1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/CodeGenTypes/MachineValueType.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsMips.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/TargetParser/Triple.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "mips-isel"
53
54 static cl::opt<bool>
55 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
56 cl::desc("MIPS: permit tail calls."), cl::init(false));
57
58 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
59 cl::desc("Expand double precision loads and "
60 "stores to their single precision "
61 "counterparts"));
62
MipsSETargetLowering(const MipsTargetMachine & TM,const MipsSubtarget & STI)63 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
64 const MipsSubtarget &STI)
65 : MipsTargetLowering(TM, STI) {
66 // Set up the register classes
67 addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
68
69 if (Subtarget.isGP64bit())
70 addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
71
72 if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
73 // Expand all truncating stores and extending loads.
74 for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) {
75 for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) {
76 setTruncStoreAction(VT0, VT1, Expand);
77 setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
78 setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
79 setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
80 }
81 }
82 }
83
84 if (Subtarget.hasDSP()) {
85 MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
86
87 for (const auto &VecTy : VecTys) {
88 addRegisterClass(VecTy, &Mips::DSPRRegClass);
89
90 // Expand all builtin opcodes.
91 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
92 setOperationAction(Opc, VecTy, Expand);
93
94 setOperationAction(ISD::ADD, VecTy, Legal);
95 setOperationAction(ISD::SUB, VecTy, Legal);
96 setOperationAction(ISD::LOAD, VecTy, Legal);
97 setOperationAction(ISD::STORE, VecTy, Legal);
98 setOperationAction(ISD::BITCAST, VecTy, Legal);
99 }
100
101 setTargetDAGCombine(
102 {ISD::SHL, ISD::SRA, ISD::SRL, ISD::SETCC, ISD::VSELECT});
103
104 if (Subtarget.hasMips32r2()) {
105 setOperationAction(ISD::ADDC, MVT::i32, Legal);
106 setOperationAction(ISD::ADDE, MVT::i32, Legal);
107 }
108 }
109
110 if (Subtarget.hasDSPR2())
111 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
112
113 if (Subtarget.hasMSA()) {
114 addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
115 addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
116 addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
117 addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
118 addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
119 addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
120 addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
121
122 // f16 is a storage-only type, always promote it to f32.
123 addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
124 setOperationAction(ISD::SETCC, MVT::f16, Promote);
125 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
126 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
127 setOperationAction(ISD::SELECT, MVT::f16, Promote);
128 setOperationAction(ISD::FADD, MVT::f16, Promote);
129 setOperationAction(ISD::FSUB, MVT::f16, Promote);
130 setOperationAction(ISD::FMUL, MVT::f16, Promote);
131 setOperationAction(ISD::FDIV, MVT::f16, Promote);
132 setOperationAction(ISD::FREM, MVT::f16, Promote);
133 setOperationAction(ISD::FMA, MVT::f16, Promote);
134 setOperationAction(ISD::FNEG, MVT::f16, Promote);
135 setOperationAction(ISD::FABS, MVT::f16, Promote);
136 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
137 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
138 setOperationAction(ISD::FCOS, MVT::f16, Promote);
139 setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
140 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
141 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
142 setOperationAction(ISD::FPOW, MVT::f16, Promote);
143 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
144 setOperationAction(ISD::FRINT, MVT::f16, Promote);
145 setOperationAction(ISD::FSIN, MVT::f16, Promote);
146 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
147 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
148 setOperationAction(ISD::FEXP, MVT::f16, Promote);
149 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
150 setOperationAction(ISD::FLOG, MVT::f16, Promote);
151 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
152 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
153 setOperationAction(ISD::FROUND, MVT::f16, Promote);
154 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
155 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
156 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
157 setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
158 setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
159
160 setTargetDAGCombine({ISD::AND, ISD::OR, ISD::SRA, ISD::VSELECT, ISD::XOR});
161 }
162
163 if (!Subtarget.useSoftFloat()) {
164 addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
165
166 // When dealing with single precision only, use libcalls
167 if (!Subtarget.isSingleFloat()) {
168 if (Subtarget.isFP64bit())
169 addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
170 else
171 addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
172 }
173 }
174
175 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
176 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
177 setOperationAction(ISD::MULHS, MVT::i32, Custom);
178 setOperationAction(ISD::MULHU, MVT::i32, Custom);
