1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Subclass of MipsTargetLowering specialized for mips32/64. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MipsSEISelLowering.h" 14 #include "MipsMachineFunction.h" 15 #include "MipsRegisterInfo.h" 16 #include "MipsSubtarget.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/CodeGen/CallingConvLower.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SelectionDAG.h" 31 #include "llvm/CodeGen/SelectionDAGNodes.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/CodeGen/ValueTypes.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/IntrinsicsMips.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/MachineValueType.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <iterator> 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "mips-isel" 54 55 static cl::opt<bool> 56 UseMipsTailCalls("mips-tail-calls", cl::Hidden, 57 cl::desc("MIPS: permit tail calls."), cl::init(false)); 58 59 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false), 60 cl::desc("Expand double precision loads and " 61 "stores to their single precision " 62 "counterparts")); 63 64 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM, 65 const MipsSubtarget &STI) 66 : MipsTargetLowering(TM, STI) { 67 // Set up the register classes 68 addRegisterClass(MVT::i32, &Mips::GPR32RegClass); 69 70 if (Subtarget.isGP64bit()) 71 addRegisterClass(MVT::i64, &Mips::GPR64RegClass); 72 73 if (Subtarget.hasDSP() || Subtarget.hasMSA()) { 74 // Expand all truncating stores and extending loads. 75 for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) { 76 for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) { 77 setTruncStoreAction(VT0, VT1, Expand); 78 setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand); 79 setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand); 80 setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand); 81 } 82 } 83 } 84 85 if (Subtarget.hasDSP()) { 86 MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8}; 87 88 for (unsigned i = 0; i < array_lengthof(VecTys); ++i) { 89 addRegisterClass(VecTys[i], &Mips::DSPRRegClass); 90 91 // Expand all builtin opcodes. 92 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) 93 setOperationAction(Opc, VecTys[i], Expand); 94 95 setOperationAction(ISD::ADD, VecTys[i], Legal); 96 setOperationAction(ISD::SUB, VecTys[i], Legal); 97 setOperationAction(ISD::LOAD, VecTys[i], Legal); 98 setOperationAction(ISD::STORE, VecTys[i], Legal); 99 setOperationAction(ISD::BITCAST, VecTys[i], Legal); 100 } 101 102 setTargetDAGCombine(ISD::SHL); 103 setTargetDAGCombine(ISD::SRA); 104 setTargetDAGCombine(ISD::SRL); 105 setTargetDAGCombine(ISD::SETCC); 106 setTargetDAGCombine(ISD::VSELECT); 107 108 if (Subtarget.hasMips32r2()) { 109 setOperationAction(ISD::ADDC, MVT::i32, Legal); 110 setOperationAction(ISD::ADDE, MVT::i32, Legal); 111 } 112 } 113 114 if (Subtarget.hasDSPR2()) 115 setOperationAction(ISD::MUL, MVT::v2i16, Legal); 116 117 if (Subtarget.hasMSA()) { 118 addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass); 119 addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass); 120 addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass); 121 addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass); 122 addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass); 123 addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass); 124 addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass); 125 126 // f16 is a storage-only type, always promote it to f32. 127 addRegisterClass(MVT::f16, &Mips::MSA128HRegClass); 128 setOperationAction(ISD::SETCC, MVT::f16, Promote); 129 setOperationAction(ISD::BR_CC, MVT::f16, Promote); 130 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); 131 setOperationAction(ISD::SELECT, MVT::f16, Promote); 132 setOperationAction(ISD::FADD, MVT::f16, Promote); 133 setOperationAction(ISD::FSUB, MVT::f16, Promote); 134 setOperationAction(ISD::FMUL, MVT::f16, Promote); 135 setOperationAction(ISD::FDIV, MVT::f16, Promote); 136 setOperationAction(ISD::FREM, MVT::f16, Promote); 137 setOperationAction(ISD::FMA, MVT::f16, Promote); 138 setOperationAction(ISD::FNEG, MVT::f16, Promote); 139 setOperationAction(ISD::FABS, MVT::f16, Promote); 140 setOperationAction(ISD::FCEIL, MVT::f16, Promote); 141 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); 142 setOperationAction(ISD::FCOS, MVT::f16, Promote); 143 setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote); 144 setOperationAction(ISD::FFLOOR, MVT::f16, Promote); 145 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); 146 setOperationAction(ISD::FPOW, MVT::f16, Promote); 147 setOperationAction(ISD::FPOWI, MVT::f16, Promote); 148 setOperationAction(ISD::FRINT, MVT::f16, Promote); 149 setOperationAction(ISD::FSIN, MVT::f16, Promote); 150 setOperationAction(ISD::FSINCOS, MVT::f16, Promote); 151 setOperationAction(ISD::FSQRT, MVT::f16, Promote); 152 setOperationAction(ISD::FEXP, MVT::f16, Promote); 153 setOperationAction(ISD::FEXP2, MVT::f16, Promote); 154 setOperationAction(ISD::FLOG, MVT::f16, Promote); 155 setOperationAction(ISD::FLOG2, MVT::f16, Promote); 156 setOperationAction(ISD::FLOG10, MVT::f16, Promote); 157 setOperationAction(ISD::FROUND, MVT::f16, Promote); 158 setOperationAction(ISD::FTRUNC, MVT::f16, Promote); 159 setOperationAction(ISD::FMINNUM, MVT::f16, Promote); 160 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); 161 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); 162 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); 163 164 setTargetDAGCombine(ISD::AND); 165 setTargetDAGCombine(ISD::OR); 166 setTargetDAGCombine(ISD::SRA); 167 setTargetDAGCombine(ISD::VSELECT); 168 setTargetDAGCombine(ISD::XOR); 169 } 170 171 if (!Subtarget.useSoftFloat()) { 172 addRegisterClass(MVT::f32, &Mips::FGR32RegClass); 173 174 // When dealing with single precision only, use libcalls 175 if (!Subtarget.isSingleFloat()) { 176 if (Subtarget.isFP64bit()) 177 addRegisterClass(MVT::f64, &Mips::FGR64RegClass); 178 else 179 addRegisterClass(MVT::f64, &Mips::AFGR64RegClass); 180 } 181 } 182 183 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 184 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 185 setOperationAction(ISD::MULHS, MVT::i32, Custom); 186 setOperationAction(ISD::MULHU, MVT::i32, Custom); 187 188 if (Subtarget.hasCnMips()) 189 setOperationAction(ISD::MUL, MVT::i64, Legal); 190 else if (Subtarget.isGP64bit()) 191 setOperationAction(ISD::MUL, MVT::i64, Custom); 192 193 if (Subtarget.isGP64bit()) { 194 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom); 195 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom); 196 setOperationAction(ISD::MULHS, MVT::i64, Custom); 197 setOperationAction(ISD::MULHU, MVT::i64, Custom); 198 setOperationAction(ISD::SDIVREM, MVT::i64, Custom); 199 setOperationAction(ISD::UDIVREM, MVT::i64, Custom); 200 } 201 202 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); 203 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); 204 205 setOperationAction(ISD::SDIVREM, MVT::i32, Custom); 206 setOperationAction(ISD::UDIVREM, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 208 setOperationAction(ISD::LOAD, MVT::i32, Custom); 209 setOperationAction(ISD::STORE, MVT::i32, Custom); 210 211 setTargetDAGCombine(ISD::MUL); 212 213 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 214 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 215 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 216 217 if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() && 218 !Subtarget.hasMips64()) { 219 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 220 } 221 222 if (NoDPLoadStore) { 223 setOperationAction(ISD::LOAD, MVT::f64, Custom); 224 setOperationAction(ISD::STORE, MVT::f64, Custom); 225 } 226 227 if (Subtarget.hasMips32r6()) { 228 // MIPS32r6 replaces the accumulator-based multiplies with a three register 229 // instruction 230 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 231 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 232 setOperationAction(ISD::MUL, MVT::i32, Legal); 233 setOperationAction(ISD::MULHS, MVT::i32, Legal); 234 setOperationAction(ISD::MULHU, MVT::i32, Legal); 235 236 // MIPS32r6 replaces the accumulator-based division/remainder with separate 237 // three register division and remainder instructions. 238 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 239 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 240 setOperationAction(ISD::SDIV, MVT::i32, Legal); 241 setOperationAction(ISD::UDIV, MVT::i32, Legal); 242 setOperationAction(ISD::SREM, MVT::i32, Legal); 243 setOperationAction(ISD::UREM, MVT::i32, Legal); 244 245 // MIPS32r6 replaces conditional moves with an equivalent that removes the 246 // need for three GPR read ports. 247 setOperationAction(ISD::SETCC, MVT::i32, Legal); 248 setOperationAction(ISD::SELECT, MVT::i32, Legal); 249 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 250 251 setOperationAction(ISD::SETCC, MVT::f32, Legal); 252 setOperationAction(ISD::SELECT, MVT::f32, Legal); 253 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); 254 255 assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6"); 256 setOperationAction(ISD::SETCC, MVT::f64, Legal); 257 setOperationAction(ISD::SELECT, MVT::f64, Custom); 258 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); 259 260 setOperationAction(ISD::BRCOND, MVT::Other, Legal); 261 262 // Floating point > and >= are supported via < and <= 263 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); 264 setCondCodeAction(ISD::SETOGT, MVT::f32, Expand); 265 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); 266 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); 267 268 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); 269 setCondCodeAction(ISD::SETOGT, MVT::f64, Expand); 270 setCondCodeAction(ISD::SETUGE, MVT::f64, Expand); 271 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); 272 } 273 274 if (Subtarget.hasMips64r6()) { 275 // MIPS64r6 replaces the accumulator-based multiplies with a three register 276 // instruction 277 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 278 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 279 setOperationAction(ISD::MUL, MVT::i64, Legal); 280 setOperationAction(ISD::MULHS, MVT::i64, Legal); 281 setOperationAction(ISD::MULHU, MVT::i64, Legal); 282 283 // MIPS32r6 replaces the accumulator-based division/remainder with separate 284 // three register division and remainder instructions. 285 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 287 setOperationAction(ISD::SDIV, MVT::i64, Legal); 288 setOperationAction(ISD::UDIV, MVT::i64, Legal); 289 setOperationAction(ISD::SREM, MVT::i64, Legal); 290 setOperationAction(ISD::UREM, MVT::i64, Legal); 291 292 // MIPS64r6 replaces conditional moves with an equivalent that removes the 293 // need for three GPR read ports. 294 setOperationAction(ISD::SETCC, MVT::i64, Legal); 295 setOperationAction(ISD::SELECT, MVT::i64, Legal); 296 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 297 } 298 299 computeRegisterProperties(Subtarget.getRegisterInfo()); 300 } 301 302 const MipsTargetLowering * 303 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM, 304 const MipsSubtarget &STI) { 305 return new MipsSETargetLowering(TM, STI); 306 } 307 308 const TargetRegisterClass * 309 MipsSETargetLowering::getRepRegClassFor(MVT VT) const { 310 if (VT == MVT::Untyped) 311 return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass; 312 313 return TargetLowering::getRepRegClassFor(VT); 314 } 315 316 // Enable MSA support for the given integer type and Register class. 317 void MipsSETargetLowering:: 318 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { 319 addRegisterClass(Ty, RC); 320 321 // Expand all builtin opcodes. 322 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) 323 setOperationAction(Opc, Ty, Expand); 324 325 setOperationAction(ISD::BITCAST, Ty, Legal); 326 setOperationAction(ISD::LOAD, Ty, Legal); 327 setOperationAction(ISD::STORE, Ty, Legal); 328 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom); 329 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal); 330 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom); 331 setOperationAction(ISD::UNDEF, Ty, Legal); 332 333 setOperationAction(ISD::ADD, Ty, Legal); 334 setOperationAction(ISD::AND, Ty, Legal); 335 setOperationAction(ISD::CTLZ, Ty, Legal); 336 setOperationAction(ISD::CTPOP, Ty, Legal); 337 setOperationAction(ISD::MUL, Ty, Legal); 338 setOperationAction(ISD::OR, Ty, Legal); 339 setOperationAction(ISD::SDIV, Ty, Legal); 340 setOperationAction(ISD::SREM, Ty, Legal); 341 setOperationAction(ISD::SHL, Ty, Legal); 342 setOperationAction(ISD::SRA, Ty, Legal); 343 setOperationAction(ISD::SRL, Ty, Legal); 344 setOperationAction(ISD::SUB, Ty, Legal); 345 setOperationAction(ISD::SMAX, Ty, Legal); 346 setOperationAction(ISD::SMIN, Ty, Legal); 347 setOperationAction(ISD::UDIV, Ty, Legal); 348 setOperationAction(ISD::UREM, Ty, Legal); 349 setOperationAction(ISD::UMAX, Ty, Legal); 350 setOperationAction(ISD::UMIN, Ty, Legal); 351 setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom); 352 setOperationAction(ISD::VSELECT, Ty, Legal); 353 setOperationAction(ISD::XOR, Ty, Legal); 354 355 if (Ty == MVT::v4i32 || Ty == MVT::v2i64) { 356 setOperationAction(ISD::FP_TO_SINT, Ty, Legal); 357 setOperationAction(ISD::FP_TO_UINT, Ty, Legal); 358 setOperationAction(ISD::SINT_TO_FP, Ty, Legal); 359 setOperationAction(ISD::UINT_TO_FP, Ty, Legal); 360 } 361 362 setOperationAction(ISD::SETCC, Ty, Legal); 363 setCondCodeAction(ISD::SETNE, Ty, Expand); 364 setCondCodeAction(ISD::SETGE, Ty, Expand); 365 setCondCodeAction(ISD::SETGT, Ty, Expand); 366 setCondCodeAction(ISD::SETUGE, Ty, Expand); 367 setCondCodeAction(ISD::SETUGT, Ty, Expand); 368 } 369 370 // Enable MSA support for the given floating-point type and Register class. 371 void MipsSETargetLowering:: 372 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { 373 addRegisterClass(Ty, RC); 374 375 // Expand all builtin opcodes. 376 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) 377 setOperationAction(Opc, Ty, Expand); 378 379 setOperationAction(ISD::LOAD, Ty, Legal); 380 setOperationAction(ISD::STORE, Ty, Legal); 381 setOperationAction(ISD::BITCAST, Ty, Legal); 382 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal); 383 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal); 384 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom); 385 386 if (Ty != MVT::v8f16) { 387 setOperationAction(ISD::FABS, Ty, Legal); 388 setOperationAction(ISD::FADD, Ty, Legal); 389 setOperationAction(ISD::FDIV, Ty, Legal); 390 setOperationAction(ISD::FEXP2, Ty, Legal); 391 setOperationAction(ISD::FLOG2, Ty, Legal); 392 setOperationAction(ISD::FMA, Ty, Legal); 393 setOperationAction(ISD::FMUL, Ty, Legal); 394 setOperationAction(ISD::FRINT, Ty, Legal); 395 setOperationAction(ISD::FSQRT, Ty, Legal); 396 setOperationAction(ISD::FSUB, Ty, Legal); 397 setOperationAction(ISD::VSELECT, Ty, Legal); 398 399 setOperationAction(ISD::SETCC, Ty, Legal); 400 setCondCodeAction(ISD::SETOGE, Ty, Expand); 401 setCondCodeAction(ISD::SETOGT, Ty, Expand); 402 setCondCodeAction(ISD::SETUGE, Ty, Expand); 403 setCondCodeAction(ISD::SETUGT, Ty, Expand); 404 setCondCodeAction(ISD::SETGE, Ty, Expand); 405 setCondCodeAction(ISD::SETGT, Ty, Expand); 406 } 407 } 408 409 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { 410 if(!Subtarget.hasMips32r6()) 411 return MipsTargetLowering::LowerOperation(Op, DAG); 412 413 EVT ResTy = Op->getValueType(0); 414 SDLoc DL(Op); 415 416 // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the 417 // floating point register are undefined. Not really an issue as sel.d, which 418 // is produced from an FSELECT node, only looks at bit 0. 419 SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0)); 420 return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1), 421 Op->getOperand(2)); 422 } 423 424 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses( 425 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 426 MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy; 427 428 if (Subtarget.systemSupportsUnalignedAccess()) { 429 // MIPS32r6/MIPS64r6 is required to support unaligned access. It's 430 // implementation defined whether this is handled by hardware, software, or 431 // a hybrid of the two but it's expected that most implementations will 432 // handle the majority of cases in hardware. 