127 {
128 int error, i;
129
130 for (i = 0; ; i++) {
131 if (vec[i].gfsv_name == NULL)
132 return (0);
133 error = vn_make_ops(vec[i].gfsv_name, vec[i].gfsv_template,
134 vec[i].gfsv_ops);
135 if (error)
136 break;
137 }
138
139 cmn_err(CE_WARN, "gfs_make_opsvec: bad vnode ops template for '%s'",
140 vec[i].gfsv_name);
141 for (i--; i >= 0; i--) {
142 vn_freevnodeops(*vec[i].gfsv_ops);
143 *vec[i].gfsv_ops = NULL;
144 }
145 return (error);
146 }
147
148 /*
149 * Low level directory routines
150 *
151 * These routines provide some simple abstractions for reading directories.
152 * They are designed to be used by existing pseudo filesystems (namely procfs)
153 * that already have a complicated management infrastructure.
154 */
155
156 /*
157 * gfs_get_parent_ino: used to obtain a parent inode number and the
158 * inode number of the given vnode in preparation for calling gfs_readdir_init.
159 */
160 int
gfs_get_parent_ino(vnode_t * dvp,cred_t * cr,caller_context_t * ct,ino64_t * pino,ino64_t * ino)161 gfs_get_parent_ino(vnode_t *dvp, cred_t *cr, caller_context_t *ct,
162 ino64_t *pino, ino64_t *ino)
163 {
164 vnode_t *parent;
165 gfs_dir_t *dp = dvp->v_data;
166 int error;
167
168 *ino = dp->gfsd_file.gfs_ino;
169 parent = dp->gfsd_file.gfs_parent;
170
171 if (parent == NULL) {
172 *pino = *ino; /* root of filesystem */
173 } else if (dvp->v_flag & V_XATTRDIR) {
174 vattr_t va;
175
176 va.va_mask = AT_NODEID;
177 error = VOP_GETATTR(parent, &va, 0, cr, ct);
178 if (error)
179 return (error);
180 *pino = va.va_nodeid;
181 } else {
182 *pino = ((gfs_file_t *)(parent->v_data))->gfs_ino;
183 }
184
185 return (0);
186 }
187
188 /*
189 * gfs_readdir_init: initiate a generic readdir
190 * st - a pointer to an uninitialized gfs_readdir_state_t structure
191 * name_max - the directory's maximum file name length
192 * ureclen - the exported file-space record length (1 for non-legacy FSs)
193 * uiop - the uiop passed to readdir
194 * parent - the parent directory's inode
195 * self - this directory's inode
196 * flags - flags from VOP_READDIR
197 *
198 * Returns 0 or a non-zero errno.
199 *
200 * Typical VOP_READDIR usage of gfs_readdir_*:
201 *
202 * if ((error = gfs_readdir_init(...)) != 0)
203 * return (error);
204 * eof = 0;
205 * while ((error = gfs_readdir_pred(..., &voffset)) != 0) {
206 * if (!consumer_entry_at(voffset))
207 * voffset = consumer_next_entry(voffset);
208 * if (consumer_eof(voffset)) {
209 * eof = 1
210 * break;
211 * }
212 * if ((error = gfs_readdir_emit(..., voffset,
213 * consumer_ino(voffset), consumer_name(voffset))) != 0)
214 * break;
215 * }
216 * return (gfs_readdir_fini(..., error, eofp, eof));
217 *
218 * As you can see, a zero result from gfs_readdir_pred() or
219 * gfs_readdir_emit() indicates that processing should continue,
220 * whereas a non-zero result indicates that the loop should terminate.
221 * Most consumers need do nothing more than let gfs_readdir_fini()
222 * determine what the cause of failure was and return the appropriate
223 * value.