179
180 if (Subtarget.hasCnMips())
181 setOperationAction(ISD::MUL, MVT::i64, Legal);
182 else if (Subtarget.isGP64bit())
183 setOperationAction(ISD::MUL, MVT::i64, Custom);
184
185 if (Subtarget.isGP64bit()) {
186 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom);
187 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom);
188 setOperationAction(ISD::MULHS, MVT::i64, Custom);
189 setOperationAction(ISD::MULHU, MVT::i64, Custom);
190 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
191 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
192 }
193
194 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
195 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
196
197 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
198 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
199 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
200 if (Subtarget.hasMips32r6()) {
201 setOperationAction(ISD::LOAD, MVT::i32, Legal);
202 setOperationAction(ISD::STORE, MVT::i32, Legal);
203 } else {
204 setOperationAction(ISD::LOAD, MVT::i32, Custom);
205 setOperationAction(ISD::STORE, MVT::i32, Custom);
206 }
207
208 setTargetDAGCombine(ISD::MUL);
209
210 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
212 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
213
214 if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
215 !Subtarget.hasMips64()) {
216 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
217 }
218
219 if (NoDPLoadStore) {
220 setOperationAction(ISD::LOAD, MVT::f64, Custom);
221 setOperationAction(ISD::STORE, MVT::f64, Custom);
222 }
223
224 if (Subtarget.hasMips32r6()) {
225 // MIPS32r6 replaces the accumulator-based multiplies with a three register
226 // instruction
227 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
228 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
229 setOperationAction(ISD::MUL, MVT::i32, Legal);
230 setOperationAction(ISD::MULHS, MVT::i32, Legal);
231 setOperationAction(ISD::MULHU, MVT::i32, Legal);
232
233 // MIPS32r6 replaces the accumulator-based division/remainder with separate
234 // three register division and remainder instructions.
235 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
236 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
237 setOperationAction(ISD::SDIV, MVT::i32, Legal);
238 setOperationAction(ISD::UDIV, MVT::i32, Legal);
239 setOperationAction(ISD::SREM, MVT::i32, Legal);
240 setOperationAction(ISD::UREM, MVT::i32, Legal);
241
242 // MIPS32r6 replaces conditional moves with an equivalent that removes the
243 // need for three GPR read ports.
244 setOperationAction(ISD::SETCC, MVT::i32, Legal);
245 setOperationAction(ISD::SELECT, MVT::i32, Legal);
246 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
247
248 setOperationAction(ISD::SETCC, MVT::f32, Legal);
249 setOperationAction(ISD::SELECT, MVT::f32, Legal);
250 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
251
252 assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
253 setOperationAction(ISD::SETCC, MVT::f64, Legal);
254 setOperationAction(ISD::SELECT, MVT::f64, Custom);
255 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
256
257 setOperationAction(ISD::BRCOND, MVT::Other, Legal);
258
259 // Floating point > and >= are supported via < and <=
260 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
261 setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
262 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
263 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
264
265 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
266 setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
267 setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
268 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
269 }
270
271 if (Subtarget.hasMips64r6()) {
272 // MIPS64r6 replaces the accumulator-based multiplies with a three register
273 // instruction
274 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
275 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
276 setOperationAction(ISD::MUL, MVT::i64, Legal);
277 setOperationAction(ISD::MULHS, MVT::i64, Legal);
278 setOperationAction(ISD::MULHU, MVT::i64, Legal);
279
280 // MIPS32r6 replaces the accumulator-based division/remainder with separate
281 // three register division and remainder instructions.
282 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
283 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
284 setOperationAction(ISD::SDIV, MVT::i64, Legal);
285 setOperationAction(ISD::UDIV, MVT::i64, Legal);
286 setOperationAction(ISD::SREM, MVT::i64, Legal);
287 setOperationAction(ISD::UREM, MVT::i64, Legal);
288
289 // MIPS64r6 replaces conditional moves with an equivalent that removes the
290 // need for three GPR read ports.
291 setOperationAction(ISD::SETCC, MVT::i64, Legal);
292 setOperationAction(ISD::SELECT, MVT::i64, Legal);
293 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
294 }
295
296 computeRegisterProperties(Subtarget.getRegisterInfo());
297 }
298
299 const MipsTargetLowering *
createMipsSETargetLowering(const MipsTargetMachine & TM,const MipsSubtarget & STI)300 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
301 const MipsSubtarget &STI) {
302 return new MipsSETargetLowering(TM, STI);
303 }
304
305 const TargetRegisterClass *
getRepRegClassFor(MVT VT) const306 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
307 if (VT == MVT::Untyped)
308 return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
309
310 return TargetLowering::getRepRegClassFor(VT);
311 }
312
313 // Enable MSA support for the given integer type and Register class.