433 if (Fast) 434 *Fast = true; 435 return true; 436 } 437 438 switch (SVT) { 439 case MVT::i64: 440 case MVT::i32: 441 if (Fast) 442 *Fast = true; 443 return true; 444 default: 445 return false; 446 } 447 } 448 449 SDValue MipsSETargetLowering::LowerOperation(SDValue Op, 450 SelectionDAG &DAG) const { 451 switch(Op.getOpcode()) { 452 case ISD::LOAD: return lowerLOAD(Op, DAG); 453 case ISD::STORE: return lowerSTORE(Op, DAG); 454 case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG); 455 case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG); 456 case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG); 457 case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG); 458 case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG); 459 case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG); 460 case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true, 461 DAG); 462 case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG); 463 case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG); 464 case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG); 465 case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); 466 case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG); 467 case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG); 468 case ISD::SELECT: return lowerSELECT(Op, DAG); 469 case ISD::BITCAST: return lowerBITCAST(Op, DAG); 470 } 471 472 return MipsTargetLowering::LowerOperation(Op, DAG); 473 } 474 475 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT 476 // 477 // Performs the following transformations: 478 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its 479 // sign/zero-extension is completely overwritten by the new one performed by 480 // the ISD::AND. 481 // - Removes redundant zero extensions performed by an ISD::AND. 482 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, 483 TargetLowering::DAGCombinerInfo &DCI, 484 const MipsSubtarget &Subtarget) { 485 if (!Subtarget.hasMSA()) 486 return SDValue(); 487 488 SDValue Op0 = N->getOperand(0); 489 SDValue Op1 = N->getOperand(1); 490 unsigned Op0Opcode = Op0->getOpcode(); 491 492 // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d) 493 // where $d + 1 == 2^n and n == 32 494 // or $d + 1 == 2^n and n <= 32 and ZExt 495 // -> (MipsVExtractZExt $a, $b, $c) 496 if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT || 497 Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) { 498 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1); 499 500 if (!Mask) 501 return SDValue(); 502 503 int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2(); 504 505 if (Log2IfPositive <= 0) 506 return SDValue(); // Mask+1 is not a power of 2 507 508 SDValue Op0Op2 = Op0->getOperand(2); 509 EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT(); 510 unsigned ExtendTySize = ExtendTy.getSizeInBits(); 511 unsigned Log2 = Log2IfPositive; 512 513 if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) || 514 Log2 == ExtendTySize) { 515 SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 }; 516 return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0), 517 Op0->getVTList(), 518 makeArrayRef(Ops, Op0->getNumOperands())); 519 } 520 } 521 522 return SDValue(); 523 } 524 525 // Determine if the specified node is a constant vector splat. 526 // 527 // Returns true and sets Imm if: 528 // * N is a ISD::BUILD_VECTOR representing a constant splat 529 // 530 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The 531 // differences are that it assumes the MSA has already been checked and the 532 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and 533 // must not be in order for binsri.d to be selectable). 534 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) { 535 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode()); 536 537 if (!Node) 538 return false; 539 540 APInt SplatValue, SplatUndef; 541 unsigned SplatBitSize; 542 bool HasAnyUndefs; 543 544 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 545 8, !IsLittleEndian)) 546 return false; 547 548 Imm = SplatValue; 549 550 return true; 551 } 552 553 // Test whether the given node is an all-ones build_vector. 554 static bool isVectorAllOnes(SDValue N) { 555 // Look through bitcasts. Endianness doesn't matter because we are looking 556 // for an all-ones value. 557 if (N->getOpcode() == ISD::BITCAST) 558 N = N->getOperand(0); 559 560 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N); 561 562 if (!BVN) 563 return false; 564 565 APInt SplatValue, SplatUndef; 566 unsigned SplatBitSize; 567 bool HasAnyUndefs; 568 569 // Endianness doesn't matter in this context because we are looking for 570 // an all-ones value. 571 if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs)) 572 return SplatValue.isAllOnesValue(); 573 574 return false; 575 } 576 577 // Test whether N is the bitwise inverse of OfNode. 578 static bool isBitwiseInverse(SDValue N, SDValue OfNode) { 579 if (N->getOpcode() != ISD::XOR) 580 return false; 581 582 if (isVectorAllOnes(N->getOperand(0))) 583 return N->getOperand(1) == OfNode; 584 585 if (isVectorAllOnes(N->getOperand(1))) 586 return N->getOperand(0) == OfNode; 587 588 return false; 589 } 590 591 // Perform combines where ISD::OR is the root node. 592 // 593 // Performs the following transformations: 594 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b) 595 // where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit 596 // vector type. 597 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, 598 TargetLowering::DAGCombinerInfo &DCI, 599 const MipsSubtarget &Subtarget) { 600 if (!Subtarget.hasMSA()) 601 return SDValue(); 602 603 EVT Ty = N->getValueType(0); 604 605 if (!Ty.is128BitVector()) 606 return SDValue(); 607 608 SDValue Op0 = N->getOperand(0); 609 SDValue Op1 = N->getOperand(1); 610 611 if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) { 612 SDValue Op0Op0 = Op0->getOperand(0); 613 SDValue Op0Op1 = Op0->getOperand(1); 614 SDValue Op1Op0 = Op1->getOperand(0); 615 SDValue Op1Op1 = Op1->getOperand(1); 616 bool IsLittleEndian = !Subtarget.isLittle(); 617 618 SDValue IfSet, IfClr, Cond; 619 bool IsConstantMask = false; 620 APInt Mask, InvMask; 621 622 // If Op0Op0 is an appropriate mask, try to find it's inverse in either 623 // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while 624 // looking. 625 // IfClr will be set if we find a valid match. 626 if (isVSplat(Op0Op0, Mask, IsLittleEndian)) { 627 Cond = Op0Op0; 628 IfSet = Op0Op1; 629 630 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && 631 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) 632 IfClr = Op1Op1; 633 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && 634 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) 635 IfClr = Op1Op0; 636 637 IsConstantMask = true; 638 } 639 640 // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same 641 // thing again using this mask. 642 // IfClr will be set if we find a valid match. 643 if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) { 644 Cond = Op0Op1; 645 IfSet = Op0Op0; 646 647 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && 648 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) 649 IfClr = Op1Op1; 650 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && 651 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) 652 IfClr = Op1Op0; 653 654 IsConstantMask = true; 655 } 656 657 // If IfClr is not yet set, try looking for a non-constant match. 658 // IfClr will be set if we find a valid match amongst the eight 659 // possibilities. 660 if (!IfClr.getNode()) { 661 if (isBitwiseInverse(Op0Op0, Op1Op0)) { 662 Cond = Op1Op0; 663 IfSet = Op1Op1; 664 IfClr = Op0Op1; 665 } else if (isBitwiseInverse(Op0Op1, Op1Op0)) { 666 Cond = Op1Op0; 667 IfSet = Op1Op1; 668 IfClr = Op0Op0; 669 } else if (isBitwiseInverse(Op0Op0, Op1Op1)) { 670 Cond = Op1Op1; 671 IfSet = Op1Op0; 672 IfClr = Op0Op1; 673 } else if (isBitwiseInverse(Op0Op1, Op1Op1)) { 674 Cond = Op1Op1; 675 IfSet = Op1Op0; 676 IfClr = Op0Op0; 677 } else if (isBitwiseInverse(Op1Op0, Op0Op0)) { 678 Cond = Op0Op0; 679 IfSet = Op0Op1; 680 IfClr = Op1Op1; 681 } else if (isBitwiseInverse(Op1Op1, Op0Op0)) { 682 Cond = Op0Op0; 683 IfSet = Op0Op1; 684 IfClr = Op1Op0; 685 } else if (isBitwiseInverse(Op1Op0, Op0Op1)) { 686 Cond = Op0Op1; 687 IfSet = Op0Op0; 688 IfClr = Op1Op1; 689 } else if (isBitwiseInverse(Op1Op1, Op0Op1)) { 690 Cond = Op0Op1; 691 IfSet = Op0Op0; 692 IfClr = Op1Op0; 693 } 694 } 695 696 // At this point, IfClr will be set if we have a valid match. 697 if (!IfClr.getNode()) 698 return SDValue(); 699 700 assert(Cond.getNode() && IfSet.getNode()); 701 702 // Fold degenerate cases. 703 if (IsConstantMask) { 704 if (Mask.isAllOnesValue()) 705 return IfSet; 706 else if (Mask == 0) 707 return IfClr; 708 } 709 710 // Transform the DAG into an equivalent VSELECT. 711 return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr); 712 } 713 714 return SDValue(); 715 } 716 717 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT, 718 SelectionDAG &DAG, 719 const MipsSubtarget &Subtarget) { 720 // Estimate the number of operations the below transform will turn a 721 // constant multiply into. The number is approximately equal to the minimal 722 // number of powers of two that constant can be broken down to by adding 723 // or subtracting them. 724 // 725 // If we have taken more than 12[1] / 8[2] steps to attempt the 726 // optimization for a native sized value, it is more than likely that this 727 // optimization will make things worse. 728 // 729 // [1] MIPS64 requires 6 instructions at most to materialize any constant, 730 // multiplication requires at least 4 cycles, but another cycle (or two) 731 // to retrieve the result from the HI/LO registers. 732 // 733 // [2] For MIPS32, more than 8 steps is expensive as the constant could be 734 // materialized in 2 instructions, multiplication requires at least 4 735 // cycles, but another cycle (or two) to retrieve the result from the 736 // HI/LO registers. 737 // 738 // TODO: 739 // - MaxSteps needs to consider the `VT` of the constant for the current 740 // target. 741 // - Consider to perform this optimization after type legalization. 742 // That allows to remove a workaround for types not supported natively. 743 // - Take in account `-Os, -Oz` flags because this optimization 744 // increases code size. 745 unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12; 746 747 SmallVector<APInt, 16> WorkStack(1, C); 748 unsigned Steps = 0; 749 unsigned BitWidth = C.getBitWidth(); 750 751 while (!WorkStack.empty()) { 752 APInt Val = WorkStack.pop_back_val(); 753 754 if (Val == 0 || Val == 1) 755 continue; 756 757 if (Steps >= MaxSteps) 758 return false; 759 760 if (Val.isPowerOf2()) { 761 ++Steps; 762 continue; 763 } 764 765 APInt Floor = APInt(BitWidth, 1) << Val.logBase2(); 766 APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0) 767 : APInt(BitWidth, 1) << C.ceilLogBase2(); 768 if ((Val - Floor).ule(Ceil - Val)) { 769 WorkStack.push_back(Floor); 770 WorkStack.push_back(Val - Floor); 771 } else { 772 WorkStack.push_back(Ceil); 773 WorkStack.push_back(Ceil - Val); 774 } 775 776 ++Steps; 777 } 778 779 // If the value being multiplied is not supported natively, we have to pay 780 // an additional legalization cost, conservatively assume an increase in the 781 // cost of 3 instructions per step. This values for this heuristic were 782 // determined experimentally. 783 unsigned RegisterSize = DAG.getTargetLoweringInfo() 784 .getRegisterType(*DAG.getContext(), VT) 785 .getSizeInBits(); 786 Steps *= (VT.getSizeInBits() != RegisterSize) * 3; 787 if (Steps > 27) 788 return false; 789 790 return true; 791 } 792 793 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT, 794 EVT ShiftTy, SelectionDAG &DAG) { 795 // Return 0. 796 if (C == 0) 797 return DAG.getConstant(0, DL, VT); 798 799 // Return x. 800 if (C == 1) 801 return X; 802 803 // If c is power of 2, return (shl x, log2(c)). 804 if (C.isPowerOf2()) 805 return DAG.getNode(ISD::SHL, DL, VT, X, 806 DAG.getConstant(C.logBase2(), DL, ShiftTy)); 807 808 unsigned BitWidth = C.getBitWidth(); 809 APInt Floor = APInt(BitWidth, 1) << C.logBase2(); 810 APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) : 811 APInt(BitWidth, 1) << C.ceilLogBase2(); 812 813 // If |c - floor_c| <= |c - ceil_c|, 814 // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))), 815 // return (add constMult(x, floor_c), constMult(x, c - floor_c)). 816 if ((C - Floor).ule(Ceil - C)) { 817 SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG); 818 SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG); 819 return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); 820 } 821 822 // If |c - floor_c| > |c - ceil_c|, 823 // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)). 824 SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG); 825 SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG); 826 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); 827 } 828 829 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG, 830 const TargetLowering::DAGCombinerInfo &DCI, 831 const MipsSETargetLowering *TL, 832 const MipsSubtarget &Subtarget) { 833 EVT VT = N->getValueType(0); 834 835 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) 836 if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs( 837 C->getAPIntValue(), VT, DAG, Subtarget)) 838 return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT, 839 TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT), 840 DAG); 841 842 return SDValue(N, 0); 843 } 844 845 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty, 846 SelectionDAG &DAG, 847 const MipsSubtarget &Subtarget) { 848 // See if this is a vector splat immediate node. 849 APInt SplatValue, SplatUndef; 850 unsigned SplatBitSize; 851 bool HasAnyUndefs; 852 unsigned EltSize = Ty.getScalarSizeInBits(); 853 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 854 855 if (!Subtarget.hasDSP()) 856 return SDValue(); 857 858 if (!BV || 859 !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 860 EltSize, !Subtarget.isLittle()) || 861 (SplatBitSize != EltSize) || 862 (SplatValue.getZExtValue() >= EltSize)) 863 return SDValue(); 864 865 SDLoc DL(N); 866 return DAG.getNode(Opc, DL, Ty, N->getOperand(0), 867 DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32)); 868 } 869 870 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, 871 TargetLowering::DAGCombinerInfo &DCI, 872 const MipsSubtarget &Subtarget) { 873 EVT Ty = N->getValueType(0); 874 875 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) 876 return SDValue(); 877 878 return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget); 879 } 880 881 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold 882 // constant splats into MipsISD::SHRA_DSP for DSPr2. 883 // 884 // Performs the following transformations: 885 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its 886 // sign/zero-extension is completely overwritten by the new one performed by 887 // the ISD::SRA and ISD::SHL nodes. 888 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL 889 // sequence. 890 // 891 // See performDSPShiftCombine for more information about the transformation 892 // used for DSPr2. 893 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, 894 TargetLowering::DAGCombinerInfo &DCI, 895 const MipsSubtarget &Subtarget) { 896 EVT Ty = N->getValueType(0); 897 898 if (Subtarget.hasMSA()) { 899 SDValue Op0 = N->getOperand(0); 900 SDValue Op1 = N->getOperand(1); 901 902 // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d) 903 // where $d + sizeof($c) == 32 904 // or $d + sizeof($c) <= 32 and SExt 905 // -> (MipsVExtractSExt $a, $b, $c) 906 if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) { 907 SDValue Op0Op0 = Op0->getOperand(0); 908 ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1); 909 910 if (!ShAmount) 911 return SDValue(); 912 913 if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT && 914 Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT) 915 return SDValue(); 916 917 EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT(); 918 unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits(); 919 920 if (TotalBits == 32 || 921 (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT && 922 TotalBits <= 32)) { 923 SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1), 924 Op0Op0->getOperand(2) }; 925 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0), 926 Op0Op0->getVTList(), 927 makeArrayRef(Ops, Op0Op0->getNumOperands())); 928 } 929 } 930 } 931 932 if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2())) 933 return SDValue(); 934 935 return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget); 936 } 937 938 939 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, 940 TargetLowering::DAGCombinerInfo &DCI, 941 const MipsSubtarget &Subtarget) { 942 EVT Ty = N->getValueType(0); 943 944 if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8)) 945 return SDValue(); 946 947 return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget); 948 } 949 950 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) { 951 bool IsV216 = (Ty == MVT::v2i16); 952 953 switch (CC) { 954 case ISD::SETEQ: 955 case ISD::SETNE: return true; 956 case ISD::SETLT: 957 case ISD::SETLE: 958 case ISD::SETGT: 959 case ISD::SETGE: return IsV216; 960 case ISD::SETULT: 961 case ISD::SETULE: 962 case ISD::SETUGT: 963 case ISD::SETUGE: return !IsV216; 964 default: return false; 965 } 966 } 967 968 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) { 969 EVT Ty = N->getValueType(0); 970 971 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) 972 return SDValue(); 973 974 if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get())) 975 return SDValue(); 976 977 return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0), 978 N->getOperand(1), N->getOperand(2)); 979 } 980 981 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) { 982 EVT Ty = N->getValueType(0); 983 984 if (Ty == MVT::v2i16 || Ty == MVT::v4i8) { 985 SDValue SetCC = N->getOperand(0); 986 987 if (SetCC.getOpcode() != MipsISD::SETCC_DSP) 988 return SDValue(); 989 990 return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty, 991 SetCC.getOperand(0), SetCC.getOperand(1), 992 N->getOperand(1), N->getOperand(2), SetCC.getOperand(2)); 993 } 994 995 return SDValue(); 996 } 997 998 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG, 999 const MipsSubtarget &Subtarget) { 1000 EVT Ty = N->getValueType(0); 1001 1002 if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) { 1003 // Try the following combines: 1004 // (xor (or $a, $b), (build_vector allones)) 1005 // (xor (or $a, $b), (bitcast (build_vector allones))) 1006 SDValue