224 */
225 int
gfs_readdir_init(gfs_readdir_state_t * st,int name_max,int ureclen,uio_t * uiop,ino64_t parent,ino64_t self,int flags)226 gfs_readdir_init(gfs_readdir_state_t *st, int name_max, int ureclen,
227 uio_t *uiop, ino64_t parent, ino64_t self, int flags)
228 {
229 size_t dirent_size;
230
231 if (uiop->uio_loffset < 0 || uiop->uio_resid <= 0 ||
232 (uiop->uio_loffset % ureclen) != 0)
233 return (EINVAL);
234
235 st->grd_ureclen = ureclen;
236 st->grd_oresid = uiop->uio_resid;
237 st->grd_namlen = name_max;
238 if (flags & V_RDDIR_ENTFLAGS)
239 dirent_size = EDIRENT_RECLEN(st->grd_namlen);
240 else
241 dirent_size = DIRENT64_RECLEN(st->grd_namlen);
242 st->grd_dirent = kmem_zalloc(dirent_size, KM_SLEEP);
243 st->grd_parent = parent;
244 st->grd_self = self;
245 st->grd_flags = flags;
246
247 return (0);
248 }
249
250 /*
251 * gfs_readdir_emit_int: internal routine to emit directory entry
252 *
253 * st - the current readdir state, which must have d_ino/ed_ino
254 * and d_name/ed_name set
255 * uiop - caller-supplied uio pointer
256 * next - the offset of the next entry
257 */
258 static int
gfs_readdir_emit_int(gfs_readdir_state_t * st,uio_t * uiop,offset_t next)259 gfs_readdir_emit_int(gfs_readdir_state_t *st, uio_t *uiop, offset_t next)
260 {
261 int reclen;
262 dirent64_t *dp;
263 edirent_t *edp;
264
265 if (st->grd_flags & V_RDDIR_ENTFLAGS) {
266 edp = st->grd_dirent;
267 reclen = EDIRENT_RECLEN(strlen(edp->ed_name));
268 } else {
269 dp = st->grd_dirent;
270 reclen = DIRENT64_RECLEN(strlen(dp->d_name));
271 }
272
273 if (reclen > uiop->uio_resid) {
274 /*
275 * Error if no entries were returned yet
276 */
277 if (uiop->uio_resid == st->grd_oresid)
278 return (EINVAL);
279 return (-1);
280 }
281
282 if (st->grd_flags & V_RDDIR_ENTFLAGS) {
283 edp->ed_off = next;
284 edp->ed_reclen = (ushort_t)reclen;
285 } else {
286 dp->d_off = next;
287 dp->d_reclen = (ushort_t)reclen;
288 }
289
290 if (uiomove((caddr_t)st->grd_dirent, reclen, UIO_READ, uiop))
291 return (EFAULT);
292
293 uiop->uio_loffset = next;
294
295 return (0);
296 }
297
298 /*
299 * gfs_readdir_emit: emit a directory entry
300 * voff - the virtual offset (obtained from gfs_readdir_pred)
301 * ino - the entry's inode
302 * name - the entry's name
303 * eflags - value for ed_eflags (if processing edirent_t)
304 *
305 * Returns a 0 on success, a non-zero errno on failure, or -1 if the
306 * readdir loop should terminate. A non-zero result (either errno or
307 * -1) from this function is typically passed directly to
308 * gfs_readdir_fini().
309 */
310 int
gfs_readdir_emit(gfs_readdir_state_t * st,uio_t * uiop,offset_t voff,ino64_t ino,const char * name,int eflags)311 gfs_readdir_emit(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
312 ino64_t ino, const char *name, int eflags)
313 {
314 offset_t off = (voff + 2) * st->grd_ureclen;
315
316 if (st->grd_flags & V_RDDIR_ENTFLAGS) {
317 edirent_t *edp = st->grd_dirent;
318
319 edp->ed_ino = ino;
320 (void) strncpy(edp->ed_name, name, st->grd_namlen);
321 edp->ed_eflags = eflags;
322 } else {
323 dirent64_t *dp = st->grd_dirent;
324
325 dp->d_ino = ino;
326 (void) strncpy(dp->d_name, name, st->grd_namlen);
327 }
328
329 /*
330 * Inter-entry offsets are invalid, so we assume a record size of
331 * grd_ureclen and explicitly set the offset appropriately.
332 */
333 return (gfs_readdir_emit_int(st, uiop, off + st->grd_ureclen));
334 }
335
336 /*
337 * gfs_readdir_emitn: like gfs_readdir_emit(), but takes an integer
338 * instead of a string for the entry's name.
339 */
340 int
gfs_readdir_emitn(gfs_readdir_state_t * st,uio_t * uiop,offset_t voff,ino64_t ino,unsigned long num)341 gfs_readdir_emitn(gfs_readdir_state_t *st, uio_t *uiop, offset_t voff,
342 ino64_t ino, unsigned long num)
343 {
344 char buf[40];
345
346 numtos(num, buf);
347 return (gfs_readdir_emit(st, uiop, voff, ino, buf, 0));
348 }
349
350 /*
351 * gfs_readdir_pred: readdir loop predicate
352 * voffp - a pointer in which the next virtual offset should be stored
353 *
354 * Returns a 0 on success, a non-zero errno on failure, or -1 if the
355 * readdir loop should terminate. A non-zero result (either errno or
356 * -1) from this function is typically passed directly to
357 * gfs_readdir_fini().
358 */
359 int
gfs_readdir_pred(gfs_readdir_state_t * st,uio_t * uiop,offset_t * voffp)360 gfs_readdir_pred(gfs_readdir_state_t *st, uio_t *uiop, offset_t *voffp)
361 {
362 offset_t off, voff;
363 int error;
364
365 top:
366 if (uiop->uio_resid <= 0)
367 return (-1);
368
369 off = uiop->uio_loffset / st->grd_ureclen;
370 voff = off - 2;
371 if (off == 0) {
372 if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_self,
373 ".", 0)) == 0)
374 goto top;
375 } else if (off == 1) {
376 if ((error = gfs_readdir_emit(st, uiop, voff, st->grd_parent,
377 "..", 0)) == 0)
378 goto top;
379 } else {
380 *voffp = voff;
381 return (0);
382 }
383
384 return (error);
385 }
386
387 /*
388 * gfs_readdir_fini: generic readdir cleanup
389 * error - if positive, an error to return
390 * eofp - the eofp passed to readdir
391 * eof - the eof value
392 *
393 * Returns a 0 on success, a non-zero errno on failure. This result
394 * should be returned from readdir.