314 void MipsSETargetLowering::
addMSAIntType(MVT::SimpleValueType Ty,const TargetRegisterClass * RC)315 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
316 addRegisterClass(Ty, RC);
317
318 // Expand all builtin opcodes.
319 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
320 setOperationAction(Opc, Ty, Expand);
321
322 setOperationAction(ISD::BITCAST, Ty, Legal);
323 setOperationAction(ISD::LOAD, Ty, Legal);
324 setOperationAction(ISD::STORE, Ty, Legal);
325 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
326 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
327 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
328 setOperationAction(ISD::UNDEF, Ty, Legal);
329
330 setOperationAction(ISD::ADD, Ty, Legal);
331 setOperationAction(ISD::AND, Ty, Legal);
332 setOperationAction(ISD::CTLZ, Ty, Legal);
333 setOperationAction(ISD::CTPOP, Ty, Legal);
334 setOperationAction(ISD::MUL, Ty, Legal);
335 setOperationAction(ISD::OR, Ty, Legal);
336 setOperationAction(ISD::SDIV, Ty, Legal);
337 setOperationAction(ISD::SREM, Ty, Legal);
338 setOperationAction(ISD::SHL, Ty, Legal);
339 setOperationAction(ISD::SRA, Ty, Legal);
340 setOperationAction(ISD::SRL, Ty, Legal);
341 setOperationAction(ISD::SUB, Ty, Legal);
342 setOperationAction(ISD::SMAX, Ty, Legal);
343 setOperationAction(ISD::SMIN, Ty, Legal);
344 setOperationAction(ISD::UDIV, Ty, Legal);
345 setOperationAction(ISD::UREM, Ty, Legal);
346 setOperationAction(ISD::UMAX, Ty, Legal);
347 setOperationAction(ISD::UMIN, Ty, Legal);
348 setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
349 setOperationAction(ISD::VSELECT, Ty, Legal);
350 setOperationAction(ISD::XOR, Ty, Legal);
351
352 if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
353 setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
354 setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
355 setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
356 setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
357 }
358
359 setOperationAction(ISD::SETCC, Ty, Legal);
360 setCondCodeAction(ISD::SETNE, Ty, Expand);
361 setCondCodeAction(ISD::SETGE, Ty, Expand);
362 setCondCodeAction(ISD::SETGT, Ty, Expand);
363 setCondCodeAction(ISD::SETUGE, Ty, Expand);
364 setCondCodeAction(ISD::SETUGT, Ty, Expand);
365 }
366
367 // Enable MSA support for the given floating-point type and Register class.
368 void MipsSETargetLowering::
addMSAFloatType(MVT::SimpleValueType Ty,const TargetRegisterClass * RC)369 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
370 addRegisterClass(Ty, RC);
371
372 // Expand all builtin opcodes.
373 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
374 setOperationAction(Opc, Ty, Expand);
375
376 setOperationAction(ISD::LOAD, Ty, Legal);
377 setOperationAction(ISD::STORE, Ty, Legal);
378 setOperationAction(ISD::BITCAST, Ty, Legal);
379 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
380 setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
381 setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
382
383 if (Ty != MVT::v8f16) {
384 setOperationAction(ISD::FABS, Ty, Legal);
385 setOperationAction(ISD::FADD, Ty, Legal);
386 setOperationAction(ISD::FDIV, Ty, Legal);
387 setOperationAction(ISD::FEXP2, Ty, Legal);
388 setOperationAction(ISD::FLOG2, Ty, Legal);
389 setOperationAction(ISD::FMA, Ty, Legal);
390 setOperationAction(ISD::FMUL, Ty, Legal);
391 setOperationAction(ISD::FRINT, Ty, Legal);
392 setOperationAction(ISD::FSQRT, Ty, Legal);
393 setOperationAction(ISD::FSUB, Ty, Legal);
394 setOperationAction(ISD::VSELECT, Ty, Legal);
395
396 setOperationAction(ISD::SETCC, Ty, Legal);
397 setCondCodeAction(ISD::SETOGE, Ty, Expand);
398 setCondCodeAction(ISD::SETOGT, Ty, Expand);
399 setCondCodeAction(ISD::SETUGE, Ty, Expand);
400 setCondCodeAction(ISD::SETUGT, Ty, Expand);
401 setCondCodeAction(ISD::SETGE, Ty, Expand);
402 setCondCodeAction(ISD::SETGT, Ty, Expand);
403 }
404 }
405
lowerSELECT(SDValue Op,SelectionDAG & DAG) const406 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
407 if(!Subtarget.hasMips32r6())
408 return MipsTargetLowering::LowerOperation(Op, DAG);
409
410 EVT ResTy = Op->getValueType(0);
411 SDLoc DL(Op);
412
413 // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
414 // floating point register are undefined. Not really an issue as sel.d, which
415 // is produced from an FSELECT node, only looks at bit 0.