Op0 = N->getOperand(0); 1007 SDValue Op1 = N->getOperand(1); 1008 SDValue NotOp; 1009 1010 if (ISD::isBuildVectorAllOnes(Op0.getNode())) 1011 NotOp = Op1; 1012 else if (ISD::isBuildVectorAllOnes(Op1.getNode())) 1013 NotOp = Op0; 1014 else 1015 return SDValue(); 1016 1017 if (NotOp->getOpcode() == ISD::OR) 1018 return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0), 1019 NotOp->getOperand(1)); 1020 } 1021 1022 return SDValue(); 1023 } 1024 1025 SDValue 1026 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 1027 SelectionDAG &DAG = DCI.DAG; 1028 SDValue Val; 1029 1030 switch (N->getOpcode()) { 1031 case ISD::AND: 1032 Val = performANDCombine(N, DAG, DCI, Subtarget); 1033 break; 1034 case ISD::OR: 1035 Val = performORCombine(N, DAG, DCI, Subtarget); 1036 break; 1037 case ISD::MUL: 1038 return performMULCombine(N, DAG, DCI, this, Subtarget); 1039 case ISD::SHL: 1040 Val = performSHLCombine(N, DAG, DCI, Subtarget); 1041 break; 1042 case ISD::SRA: 1043 return performSRACombine(N, DAG, DCI, Subtarget); 1044 case ISD::SRL: 1045 return performSRLCombine(N, DAG, DCI, Subtarget); 1046 case ISD::VSELECT: 1047 return performVSELECTCombine(N, DAG); 1048 case ISD::XOR: 1049 Val = performXORCombine(N, DAG, Subtarget); 1050 break; 1051 case ISD::SETCC: 1052 Val = performSETCCCombine(N, DAG); 1053 break; 1054 } 1055 1056 if (Val.getNode()) { 1057 LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n"; 1058 N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n"; 1059 Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n"); 1060 return Val; 1061 } 1062 1063 return MipsTargetLowering::PerformDAGCombine(N, DCI); 1064 } 1065 1066 MachineBasicBlock * 1067 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 1068 MachineBasicBlock *BB) const { 1069 switch (MI.getOpcode()) { 1070 default: 1071 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); 1072 case Mips::BPOSGE32_PSEUDO: 1073 return emitBPOSGE32(MI, BB); 1074 case Mips::SNZ_B_PSEUDO: 1075 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B); 1076 case Mips::SNZ_H_PSEUDO: 1077 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H); 1078 case Mips::SNZ_W_PSEUDO: 1079 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W); 1080 case Mips::SNZ_D_PSEUDO: 1081 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D); 1082 case Mips::SNZ_V_PSEUDO: 1083 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V); 1084 case Mips::SZ_B_PSEUDO: 1085 return emitMSACBranchPseudo(MI, BB, Mips::BZ_B); 1086 case Mips::SZ_H_PSEUDO: 1087 return emitMSACBranchPseudo(MI, BB, Mips::BZ_H); 1088 case Mips::SZ_W_PSEUDO: 1089 return emitMSACBranchPseudo(MI, BB, Mips::BZ_W); 1090 case Mips::SZ_D_PSEUDO: 1091 return emitMSACBranchPseudo(MI, BB, Mips::BZ_D); 1092 case Mips::SZ_V_PSEUDO: 1093 return emitMSACBranchPseudo(MI, BB, Mips::BZ_V); 1094 case Mips::COPY_FW_PSEUDO: 1095 return emitCOPY_FW(MI, BB); 1096 case Mips::COPY_FD_PSEUDO: 1097 return emitCOPY_FD(MI, BB); 1098 case Mips::INSERT_FW_PSEUDO: 1099 return emitINSERT_FW(MI, BB); 1100 case Mips::INSERT_FD_PSEUDO: 1101 return emitINSERT_FD(MI, BB); 1102 case Mips::INSERT_B_VIDX_PSEUDO: 1103 case Mips::INSERT_B_VIDX64_PSEUDO: 1104 return emitINSERT_DF_VIDX(MI, BB, 1, false); 1105 case Mips::INSERT_H_VIDX_PSEUDO: 1106 case Mips::INSERT_H_VIDX64_PSEUDO: 1107 return emitINSERT_DF_VIDX(MI, BB, 2, false); 1108 case Mips::INSERT_W_VIDX_PSEUDO: 1109 case Mips::INSERT_W_VIDX64_PSEUDO: 1110 return emitINSERT_DF_VIDX(MI, BB, 4, false); 1111 case Mips::INSERT_D_VIDX_PSEUDO: 1112 case Mips::INSERT_D_VIDX64_PSEUDO: 1113 return emitINSERT_DF_VIDX(MI, BB, 8, false); 1114 case Mips::INSERT_FW_VIDX_PSEUDO: 1115 case Mips::INSERT_FW_VIDX64_PSEUDO: 1116 return emitINSERT_DF_VIDX(MI, BB, 4, true); 1117 case Mips::INSERT_FD_VIDX_PSEUDO: 1118 case Mips::INSERT_FD_VIDX64_PSEUDO: 1119 return emitINSERT_DF_VIDX(MI, BB, 8, true); 1120 case Mips::FILL_FW_PSEUDO: 1121 return emitFILL_FW(MI, BB); 1122 case Mips::FILL_FD_PSEUDO: 1123 return emitFILL_FD(MI, BB); 1124 case Mips::FEXP2_W_1_PSEUDO: 1125 return emitFEXP2_W_1(MI, BB); 1126 case Mips::FEXP2_D_1_PSEUDO: 1127 return emitFEXP2_D_1(MI, BB); 1128 case Mips::ST_F16: 1129 return emitST_F16_PSEUDO(MI, BB); 1130 case Mips::LD_F16: 1131 return emitLD_F16_PSEUDO(MI, BB); 1132 case Mips::MSA_FP_EXTEND_W_PSEUDO: 1133 return emitFPEXTEND_PSEUDO(MI, BB, false); 1134 case Mips::MSA_FP_ROUND_W_PSEUDO: 1135 return emitFPROUND_PSEUDO(MI, BB, false); 1136 case Mips::MSA_FP_EXTEND_D_PSEUDO: 1137 return emitFPEXTEND_PSEUDO(MI, BB, true); 1138 case Mips::MSA_FP_ROUND_D_PSEUDO: 1139 return emitFPROUND_PSEUDO(MI, BB, true); 1140 } 1141 } 1142 1143 bool MipsSETargetLowering::isEligibleForTailCallOptimization( 1144 const CCState &CCInfo, unsigned NextStackOffset, 1145 const MipsFunctionInfo &FI) const { 1146 if (!UseMipsTailCalls) 1147 return false; 1148 1149 // Exception has to be cleared with eret. 1150 if (FI.isISR()) 1151 return false; 1152 1153 // Return false if either the callee or caller has a byval argument. 1154 if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg()) 1155 return false; 1156 1157 // Return true if the callee's argument area is no larger than the 1158 // caller's. 1159 return NextStackOffset <= FI.getIncomingArgSize(); 1160 } 1161 1162 void MipsSETargetLowering:: 1163 getOpndList(SmallVectorImpl<SDValue> &Ops, 1164 std::deque<std::pair<unsigned, SDValue>> &RegsToPass, 1165 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, 1166 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, 1167 SDValue Chain) const { 1168 Ops.push_back(Callee); 1169 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, 1170 InternalLinkage, IsCallReloc, CLI, Callee, 1171 Chain); 1172 } 1173 1174 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1175 LoadSDNode &Nd = *cast<LoadSDNode>(Op); 1176 1177 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) 1178 return MipsTargetLowering::lowerLOAD(Op, DAG); 1179 1180 // Replace a double precision load with two i32 loads and a buildpair64. 1181 SDLoc DL(Op); 1182 SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); 1183 EVT PtrVT = Ptr.getValueType(); 1184 1185 // i32 load from lower address. 1186 SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(), 1187 Nd.getAlignment(), Nd.getMemOperand()->getFlags()); 1188 1189 // i32 load from higher address. 1190 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT)); 1191 SDValue Hi = DAG.getLoad( 1192 MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(), 1193 std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags()); 1194 1195 if (!Subtarget.isLittle()) 1196 std::swap(Lo, Hi); 1197 1198 SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1199 SDValue Ops[2] = {BP, Hi.getValue(1)}; 1200 return DAG.getMergeValues(Ops, DL); 1201 } 1202 1203 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1204 StoreSDNode &Nd = *cast<StoreSDNode>(Op); 1205 1206 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) 1207 return MipsTargetLowering::lowerSTORE(Op, DAG); 1208 1209 // Replace a double precision store with two extractelement64s and i32 stores. 1210 SDLoc DL(Op); 1211 SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); 1212 EVT PtrVT = Ptr.getValueType(); 1213 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 1214 Val, DAG.getConstant(0, DL, MVT::i32)); 1215 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, 1216 Val, DAG.getConstant(1, DL, MVT::i32)); 1217 1218 if (!Subtarget.isLittle()) 1219 std::swap(Lo, Hi); 1220 1221 // i32 store to lower address. 1222 Chain = 1223 DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(), 1224 Nd.getMemOperand()->getFlags(), Nd.getAAInfo()); 1225 1226 // i32 store to higher address. 1227 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT)); 1228 return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(), 1229 std::min(Nd.getAlignment(), 4U), 1230 Nd.getMemOperand()->getFlags(), Nd.getAAInfo()); 1231 } 1232 1233 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op, 1234 SelectionDAG &DAG) const { 1235 SDLoc DL(Op); 1236 MVT Src = Op.getOperand(0).getValueType().getSimpleVT(); 1237 MVT Dest = Op.getValueType().getSimpleVT(); 1238 1239 // Bitcast i64 to double. 1240 if (Src == MVT::i64 && Dest == MVT::f64) { 1241 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, 1242 Op.getOperand(0), DAG.getIntPtrConstant(0, DL)); 1243 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, 1244 Op.getOperand(0), DAG.getIntPtrConstant(1, DL)); 1245 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi); 1246 } 1247 1248 // Bitcast double to i64. 1249 if (Src == MVT::f64 && Dest == MVT::i64) { 1250 SDValue Lo = 1251 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 1252 DAG.getConstant(0, DL, MVT::i32)); 1253 SDValue Hi = 1254 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), 1255 DAG.getConstant(1, DL, MVT::i32)); 1256 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); 1257 } 1258 1259 // Skip other cases of bitcast and use default lowering. 1260 return SDValue(); 1261 } 1262 1263 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc, 1264 bool HasLo, bool HasHi, 1265 SelectionDAG &DAG) const { 1266 // MIPS32r6/MIPS64r6 removed accumulator based multiplies. 1267 assert(!Subtarget.hasMips32r6()); 1268 1269 EVT Ty = Op.getOperand(0).getValueType(); 1270 SDLoc DL(Op); 1271 SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped, 1272 Op.getOperand(0), Op.getOperand(1)); 1273 SDValue Lo, Hi; 1274 1275 if (HasLo) 1276 Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult); 1277 if (HasHi) 1278 Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult); 1279 1280 if (!HasLo || !HasHi) 1281 return HasLo ? Lo : Hi; 1282 1283 SDValue Vals[] = { Lo, Hi }; 1284 return DAG.getMergeValues(Vals, DL); 1285 } 1286 1287 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) { 1288 SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In, 1289 DAG.getConstant(0, DL, MVT::i32)); 1290 SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In, 1291 DAG.getConstant(1, DL, MVT::i32)); 1292 return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi); 1293 } 1294 1295 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) { 1296 SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op); 1297 SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op); 1298 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); 1299 } 1300 1301 // This function expands mips intrinsic nodes which have 64-bit input operands 1302 // or output values. 1303 // 1304 // out64 = intrinsic-node in64 1305 // => 1306 // lo = copy (extract-element (in64, 0)) 1307 // hi = copy (extract-element (in64, 1)) 1308 // mips-specific-node 1309 // v0 = copy lo 1310 // v1 = copy hi 1311 // out64 = merge-values (v0, v1) 1312 // 1313 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { 1314 SDLoc DL(Op); 1315 bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other; 1316 SmallVector<SDValue, 3> Ops; 1317 unsigned OpNo = 0; 1318 1319 // See if Op has a chain input. 1320 if (HasChainIn) 1321 Ops.push_back(Op->getOperand(OpNo++)); 1322 1323 // The next operand is the intrinsic opcode. 1324 assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant); 1325 1326 // See if the next operand has type i64. 1327 SDValue Opnd = Op->getOperand(++OpNo), In64; 1328 1329 if (Opnd.getValueType() == MVT::i64) 1330 In64 = initAccumulator(Opnd, DL, DAG); 1331 else 1332 Ops.push_back(Opnd); 1333 1334 // Push the remaining operands. 1335 for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo) 1336 Ops.push_back(Op->getOperand(OpNo)); 1337 1338 // Add In64 to the end of the list. 1339 if (In64.getNode()) 1340 Ops.push_back(In64); 1341 1342 // Scan output. 1343 SmallVector<EVT, 2> ResTys; 1344 1345 for (EVT Ty : Op->values()) 1346 ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty); 1347 1348 // Create node. 1349 SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops); 1350 SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val; 1351 1352 if (!HasChainIn) 1353 return Out; 1354 1355 assert(Val->getValueType(1) == MVT::Other); 1356 SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) }; 1357 return DAG.getMergeValues(Vals, DL); 1358 } 1359 1360 // Lower an MSA copy intrinsic into the specified SelectionDAG node 1361 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { 1362 SDLoc DL(Op); 1363 SDValue Vec = Op->getOperand(1); 1364 SDValue Idx = Op->getOperand(2); 1365 EVT ResTy = Op->getValueType(0); 1366 EVT EltTy = Vec->getValueType(0).getVectorElementType(); 1367 1368 SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx, 1369 DAG.getValueType(EltTy)); 1370 1371 return Result; 1372 } 1373 1374 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) { 1375 EVT ResVecTy = Op->getValueType(0); 1376 EVT ViaVecTy = ResVecTy; 1377 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); 1378 SDLoc DL(Op); 1379 1380 // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and 1381 // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating 1382 // lanes. 1383 SDValue LaneA = Op->getOperand(OpNr); 1384 SDValue LaneB; 1385 1386 if (ResVecTy == MVT::v2i64) { 1387 // In case of the index being passed as an immediate value, set the upper 1388 // lane to 0 so that the splati.d instruction can be matched. 1389 if (isa<ConstantSDNode>(LaneA)) 1390 LaneB = DAG.getConstant(0, DL, MVT::i32); 1391 // Having the index passed in a register, set the upper lane to the same 1392 // value as the lower - this results in the BUILD_VECTOR node not being 1393 // expanded through stack. This way we are able to pattern match the set of 1394 // nodes created here to splat.d. 1395 else 1396 LaneB = LaneA; 1397 ViaVecTy = MVT::v4i32; 1398 if(BigEndian) 1399 std::swap(LaneA, LaneB); 1400 } else 1401 LaneB = LaneA; 1402 1403 SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, 1404 LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB }; 1405 1406 SDValue Result = DAG.getBuildVector( 1407 ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements())); 1408 1409 if (ViaVecTy != ResVecTy) { 1410 SDValue One = DAG.getConstant(1, DL, ViaVecTy); 1411 Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, 1412 DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One)); 1413 } 1414 1415 return Result; 1416 } 1417 1418 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, 1419 bool IsSigned = false) { 1420 auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp)); 1421 return DAG.getConstant( 1422 APInt(Op->getValueType(0).getScalarType().getSizeInBits(), 1423 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned), 1424 SDLoc(Op), Op->getValueType(0)); 1425 } 1426 1427 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue, 1428 bool BigEndian, SelectionDAG &DAG) { 1429 EVT ViaVecTy = VecTy; 1430 SDValue SplatValueA = SplatValue; 1431 SDValue SplatValueB = SplatValue; 1432 SDLoc DL(SplatValue); 1433 1434 if (VecTy == MVT::v2i64) { 1435 // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's. 1436 ViaVecTy = MVT::v4i32; 1437 1438 SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue); 1439 SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue, 1440 DAG.getConstant(32, DL, MVT::i32)); 1441 SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB); 1442 } 1443 1444 // We currently hold the parts in little endian order. Swap them if 1445 // necessary. 1446 if (BigEndian) 1447 std::swap(SplatValueA, SplatValueB); 1448 1449 SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB, 1450 SplatValueA, SplatValueB, SplatValueA, SplatValueB, 1451 SplatValueA, SplatValueB, SplatValueA, SplatValueB, 1452 SplatValueA, SplatValueB, SplatValueA, SplatValueB }; 1453 1454 SDValue Result = DAG.getBuildVector( 1455 ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements())); 1456 1457 if (VecTy != ViaVecTy) 1458 Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result); 1459 1460 return Result; 1461 } 1462 1463 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG, 1464 unsigned Opc, SDValue Imm, 1465 bool BigEndian) { 1466 EVT VecTy = Op->getValueType(0); 1467 SDValue Exp2Imm; 1468 SDLoc DL(Op); 1469 1470 // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it 1471 // here for now. 1472 if (VecTy == MVT::v2i64) { 1473 if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) { 1474 APInt BitImm = APInt(64, 1) << CImm->getAPIntValue(); 1475 1476 SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL, 1477 MVT::i32); 1478 SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32); 1479 1480 if (BigEndian) 1481 std::swap(BitImmLoOp, BitImmHiOp); 1482 1483 Exp2Imm = DAG.getNode( 1484 ISD::BITCAST, DL, MVT::v2i64, 1485 DAG.getBuildVector(MVT::v4i32, DL, 1486 {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp})); 1487 } 1488 } 1489 1490 if (!Exp2Imm.getNode()) { 1491 // We couldnt constant fold, do a vector shift instead 1492 1493 // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since 1494 // only values 0-63 are valid. 