395 */
396 int
gfs_readdir_fini(gfs_readdir_state_t * st,int error,int * eofp,int eof)397 gfs_readdir_fini(gfs_readdir_state_t *st, int error, int *eofp, int eof)
398 {
399 size_t dirent_size;
400
401 if (st->grd_flags & V_RDDIR_ENTFLAGS)
402 dirent_size = EDIRENT_RECLEN(st->grd_namlen);
403 else
404 dirent_size = DIRENT64_RECLEN(st->grd_namlen);
405 kmem_free(st->grd_dirent, dirent_size);
406 if (error > 0)
407 return (error);
408 if (eofp)
409 *eofp = eof;
410 return (0);
411 }
412
413 /*
414 * gfs_lookup_dot
415 *
416 * Performs a basic check for "." and ".." directory entries.
417 */
418 int
gfs_lookup_dot(vnode_t ** vpp,vnode_t * dvp,vnode_t * pvp,const char * nm)419 gfs_lookup_dot(vnode_t **vpp, vnode_t *dvp, vnode_t *pvp, const char *nm)
420 {
421 if (*nm == '\0' || strcmp(nm, ".") == 0) {
422 VN_HOLD(dvp);
423 *vpp = dvp;
424 return (0);
425 } else if (strcmp(nm, "..") == 0) {
426 if (pvp == NULL) {
427 ASSERT(dvp->v_flag & VROOT);
428 VN_HOLD(dvp);
429 *vpp = dvp;
430 } else {
431 VN_HOLD(pvp);
432 *vpp = pvp;
433 }
434 return (0);
435 }
436
437 return (-1);
438 }
439
440 /*
441 * gfs_file_create(): create a new GFS file
442 *
443 * size - size of private data structure (v_data)
444 * pvp - parent vnode (GFS directory)
445 * ops - vnode operations vector
446 *
447 * In order to use this interface, the parent vnode must have been created by
448 * gfs_dir_create(), and the private data stored in v_data must have a
449 * 'gfs_file_t' as its first field.
450 *
451 * Given these constraints, this routine will automatically:
452 *
453 * - Allocate v_data for the vnode
454 * - Initialize necessary fields in the vnode
455 * - Hold the parent
456 */
457 vnode_t *
gfs_file_create(size_t size,vnode_t * pvp,vnodeops_t * ops)458 gfs_file_create(size_t size, vnode_t *pvp, vnodeops_t *ops)
459 {
460 gfs_file_t *fp;
461 vnode_t *vp;
462
463 /*
464 * Allocate vnode and internal data structure
465 */
466 fp = kmem_zalloc(size, KM_SLEEP);
467 vp = vn_alloc(KM_SLEEP);
468
469 /*
470 * Set up various pointers
471 */
472 fp->gfs_vnode = vp;
473 fp->gfs_parent = pvp;
474 vp->v_data = fp;
475 fp->gfs_size = size;
476 fp->gfs_type = GFS_FILE;
477
478 /*
479 * Initialize vnode and hold parent.
480 */
481 vn_setops(vp, ops);
482 if (pvp) {
483 VN_SET_VFS_TYPE_DEV(vp, pvp->v_vfsp, VREG, 0);
484 VN_HOLD(pvp);
485 }
486
487 return (vp);
488 }
489
490 /*
491 * gfs_dir_create: creates a new directory in the parent
492 *
493 * size - size of private data structure (v_data)
494 * pvp - parent vnode (GFS directory)
495 * ops - vnode operations vector
496 * entries - NULL-terminated list of static entries (if any)
497 * maxlen - maximum length of a directory entry
498 * readdir_cb - readdir callback (see gfs_dir_readdir)
499 * inode_cb - inode callback (see gfs_dir_readdir)
500 * lookup_cb - lookup callback (see gfs_dir_lookup)
501 *
502 * In order to use this function, the first member of the private vnode
503 * structure (v_data) must be a gfs_dir_t. For each directory, there are
504 * static entries, defined when the structure is initialized, and dynamic
505 * entries, retrieved through callbacks.
506 *
507 * If a directory has static entries, then it must supply a inode callback,
508 * which will compute the inode number based on the parent and the index.
509 * For a directory with dynamic entries, the caller must supply a readdir
510 * callback and a lookup callback. If a static lookup fails, we fall back to
511 * the supplied lookup callback, if any.
512 *
513 * This function also performs the same initialization as gfs_file_create().