416 SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
417 return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
418 Op->getOperand(2));
419 }
420
allowsMisalignedMemoryAccesses(EVT VT,unsigned,Align,MachineMemOperand::Flags,unsigned * Fast) const421 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
422 EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
423 MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
424
425 if (Subtarget.systemSupportsUnalignedAccess()) {
426 // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
427 // implementation defined whether this is handled by hardware, software, or
428 // a hybrid of the two but it's expected that most implementations will
429 // handle the majority of cases in hardware.
430 if (Fast)
431 *Fast = 1;
432 return true;
433 } else if (Subtarget.hasMips32r6()) {
434 return false;
435 }
436
437 switch (SVT) {
438 case MVT::i64:
439 case MVT::i32:
440 if (Fast)
441 *Fast = 1;
442 return true;
443 default:
444 return false;
445 }
446 }
447
LowerOperation(SDValue Op,SelectionDAG & DAG) const448 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
449 SelectionDAG &DAG) const {
450 switch(Op.getOpcode()) {
451 case ISD::LOAD: return lowerLOAD(Op, DAG);
452 case ISD::STORE: return lowerSTORE(Op, DAG);
453 case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
454 case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
455 case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
456 case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
457 case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
458 case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
459 case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
460 DAG);
461 case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
462 case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG);
463 case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG);
464 case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
465 case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG);
466 case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG);
467 case ISD::SELECT: return lowerSELECT(Op, DAG);
468 case ISD::BITCAST: return lowerBITCAST(Op, DAG);
469 }
470
471 return MipsTargetLowering::LowerOperation(Op, DAG);
472 }
473
474 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
475 //
476 // Performs the following transformations:
477 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
478 // sign/zero-extension is completely overwritten by the new one performed by
479 // the ISD::AND.
480 // - Removes redundant zero extensions performed by an ISD::AND.
performANDCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)481 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
482 TargetLowering::DAGCombinerInfo &DCI,
483 const MipsSubtarget &Subtarget) {
484 if (!Subtarget.hasMSA())
485 return SDValue();
486
487 SDValue Op0 = N->getOperand(0);
488 SDValue Op1 = N->getOperand(1);
489 unsigned Op0Opcode = Op0->getOpcode();
490
491 // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
492 // where $d + 1 == 2^n and n == 32
493 // or $d + 1 == 2^n and n <= 32 and ZExt
494 // -> (MipsVExtractZExt $a, $b, $c)
495 if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
496 Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
497 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
498
499 if (!Mask)
500 return SDValue();
501
502 int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
503
504 if (Log2IfPositive <= 0)
505 return SDValue(); // Mask+1 is not a power of 2
506
507 SDValue Op0Op2 = Op0->getOperand(2);
508 EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
509 unsigned ExtendTySize = ExtendTy.getSizeInBits();
510 unsigned Log2 = Log2IfPositive;
511
512 if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
513 Log2 == ExtendTySize) {
514 SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
515 return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
516 Op0->getVTList(),
517 ArrayRef(Ops, Op0->getNumOperands()));
518 }
519 }
520
521 return SDValue();
522 }
523
524 // Determine if the specified node is a constant vector splat.