1495 if (VecTy == MVT::v2i64) 1496 Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm); 1497 1498 Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG); 1499 1500 Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy), 1501 Exp2Imm); 1502 } 1503 1504 return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm); 1505 } 1506 1507 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) { 1508 SDLoc DL(Op); 1509 EVT ResTy = Op->getValueType(0); 1510 SDValue Vec = Op->getOperand(2); 1511 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); 1512 MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32; 1513 SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1, 1514 DL, ResEltTy); 1515 SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG); 1516 1517 return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec); 1518 } 1519 1520 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) { 1521 EVT ResTy = Op->getValueType(0); 1522 SDLoc DL(Op); 1523 SDValue One = DAG.getConstant(1, DL, ResTy); 1524 SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG)); 1525 1526 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), 1527 DAG.getNOT(DL, Bit, ResTy)); 1528 } 1529 1530 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) { 1531 SDLoc DL(Op); 1532 EVT ResTy = Op->getValueType(0); 1533 APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1) 1534 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue(); 1535 SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy); 1536 1537 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask); 1538 } 1539 1540 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 1541 SelectionDAG &DAG) const { 1542 SDLoc DL(Op); 1543 unsigned Intrinsic = cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue(); 1544 switch (Intrinsic) { 1545 default: 1546 return SDValue(); 1547 case Intrinsic::mips_shilo: 1548 return lowerDSPIntr(Op, DAG, MipsISD::SHILO); 1549 case Intrinsic::mips_dpau_h_qbl: 1550 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL); 1551 case Intrinsic::mips_dpau_h_qbr: 1552 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR); 1553 case Intrinsic::mips_dpsu_h_qbl: 1554 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL); 1555 case Intrinsic::mips_dpsu_h_qbr: 1556 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR); 1557 case Intrinsic::mips_dpa_w_ph: 1558 return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH); 1559 case Intrinsic::mips_dps_w_ph: 1560 return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH); 1561 case Intrinsic::mips_dpax_w_ph: 1562 return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH); 1563 case Intrinsic::mips_dpsx_w_ph: 1564 return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH); 1565 case Intrinsic::mips_mulsa_w_ph: 1566 return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH); 1567 case Intrinsic::mips_mult: 1568 return lowerDSPIntr(Op, DAG, MipsISD::Mult); 1569 case Intrinsic::mips_multu: 1570 return lowerDSPIntr(Op, DAG, MipsISD::Multu); 1571 case Intrinsic::mips_madd: 1572 return lowerDSPIntr(Op, DAG, MipsISD::MAdd); 1573 case Intrinsic::mips_maddu: 1574 return lowerDSPIntr(Op, DAG, MipsISD::MAddu); 1575 case Intrinsic::mips_msub: 1576 return lowerDSPIntr(Op, DAG, MipsISD::MSub); 1577 case Intrinsic::mips_msubu: 1578 return lowerDSPIntr(Op, DAG, MipsISD::MSubu); 1579 case Intrinsic::mips_addv_b: 1580 case Intrinsic::mips_addv_h: 1581 case Intrinsic::mips_addv_w: 1582 case Intrinsic::mips_addv_d: 1583 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1), 1584 Op->getOperand(2)); 1585 case Intrinsic::mips_addvi_b: 1586 case Intrinsic::mips_addvi_h: 1587 case Intrinsic::mips_addvi_w: 1588 case Intrinsic::mips_addvi_d: 1589 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1), 1590 lowerMSASplatImm(Op, 2, DAG)); 1591 case Intrinsic::mips_and_v: 1592 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1), 1593 Op->getOperand(2)); 1594 case Intrinsic::mips_andi_b: 1595 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1), 1596 lowerMSASplatImm(Op, 2, DAG)); 1597 case Intrinsic::mips_bclr_b: 1598 case Intrinsic::mips_bclr_h: 1599 case Intrinsic::mips_bclr_w: 1600 case Intrinsic::mips_bclr_d: 1601 return lowerMSABitClear(Op, DAG); 1602 case Intrinsic::mips_bclri_b: 1603 case Intrinsic::mips_bclri_h: 1604 case Intrinsic::mips_bclri_w: 1605 case Intrinsic::mips_bclri_d: 1606 return lowerMSABitClearImm(Op, DAG); 1607 case Intrinsic::mips_binsli_b: 1608 case Intrinsic::mips_binsli_h: 1609 case Intrinsic::mips_binsli_w: 1610 case Intrinsic::mips_binsli_d: { 1611 // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear) 1612 EVT VecTy = Op->getValueType(0); 1613 EVT EltTy = VecTy.getVectorElementType(); 1614 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits()) 1615 report_fatal_error("Immediate out of range"); 1616 APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(), 1617 Op->getConstantOperandVal(3) + 1); 1618 return DAG.getNode(ISD::VSELECT, DL, VecTy, 1619 DAG.getConstant(Mask, DL, VecTy, true), 1620 Op->getOperand(2), Op->getOperand(1)); 1621 } 1622 case Intrinsic::mips_binsri_b: 1623 case Intrinsic::mips_binsri_h: 1624 case Intrinsic::mips_binsri_w: 1625 case Intrinsic::mips_binsri_d: { 1626 // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear) 1627 EVT VecTy = Op->getValueType(0); 1628 EVT EltTy = VecTy.getVectorElementType(); 1629 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits()) 1630 report_fatal_error("Immediate out of range"); 1631 APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(), 1632 Op->getConstantOperandVal(3) + 1); 1633 return DAG.getNode(ISD::VSELECT, DL, VecTy, 1634 DAG.getConstant(Mask, DL, VecTy, true), 1635 Op->getOperand(2), Op->getOperand(1)); 1636 } 1637 case Intrinsic::mips_bmnz_v: 1638 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3), 1639 Op->getOperand(2), Op->getOperand(1)); 1640 case Intrinsic::mips_bmnzi_b: 1641 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), 1642 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2), 1643 Op->getOperand(1)); 1644 case Intrinsic::mips_bmz_v: 1645 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3), 1646 Op->getOperand(1), Op->getOperand(2)); 1647 case Intrinsic::mips_bmzi_b: 1648 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), 1649 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1), 1650 Op->getOperand(2)); 1651 case Intrinsic::mips_bneg_b: 1652 case Intrinsic::mips_bneg_h: 1653 case Intrinsic::mips_bneg_w: 1654 case Intrinsic::mips_bneg_d: { 1655 EVT VecTy = Op->getValueType(0); 1656 SDValue One = DAG.getConstant(1, DL, VecTy); 1657 1658 return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1), 1659 DAG.getNode(ISD::SHL, DL, VecTy, One, 1660 truncateVecElts(Op, DAG))); 1661 } 1662 case Intrinsic::mips_bnegi_b: 1663 case Intrinsic::mips_bnegi_h: 1664 case Intrinsic::mips_bnegi_w: 1665 case Intrinsic::mips_bnegi_d: 1666 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2), 1667 !Subtarget.isLittle()); 1668 case Intrinsic::mips_bnz_b: 1669 case Intrinsic::mips_bnz_h: 1670 case Intrinsic::mips_bnz_w: 1671 case Intrinsic::mips_bnz_d: 1672 return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0), 1673 Op->getOperand(1)); 1674 case Intrinsic::mips_bnz_v: 1675 return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0), 1676 Op->getOperand(1)); 1677 case Intrinsic::mips_bsel_v: 1678 // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) 1679 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), 1680 Op->getOperand(1), Op->getOperand(3), 1681 Op->getOperand(2)); 1682 case Intrinsic::mips_bseli_b: 1683 // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) 1684 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), 1685 Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG), 1686 Op->getOperand(2)); 1687 case Intrinsic::mips_bset_b: 1688 case Intrinsic::mips_bset_h: 1689 case Intrinsic::mips_bset_w: 1690 case Intrinsic::mips_bset_d: { 1691 EVT VecTy = Op->getValueType(0); 1692 SDValue One = DAG.getConstant(1, DL, VecTy); 1693 1694 return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1), 1695 DAG.getNode(ISD::SHL, DL, VecTy, One, 1696 truncateVecElts(Op, DAG))); 1697 } 1698 case Intrinsic::mips_bseti_b: 1699 case Intrinsic::mips_bseti_h: 1700 case Intrinsic::mips_bseti_w: 1701 case Intrinsic::mips_bseti_d: 1702 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2), 1703 !Subtarget.isLittle()); 1704 case Intrinsic::mips_bz_b: 1705 case Intrinsic::mips_bz_h: 1706 case Intrinsic::mips_bz_w: 1707 case Intrinsic::mips_bz_d: 1708 return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0), 1709 Op->getOperand(1)); 1710 case Intrinsic::mips_bz_v: 1711 return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0), 1712 Op->getOperand(1)); 1713 case Intrinsic::mips_ceq_b: 1714 case Intrinsic::mips_ceq_h: 1715 case Intrinsic::mips_ceq_w: 1716 case Intrinsic::mips_ceq_d: 1717 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1718 Op->getOperand(2), ISD::SETEQ); 1719 case Intrinsic::mips_ceqi_b: 1720 case Intrinsic::mips_ceqi_h: 1721 case Intrinsic::mips_ceqi_w: 1722 case Intrinsic::mips_ceqi_d: 1723 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1724 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ); 1725 case Intrinsic::mips_cle_s_b: 1726 case Intrinsic::mips_cle_s_h: 1727 case Intrinsic::mips_cle_s_w: 1728 case Intrinsic::mips_cle_s_d: 1729 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1730 Op->getOperand(2), ISD::SETLE); 1731 case Intrinsic::mips_clei_s_b: 1732 case Intrinsic::mips_clei_s_h: 1733 case Intrinsic::mips_clei_s_w: 1734 case Intrinsic::mips_clei_s_d: 1735 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1736 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE); 1737 case Intrinsic::mips_cle_u_b: 1738 case Intrinsic::mips_cle_u_h: 1739 case Intrinsic::mips_cle_u_w: 1740 case Intrinsic::mips_cle_u_d: 1741 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1742 Op->getOperand(2), ISD::SETULE); 1743 case Intrinsic::mips_clei_u_b: 1744 case Intrinsic::mips_clei_u_h: 1745 case Intrinsic::mips_clei_u_w: 1746 case Intrinsic::mips_clei_u_d: 1747 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1748 lowerMSASplatImm(Op, 2, DAG), ISD::SETULE); 1749 case Intrinsic::mips_clt_s_b: 1750 case Intrinsic::mips_clt_s_h: 1751 case Intrinsic::mips_clt_s_w: 1752 case Intrinsic::mips_clt_s_d: 1753 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1754 Op->getOperand(2), ISD::SETLT); 1755 case Intrinsic::mips_clti_s_b: 1756 case Intrinsic::mips_clti_s_h: 1757 case Intrinsic::mips_clti_s_w: 1758 case Intrinsic::mips_clti_s_d: 1759 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1760 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT); 1761 case Intrinsic::mips_clt_u_b: 1762 case Intrinsic::mips_clt_u_h: 1763 case Intrinsic::mips_clt_u_w: 1764 case Intrinsic::mips_clt_u_d: 1765 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1766 Op->getOperand(2), ISD::SETULT); 1767 case Intrinsic::mips_clti_u_b: 1768 case Intrinsic::mips_clti_u_h: 1769 case Intrinsic::mips_clti_u_w: 1770 case Intrinsic::mips_clti_u_d: 1771 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1772 lowerMSASplatImm(Op, 2, DAG), ISD::SETULT); 1773 case Intrinsic::mips_copy_s_b: 1774 case Intrinsic::mips_copy_s_h: 1775 case Intrinsic::mips_copy_s_w: 1776 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT); 1777 case Intrinsic::mips_copy_s_d: 1778 if (Subtarget.hasMips64()) 1779 // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64. 1780 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT); 1781 else { 1782 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type 1783 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. 1784 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), 1785 Op->getValueType(0), Op->getOperand(1), 1786 Op->getOperand(2)); 1787 } 1788 case Intrinsic::mips_copy_u_b: 1789 case Intrinsic::mips_copy_u_h: 1790 case Intrinsic::mips_copy_u_w: 1791 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT); 1792 case Intrinsic::mips_copy_u_d: 1793 if (Subtarget.hasMips64()) 1794 // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64. 1795 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT); 1796 else { 1797 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type 1798 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. 1799 // Note: When i64 is illegal, this results in copy_s.w instructions 1800 // instead of copy_u.w instructions. This makes no difference to the 1801 // behaviour since i64 is only illegal when the register file is 32-bit. 1802 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), 1803 Op->getValueType(0), Op->getOperand(1), 1804 Op->getOperand(2)); 1805 } 1806 case Intrinsic::mips_div_s_b: 1807 case Intrinsic::mips_div_s_h: 1808 case Intrinsic::mips_div_s_w: 1809 case Intrinsic::mips_div_s_d: 1810 return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1), 1811 Op->getOperand(2)); 1812 case Intrinsic::mips_div_u_b: 1813 case Intrinsic::mips_div_u_h: 1814 case Intrinsic::mips_div_u_w: 1815 case Intrinsic::mips_div_u_d: 1816 return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1), 1817 Op->getOperand(2)); 1818 case Intrinsic::mips_fadd_w: 1819 case Intrinsic::mips_fadd_d: 1820 // TODO: If intrinsics have fast-math-flags, propagate them. 1821 return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1), 1822 Op->getOperand(2)); 1823 // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away 1824 case Intrinsic::mips_fceq_w: 1825 case Intrinsic::mips_fceq_d: 1826 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1827 Op->getOperand(2), ISD::SETOEQ); 1828 case Intrinsic::mips_fcle_w: 1829 case Intrinsic::mips_fcle_d: 1830 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1831 Op->getOperand(2), ISD::SETOLE); 1832 case Intrinsic::mips_fclt_w: 1833 case Intrinsic::mips_fclt_d: 1834 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1835 Op->getOperand(2), ISD::SETOLT); 1836 case Intrinsic::mips_fcne_w: 1837 case Intrinsic::mips_fcne_d: 1838 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1839 Op->getOperand(2), ISD::SETONE); 1840 case Intrinsic::mips_fcor_w: 1841 case Intrinsic::mips_fcor_d: 1842 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1843 Op->getOperand(2), ISD::SETO); 1844 case Intrinsic::mips_fcueq_w: 1845 case Intrinsic::mips_fcueq_d: 1846 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1847 Op->getOperand(2), ISD::SETUEQ); 1848 case Intrinsic::mips_fcule_w: 1849 case Intrinsic::mips_fcule_d: 1850 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1851 Op->getOperand(2), ISD::SETULE); 1852 case Intrinsic::mips_fcult_w: 1853 case Intrinsic::mips_fcult_d: 1854 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1855 Op->getOperand(2), ISD::SETULT); 1856 case Intrinsic::mips_fcun_w: 1857 case Intrinsic::mips_fcun_d: 1858 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1859 Op->getOperand(2), ISD::SETUO); 1860 case Intrinsic::mips_fcune_w: 1861 case Intrinsic::mips_fcune_d: 1862 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), 1863 Op->getOperand(2), ISD::SETUNE); 1864 case Intrinsic::mips_fdiv_w: 1865 case Intrinsic::mips_fdiv_d: 1866 // TODO: If intrinsics have fast-math-flags, propagate them. 1867 return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1), 1868 Op->getOperand(2)); 1869 case Intrinsic::mips_ffint_u_w: 1870 case Intrinsic::mips_ffint_u_d: 1871 return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0), 1872 Op->getOperand(1)); 1873 case Intrinsic::mips_ffint_s_w: 1874 case Intrinsic::mips_ffint_s_d: 1875 return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0), 1876 Op->getOperand(1)); 1877 case Intrinsic::mips_fill_b: 1878 case Intrinsic::mips_fill_h: 1879 case Intrinsic::mips_fill_w: 1880 case Intrinsic::mips_fill_d: { 1881 EVT ResTy = Op->getValueType(0); 1882 SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(), 1883 Op->getOperand(1)); 1884 1885 // If ResTy is v2i64 then the type legalizer will break this node down into 1886 // an equivalent v4i32. 1887 return DAG.getBuildVector(ResTy, DL, Ops); 1888 } 1889 case Intrinsic::mips_fexp2_w: 1890 case Intrinsic::mips_fexp2_d: { 1891 // TODO: If intrinsics have fast-math-flags, propagate them. 1892 EVT ResTy = Op->getValueType(0); 1893 return DAG.getNode( 1894 ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1), 1895 DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2))); 1896 } 1897 case Intrinsic::mips_flog2_w: 1898 case Intrinsic::mips_flog2_d: 1899 return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1)); 1900 case Intrinsic::mips_fmadd_w: 1901 case Intrinsic::mips_fmadd_d: 1902 return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0), 1903 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); 1904 case Intrinsic::mips_fmul_w: 1905 case Intrinsic::mips_fmul_d: 1906 // TODO: If intrinsics have fast-math-flags, propagate them. 1907 return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1), 1908 Op->getOperand(2)); 1909 case Intrinsic::mips_fmsub_w: 1910 case Intrinsic::mips_fmsub_d: { 1911 // TODO: If intrinsics have fast-math-flags, propagate them. 1912 return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0), 1913 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); 1914 } 1915 case Intrinsic::mips_frint_w: 1916 case Intrinsic::mips_frint_d: 1917 return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1)); 1918 case Intrinsic::mips_fsqrt_w: 1919 case Intrinsic::mips_fsqrt_d: 1920 return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1)); 1921 case Intrinsic::mips_fsub_w: 1922 case Intrinsic::mips_fsub_d: 1923 // TODO: If intrinsics have fast-math-flags, propagate them. 1924 return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1), 1925 Op->getOperand(2)); 1926 case Intrinsic::mips_ftrunc_u_w: 1927 case Intrinsic::mips_ftrunc_u_d: 1928 return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0), 1929 Op->getOperand(1)); 1930 case Intrinsic::mips_ftrunc_s_w: 1931 case Intrinsic::mips_ftrunc_s_d: 1932 return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0), 1933 Op->getOperand(1)); 1934 case Intrinsic::mips_ilvev_b: 1935 case Intrinsic::mips_ilvev_h: 1936 case Intrinsic::mips_ilvev_w: 1937 case Intrinsic::mips_ilvev_d: 1938 return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0), 1939 Op->getOperand(1), Op->getOperand(2)); 1940 case Intrinsic::mips_ilvl_b: 1941 case Intrinsic::mips_ilvl_h: 1942 case Intrinsic::mips_ilvl_w: 1943 case Intrinsic::mips_ilvl_d: 1944 return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0), 1945 Op->getOperand(1), Op->getOperand(2)); 1946 case Intrinsic::mips_ilvod_b: 1947 case Intrinsic::mips_ilvod_h: 1948 case Intrinsic::mips_ilvod_w: 1949 case Intrinsic::mips_ilvod_d: 1950 return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0), 1951 Op->getOperand(1), Op->getOperand(2)); 1952 case Intrinsic::mips_ilvr_b: 1953 case Intrinsic::mips_ilvr_h: 1954 case Intrinsic::mips_ilvr_w: 1955 case Intrinsic::mips_ilvr_d: 1956 return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0), 1957 Op->getOperand(1), Op->getOperand(2)); 1958 case Intrinsic::mips_insert_b: 1959 case Intrinsic::mips_insert_h: 1960 case Intrinsic::mips_insert_w: 1961 case Intrinsic::mips_insert_d: 1962 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0), 1963 Op->getOperand(1), Op->getOperand(3), Op->getOperand(2)); 1964 case Intrinsic::mips_insve_b: 1965 case Intrinsic::mips_insve_h: 1966 case Intrinsic::mips_insve_w: 1967 case Intrinsic::mips_insve_d: { 1968 // Report an error for out of range values. 