514 */
515 vnode_t *
gfs_dir_create(size_t struct_size,vnode_t * pvp,vnodeops_t * ops,gfs_dirent_t * entries,gfs_inode_cb inode_cb,int maxlen,gfs_readdir_cb readdir_cb,gfs_lookup_cb lookup_cb)516 gfs_dir_create(size_t struct_size, vnode_t *pvp, vnodeops_t *ops,
517 gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
518 gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
519 {
520 vnode_t *vp;
521 gfs_dir_t *dp;
522 gfs_dirent_t *de;
523
524 vp = gfs_file_create(struct_size, pvp, ops);
525 vp->v_type = VDIR;
526
527 dp = vp->v_data;
528 dp->gfsd_file.gfs_type = GFS_DIR;
529 dp->gfsd_maxlen = maxlen;
530
531 if (entries != NULL) {
532 for (de = entries; de->gfse_name != NULL; de++)
533 dp->gfsd_nstatic++;
534
535 dp->gfsd_static = kmem_alloc(
536 dp->gfsd_nstatic * sizeof (gfs_dirent_t), KM_SLEEP);
537 bcopy(entries, dp->gfsd_static,
538 dp->gfsd_nstatic * sizeof (gfs_dirent_t));
539 }
540
541 dp->gfsd_readdir = readdir_cb;
542 dp->gfsd_lookup = lookup_cb;
543 dp->gfsd_inode = inode_cb;
544
545 mutex_init(&dp->gfsd_lock, NULL, MUTEX_DEFAULT, NULL);
546
547 return (vp);
548 }
549
550 /*
551 * gfs_root_create(): create a root vnode for a GFS filesystem
552 *
553 * Similar to gfs_dir_create(), this creates a root vnode for a filesystem. The
554 * only difference is that it takes a vfs_t instead of a vnode_t as its parent.
555 */
556 vnode_t *
gfs_root_create(size_t size,vfs_t * vfsp,vnodeops_t * ops,ino64_t ino,gfs_dirent_t * entries,gfs_inode_cb inode_cb,int maxlen,gfs_readdir_cb readdir_cb,gfs_lookup_cb lookup_cb)557 gfs_root_create(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino,
558 gfs_dirent_t *entries, gfs_inode_cb inode_cb, int maxlen,
559 gfs_readdir_cb readdir_cb, gfs_lookup_cb lookup_cb)
560 {
561 vnode_t *vp = gfs_dir_create(size, NULL, ops, entries, inode_cb,
562 maxlen, readdir_cb, lookup_cb);
563
564 /* Manually set the inode */
565 ((gfs_file_t *)vp->v_data)->gfs_ino = ino;
566
567 VFS_HOLD(vfsp);
568 VN_SET_VFS_TYPE_DEV(vp, vfsp, VDIR, 0);
569 vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
570
571 return (vp);
572 }
573
574 /*
575 * gfs_root_create_file(): create a root vnode for a GFS file as a filesystem
576 *
577 * Similar to gfs_root_create(), this creates a root vnode for a file to
578 * be the pseudo-filesystem.
579 */
580 vnode_t *
gfs_root_create_file(size_t size,vfs_t * vfsp,vnodeops_t * ops,ino64_t ino)581 gfs_root_create_file(size_t size, vfs_t *vfsp, vnodeops_t *ops, ino64_t ino)
582 {
583 vnode_t *vp = gfs_file_create(size, NULL, ops);
584
585 ((gfs_file_t *)vp->v_data)->gfs_ino = ino;
586
587 VFS_HOLD(vfsp);
588 VN_SET_VFS_TYPE_DEV(vp, vfsp, VREG, 0);
589 vp->v_flag |= VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;
590
591 return (vp);
592 }
593
594 /*
595 * gfs_file_inactive()
596 *
597 * Called from the VOP_INACTIVE() routine. If necessary, this routine will
598 * remove the given vnode from the parent directory and clean up any references
599 * in the VFS layer.
600 *
601 * If the vnode was not removed (due to a race with vget), then NULL is
602 * returned. Otherwise, a pointer to the private data is returned.
603 */
604 void *
gfs_file_inactive(vnode_t * vp)605 gfs_file_inactive(vnode_t *vp)
606 {
607 int i;
608 gfs_dirent_t *ge = NULL;
609 gfs_file_t *fp = vp->v_data;
610 gfs_dir_t *dp = NULL;
611 void *data;
612
613 if (fp->gfs_parent == NULL || (vp->v_flag & V_XATTRDIR))
614 goto found;
615
616 dp = fp->gfs_parent->v_data;
617
618 /*
619 * First, see if this vnode is cached in the parent.
620 */
621 gfs_dir_lock(dp);
622
623 /*
624 * Find it in the set of static entries.
625 */
626 for (i = 0; i < dp->gfsd_nstatic; i++) {
627 ge = &dp->gfsd_static[i];
628
629 if (ge->gfse_vnode == vp)
630 goto found;
631 }
632
633 /*
634 * If 'ge' is NULL, then it is a dynamic entry.