525 //
526 // Returns true and sets Imm if:
527 // * N is a ISD::BUILD_VECTOR representing a constant splat
528 //
529 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
530 // differences are that it assumes the MSA has already been checked and the
531 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
532 // must not be in order for binsri.d to be selectable).
isVSplat(SDValue N,APInt & Imm,bool IsLittleEndian)533 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
534 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
535
536 if (!Node)
537 return false;
538
539 APInt SplatValue, SplatUndef;
540 unsigned SplatBitSize;
541 bool HasAnyUndefs;
542
543 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
544 8, !IsLittleEndian))
545 return false;
546
547 Imm = SplatValue;
548
549 return true;
550 }
551
552 // Test whether the given node is an all-ones build_vector.
isVectorAllOnes(SDValue N)553 static bool isVectorAllOnes(SDValue N) {
554 // Look through bitcasts. Endianness doesn't matter because we are looking
555 // for an all-ones value.
556 if (N->getOpcode() == ISD::BITCAST)
557 N = N->getOperand(0);
558
559 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
560
561 if (!BVN)
562 return false;
563
564 APInt SplatValue, SplatUndef;
565 unsigned SplatBitSize;
566 bool HasAnyUndefs;
567
568 // Endianness doesn't matter in this context because we are looking for
569 // an all-ones value.
570 if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
571 return SplatValue.isAllOnes();
572
573 return false;
574 }
575
576 // Test whether N is the bitwise inverse of OfNode.
isBitwiseInverse(SDValue N,SDValue OfNode)577 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
578 if (N->getOpcode() != ISD::XOR)
579 return false;
580
581 if (isVectorAllOnes(N->getOperand(0)))
582 return N->getOperand(1) == OfNode;
583
584 if (isVectorAllOnes(N->getOperand(1)))
585 return N->getOperand(0) == OfNode;
586
587 return false;
588 }
589
590 // Perform combines where ISD::OR is the root node.
591 //
592 // Performs the following transformations:
593 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
594 // where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
595 // vector type.
performORCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)596 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
597 TargetLowering::DAGCombinerInfo &DCI,
598 const MipsSubtarget &Subtarget) {
599 if (!Subtarget.hasMSA())
600 return SDValue();
601
602 EVT Ty = N->getValueType(0);
603
604 if (!Ty.is128BitVector())
605 return SDValue();
606
607 SDValue Op0 = N->getOperand(0);
608 SDValue Op1 = N->getOperand(1);
609
610 if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
611 SDValue Op0Op0 = Op0->getOperand(0);
612 SDValue Op0Op1 = Op0->getOperand(1);
613 SDValue Op1Op0 = Op1->getOperand(0);
614 SDValue Op1Op1 = Op1->getOperand(1);
615 bool IsLittleEndian = !Subtarget.isLittle();
616
617 SDValue IfSet, IfClr, Cond;
618 bool IsConstantMask = false;
619 APInt Mask, InvMask;
620
621 // If Op0Op0 is an appropriate mask, try to find it's inverse in either
622 // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
623 // looking.
624 // IfClr will be set if we find a valid match.
625 if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
626 Cond = Op0Op0;
627 IfSet = Op0Op1;
628
629 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
630 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
631 IfClr = Op1Op1;
632 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
633 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
634 IfClr = Op1Op0;
635
636 IsConstantMask = true;
637 }
638
639 // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
640 // thing again using this mask.
641 // IfClr will be set if we find a valid match.
642 if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
643 Cond = Op0Op1;
644 IfSet = Op0Op0;
645
646 if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
647 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
648 IfClr = Op1Op1;
649 else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
650 Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
651 IfClr = Op1Op0;
652
653 IsConstantMask = true;
654 }
655
656 // If IfClr is not yet set, try looking for a non-constant match.
657 // IfClr will be set if we find a valid match amongst the eight
658 // possibilities.
659 if (!IfClr.getNode()) {
660 if (isBitwiseInverse(Op0Op0, Op1Op0)) {
661 Cond = Op1Op0;
662 IfSet = Op1Op1;
663 IfClr = Op0Op1;
664 } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
665 Cond = Op1Op0;
666 IfSet = Op1Op1;
667 IfClr = Op0Op0;
668 } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
669 Cond = Op1Op1;
670 IfSet = Op1Op0;
671 IfClr = Op0Op1;
672 } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
673 Cond = Op1Op1;
674 IfSet = Op1Op0;
675 IfClr = Op0Op0;
676 } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
677 Cond = Op0Op0;
678 IfSet = Op0Op1;
679 IfClr = Op1Op1;
680 } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
681 Cond = Op0Op0;
682 IfSet = Op0Op1;
683 IfClr = Op1Op0;
684 } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
685 Cond = Op0Op1;
686 IfSet = Op0Op0;
687 IfClr = Op1Op1;
688 } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
689 Cond = Op0Op1;
690 IfSet = Op0Op0;
691 IfClr = Op1Op0;
692 }
693 }
694
695 // At this point, IfClr will be set if we have a valid match.