1969 int64_t Max; 1970 switch (Intrinsic) { 1971 case Intrinsic::mips_insve_b: Max = 15; break; 1972 case Intrinsic::mips_insve_h: Max = 7; break; 1973 case Intrinsic::mips_insve_w: Max = 3; break; 1974 case Intrinsic::mips_insve_d: Max = 1; break; 1975 default: llvm_unreachable("Unmatched intrinsic"); 1976 } 1977 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); 1978 if (Value < 0 || Value > Max) 1979 report_fatal_error("Immediate out of range"); 1980 return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0), 1981 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3), 1982 DAG.getConstant(0, DL, MVT::i32)); 1983 } 1984 case Intrinsic::mips_ldi_b: 1985 case Intrinsic::mips_ldi_h: 1986 case Intrinsic::mips_ldi_w: 1987 case Intrinsic::mips_ldi_d: 1988 return lowerMSASplatImm(Op, 1, DAG, true); 1989 case Intrinsic::mips_lsa: 1990 case Intrinsic::mips_dlsa: { 1991 EVT ResTy = Op->getValueType(0); 1992 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1), 1993 DAG.getNode(ISD::SHL, SDLoc(Op), ResTy, 1994 Op->getOperand(2), Op->getOperand(3))); 1995 } 1996 case Intrinsic::mips_maddv_b: 1997 case Intrinsic::mips_maddv_h: 1998 case Intrinsic::mips_maddv_w: 1999 case Intrinsic::mips_maddv_d: { 2000 EVT ResTy = Op->getValueType(0); 2001 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1), 2002 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy, 2003 Op->getOperand(2), Op->getOperand(3))); 2004 } 2005 case Intrinsic::mips_max_s_b: 2006 case Intrinsic::mips_max_s_h: 2007 case Intrinsic::mips_max_s_w: 2008 case Intrinsic::mips_max_s_d: 2009 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0), 2010 Op->getOperand(1), Op->getOperand(2)); 2011 case Intrinsic::mips_max_u_b: 2012 case Intrinsic::mips_max_u_h: 2013 case Intrinsic::mips_max_u_w: 2014 case Intrinsic::mips_max_u_d: 2015 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0), 2016 Op->getOperand(1), Op->getOperand(2)); 2017 case Intrinsic::mips_maxi_s_b: 2018 case Intrinsic::mips_maxi_s_h: 2019 case Intrinsic::mips_maxi_s_w: 2020 case Intrinsic::mips_maxi_s_d: 2021 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0), 2022 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true)); 2023 case Intrinsic::mips_maxi_u_b: 2024 case Intrinsic::mips_maxi_u_h: 2025 case Intrinsic::mips_maxi_u_w: 2026 case Intrinsic::mips_maxi_u_d: 2027 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0), 2028 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2029 case Intrinsic::mips_min_s_b: 2030 case Intrinsic::mips_min_s_h: 2031 case Intrinsic::mips_min_s_w: 2032 case Intrinsic::mips_min_s_d: 2033 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0), 2034 Op->getOperand(1), Op->getOperand(2)); 2035 case Intrinsic::mips_min_u_b: 2036 case Intrinsic::mips_min_u_h: 2037 case Intrinsic::mips_min_u_w: 2038 case Intrinsic::mips_min_u_d: 2039 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0), 2040 Op->getOperand(1), Op->getOperand(2)); 2041 case Intrinsic::mips_mini_s_b: 2042 case Intrinsic::mips_mini_s_h: 2043 case Intrinsic::mips_mini_s_w: 2044 case Intrinsic::mips_mini_s_d: 2045 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0), 2046 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true)); 2047 case Intrinsic::mips_mini_u_b: 2048 case Intrinsic::mips_mini_u_h: 2049 case Intrinsic::mips_mini_u_w: 2050 case Intrinsic::mips_mini_u_d: 2051 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0), 2052 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2053 case Intrinsic::mips_mod_s_b: 2054 case Intrinsic::mips_mod_s_h: 2055 case Intrinsic::mips_mod_s_w: 2056 case Intrinsic::mips_mod_s_d: 2057 return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1), 2058 Op->getOperand(2)); 2059 case Intrinsic::mips_mod_u_b: 2060 case Intrinsic::mips_mod_u_h: 2061 case Intrinsic::mips_mod_u_w: 2062 case Intrinsic::mips_mod_u_d: 2063 return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1), 2064 Op->getOperand(2)); 2065 case Intrinsic::mips_mulv_b: 2066 case Intrinsic::mips_mulv_h: 2067 case Intrinsic::mips_mulv_w: 2068 case Intrinsic::mips_mulv_d: 2069 return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1), 2070 Op->getOperand(2)); 2071 case Intrinsic::mips_msubv_b: 2072 case Intrinsic::mips_msubv_h: 2073 case Intrinsic::mips_msubv_w: 2074 case Intrinsic::mips_msubv_d: { 2075 EVT ResTy = Op->getValueType(0); 2076 return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1), 2077 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy, 2078 Op->getOperand(2), Op->getOperand(3))); 2079 } 2080 case Intrinsic::mips_nlzc_b: 2081 case Intrinsic::mips_nlzc_h: 2082 case Intrinsic::mips_nlzc_w: 2083 case Intrinsic::mips_nlzc_d: 2084 return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1)); 2085 case Intrinsic::mips_nor_v: { 2086 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0), 2087 Op->getOperand(1), Op->getOperand(2)); 2088 return DAG.getNOT(DL, Res, Res->getValueType(0)); 2089 } 2090 case Intrinsic::mips_nori_b: { 2091 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0), 2092 Op->getOperand(1), 2093 lowerMSASplatImm(Op, 2, DAG)); 2094 return DAG.getNOT(DL, Res, Res->getValueType(0)); 2095 } 2096 case Intrinsic::mips_or_v: 2097 return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1), 2098 Op->getOperand(2)); 2099 case Intrinsic::mips_ori_b: 2100 return DAG.getNode(ISD::OR, DL, Op->getValueType(0), 2101 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2102 case Intrinsic::mips_pckev_b: 2103 case Intrinsic::mips_pckev_h: 2104 case Intrinsic::mips_pckev_w: 2105 case Intrinsic::mips_pckev_d: 2106 return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0), 2107 Op->getOperand(1), Op->getOperand(2)); 2108 case Intrinsic::mips_pckod_b: 2109 case Intrinsic::mips_pckod_h: 2110 case Intrinsic::mips_pckod_w: 2111 case Intrinsic::mips_pckod_d: 2112 return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0), 2113 Op->getOperand(1), Op->getOperand(2)); 2114 case Intrinsic::mips_pcnt_b: 2115 case Intrinsic::mips_pcnt_h: 2116 case Intrinsic::mips_pcnt_w: 2117 case Intrinsic::mips_pcnt_d: 2118 return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1)); 2119 case Intrinsic::mips_sat_s_b: 2120 case Intrinsic::mips_sat_s_h: 2121 case Intrinsic::mips_sat_s_w: 2122 case Intrinsic::mips_sat_s_d: 2123 case Intrinsic::mips_sat_u_b: 2124 case Intrinsic::mips_sat_u_h: 2125 case Intrinsic::mips_sat_u_w: 2126 case Intrinsic::mips_sat_u_d: { 2127 // Report an error for out of range values. 2128 int64_t Max; 2129 switch (Intrinsic) { 2130 case Intrinsic::mips_sat_s_b: 2131 case Intrinsic::mips_sat_u_b: Max = 7; break; 2132 case Intrinsic::mips_sat_s_h: 2133 case Intrinsic::mips_sat_u_h: Max = 15; break; 2134 case Intrinsic::mips_sat_s_w: 2135 case Intrinsic::mips_sat_u_w: Max = 31; break; 2136 case Intrinsic::mips_sat_s_d: 2137 case Intrinsic::mips_sat_u_d: Max = 63; break; 2138 default: llvm_unreachable("Unmatched intrinsic"); 2139 } 2140 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); 2141 if (Value < 0 || Value > Max) 2142 report_fatal_error("Immediate out of range"); 2143 return SDValue(); 2144 } 2145 case Intrinsic::mips_shf_b: 2146 case Intrinsic::mips_shf_h: 2147 case Intrinsic::mips_shf_w: { 2148 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); 2149 if (Value < 0 || Value > 255) 2150 report_fatal_error("Immediate out of range"); 2151 return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0), 2152 Op->getOperand(2), Op->getOperand(1)); 2153 } 2154 case Intrinsic::mips_sldi_b: 2155 case Intrinsic::mips_sldi_h: 2156 case Intrinsic::mips_sldi_w: 2157 case Intrinsic::mips_sldi_d: { 2158 // Report an error for out of range values. 2159 int64_t Max; 2160 switch (Intrinsic) { 2161 case Intrinsic::mips_sldi_b: Max = 15; break; 2162 case Intrinsic::mips_sldi_h: Max = 7; break; 2163 case Intrinsic::mips_sldi_w: Max = 3; break; 2164 case Intrinsic::mips_sldi_d: Max = 1; break; 2165 default: llvm_unreachable("Unmatched intrinsic"); 2166 } 2167 int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue(); 2168 if (Value < 0 || Value > Max) 2169 report_fatal_error("Immediate out of range"); 2170 return SDValue(); 2171 } 2172 case Intrinsic::mips_sll_b: 2173 case Intrinsic::mips_sll_h: 2174 case Intrinsic::mips_sll_w: 2175 case Intrinsic::mips_sll_d: 2176 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1), 2177 truncateVecElts(Op, DAG)); 2178 case Intrinsic::mips_slli_b: 2179 case Intrinsic::mips_slli_h: 2180 case Intrinsic::mips_slli_w: 2181 case Intrinsic::mips_slli_d: 2182 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), 2183 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2184 case Intrinsic::mips_splat_b: 2185 case Intrinsic::mips_splat_h: 2186 case Intrinsic::mips_splat_w: 2187 case Intrinsic::mips_splat_d: 2188 // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle 2189 // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because 2190 // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32. 2191 // Instead we lower to MipsISD::VSHF and match from there. 2192 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), 2193 lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1), 2194 Op->getOperand(1)); 2195 case Intrinsic::mips_splati_b: 2196 case Intrinsic::mips_splati_h: 2197 case Intrinsic::mips_splati_w: 2198 case Intrinsic::mips_splati_d: 2199 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), 2200 lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1), 2201 Op->getOperand(1)); 2202 case Intrinsic::mips_sra_b: 2203 case Intrinsic::mips_sra_h: 2204 case Intrinsic::mips_sra_w: 2205 case Intrinsic::mips_sra_d: 2206 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1), 2207 truncateVecElts(Op, DAG)); 2208 case Intrinsic::mips_srai_b: 2209 case Intrinsic::mips_srai_h: 2210 case Intrinsic::mips_srai_w: 2211 case Intrinsic::mips_srai_d: 2212 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), 2213 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2214 case Intrinsic::mips_srari_b: 2215 case Intrinsic::mips_srari_h: 2216 case Intrinsic::mips_srari_w: 2217 case Intrinsic::mips_srari_d: { 2218 // Report an error for out of range values. 2219 int64_t Max; 2220 switch (Intrinsic) { 2221 case Intrinsic::mips_srari_b: Max = 7; break; 2222 case Intrinsic::mips_srari_h: Max = 15; break; 2223 case Intrinsic::mips_srari_w: Max = 31; break; 2224 case Intrinsic::mips_srari_d: Max = 63; break; 2225 default: llvm_unreachable("Unmatched intrinsic"); 2226 } 2227 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); 2228 if (Value < 0 || Value > Max) 2229 report_fatal_error("Immediate out of range"); 2230 return SDValue(); 2231 } 2232 case Intrinsic::mips_srl_b: 2233 case Intrinsic::mips_srl_h: 2234 case Intrinsic::mips_srl_w: 2235 case Intrinsic::mips_srl_d: 2236 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1), 2237 truncateVecElts(Op, DAG)); 2238 case Intrinsic::mips_srli_b: 2239 case Intrinsic::mips_srli_h: 2240 case Intrinsic::mips_srli_w: 2241 case Intrinsic::mips_srli_d: 2242 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), 2243 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2244 case Intrinsic::mips_srlri_b: 2245 case Intrinsic::mips_srlri_h: 2246 case Intrinsic::mips_srlri_w: 2247 case Intrinsic::mips_srlri_d: { 2248 // Report an error for out of range values. 2249 int64_t Max; 2250 switch (Intrinsic) { 2251 case Intrinsic::mips_srlri_b: Max = 7; break; 2252 case Intrinsic::mips_srlri_h: Max = 15; break; 2253 case Intrinsic::mips_srlri_w: Max = 31; break; 2254 case Intrinsic::mips_srlri_d: Max = 63; break; 2255 default: llvm_unreachable("Unmatched intrinsic"); 2256 } 2257 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue(); 2258 if (Value < 0 || Value > Max) 2259 report_fatal_error("Immediate out of range"); 2260 return SDValue(); 2261 } 2262 case Intrinsic::mips_subv_b: 2263 case Intrinsic::mips_subv_h: 2264 case Intrinsic::mips_subv_w: 2265 case Intrinsic::mips_subv_d: 2266 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1), 2267 Op->getOperand(2)); 2268 case Intrinsic::mips_subvi_b: 2269 case Intrinsic::mips_subvi_h: 2270 case Intrinsic::mips_subvi_w: 2271 case Intrinsic::mips_subvi_d: 2272 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), 2273 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2274 case Intrinsic::mips_vshf_b: 2275 case Intrinsic::mips_vshf_h: 2276 case Intrinsic::mips_vshf_w: 2277 case Intrinsic::mips_vshf_d: 2278 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), 2279 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); 2280 case Intrinsic::mips_xor_v: 2281 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1), 2282 Op->getOperand(2)); 2283 case Intrinsic::mips_xori_b: 2284 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), 2285 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); 2286 case Intrinsic::thread_pointer: { 2287 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2288 return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); 2289 } 2290 } 2291 } 2292 2293 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, 2294 const MipsSubtarget &Subtarget) { 2295 SDLoc DL(Op); 2296 SDValue ChainIn = Op->getOperand(0); 2297 SDValue Address = Op->getOperand(2); 2298 SDValue Offset = Op->getOperand(3); 2299 EVT ResTy = Op->getValueType(0); 2300 EVT PtrTy = Address->getValueType(0); 2301 2302 // For N64 addresses have the underlying type MVT::i64. This intrinsic 2303 // however takes an i32 signed constant offset. The actual type of the 2304 // intrinsic is a scaled signed i10. 2305 if (Subtarget.isABI_N64()) 2306 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset); 2307 2308 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset); 2309 return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), 2310 /* Alignment = */ 16); 2311 } 2312 2313 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 2314 SelectionDAG &DAG) const { 2315 unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue(); 2316 switch (Intr) { 2317 default: 2318 return SDValue(); 2319 case Intrinsic::mips_extp: 2320 return lowerDSPIntr(Op, DAG, MipsISD::EXTP); 2321 case Intrinsic::mips_extpdp: 2322 return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP); 2323 case Intrinsic::mips_extr_w: 2324 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W); 2325 case Intrinsic::mips_extr_r_w: 2326 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W); 2327 case Intrinsic::mips_extr_rs_w: 2328 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W); 2329 case Intrinsic::mips_extr_s_h: 2330 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H); 2331 case Intrinsic::mips_mthlip: 2332 return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP); 2333 case Intrinsic::mips_mulsaq_s_w_ph: 2334 return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH); 2335 case Intrinsic::mips_maq_s_w_phl: 2336 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL); 2337 case Intrinsic::mips_maq_s_w_phr: 2338 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR); 2339 case Intrinsic::mips_maq_sa_w_phl: 2340 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL); 2341 case Intrinsic::mips_maq_sa_w_phr: 2342 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR); 2343 case Intrinsic::mips_dpaq_s_w_ph: 2344 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH); 2345 case Intrinsic::mips_dpsq_s_w_ph: 2346 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH); 2347 case Intrinsic::mips_dpaq_sa_l_w: 2348 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W); 2349 case Intrinsic::mips_dpsq_sa_l_w: 2350 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W); 2351 case Intrinsic::mips_dpaqx_s_w_ph: 2352 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH); 2353 case Intrinsic::mips_dpaqx_sa_w_ph: 2354 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH); 2355 case Intrinsic::mips_dpsqx_s_w_ph: 2356 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH); 2357 case Intrinsic::mips_dpsqx_sa_w_ph: 2358 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH); 2359 case Intrinsic::mips_ld_b: 2360 case Intrinsic::mips_ld_h: 2361 case Intrinsic::mips_ld_w: 2362 case Intrinsic::mips_ld_d: 2363 return lowerMSALoadIntr(Op, DAG, Intr, Subtarget); 2364 } 2365 } 2366 2367 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, 2368 const MipsSubtarget &Subtarget) { 2369 SDLoc DL(Op); 2370 SDValue ChainIn = Op->getOperand(0); 2371 SDValue Value = Op->getOperand(2); 2372 SDValue Address = Op->getOperand(3); 2373 SDValue Offset = Op->getOperand(4); 2374 EVT PtrTy = Address->getValueType(0); 2375 2376 // For N64 addresses have the underlying type MVT::i64. This intrinsic 2377 // however takes an i32 signed constant offset. The actual type of the 2378 // intrinsic is a scaled signed i10. 