635 */
636 ge = NULL;
637
638 found:
639 if (vp->v_flag & V_XATTRDIR) {
640 mutex_enter(&fp->gfs_parent->v_lock);
641 }
642 mutex_enter(&vp->v_lock);
643 if (vp->v_count == 1) {
644 /*
645 * Really remove this vnode
646 */
647 data = vp->v_data;
648 if (ge != NULL) {
649 /*
650 * If this was a statically cached entry, simply set the
651 * cached vnode to NULL.
652 */
653 ge->gfse_vnode = NULL;
654 }
655 if (vp->v_flag & V_XATTRDIR) {
656 fp->gfs_parent->v_xattrdir = NULL;
657 mutex_exit(&fp->gfs_parent->v_lock);
658 }
659 mutex_exit(&vp->v_lock);
660
661 /*
662 * Free vnode and release parent
663 */
664 if (fp->gfs_parent) {
665 if (dp) {
666 gfs_dir_unlock(dp);
667 }
668 VN_RELE(fp->gfs_parent);
669 } else {
670 ASSERT(vp->v_vfsp != NULL);
671 VFS_RELE(vp->v_vfsp);
672 }
673 vn_free(vp);
674 } else {
675 VN_RELE_LOCKED(vp);
676 data = NULL;
677 mutex_exit(&vp->v_lock);
678 if (vp->v_flag & V_XATTRDIR) {
679 mutex_exit(&fp->gfs_parent->v_lock);
680 }
681 if (dp)
682 gfs_dir_unlock(dp);
683 }
684
685 return (data);
686 }
687
688 /*
689 * gfs_dir_inactive()
690 *
691 * Same as above, but for directories.
692 */
693 void *
gfs_dir_inactive(vnode_t * vp)694 gfs_dir_inactive(vnode_t *vp)
695 {
696 gfs_dir_t *dp;
697
698 ASSERT(vp->v_type == VDIR);
699
700 if ((dp = gfs_file_inactive(vp)) != NULL) {
701 mutex_destroy(&dp->gfsd_lock);
702 if (dp->gfsd_nstatic)
703 kmem_free(dp->gfsd_static,
704 dp->gfsd_nstatic * sizeof (gfs_dirent_t));
705 }
706
707 return (dp);
708 }
709
710 /*
711 * gfs_dir_lookup_dynamic()
712 *
713 * This routine looks up the provided name amongst the dynamic entries
714 * in the gfs directory and returns the corresponding vnode, if found.
715 *
716 * The gfs directory is expected to be locked by the caller prior to
717 * calling this function. The directory will be unlocked during the
718 * execution of this function, but will be locked upon return from the
719 * function. This function returns 0 on success, non-zero on error.
720 *
721 * The dynamic lookups are performed by invoking the lookup
722 * callback, which is passed to this function as the first argument.
723 * The arguments to the callback are:
724 *
725 * int gfs_lookup_cb(vnode_t *pvp, const char *nm, vnode_t **vpp, cred_t *cr,
726 * int flags, int *deflgs, pathname_t *rpnp);
727 *
728 * pvp - parent vnode
729 * nm - name of entry
730 * vpp - pointer to resulting vnode
731 * cr - pointer to cred
732 * flags - flags value from lookup request
733 * ignored here; currently only used to request
734 * insensitive lookups
735 * direntflgs - output parameter, directory entry flags
736 * ignored here; currently only used to indicate a lookup
737 * has more than one possible match when case is not considered
738 * realpnp - output parameter, real pathname
739 * ignored here; when lookup was performed case-insensitively,
740 * this field contains the "real" name of the file.
741 *
742 * Returns 0 on success, non-zero on error.
743 */
744 static int
gfs_dir_lookup_dynamic(gfs_lookup_cb callback,gfs_dir_t * dp,const char * nm,vnode_t * dvp,vnode_t ** vpp,cred_t * cr,int flags,int * direntflags,pathname_t * realpnp)745 gfs_dir_lookup_dynamic(gfs_lookup_cb callback, gfs_dir_t *dp,
746 const char *nm, vnode_t *dvp, vnode_t **vpp, cred_t *cr, int flags,
747 int *direntflags, pathname_t *realpnp)
748 {
749 gfs_file_t *fp;
750 ino64_t ino;
751 int ret;
752
753 ASSERT(GFS_DIR_LOCKED(dp));
754
755 /*
756 * Drop the directory lock, as the lookup routine
757 * will need to allocate memory, or otherwise deadlock on this
758 * directory.
759 */
760 gfs_dir_unlock(dp);
761 ret = callback(dvp, nm, vpp, &ino, cr, flags, direntflags, realpnp);
762 gfs_dir_lock(dp);
763
764 /*
765 * The callback for extended attributes returns a vnode
766 * with v_data from an underlying fs.
767 */
768 if (ret == 0 && !IS_XATTRDIR(dvp)) {
769 fp = (gfs_file_t *)((*vpp)->v_data);
770 fp->gfs_index = -1;
771 fp->gfs_ino = ino;
772 }
773
774 return (ret);
775 }
776
777 /*
778 * gfs_dir_lookup_static()
779 *
780 * This routine looks up the provided name amongst the static entries
781 * in the gfs directory and returns the corresponding vnode, if found.