696 if (!IfClr.getNode())
697 return SDValue();
698
699 assert(Cond.getNode() && IfSet.getNode());
700
701 // Fold degenerate cases.
702 if (IsConstantMask) {
703 if (Mask.isAllOnes())
704 return IfSet;
705 else if (Mask == 0)
706 return IfClr;
707 }
708
709 // Transform the DAG into an equivalent VSELECT.
710 return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
711 }
712
713 return SDValue();
714 }
715
shouldTransformMulToShiftsAddsSubs(APInt C,EVT VT,SelectionDAG & DAG,const MipsSubtarget & Subtarget)716 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
717 SelectionDAG &DAG,
718 const MipsSubtarget &Subtarget) {
719 // Estimate the number of operations the below transform will turn a
720 // constant multiply into. The number is approximately equal to the minimal
721 // number of powers of two that constant can be broken down to by adding
722 // or subtracting them.
723 //
724 // If we have taken more than 12[1] / 8[2] steps to attempt the
725 // optimization for a native sized value, it is more than likely that this
726 // optimization will make things worse.
727 //
728 // [1] MIPS64 requires 6 instructions at most to materialize any constant,
729 // multiplication requires at least 4 cycles, but another cycle (or two)
730 // to retrieve the result from the HI/LO registers.
731 //
732 // [2] For MIPS32, more than 8 steps is expensive as the constant could be
733 // materialized in 2 instructions, multiplication requires at least 4
734 // cycles, but another cycle (or two) to retrieve the result from the
735 // HI/LO registers.
736 //
737 // TODO:
738 // - MaxSteps needs to consider the `VT` of the constant for the current
739 // target.
740 // - Consider to perform this optimization after type legalization.
741 // That allows to remove a workaround for types not supported natively.
742 // - Take in account `-Os, -Oz` flags because this optimization
743 // increases code size.
744 unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
745
746 SmallVector<APInt, 16> WorkStack(1, C);
747 unsigned Steps = 0;
748 unsigned BitWidth = C.getBitWidth();
749
750 while (!WorkStack.empty()) {
751 APInt Val = WorkStack.pop_back_val();
752
753 if (Val == 0 || Val == 1)
754 continue;
755
756 if (Steps >= MaxSteps)
757 return false;
758
759 if (Val.isPowerOf2()) {
760 ++Steps;
761 continue;
762 }
763
764 APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
765 APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
766 : APInt(BitWidth, 1) << C.ceilLogBase2();
767 if ((Val - Floor).ule(Ceil - Val)) {
768 WorkStack.push_back(Floor);
769 WorkStack.push_back(Val - Floor);
770 } else {
771 WorkStack.push_back(Ceil);
772 WorkStack.push_back(Ceil - Val);
773 }
774
775 ++Steps;
776 }
777
778 // If the value being multiplied is not supported natively, we have to pay
779 // an additional legalization cost, conservatively assume an increase in the
780 // cost of 3 instructions per step. This values for this heuristic were
781 // determined experimentally.
782 unsigned RegisterSize = DAG.getTargetLoweringInfo()
783 .getRegisterType(*DAG.getContext(), VT)
784 .getSizeInBits();
785 Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
786 if (Steps > 27)
787 return false;
788
789 return true;
790 }
791
genConstMult(SDValue X,APInt C,const SDLoc & DL,EVT VT,EVT ShiftTy,SelectionDAG & DAG)792 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
793 EVT ShiftTy, SelectionDAG &DAG) {
794 // Return 0.
795 if (C == 0)
796 return DAG.getConstant(0, DL, VT);
797
798 // Return x.
799 if (C == 1)
800 return X;
801
802 // If c is power of 2, return (shl x, log2(c)).