2379 if (Subtarget.isABI_N64()) 2380 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset); 2381 2382 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset); 2383 2384 return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), 2385 /* Alignment = */ 16); 2386 } 2387 2388 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op, 2389 SelectionDAG &DAG) const { 2390 unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue(); 2391 switch (Intr) { 2392 default: 2393 return SDValue(); 2394 case Intrinsic::mips_st_b: 2395 case Intrinsic::mips_st_h: 2396 case Intrinsic::mips_st_w: 2397 case Intrinsic::mips_st_d: 2398 return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget); 2399 } 2400 } 2401 2402 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT. 2403 // 2404 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We 2405 // choose to sign-extend but we could have equally chosen zero-extend. The 2406 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT 2407 // result into this node later (possibly changing it to a zero-extend in the 2408 // process). 2409 SDValue MipsSETargetLowering:: 2410 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { 2411 SDLoc DL(Op); 2412 EVT ResTy = Op->getValueType(0); 2413 SDValue Op0 = Op->getOperand(0); 2414 EVT VecTy = Op0->getValueType(0); 2415 2416 if (!VecTy.is128BitVector()) 2417 return SDValue(); 2418 2419 if (ResTy.isInteger()) { 2420 SDValue Op1 = Op->getOperand(1); 2421 EVT EltTy = VecTy.getVectorElementType(); 2422 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1, 2423 DAG.getValueType(EltTy)); 2424 } 2425 2426 return Op; 2427 } 2428 2429 static bool isConstantOrUndef(const SDValue Op) { 2430 if (Op->isUndef()) 2431 return true; 2432 if (isa<ConstantSDNode>(Op)) 2433 return true; 2434 if (isa<ConstantFPSDNode>(Op)) 2435 return true; 2436 return false; 2437 } 2438 2439 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) { 2440 for (unsigned i = 0; i < Op->getNumOperands(); ++i) 2441 if (isConstantOrUndef(Op->getOperand(i))) 2442 return true; 2443 return false; 2444 } 2445 2446 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the 2447 // backend. 2448 // 2449 // Lowers according to the following rules: 2450 // - Constant splats are legal as-is as long as the SplatBitSize is a power of 2451 // 2 less than or equal to 64 and the value fits into a signed 10-bit 2452 // immediate 2453 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize 2454 // is a power of 2 less than or equal to 64 and the value does not fit into a 2455 // signed 10-bit immediate 2456 // - Non-constant splats are legal as-is. 2457 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT. 2458 // - All others are illegal and must be expanded. 2459 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op, 2460 SelectionDAG &DAG) const { 2461 BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op); 2462 EVT ResTy = Op->getValueType(0); 2463 SDLoc DL(Op); 2464 APInt SplatValue, SplatUndef; 2465 unsigned SplatBitSize; 2466 bool HasAnyUndefs; 2467 2468 if (!Subtarget.hasMSA() || !ResTy.is128BitVector()) 2469 return SDValue(); 2470 2471 if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 2472 HasAnyUndefs, 8, 2473 !Subtarget.isLittle()) && SplatBitSize <= 64) { 2474 // We can only cope with 8, 16, 32, or 64-bit elements 2475 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 && 2476 SplatBitSize != 64) 2477 return SDValue(); 2478 2479 // If the value isn't an integer type we will have to bitcast 2480 // from an integer type first. Also, if there are any undefs, we must 2481 // lower them to defined values first. 2482 if (ResTy.isInteger() && !HasAnyUndefs) 2483 return Op; 2484 2485 EVT ViaVecTy; 2486 2487 switch (SplatBitSize) { 2488 default: 2489 return SDValue(); 2490 case 8: 2491 ViaVecTy = MVT::v16i8; 2492 break; 2493 case 16: 2494 ViaVecTy = MVT::v8i16; 2495 break; 2496 case 32: 2497 ViaVecTy = MVT::v4i32; 2498 break; 2499 case 64: 2500 // There's no fill.d to fall back on for 64-bit values 2501 return SDValue(); 2502 } 2503 2504 // SelectionDAG::getConstant will promote SplatValue appropriately. 2505 SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy); 2506 2507 // Bitcast to the type we originally wanted 2508 if (ViaVecTy != ResTy) 2509 Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result); 2510 2511 return Result; 2512 } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false)) 2513 return Op; 2514 else if (!isConstantOrUndefBUILD_VECTOR(Node)) { 2515 // Use INSERT_VECTOR_ELT operations rather than expand to stores. 2516 // The resulting code is the same length as the expansion, but it doesn't 2517 // use memory operations 2518 EVT ResTy = Node->getValueType(0); 2519 2520 assert(ResTy.isVector()); 2521 2522 unsigned NumElts = ResTy.getVectorNumElements(); 2523 SDValue Vector = DAG.getUNDEF(ResTy); 2524 for (unsigned i = 0; i < NumElts; ++i) { 2525 Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector, 2526 Node->getOperand(i), 2527 DAG.getConstant(i, DL, MVT::i32)); 2528 } 2529 return Vector; 2530 } 2531 2532 return SDValue(); 2533 } 2534 2535 // Lower VECTOR_SHUFFLE into SHF (if possible). 2536 // 2537 // SHF splits the vector into blocks of four elements, then shuffles these 2538 // elements according to a <4 x i2> constant (encoded as an integer immediate). 2539 // 2540 // It is therefore possible to lower into SHF when the mask takes the form: 2541 // <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...> 2542 // When undef's appear they are treated as if they were whatever value is 2543 // necessary in order to fit the above forms. 2544 // 2545 // For example: 2546 // %2 = shufflevector <8 x i16> %0, <8 x i16> undef, 2547 // <8 x i32> <i32 3, i32 2, i32 1, i32 0, 2548 // i32 7, i32 6, i32 5, i32 4> 2549 // is lowered to: 2550 // (SHF_H $w0, $w1, 27) 2551 // where the 27 comes from: 2552 // 3 + (2 << 2) + (1 << 4) + (0 << 6) 2553 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy, 2554 SmallVector<int, 16> Indices, 2555 SelectionDAG &DAG) { 2556 int SHFIndices[4] = { -1, -1, -1, -1 }; 2557 2558 if (Indices.size() < 4) 2559 return SDValue(); 2560 2561 for (unsigned i = 0; i < 4; ++i) { 2562 for (unsigned j = i; j < Indices.size(); j += 4) { 2563 int Idx = Indices[j]; 2564 2565 // Convert from vector index to 4-element subvector index 2566 // If an index refers to an element outside of the subvector then give up 2567 if (Idx != -1) { 2568 Idx -= 4 * (j / 4); 2569 if (Idx < 0 || Idx >= 4) 2570 return SDValue(); 2571 } 2572 2573 // If the mask has an undef, replace it with the current index. 2574 // Note that it might still be undef if the current index is also undef 2575 if (SHFIndices[i] == -1) 2576 SHFIndices[i] = Idx; 2577 2578 // Check that non-undef values are the same as in the mask. If they 2579 // aren't then give up 2580 if (!(Idx == -1 || Idx == SHFIndices[i])) 2581 return SDValue(); 2582 } 2583 } 2584 2585 // Calculate the immediate. Replace any remaining undefs with zero 2586 APInt Imm(32, 0); 2587 for (int i = 3; i >= 0; --i) { 2588 int Idx = SHFIndices[i]; 2589 2590 if (Idx == -1) 2591 Idx = 0; 2592 2593 Imm <<= 2; 2594 Imm |= Idx & 0x3; 2595 } 2596 2597 SDLoc DL(Op); 2598 return DAG.getNode(MipsISD::SHF, DL, ResTy, 2599 DAG.getTargetConstant(Imm, DL, MVT::i32), 2600 Op->getOperand(0)); 2601 } 2602 2603 /// Determine whether a range fits a regular pattern of values. 2604 /// This function accounts for the possibility of jumping over the End iterator. 2605 template <typename ValType> 2606 static bool 2607 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin, 2608 unsigned CheckStride, 2609 typename SmallVectorImpl<ValType>::const_iterator End, 2610 ValType ExpectedIndex, unsigned ExpectedIndexStride) { 2611 auto &I = Begin; 2612 2613 while (I != End) { 2614 if (*I != -1 && *I != ExpectedIndex) 2615 return false; 2616 ExpectedIndex += ExpectedIndexStride; 2617 2618 // Incrementing past End is undefined behaviour so we must increment one 2619 // step at a time and check for End at each step. 2620 for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I) 2621 ; // Empty loop body. 2622 } 2623 return true; 2624 } 2625 2626 // Determine whether VECTOR_SHUFFLE is a SPLATI. 2627 // 2628 // It is a SPLATI when the mask is: 2629 // <x, x, x, ...> 2630 // where x is any valid index. 2631 // 2632 // When undef's appear in the mask they are treated as if they were whatever 2633 // value is necessary in order to fit the above form. 2634 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy, 2635 SmallVector<int, 16> Indices, 2636 SelectionDAG &DAG) { 2637 assert((Indices.size() % 2) == 0); 2638 2639 int SplatIndex = -1; 2640 for (const auto &V : Indices) { 2641 if (V != -1) { 2642 SplatIndex = V; 2643 break; 2644 } 2645 } 2646 2647 return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex, 2648 0); 2649 } 2650 2651 // Lower VECTOR_SHUFFLE into ILVEV (if possible). 2652 // 2653 // ILVEV interleaves the even elements from each vector. 2654 // 2655 // It is possible to lower into ILVEV when the mask consists of two of the 2656 // following forms interleaved: 2657 // <0, 2, 4, ...> 2658 // <n, n+2, n+4, ...> 2659 // where n is the number of elements in the vector. 2660 // For example: 2661 // <0, 0, 2, 2, 4, 4, ...> 2662 // <0, n, 2, n+2, 4, n+4, ...> 2663 // 2664 // When undef's appear in the mask they are treated as if they were whatever 2665 // value is necessary in order to fit the above forms. 2666 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy, 2667 SmallVector<int, 16> Indices, 2668 SelectionDAG &DAG) { 2669 assert((Indices.size() % 2) == 0); 2670 2671 SDValue Wt; 2672 SDValue Ws; 2673 const auto &Begin = Indices.begin(); 2674 const auto &End = Indices.end(); 2675 2676 // Check even elements are taken from the even elements of one half or the 2677 // other and pick an operand accordingly. 2678 if (fitsRegularPattern<int>(Begin, 2, End, 0, 2)) 2679 Wt = Op->getOperand(0); 2680 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2)) 2681 Wt = Op->getOperand(1); 2682 else 2683 return SDValue(); 2684 2685 // Check odd elements are taken from the even elements of one half or the 2686 // other and pick an operand accordingly. 2687 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2)) 2688 Ws = Op->getOperand(0); 2689 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2)) 2690 Ws = Op->getOperand(1); 2691 else 2692 return SDValue(); 2693 2694 return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt); 2695 } 2696 2697 // Lower VECTOR_SHUFFLE into ILVOD (if possible). 2698 // 2699 // ILVOD interleaves the odd elements from each vector. 2700 // 2701 // It is possible to lower into ILVOD when the mask consists of two of the 2702 // following forms interleaved: 2703 // <1, 3, 5, ...> 2704 // <n+1, n+3, n+5, ...> 2705 // where n is the number of elements in the vector. 2706 // For example: 2707 // <1, 1, 3, 3, 5, 5, ...> 2708 // <1, n+1, 3, n+3, 5, n+5, ...> 2709 // 2710 // When undef's appear in the mask they are treated as if they were whatever 2711 // value is necessary in order to fit the above forms. 2712 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy, 2713 SmallVector<int, 16> Indices, 2714 SelectionDAG &DAG) { 2715 assert((Indices.size() % 2) == 0); 2716 2717 SDValue Wt; 2718 SDValue Ws; 2719 const auto &Begin = Indices.begin(); 2720 const auto &End = Indices.end(); 2721 2722 // Check even elements are taken from the odd elements of one half or the 2723 // other and pick an operand accordingly. 2724 if (fitsRegularPattern<int>(Begin, 2, End, 1, 2)) 2725 Wt = Op->getOperand(0); 2726 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2)) 2727 Wt = Op->getOperand(1); 2728 else 2729 return SDValue(); 2730 2731 // Check odd elements are taken from the odd elements of one half or the 2732 // other and pick an operand accordingly. 2733 if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2)) 2734 Ws = Op->getOperand(0); 2735 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2)) 2736 Ws = Op->getOperand(1); 2737 else 2738 return SDValue(); 2739 2740 return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws); 2741 } 2742 2743 // Lower VECTOR_SHUFFLE into ILVR (if possible). 2744 // 2745 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of 2746 // each vector. 2747 // 2748 // It is possible to lower into ILVR when the mask consists of two of the 2749 // following forms interleaved: 2750 // <0, 1, 2, ...> 2751 // <n, n+1, n+2, ...> 2752 // where n is the number of elements in the vector. 2753 // For example: 2754 // <0, 0, 1, 1, 2, 2, ...> 2755 // <0, n, 1, n+1, 2, n+2, ...> 2756 // 2757 // When undef's appear in the mask they are treated as if they were whatever 2758 // value is necessary in order to fit the above forms. 2759 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy, 2760 SmallVector<int, 16> Indices, 2761 SelectionDAG &DAG) { 2762 assert((Indices.size() % 2) == 0); 2763 2764 SDValue Wt; 2765 SDValue Ws; 2766 const auto &Begin = Indices.begin(); 2767 const auto &End = Indices.end(); 2768 2769 // Check even elements are taken from the right (lowest-indexed) elements of 2770 // one half or the other and pick an operand accordingly. 2771 if (fitsRegularPattern<int>(Begin, 2, End, 0, 1)) 2772 Wt = Op->getOperand(0); 2773 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1)) 2774 Wt = Op->getOperand(1); 2775 else 2776 return SDValue(); 2777 2778 // Check odd elements are taken from the right (lowest-indexed) elements of 2779 // one half or the other and pick an operand accordingly. 2780 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1)) 2781 Ws = Op->getOperand(0); 2782 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1)) 2783 Ws = Op->getOperand(1); 2784 else 2785 return SDValue(); 2786 2787 return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt); 2788 } 2789 2790 // Lower VECTOR_SHUFFLE into ILVL (if possible). 2791 // 2792 // ILVL interleaves consecutive elements from the left (highest-indexed) half 2793 // of each vector. 2794 // 2795 // It is possible to lower into ILVL when the mask consists of two of the 2796 // following forms interleaved: 2797 // <x, x+1, x+2, ...> 2798 // <n+x, n+x+1, n+x+2, ...> 2799 // where n is the number of elements in the vector and x is half n. 2800 // For example: 2801 // <x, x, x+1, x+1, x+2, x+2, ...> 2802 // <x, n+x, x+1, n+x+1, x+2, n+x+2, ...> 2803 // 2804 // When undef's appear in the mask they are treated as if they were whatever 2805 // value is necessary in order to fit the above forms. 2806 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy, 2807 SmallVector<int, 16> Indices, 2808 SelectionDAG &DAG) { 2809 assert((Indices.size() % 2) == 0); 2810 2811 unsigned HalfSize = Indices.size() / 2; 2812 SDValue Wt; 2813 SDValue Ws; 2814 const auto &Begin = Indices.begin(); 2815 const auto &End = Indices.end(); 2816 2817 // Check even elements are taken from the left (highest-indexed) elements of 2818 // one half or the other and pick an operand accordingly. 2819 if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1)) 2820 Wt = Op->getOperand(0); 2821 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1)) 2822 Wt = Op->getOperand(1); 2823 else 2824 return SDValue(); 2825 2826 // Check odd elements are taken from the left (highest-indexed) elements of 2827 // one half or the other and pick an operand accordingly. 2828 if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1)) 2829 Ws = Op->getOperand(0); 2830 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize, 2831 1)) 2832 Ws = Op->getOperand(1); 2833 else 2834 return SDValue(); 2835 2836 return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt); 2837 } 2838 2839 // Lower VECTOR_SHUFFLE into PCKEV (if possible). 2840 // 2841 // PCKEV copies the even elements of each vector into the result vector. 2842 // 2843 // It is possible to lower into PCKEV when the mask consists of two of the 2844 // following forms concatenated: 2845 // <0, 2, 4, ...> 2846 // <n, n+2, n+4, ...> 2847 // where n is the number of elements in the vector. 2848 // For example: 2849 // <0, 2, 4, ..., 0, 2, 4, ...> 2850 // <0, 2, 4, ..., n, n+2, n+4, ...> 2851 // 2852 // When undef's appear in the mask they are treated as if they were whatever 2853 // value is necessary in order to fit the above forms. 2854 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy, 2855 SmallVector<int, 16> Indices, 2856 SelectionDAG &DAG) { 2857 assert((Indices.size() % 2) == 0); 2858 2859 SDValue Wt; 2860 SDValue Ws; 2861 const auto &Begin = Indices.begin(); 2862 const auto &Mid = Indices.begin() + Indices.size() / 2; 2863 const auto &End = Indices.end(); 2864 2865 if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2)) 2866 Wt = Op->getOperand(0); 2867 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2)) 2868 Wt = Op->getOperand(1); 2869 else 2870 return SDValue(); 2871 2872 if (fitsRegularPattern<int>(Mid, 1, End, 0, 2)) 2873 Ws = Op->getOperand(0); 2874 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2)) 2875 Ws = Op->getOperand(1); 2876 else 2877 return SDValue(); 2878 2879 return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt); 2880 } 2881 2882 // Lower VECTOR_SHUFFLE into PCKOD (if possible). 