782 * The first argument to the function is a pointer to the comparison
783 * function this function should use to decide if names are a match.
784 *
785 * If a match is found, and GFS_CACHE_VNODE is set and the vnode
786 * exists, we simply return the existing vnode. Otherwise, we call
787 * the static entry's callback routine, caching the result if
788 * necessary. If the idx pointer argument is non-NULL, we use it to
789 * return the index of the matching static entry.
790 *
791 * The gfs directory is expected to be locked by the caller prior to calling
792 * this function. The directory may be unlocked during the execution of
793 * this function, but will be locked upon return from the function.
794 *
795 * This function returns 0 if a match is found, ENOENT if not.
796 */
797 static int
gfs_dir_lookup_static(int (* compare)(const char *,const char *),gfs_dir_t * dp,const char * nm,vnode_t * dvp,int * idx,vnode_t ** vpp,pathname_t * rpnp)798 gfs_dir_lookup_static(int (*compare)(const char *, const char *),
799 gfs_dir_t *dp, const char *nm, vnode_t *dvp, int *idx,
800 vnode_t **vpp, pathname_t *rpnp)
801 {
802 gfs_dirent_t *ge;
803 vnode_t *vp = NULL;
804 int i;
805
806 ASSERT(GFS_DIR_LOCKED(dp));
807
808 /*
809 * Search static entries.
810 */
811 for (i = 0; i < dp->gfsd_nstatic; i++) {
812 ge = &dp->gfsd_static[i];
813
814 if (compare(ge->gfse_name, nm) == 0) {
815 if (rpnp)
816 (void) strlcpy(rpnp->pn_buf, ge->gfse_name,
817 rpnp->pn_bufsize);
818
819 if (ge->gfse_vnode) {
820 ASSERT(ge->gfse_flags & GFS_CACHE_VNODE);
821 vp = ge->gfse_vnode;
822 VN_HOLD(vp);
823 break;
824 }
825
826 /*
827 * We drop the directory lock, as the constructor will
828 * need to do KM_SLEEP allocations. If we return from
829 * the constructor only to find that a parallel
830 * operation has completed, and GFS_CACHE_VNODE is set
831 * for this entry, we discard the result in favor of
832 * the cached vnode.
833 */
834 gfs_dir_unlock(dp);
835 vp = ge->gfse_ctor(dvp);
836 gfs_dir_lock(dp);
837
838 ((gfs_file_t *)vp->v_data)->gfs_index = i;
839
840 /* Set the inode according to the callback. */
841 ((gfs_file_t *)vp->v_data)->gfs_ino =
842 dp->gfsd_inode(dvp, i);
843
844 if (ge->gfse_flags & GFS_CACHE_VNODE) {
845 if (ge->gfse_vnode == NULL) {
846 ge->gfse_vnode = vp;
847 } else {
848 /*
849 * A parallel constructor beat us to it;
850 * return existing vnode. We have to be
851 * careful because we can't release the
852 * current vnode while holding the
853 * directory lock; its inactive routine
854 * will try to lock this directory.
855 */
856 vnode_t *oldvp = vp;
857 vp = ge->gfse_vnode;
858 VN_HOLD(vp);
859
860 gfs_dir_unlock(dp);
861 VN_RELE(oldvp);
862 gfs_dir_lock(dp);
863 }
864 }
865 break;
866 }
867 }
868
869 if (vp == NULL)
870 return (ENOENT);
871 else if (idx)
872 *idx = i;
873 *vpp = vp;
874 return (0);
875 }
876
877 /*
878 * gfs_dir_lookup()
879 *
880 * Looks up the given name in the directory and returns the corresponding
881 * vnode, if found.
882 *
883 * First, we search statically defined entries, if any, with a call to
884 * gfs_dir_lookup_static(). If no static entry is found, and we have
885 * a callback function we try a dynamic lookup via gfs_dir_lookup_dynamic().
886 *
887 * This function returns 0 on success, non-zero on error.