803 if (C.isPowerOf2())
804 return DAG.getNode(ISD::SHL, DL, VT, X,
805 DAG.getConstant(C.logBase2(), DL, ShiftTy));
806
807 unsigned BitWidth = C.getBitWidth();
808 APInt Floor = APInt(BitWidth, 1) << C.logBase2();
809 APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
810 APInt(BitWidth, 1) << C.ceilLogBase2();
811
812 // If |c - floor_c| <= |c - ceil_c|,
813 // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
814 // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
815 if ((C - Floor).ule(Ceil - C)) {
816 SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
817 SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
818 return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
819 }
820
821 // If |c - floor_c| > |c - ceil_c|,
822 // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
823 SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
824 SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
825 return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
826 }
827
performMULCombine(SDNode * N,SelectionDAG & DAG,const TargetLowering::DAGCombinerInfo & DCI,const MipsSETargetLowering * TL,const MipsSubtarget & Subtarget)828 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
829 const TargetLowering::DAGCombinerInfo &DCI,
830 const MipsSETargetLowering *TL,
831 const MipsSubtarget &Subtarget) {
832 EVT VT = N->getValueType(0);
833
834 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
835 if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
836 C->getAPIntValue(), VT, DAG, Subtarget))
837 return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
838 TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
839 DAG);
840
841 return SDValue(N, 0);
842 }
843
performDSPShiftCombine(unsigned Opc,SDNode * N,EVT Ty,SelectionDAG & DAG,const MipsSubtarget & Subtarget)844 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
845 SelectionDAG &DAG,
846 const MipsSubtarget &Subtarget) {
847 // See if this is a vector splat immediate node.
848 APInt SplatValue, SplatUndef;
849 unsigned SplatBitSize;
850 bool HasAnyUndefs;
851 unsigned EltSize = Ty.getScalarSizeInBits();
852 BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
853
854 if (!Subtarget.hasDSP())
855 return SDValue();
856
857 if (!BV ||
858 !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
859 EltSize, !Subtarget.isLittle()) ||
860 (SplatBitSize != EltSize) ||
861 (SplatValue.getZExtValue() >= EltSize))
862 return SDValue();
863
864 SDLoc DL(N);
865 return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
866 DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
867 }
868
performSHLCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)869 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
870 TargetLowering::DAGCombinerInfo &DCI,
871 const MipsSubtarget &Subtarget) {
872 EVT Ty = N->getValueType(0);
873
874 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
875 return SDValue();
876
877 return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
878 }
879
880 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
881 // constant splats into MipsISD::SHRA_DSP for DSPr2.
882 //
883 // Performs the following transformations:
884 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
885 // sign/zero-extension is completely overwritten by the new one performed by
886 // the ISD::SRA and ISD::SHL nodes.
887 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
888 // sequence.
889 //
890 // See performDSPShiftCombine for more information about the transformation
891 // used for DSPr2.
performSRACombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)892 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
893 TargetLowering::DAGCombinerInfo &DCI,
894 const MipsSubtarget &Subtarget) {
895 EVT Ty = N->getValueType(0);
896
897 if (Subtarget.hasMSA()) {
898 SDValue Op0 = N->getOperand(0);
899 SDValue Op1 = N->getOperand(1);
900
901 // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
902 // where $d + sizeof($c) == 32
903 // or $d + sizeof($c) <= 32 and SExt
904 // -> (MipsVExtractSExt $a, $b, $c)
905 if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
906 SDValue Op0Op0 = Op0->getOperand(0);
907 ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
908
909 if (!ShAmount)
910 return SDValue();
911
912 if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
913 Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
914 return SDValue();
915
916 EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
917 unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
918
919 if (TotalBits == 32 ||
920 (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
921 TotalBits <= 32)) {
922 SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
923 Op0Op0->getOperand(2) };
924 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
925 Op0Op0->getVTList(),
926 ArrayRef(Ops, Op0Op0->getNumOperands()));
927 }
928 }
929 }
930
931 if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
932 return SDValue();
933
934 return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
935 }
936
937
performSRLCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const MipsSubtarget & Subtarget)938 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
939 TargetLowering::DAGCombinerInfo &DCI,
940 const MipsSubtarget &Subtarget) {