2883 // 2884 // PCKOD copies the odd elements of each vector into the result vector. 2885 // 2886 // It is possible to lower into PCKOD when the mask consists of two of the 2887 // following forms concatenated: 2888 // <1, 3, 5, ...> 2889 // <n+1, n+3, n+5, ...> 2890 // where n is the number of elements in the vector. 2891 // For example: 2892 // <1, 3, 5, ..., 1, 3, 5, ...> 2893 // <1, 3, 5, ..., n+1, n+3, n+5, ...> 2894 // 2895 // When undef's appear in the mask they are treated as if they were whatever 2896 // value is necessary in order to fit the above forms. 2897 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy, 2898 SmallVector<int, 16> Indices, 2899 SelectionDAG &DAG) { 2900 assert((Indices.size() % 2) == 0); 2901 2902 SDValue Wt; 2903 SDValue Ws; 2904 const auto &Begin = Indices.begin(); 2905 const auto &Mid = Indices.begin() + Indices.size() / 2; 2906 const auto &End = Indices.end(); 2907 2908 if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2)) 2909 Wt = Op->getOperand(0); 2910 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2)) 2911 Wt = Op->getOperand(1); 2912 else 2913 return SDValue(); 2914 2915 if (fitsRegularPattern<int>(Mid, 1, End, 1, 2)) 2916 Ws = Op->getOperand(0); 2917 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2)) 2918 Ws = Op->getOperand(1); 2919 else 2920 return SDValue(); 2921 2922 return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt); 2923 } 2924 2925 // Lower VECTOR_SHUFFLE into VSHF. 2926 // 2927 // This mostly consists of converting the shuffle indices in Indices into a 2928 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is 2929 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example, 2930 // if the type is v8i16 and all the indices are less than 8 then the second 2931 // operand is unused and can be replaced with anything. We choose to replace it 2932 // with the used operand since this reduces the number of instructions overall. 2933 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy, 2934 SmallVector<int, 16> Indices, 2935 SelectionDAG &DAG) { 2936 SmallVector<SDValue, 16> Ops; 2937 SDValue Op0; 2938 SDValue Op1; 2939 EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger(); 2940 EVT MaskEltTy = MaskVecTy.getVectorElementType(); 2941 bool Using1stVec = false; 2942 bool Using2ndVec = false; 2943 SDLoc DL(Op); 2944 int ResTyNumElts = ResTy.getVectorNumElements(); 2945 2946 for (int i = 0; i < ResTyNumElts; ++i) { 2947 // Idx == -1 means UNDEF 2948 int Idx = Indices[i]; 2949 2950 if (0 <= Idx && Idx < ResTyNumElts) 2951 Using1stVec = true; 2952 if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2) 2953 Using2ndVec = true; 2954 } 2955 2956 for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end(); 2957 ++I) 2958 Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy)); 2959 2960 SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops); 2961 2962 if (Using1stVec && Using2ndVec) { 2963 Op0 = Op->getOperand(0); 2964 Op1 = Op->getOperand(1); 2965 } else if (Using1stVec) 2966 Op0 = Op1 = Op->getOperand(0); 2967 else if (Using2ndVec) 2968 Op0 = Op1 = Op->getOperand(1); 2969 else 2970 llvm_unreachable("shuffle vector mask references neither vector operand?"); 2971 2972 // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion. 2973 // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11> 2974 // VSHF concatenates the vectors in a bitwise fashion: 2975 // <0b00, 0b01> + <0b10, 0b11> -> 2976 // 0b0100 + 0b1110 -> 0b01001110 2977 // <0b10, 0b11, 0b00, 0b01> 2978 // We must therefore swap the operands to get the correct result. 2979 return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0); 2980 } 2981 2982 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the 2983 // indices in the shuffle. 2984 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 2985 SelectionDAG &DAG) const { 2986 ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op); 2987 EVT ResTy = Op->getValueType(0); 2988 2989 if (!ResTy.is128BitVector()) 2990 return SDValue(); 2991 2992 int ResTyNumElts = ResTy.getVectorNumElements(); 2993 SmallVector<int, 16> Indices; 2994 2995 for (int i = 0; i < ResTyNumElts; ++i) 2996 Indices.push_back(Node->getMaskElt(i)); 2997 2998 // splati.[bhwd] is preferable to the others but is matched from 2999 // MipsISD::VSHF. 3000 if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG)) 3001 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG); 3002 SDValue Result; 3003 if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG))) 3004 return Result; 3005 if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG))) 3006 return Result; 3007 if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG))) 3008 return Result; 3009 if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG))) 3010 return Result; 3011 if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG))) 3012 return Result; 3013 if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG))) 3014 return Result; 3015 if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG))) 3016 return Result; 3017 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG); 3018 } 3019 3020 MachineBasicBlock * 3021 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI, 3022 MachineBasicBlock *BB) const { 3023 // $bb: 3024 // bposge32_pseudo $vr0 3025 // => 3026 // $bb: 3027 // bposge32 $tbb 3028 // $fbb: 3029 // li $vr2, 0 3030 // b $sink 3031 // $tbb: 3032 // li $vr1, 1 3033 // $sink: 3034 // $vr0 = phi($vr2, $fbb, $vr1, $tbb) 3035 3036 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3037 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3038 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 3039 DebugLoc DL = MI.getDebugLoc(); 3040 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3041 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB)); 3042 MachineFunction *F = BB->getParent(); 3043 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB); 3044 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB); 3045 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB); 3046 F->insert(It, FBB); 3047 F->insert(It, TBB); 3048 F->insert(It, Sink); 3049 3050 // Transfer the remainder of BB and its successor edges to Sink. 3051 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), 3052 BB->end()); 3053 Sink->transferSuccessorsAndUpdatePHIs(BB); 3054 3055 // Add successors. 3056 BB->addSuccessor(FBB); 3057 BB->addSuccessor(TBB); 3058 FBB->addSuccessor(Sink); 3059 TBB->addSuccessor(Sink); 3060 3061 // Insert the real bposge32 instruction to $BB. 3062 BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB); 3063 // Insert the real bposge32c instruction to $BB. 3064 BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB); 3065 3066 // Fill $FBB. 3067 Register VR2 = RegInfo.createVirtualRegister(RC); 3068 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2) 3069 .addReg(Mips::ZERO).addImm(0); 3070 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink); 3071 3072 // Fill $TBB. 3073 Register VR1 = RegInfo.createVirtualRegister(RC); 3074 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1) 3075 .addReg(Mips::ZERO).addImm(1); 3076 3077 // Insert phi function to $Sink. 3078 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI), 3079 MI.getOperand(0).getReg()) 3080 .addReg(VR2) 3081 .addMBB(FBB) 3082 .addReg(VR1) 3083 .addMBB(TBB); 3084 3085 MI.eraseFromParent(); // The pseudo instruction is gone now. 3086 return Sink; 3087 } 3088 3089 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo( 3090 MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const { 3091 // $bb: 3092 // vany_nonzero $rd, $ws 3093 // => 3094 // $bb: 3095 // bnz.b $ws, $tbb 3096 // b $fbb 3097 // $fbb: 3098 // li $rd1, 0 3099 // b $sink 3100 // $tbb: 3101 // li $rd2, 1 3102 // $sink: 3103 // $rd = phi($rd1, $fbb, $rd2, $tbb) 3104 3105 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3106 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3107 const TargetRegisterClass *RC = &Mips::GPR32RegClass; 3108 DebugLoc DL = MI.getDebugLoc(); 3109 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 3110 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB)); 3111 MachineFunction *F = BB->getParent(); 3112 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB); 3113 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB); 3114 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB); 3115 F->insert(It, FBB); 3116 F->insert(It, TBB); 3117 F->insert(It, Sink); 3118 3119 // Transfer the remainder of BB and its successor edges to Sink. 3120 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), 3121 BB->end()); 3122 Sink->transferSuccessorsAndUpdatePHIs(BB); 3123 3124 // Add successors. 3125 BB->addSuccessor(FBB); 3126 BB->addSuccessor(TBB); 3127 FBB->addSuccessor(Sink); 3128 TBB->addSuccessor(Sink); 3129 3130 // Insert the real bnz.b instruction to $BB. 3131 BuildMI(BB, DL, TII->get(BranchOp)) 3132 .addReg(MI.getOperand(1).getReg()) 3133 .addMBB(TBB); 3134 3135 // Fill $FBB. 3136 Register RD1 = RegInfo.createVirtualRegister(RC); 3137 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1) 3138 .addReg(Mips::ZERO).addImm(0); 3139 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink); 3140 3141 // Fill $TBB. 3142 Register RD2 = RegInfo.createVirtualRegister(RC); 3143 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2) 3144 .addReg(Mips::ZERO).addImm(1); 3145 3146 // Insert phi function to $Sink. 3147 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI), 3148 MI.getOperand(0).getReg()) 3149 .addReg(RD1) 3150 .addMBB(FBB) 3151 .addReg(RD2) 3152 .addMBB(TBB); 3153 3154 MI.eraseFromParent(); // The pseudo instruction is gone now. 3155 return Sink; 3156 } 3157 3158 // Emit the COPY_FW pseudo instruction. 3159 // 3160 // copy_fw_pseudo $fd, $ws, n 3161 // => 3162 // copy_u_w $rt, $ws, $n 3163 // mtc1 $rt, $fd 3164 // 3165 // When n is zero, the equivalent operation can be performed with (potentially) 3166 // zero instructions due to register overlaps. This optimization is never valid 3167 // for lane 1 because it would require FR=0 mode which isn't supported by MSA. 3168 MachineBasicBlock * 3169 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI, 3170 MachineBasicBlock *BB) const { 3171 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3172 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3173 DebugLoc DL = MI.getDebugLoc(); 3174 Register Fd = MI.getOperand(0).getReg(); 3175 Register Ws = MI.getOperand(1).getReg(); 3176 unsigned Lane = MI.getOperand(2).getImm(); 3177 3178 if (Lane == 0) { 3179 unsigned Wt = Ws; 3180 if (!Subtarget.useOddSPReg()) { 3181 // We must copy to an even-numbered MSA register so that the 3182 // single-precision sub-register is also guaranteed to be even-numbered. 3183 Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass); 3184 3185 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws); 3186 } 3187 3188 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo); 3189 } else { 3190 Register Wt = RegInfo.createVirtualRegister( 3191 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass 3192 : &Mips::MSA128WEvensRegClass); 3193 3194 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane); 3195 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo); 3196 } 3197 3198 MI.eraseFromParent(); // The pseudo instruction is gone now. 3199 return BB; 3200 } 3201 3202 // Emit the COPY_FD pseudo instruction. 3203 // 3204 // copy_fd_pseudo $fd, $ws, n 3205 // => 3206 // splati.d $wt, $ws, $n 3207 // copy $fd, $wt:sub_64 3208 // 3209 // When n is zero, the equivalent operation can be performed with (potentially) 3210 // zero instructions due to register overlaps. This optimization is always 3211 // valid because FR=1 mode which is the only supported mode in MSA. 3212 MachineBasicBlock * 3213 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI, 3214 MachineBasicBlock *BB) const { 3215 assert(Subtarget.isFP64bit()); 3216 3217 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3218 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3219 Register Fd = MI.getOperand(0).getReg(); 3220 Register Ws = MI.getOperand(1).getReg(); 3221 unsigned Lane = MI.getOperand(2).getImm() * 2; 3222 DebugLoc DL = MI.getDebugLoc(); 3223 3224 if (Lane == 0) 3225 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64); 3226 else { 3227 Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); 3228 3229 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1); 3230 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64); 3231 } 3232 3233 MI.eraseFromParent(); // The pseudo instruction is gone now. 3234 return BB; 3235 } 3236 3237 // Emit the INSERT_FW pseudo instruction. 3238 // 3239 // insert_fw_pseudo $wd, $wd_in, $n, $fs 3240 // => 3241 // subreg_to_reg $wt:sub_lo, $fs 3242 // insve_w $wd[$n], $wd_in, $wt[0] 3243 MachineBasicBlock * 3244 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI, 3245 MachineBasicBlock *BB) const { 3246 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3247 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3248 DebugLoc DL = MI.getDebugLoc(); 3249 Register Wd = MI.getOperand(0).getReg(); 3250 Register Wd_in = MI.getOperand(1).getReg(); 3251 unsigned Lane = MI.getOperand(2).getImm(); 3252 Register Fs = MI.getOperand(3).getReg(); 3253 Register Wt = RegInfo.createVirtualRegister( 3254 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass 3255 : &Mips::MSA128WEvensRegClass); 3256 3257 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) 3258 .addImm(0) 3259 .addReg(Fs) 3260 .addImm(Mips::sub_lo); 3261 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd) 3262 .addReg(Wd_in) 3263 .addImm(Lane) 3264 .addReg(Wt) 3265 .addImm(0); 3266 3267 MI.eraseFromParent(); // The pseudo instruction is gone now. 3268 return BB; 3269 } 3270 3271 // Emit the INSERT_FD pseudo instruction. 3272 // 3273 // insert_fd_pseudo $wd, $fs, n 3274 // => 3275 // subreg_to_reg $wt:sub_64, $fs 3276 // insve_d $wd[$n], $wd_in, $wt[0] 3277 MachineBasicBlock * 3278 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI, 3279 MachineBasicBlock *BB) const { 3280 assert(Subtarget.isFP64bit()); 3281 3282 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3283 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3284 DebugLoc DL = MI.getDebugLoc(); 3285 Register Wd = MI.getOperand(0).getReg(); 3286 Register Wd_in = MI.getOperand(1).getReg(); 3287 unsigned Lane = MI.getOperand(2).getImm(); 3288 Register Fs = MI.getOperand(3).getReg(); 3289 Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); 3290 3291 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) 3292 .addImm(0) 3293 .addReg(Fs) 3294 .addImm(Mips::sub_64); 3295 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd) 3296 .addReg(Wd_in) 3297 .addImm(Lane) 3298 .addReg(Wt) 3299 .addImm(0); 3300 3301 MI.eraseFromParent(); // The pseudo instruction is gone now. 3302 return BB; 3303 } 3304 3305 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction. 3306 // 3307 // For integer: 3308 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs) 3309 // => 3310 // (SLL $lanetmp1, $lane, <log2size) 3311 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1) 3312 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs) 3313 // (NEG $lanetmp2, $lanetmp1) 3314 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2) 3315 // 3316 // For floating point: 3317 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs) 3318 // => 3319 // (SUBREG_TO_REG $wt, $fs, <subreg>) 3320 // (SLL $lanetmp1, $lane, <log2size) 3321 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1) 3322 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0) 3323 // (NEG $lanetmp2, $lanetmp1) 3324 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2) 3325 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX( 3326 MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes, 3327 bool IsFP) const { 3328 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3329 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3330 DebugLoc DL = MI.getDebugLoc(); 3331 Register Wd = MI.getOperand(0).getReg(); 3332 Register SrcVecReg = MI.getOperand(1).getReg(); 3333 Register LaneReg = MI.getOperand(2).getReg(); 3334 Register SrcValReg = MI.getOperand(3).getReg(); 3335 3336 const TargetRegisterClass *VecRC = nullptr; 3337 // FIXME: This should be true for N32 too. 3338 const TargetRegisterClass *GPRRC = 3339 Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; 3340 unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0; 3341 unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL; 3342 unsigned EltLog2Size; 3343 unsigned InsertOp = 0; 3344 unsigned InsveOp = 0; 3345 switch (EltSizeInBytes) { 3346 default: 3347 llvm_unreachable("Unexpected size"); 3348 case 1: 3349 EltLog2Size = 0; 3350 InsertOp = Mips::INSERT_B; 3351 InsveOp = Mips::INSVE_B; 3352 VecRC = &Mips::MSA128BRegClass; 3353 break; 3354 case 2: 3355 EltLog2Size = 1; 3356 InsertOp = Mips::INSERT_H; 3357 InsveOp = Mips::INSVE_H; 3358 VecRC = &Mips::MSA128HRegClass; 3359 break; 3360 case 4: 3361 EltLog2Size = 2; 3362 InsertOp = Mips::INSERT_W; 3363 InsveOp = Mips::INSVE_W; 3364 VecRC = &Mips::MSA128WRegClass; 3365 break; 3366 case 8: 3367 EltLog2Size = 3; 3368 InsertOp = Mips::INSERT_D; 3369 InsveOp = Mips::INSVE_D; 3370 VecRC = &Mips::MSA128DRegClass; 3371 break; 3372 } 3373 3374 if (IsFP) { 3375 Register Wt = RegInfo.createVirtualRegister(VecRC); 3376 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) 3377 .addImm(0) 3378 .addReg(SrcValReg) 3379 .