888 */
889 int
gfs_dir_lookup(vnode_t * dvp,const char * nm,vnode_t ** vpp,cred_t * cr,int flags,int * direntflags,pathname_t * realpnp)890 gfs_dir_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp, cred_t *cr,
891 int flags, int *direntflags, pathname_t *realpnp)
892 {
893 gfs_dir_t *dp = dvp->v_data;
894 boolean_t casecheck;
895 vnode_t *dynvp = NULL;
896 vnode_t *vp = NULL;
897 int (*compare)(const char *, const char *);
898 int error, idx;
899
900 ASSERT(dvp->v_type == VDIR);
901
902 if (gfs_lookup_dot(vpp, dvp, dp->gfsd_file.gfs_parent, nm) == 0)
903 return (0);
904
905 casecheck = (flags & FIGNORECASE) != 0 && direntflags != NULL;
906 if (vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) ||
907 (flags & FIGNORECASE))
908 compare = strcasecmp;
909 else
910 compare = strcmp;
911
912 gfs_dir_lock(dp);
913
914 error = gfs_dir_lookup_static(compare, dp, nm, dvp, &idx, &vp, realpnp);
915
916 if (vp && casecheck) {
917 gfs_dirent_t *ge;
918 int i;
919
920 for (i = idx + 1; i < dp->gfsd_nstatic; i++) {
921 ge = &dp->gfsd_static[i];
922
923 if (strcasecmp(ge->gfse_name, nm) == 0) {
924 *direntflags |= ED_CASE_CONFLICT;
925 goto out;
926 }
927 }
928 }
929
930 if ((error || casecheck) && dp->gfsd_lookup)
931 error = gfs_dir_lookup_dynamic(dp->gfsd_lookup, dp, nm, dvp,
932 &dynvp, cr, flags, direntflags, vp ? NULL : realpnp);
933
934 if (vp && dynvp) {
935 /* static and dynamic entries are case-insensitive conflict */
936 ASSERT(casecheck);
937 *direntflags |= ED_CASE_CONFLICT;
938 VN_RELE(dynvp);
939 } else if (vp == NULL) {
940 vp = dynvp;
941 } else if (error == ENOENT) {
942 error = 0;
943 } else if (error) {
944 VN_RELE(vp);
945 vp = NULL;
946 }
947
948 out:
949 gfs_dir_unlock(dp);
950
951 *vpp = vp;
952 return (error);
953 }
954
955 /*
956 * gfs_dir_readdir: does a readdir() on the given directory
957 *
958 * dvp - directory vnode
959 * uiop - uio structure
960 * eofp - eof pointer
961 * data - arbitrary data passed to readdir callback
962 *
963 * This routine does all the readdir() dirty work. Even so, the caller must
964 * supply two callbacks in order to get full compatibility.
965 *
966 * If the directory contains static entries, an inode callback must be
967 * specified. This avoids having to create every vnode and call VOP_GETATTR()
968 * when reading the directory. This function has the following arguments:
969 *
970 * ino_t gfs_inode_cb(vnode_t *vp, int index);
971 *
972 * vp - vnode for the directory
973 * index - index in original gfs_dirent_t array
974 *
975 * Returns the inode number for the given entry.
976 *
977 * For directories with dynamic entries, a readdir callback must be provided.
978 * This is significantly more complex, thanks to the particulars of
979 * VOP_READDIR().
980 *
981 * int gfs_readdir_cb(vnode_t *vp, void *dp, int *eofp,
982 * offset_t *off, offset_t *nextoff, void *data, int flags)
983 *
984 * vp - directory vnode
985 * dp - directory entry, sized according to maxlen given to
986 * gfs_dir_create(). callback must fill in d_name and
987 * d_ino (if a dirent64_t), or ed_name, ed_ino, and ed_eflags
988 * (if an edirent_t). edirent_t is used if V_RDDIR_ENTFLAGS
989 * is set in 'flags'.
990 * eofp - callback must set to 1 when EOF has been reached
991 * off - on entry, the last offset read from the directory. Callback
992 * must set to the offset of the current entry, typically left
993 * untouched.
994 * nextoff - callback must set to offset of next entry. Typically
995 * (off + 1)
996 * data - caller-supplied data
997 * flags - VOP_READDIR flags
998 *
999 * Return 0 on success, or error on failure.
1000 */
1001 int
gfs_dir_readdir(vnode_t * dvp,uio_t * uiop,int * eofp,void * data,cred_t * cr,caller_context_t * ct,int flags)1002 gfs_dir_readdir(vnode_t *dvp, uio_t *uiop, int *eofp, void *data, cred_t *cr,
1003 caller_context_t *ct, int flags)
1004 {
1005 gfs_readdir_state_t gstate;
1006 int error, eof = 0;
1007 ino64_t ino, pino;
1008 offset_t off, next;
1009 gfs_dir_t *dp = dvp->v_data;
1010
1011 error = gfs_get_parent_ino(dvp, cr, ct, &pino, &ino);
1012 if (error)
1013 return (error);
1014
1015 if ((error = gfs_readdir_init(&gstate, dp->gfsd_maxlen, 1, uiop,
1016 pino, ino, flags)) != 0)
1017 return (error);
1018
1019 while ((error = gfs_readdir_pred(&gstate, uiop, &off)) == 0 &&
1020 !eof) {
1021
1022 if (off >= 0 && off < dp->gfsd_nstatic) {
1023 ino = dp->gfsd_inode(dvp, off);
1024
1025 if ((error = gfs_readdir_emit(&gstate, uiop,
1026 off, ino, dp->gfsd_static[off].gfse_name, 0))
1027 != 0)
1028 break;
1029
1030 } else if (dp->gfsd_readdir) {
1031 off -= dp->gfsd_nstatic;
1032
1033 if ((error = dp->gfsd_readdir(dvp,
1034 gstate.grd_dirent, &eof, &off, &next,
1035 data, flags)) != 0 || eof)
1036 break;
1037
1038 off += dp->gfsd_nstatic + 2;
1039 next += dp->gfsd_nstatic + 2;
1040
1041 if ((error = gfs_readdir_emit_int(&gstate, uiop,
1042 next)) != 0)
1043 break;
1044 } else {
1045 /*
1046 * Offset is beyond the end of the static entries, and
1047 * we have no dynamic entries. Set EOF.