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo); 3380 SrcValReg = Wt; 3381 } 3382 3383 // Convert the lane index into a byte index 3384 if (EltSizeInBytes != 1) { 3385 Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC); 3386 BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1) 3387 .addReg(LaneReg) 3388 .addImm(EltLog2Size); 3389 LaneReg = LaneTmp1; 3390 } 3391 3392 // Rotate bytes around so that the desired lane is element zero 3393 Register WdTmp1 = RegInfo.createVirtualRegister(VecRC); 3394 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1) 3395 .addReg(SrcVecReg) 3396 .addReg(SrcVecReg) 3397 .addReg(LaneReg, 0, SubRegIdx); 3398 3399 Register WdTmp2 = RegInfo.createVirtualRegister(VecRC); 3400 if (IsFP) { 3401 // Use insve.df to insert to element zero 3402 BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2) 3403 .addReg(WdTmp1) 3404 .addImm(0) 3405 .addReg(SrcValReg) 3406 .addImm(0); 3407 } else { 3408 // Use insert.df to insert to element zero 3409 BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2) 3410 .addReg(WdTmp1) 3411 .addReg(SrcValReg) 3412 .addImm(0); 3413 } 3414 3415 // Rotate elements the rest of the way for a full rotation. 3416 // sld.df inteprets $rt modulo the number of columns so we only need to negate 3417 // the lane index to do this. 3418 Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC); 3419 BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB), 3420 LaneTmp2) 3421 .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO) 3422 .addReg(LaneReg); 3423 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd) 3424 .addReg(WdTmp2) 3425 .addReg(WdTmp2) 3426 .addReg(LaneTmp2, 0, SubRegIdx); 3427 3428 MI.eraseFromParent(); // The pseudo instruction is gone now. 3429 return BB; 3430 } 3431 3432 // Emit the FILL_FW pseudo instruction. 3433 // 3434 // fill_fw_pseudo $wd, $fs 3435 // => 3436 // implicit_def $wt1 3437 // insert_subreg $wt2:subreg_lo, $wt1, $fs 3438 // splati.w $wd, $wt2[0] 3439 MachineBasicBlock * 3440 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI, 3441 MachineBasicBlock *BB) const { 3442 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3443 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3444 DebugLoc DL = MI.getDebugLoc(); 3445 Register Wd = MI.getOperand(0).getReg(); 3446 Register Fs = MI.getOperand(1).getReg(); 3447 Register Wt1 = RegInfo.createVirtualRegister( 3448 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass 3449 : &Mips::MSA128WEvensRegClass); 3450 Register Wt2 = RegInfo.createVirtualRegister( 3451 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass 3452 : &Mips::MSA128WEvensRegClass); 3453 3454 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1); 3455 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2) 3456 .addReg(Wt1) 3457 .addReg(Fs) 3458 .addImm(Mips::sub_lo); 3459 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0); 3460 3461 MI.eraseFromParent(); // The pseudo instruction is gone now. 3462 return BB; 3463 } 3464 3465 // Emit the FILL_FD pseudo instruction. 3466 // 3467 // fill_fd_pseudo $wd, $fs 3468 // => 3469 // implicit_def $wt1 3470 // insert_subreg $wt2:subreg_64, $wt1, $fs 3471 // splati.d $wd, $wt2[0] 3472 MachineBasicBlock * 3473 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI, 3474 MachineBasicBlock *BB) const { 3475 assert(Subtarget.isFP64bit()); 3476 3477 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3478 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3479 DebugLoc DL = MI.getDebugLoc(); 3480 Register Wd = MI.getOperand(0).getReg(); 3481 Register Fs = MI.getOperand(1).getReg(); 3482 Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); 3483 Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); 3484 3485 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1); 3486 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2) 3487 .addReg(Wt1) 3488 .addReg(Fs) 3489 .addImm(Mips::sub_64); 3490 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0); 3491 3492 MI.eraseFromParent(); // The pseudo instruction is gone now. 3493 return BB; 3494 } 3495 3496 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA 3497 // register. 3498 // 3499 // STF16 MSA128F16:$wd, mem_simm10:$addr 3500 // => 3501 // copy_u.h $rtemp,$wd[0] 3502 // sh $rtemp, $addr 3503 // 3504 // Safety: We can't use st.h & co as they would over write the memory after 3505 // the destination. It would require half floats be allocated 16 bytes(!) of 3506 // space. 3507 MachineBasicBlock * 3508 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI, 3509 MachineBasicBlock *BB) const { 3510 3511 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3512 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3513 DebugLoc DL = MI.getDebugLoc(); 3514 Register Ws = MI.getOperand(0).getReg(); 3515 Register Rt = MI.getOperand(1).getReg(); 3516 const MachineMemOperand &MMO = **MI.memoperands_begin(); 3517 unsigned Imm = MMO.getOffset(); 3518 3519 // Caution: A load via the GOT can expand to a GPR32 operand, a load via 3520 // spill and reload can expand as a GPR64 operand. Examine the 3521 // operand in detail and default to ABI. 3522 const TargetRegisterClass *RC = 3523 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg()) 3524 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass 3525 : &Mips::GPR64RegClass); 3526 const bool UsingMips32 = RC == &Mips::GPR32RegClass; 3527 Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass); 3528 3529 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0); 3530 if(!UsingMips32) { 3531 Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass); 3532 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp) 3533 .addImm(0) 3534 .addReg(Rs) 3535 .addImm(Mips::sub_32); 3536 Rs = Tmp; 3537 } 3538 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64)) 3539 .addReg(Rs) 3540 .addReg(Rt) 3541 .addImm(Imm) 3542 .addMemOperand(BB->getParent()->getMachineMemOperand( 3543 &MMO, MMO.getOffset(), MMO.getSize())); 3544 3545 MI.eraseFromParent(); 3546 return BB; 3547 } 3548 3549 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register. 3550 // 3551 // LD_F16 MSA128F16:$wd, mem_simm10:$addr 3552 // => 3553 // lh $rtemp, $addr 3554 // fill.h $wd, $rtemp 3555 // 3556 // Safety: We can't use ld.h & co as they over-read from the source. 3557 // Additionally, if the address is not modulo 16, 2 cases can occur: 3558 // a) Segmentation fault as the load instruction reads from a memory page 3559 // memory it's not supposed to. 3560 // b) The load crosses an implementation specific boundary, requiring OS 3561 // intervention. 3562 MachineBasicBlock * 3563 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI, 3564 MachineBasicBlock *BB) const { 3565 3566 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3567 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3568 DebugLoc DL = MI.getDebugLoc(); 3569 Register Wd = MI.getOperand(0).getReg(); 3570 3571 // Caution: A load via the GOT can expand to a GPR32 operand, a load via 3572 // spill and reload can expand as a GPR64 operand. Examine the 3573 // operand in detail and default to ABI. 3574 const TargetRegisterClass *RC = 3575 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg()) 3576 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass 3577 : &Mips::GPR64RegClass); 3578 3579 const bool UsingMips32 = RC == &Mips::GPR32RegClass; 3580 Register Rt = RegInfo.createVirtualRegister(RC); 3581 3582 MachineInstrBuilder MIB = 3583 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt); 3584 for (unsigned i = 1; i < MI.getNumOperands(); i++) 3585 MIB.add(MI.getOperand(i)); 3586 3587 if(!UsingMips32) { 3588 Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass); 3589 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32); 3590 Rt = Tmp; 3591 } 3592 3593 BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt); 3594 3595 MI.eraseFromParent(); 3596 return BB; 3597 } 3598 3599 // Emit the FPROUND_PSEUDO instruction. 3600 // 3601 // Round an FGR64Opnd, FGR32Opnd to an f16. 3602 // 3603 // Safety: Cycle the operand through the GPRs so the result always ends up 3604 // the correct MSA register. 3605 // 3606 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs 3607 // / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register 3608 // (which they can be, as the MSA registers are defined to alias the 3609 // FPU's 64 bit and 32 bit registers) the result can be accessed using 3610 // the correct register class. That requires operands be tie-able across 3611 // register classes which have a sub/super register class relationship. 3612 // 3613 // For FPG32Opnd: 3614 // 3615 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs 3616 // => 3617 // mfc1 $rtemp, $fs 3618 // fill.w $rtemp, $wtemp 3619 // fexdo.w $wd, $wtemp, $wtemp 3620 // 3621 // For FPG64Opnd on mips32r2+: 3622 // 3623 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs 3624 // => 3625 // mfc1 $rtemp, $fs 3626 // fill.w $rtemp, $wtemp 3627 // mfhc1 $rtemp2, $fs 3628 // insert.w $wtemp[1], $rtemp2 3629 // insert.w $wtemp[3], $rtemp2 3630 // fexdo.w $wtemp2, $wtemp, $wtemp 3631 // fexdo.h $wd, $temp2, $temp2 3632 // 3633 // For FGR64Opnd on mips64r2+: 3634 // 3635 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs 3636 // => 3637 // dmfc1 $rtemp, $fs 3638 // fill.d $rtemp, $wtemp 3639 // fexdo.w $wtemp2, $wtemp, $wtemp 3640 // fexdo.h $wd, $wtemp2, $wtemp2 3641 // 3642 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the 3643 // undef bits are "just right" and the exception enable bits are 3644 // set. By using fill.w to replicate $fs into all elements over 3645 // insert.w for one element, we avoid that potiential case. If 3646 // fexdo.[hw] causes an exception in, the exception is valid and it 3647 // occurs for all elements. 3648 MachineBasicBlock * 3649 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI, 3650 MachineBasicBlock *BB, 3651 bool IsFGR64) const { 3652 3653 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous 3654 // here. It's technically doable to support MIPS32 here, but the ISA forbids 3655 // it. 3656 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); 3657 3658 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; 3659 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; 3660 3661 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3662 DebugLoc DL = MI.getDebugLoc(); 3663 Register Wd = MI.getOperand(0).getReg(); 3664 Register Fs = MI.getOperand(1).getReg(); 3665 3666 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3667 Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); 3668 const TargetRegisterClass *GPRRC = 3669 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; 3670 unsigned MFC1Opc = IsFGR64onMips64 3671 ? Mips::DMFC1 3672 : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1); 3673 unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W; 3674 3675 // Perform the register class copy as mentioned above. 3676 Register Rtemp = RegInfo.createVirtualRegister(GPRRC); 3677 BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs); 3678 BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp); 3679 unsigned WPHI = Wtemp; 3680 3681 if (IsFGR64onMips32) { 3682 Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC); 3683 BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs); 3684 Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); 3685 Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); 3686 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2) 3687 .addReg(Wtemp) 3688 .addReg(Rtemp2) 3689 .addImm(1); 3690 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3) 3691 .addReg(Wtemp2) 3692 .addReg(Rtemp2) 3693 .addImm(3); 3694 WPHI = Wtemp3; 3695 } 3696 3697 if (IsFGR64) { 3698 Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); 3699 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2) 3700 .addReg(WPHI) 3701 .addReg(WPHI); 3702 WPHI = Wtemp2; 3703 } 3704 3705 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI); 3706 3707 MI.eraseFromParent(); 3708 return BB; 3709 } 3710 3711 // Emit the FPEXTEND_PSEUDO instruction. 3712 // 3713 // Expand an f16 to either a FGR32Opnd or FGR64Opnd. 3714 // 3715 // Safety: Cycle the result through the GPRs so the result always ends up 3716 // the correct floating point register. 3717 // 3718 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd 3719 // / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register 3720 // (which they can be, as the MSA registers are defined to alias the 3721 // FPU's 64 bit and 32 bit registers) the result can be accessed using 3722 // the correct register class. That requires operands be tie-able across 3723 // register classes which have a sub/super register class relationship. I 3724 // haven't checked. 3725 // 3726 // For FGR32Opnd: 3727 // 3728 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws 3729 // => 3730 // fexupr.w $wtemp, $ws 3731 // copy_s.w $rtemp, $ws[0] 3732 // mtc1 $rtemp, $fd 3733 // 3734 // For FGR64Opnd on Mips64: 3735 // 3736 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws 3737 // => 3738 // fexupr.w $wtemp, $ws 3739 // fexupr.d $wtemp2, $wtemp 3740 // copy_s.d $rtemp, $wtemp2s[0] 3741 // dmtc1 $rtemp, $fd 3742 // 3743 // For FGR64Opnd on Mips32: 3744 // 3745 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws 3746 // => 3747 // fexupr.w $wtemp, $ws 3748 // fexupr.d $wtemp2, $wtemp 3749 // copy_s.w $rtemp, $wtemp2[0] 3750 // mtc1 $rtemp, $ftemp 3751 // copy_s.w $rtemp2, $wtemp2[1] 3752 // $fd = mthc1 $rtemp2, $ftemp 3753 MachineBasicBlock * 3754 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI, 3755 MachineBasicBlock *BB, 3756 bool IsFGR64) const { 3757 3758 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous 3759 // here. It's technically doable to support MIPS32 here, but the ISA forbids 3760 // it. 3761 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); 3762 3763 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; 3764 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; 3765 3766 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3767 DebugLoc DL = MI.getDebugLoc(); 3768 Register Fd = MI.getOperand(0).getReg(); 3769 Register Ws = MI.getOperand(1).getReg(); 3770 3771 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3772 const TargetRegisterClass *GPRRC = 3773 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; 3774 unsigned MTC1Opc = IsFGR64onMips64 3775 ? Mips::DMTC1 3776 : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1); 3777 Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W; 3778 3779 Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); 3780 Register WPHI = Wtemp; 3781 3782 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws); 3783 if (IsFGR64) { 3784 WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); 3785 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp); 3786 } 3787 3788 // Perform the safety regclass copy mentioned above. 3789 Register Rtemp = RegInfo.createVirtualRegister(GPRRC); 3790 Register FPRPHI = IsFGR64onMips32 3791 ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass) 3792 : Fd; 3793 BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0); 3794 BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp); 3795 3796 if (IsFGR64onMips32) { 3797 Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC); 3798 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2) 3799 .addReg(WPHI) 3800 .addImm(1); 3801 BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd) 3802 .addReg(FPRPHI) 3803 .addReg(Rtemp2); 3804 } 3805 3806 MI.eraseFromParent(); 3807 return BB; 3808 } 3809 3810 // Emit the FEXP2_W_1 pseudo instructions. 3811 // 3812 // fexp2_w_1_pseudo $wd, $wt 3813 // => 3814 // ldi.w $ws, 1 3815 // fexp2.w $wd, $ws, $wt 3816 MachineBasicBlock * 3817 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI, 3818 MachineBasicBlock *BB) const { 3819 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3820 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3821 const TargetRegisterClass *RC = &Mips::MSA128WRegClass; 3822 Register Ws1 = RegInfo.createVirtualRegister(RC); 3823 Register Ws2 = RegInfo.createVirtualRegister(RC); 3824 DebugLoc DL = MI.getDebugLoc(); 3825 3826 // Splat 1.0 into a vector 3827 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1); 3828 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1); 3829 3830 // Emit 1.0 * fexp2(Wt) 3831 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg()) 3832 .addReg(Ws2) 3833 .addReg(MI.getOperand(1).getReg()); 3834 3835 MI.eraseFromParent(); // The pseudo instruction is gone now. 3836 return BB; 3837 } 3838 3839 // Emit the FEXP2_D_1 pseudo instructions. 3840 // 3841 // fexp2_d_1_pseudo $wd, $wt 3842 // => 3843 // ldi.d $ws, 1 3844 // fexp2.d $wd, $ws, $wt 3845 MachineBasicBlock * 3846 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI, 3847 MachineBasicBlock *BB) const { 3848 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 3849 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); 3850 const TargetRegisterClass *RC = &Mips::MSA128DRegClass; 3851 Register Ws1 = RegInfo.createVirtualRegister(RC); 3852 Register Ws2 = RegInfo.createVirtualRegister(RC); 3853 DebugLoc DL = MI.getDebugLoc(); 3854 3855 // Splat 1.0 into a vector 3856 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1); 3857 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1); 3858 3859 // Emit 1.0 * fexp2(Wt) 3860 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg()) 3861 .addReg(Ws2) 3862 .addReg(MI.getOperand(1).getReg()); 3863 3864 MI.eraseFromParent(); // The pseudo instruction is gone now. 3865 return BB; 3866 } 3867