1048 */
1049 eof = 1;
1050 }
1051 }
1052
1053 return (gfs_readdir_fini(&gstate, error, eofp, eof));
1054 }
1055
1056
1057 /*
1058 * gfs_vop_lookup: VOP_LOOKUP() entry point
1059 *
1060 * For use directly in vnode ops table. Given a GFS directory, calls
1061 * gfs_dir_lookup() as necessary.
1062 */
1063 /* ARGSUSED */
1064 int
gfs_vop_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,pathname_t * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1065 gfs_vop_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
1066 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1067 int *direntflags, pathname_t *realpnp)
1068 {
1069 return (gfs_dir_lookup(dvp, nm, vpp, cr, flags, direntflags, realpnp));
1070 }
1071
1072 /*
1073 * gfs_vop_readdir: VOP_READDIR() entry point
1074 *
1075 * For use directly in vnode ops table. Given a GFS directory, calls
1076 * gfs_dir_readdir() as necessary.
1077 */
1078 /* ARGSUSED */
1079 int
gfs_vop_readdir(vnode_t * vp,uio_t * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)1080 gfs_vop_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
1081 caller_context_t *ct, int flags)
1082 {
1083 return (gfs_dir_readdir(vp, uiop, eofp, NULL, cr, ct, flags));
1084 }
1085
1086
1087 /*
1088 * gfs_vop_map: VOP_MAP() entry point
1089 *
1090 * Convenient routine for handling pseudo-files that wish to allow mmap() calls.
1091 * This function only works for readonly files, and uses the read function for
1092 * the vnode to fill in the data. The mapped data is immediately faulted in and
1093 * filled with the necessary data during this call; there are no getpage() or
1094 * putpage() routines.
1095 */
1096 /* ARGSUSED */
1097 int
gfs_vop_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cred,caller_context_t * ct)1098 gfs_vop_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
1099 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cred,
1100 caller_context_t *ct)
1101 {
1102 int rv;
1103 ssize_t resid = len;
1104
1105 /*
1106 * Check for bad parameters
1107 */
1108 #ifdef _ILP32
1109 if (len > MAXOFF_T)
1110 return (ENOMEM);
1111 #endif
1112 if (vp->v_flag & VNOMAP)
1113 return (ENOTSUP);
1114 if (off > MAXOFF_T)
1115 return (EFBIG);
1116 if ((long)off < 0 || (long)(off + len) < 0)
1117 return (EINVAL);
1118 if (vp->v_type != VREG)
1119 return (ENODEV);
1120 if ((prot & (PROT_EXEC | PROT_WRITE)) != 0)
1121 return (EACCES);
1122
1123 /*
1124 * Find appropriate address if needed, otherwise clear address range.
1125 */
1126 as_rangelock(as);
1127 rv = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
1128 if (rv != 0) {
1129 as_rangeunlock(as);
1130 return (rv);
1131 }
1132
1133 /*
1134 * Create mapping
1135 */
1136 rv = as_map(as, *addrp, len, segvn_create, zfod_argsp);
1137 as_rangeunlock(as);
1138 if (rv != 0)
1139 return (rv);
1140
1141 /*
1142 * Fill with data from read()
1143 */
1144 rv = vn_rdwr(UIO_READ, vp, *addrp, len, off, UIO_USERSPACE,
1145 0, (rlim64_t)0, cred, &resid);
1146
1147 if (rv == 0 && resid != 0)
1148 rv = ENXIO;
1149
1150 if (rv != 0) {
1151 as_rangelock(as);
1152 (void) as_unmap(as, *addrp, len);
1153 as_rangeunlock(as);
1154 }
1155
1156 return (rv);
1157 }
1158
1159 /*
1160 * gfs_vop_inactive: VOP_INACTIVE() entry point
1161 *
1162 * Given a vnode that is a GFS file or directory, call gfs_file_inactive() or
1163 * gfs_dir_inactive() as necessary, and kmem_free()s associated private data.
1164 */
1165 /* ARGSUSED */
1166 void
gfs_vop_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)1167 gfs_vop_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1168 {
1169 gfs_file_t *fp = vp->v_data;
1170 void *data;
1171
1172 if (fp->gfs_type == GFS_DIR)
1173 data = gfs_dir_inactive(vp);
1174 else
1175 data = gfs_file_inactive(vp);
1176
1177 if (data != NULL)
1178 kmem_free(data, fp->gfs_size);
1179 }
1180