941 EVT Ty = N->getValueType(0);
942
943 if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
944 return SDValue();
945
946 return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
947 }
948
isLegalDSPCondCode(EVT Ty,ISD::CondCode CC)949 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
950 bool IsV216 = (Ty == MVT::v2i16);
951
952 switch (CC) {
953 case ISD::SETEQ:
954 case ISD::SETNE: return true;
955 case ISD::SETLT:
956 case ISD::SETLE:
957 case ISD::SETGT:
958 case ISD::SETGE: return IsV216;
959 case ISD::SETULT:
960 case ISD::SETULE:
961 case ISD::SETUGT:
962 case ISD::SETUGE: return !IsV216;
963 default: return false;
964 }
965 }
966
performSETCCCombine(SDNode * N,SelectionDAG & DAG)967 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
968 EVT Ty = N->getValueType(0);
969
970 if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
971 return SDValue();
972
973 if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
974 return SDValue();
975
976 return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
977 N->getOperand(1), N->getOperand(2));
978 }
979
performVSELECTCombine(SDNode * N,SelectionDAG & DAG)980 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
981 EVT Ty = N->getValueType(0);
982
983 if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
984 SDValue SetCC = N->getOperand(0);
985
986 if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
987 return SDValue();
988
989 return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
990 SetCC.getOperand(0), SetCC.getOperand(1),
991 N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
992 }
993
994 return SDValue();
995 }
996
performXORCombine(SDNode * N,SelectionDAG & DAG,const MipsSubtarget & Subtarget)997 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
998 const MipsSubtarget &Subtarget) {
999 EVT Ty = N->getValueType(0);
1000
1001 if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1002 // Try the following combines:
1003 // (xor (or $a, $b), (build_vector allones))
1004 // (xor (or $a, $b), (bitcast (build_vector allones)))
1005 SDValue Op0 = N->getOperand(0);
1006 SDValue Op1 = N->getOperand(1);
1007 SDValue NotOp;
1008
1009 if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1010 NotOp = Op1;
1011 else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1012 NotOp = Op0;
1013 else
1014 return SDValue();
1015
1016 if (NotOp->getOpcode() == ISD::OR)
1017 return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1018 NotOp->getOperand(1));
1019 }
1020
1021 return SDValue();
1022 }
1023
1024 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1025 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1026 SelectionDAG &DAG = DCI.DAG;
1027 SDValue Val;
1028
1029 switch (N->getOpcode()) {
1030 case ISD::AND:
1031 Val = performANDCombine(N, DAG, DCI, Subtarget);
1032 break;
1033 case ISD::OR:
1034 Val = performORCombine(N, DAG, DCI, Subtarget);
1035 break;
1036 case ISD::MUL:
1037 return performMULCombine(N, DAG, DCI, this, Subtarget);
1038 case ISD::SHL:
1039 Val = performSHLCombine(N, DAG, DCI, Subtarget);
1040 break;
1041 case ISD::SRA:
1042 return performSRACombine(N, DAG, DCI, Subtarget);
1043 case ISD::SRL:
1044 return performSRLCombine(N, DAG, DCI, Subtarget);
1045 case ISD::VSELECT:
1046 return performVSELECTCombine(N, DAG);
1047 case ISD::XOR:
1048 Val = performXORCombine(N, DAG, Subtarget);
1049 break;
1050 case ISD::SETCC:
1051 Val = performSETCCCombine(N, DAG);
1052 break;
1053 }
1054
1055 if (Val.getNode()) {
1056 LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1057 N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1058 Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1059 return Val;
1060 }
1061
1062 return MipsTargetLowering::PerformDAGCombine(N, DCI);
1063 }
1064
1065 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1066 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1067 MachineBasicBlock *BB) const {
1068 switch (MI.getOpcode()) {
1069 default:
1070 return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1071 case Mips::BPOSGE32_PSEUDO:
1072 return emitBPOSGE32(MI, BB);
1073 case Mips::SNZ_B_PSEUDO:
1074 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1075 case Mips::SNZ_H_PSEUDO:
1076 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1077 case Mips::SNZ_W_PSEUDO:
1078 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1079 case Mips::SNZ_D_PSEUDO:
1080 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1081 case Mips::SNZ_V_PSEUDO:
1082 return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1083 case Mips::SZ_B_PSEUDO:
1084 return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1085 case Mips::SZ_H_PSEUDO:
1086 return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1087 case Mips::SZ_W_PSEUDO:
1088 return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1089 case Mips::SZ_D_PSEUDO:
1090 return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1091 case Mips::SZ_V_PSEUDO:
1092 return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1093 case Mips::COPY_FW_PSEUDO:
1094 return emitCOPY_FW(MI, BB);
1095 case Mips::COPY_FD_PSEUDO:
1096 return emitCOPY_FD(MI, BB);
1097 case Mips::INSERT_FW_PSEUDO:
1098 return emitINSERT_FW(MI, BB);
1099 case Mips::INSERT_FD_PSEUDO:
1100 return emitINSERT_FD(MI, BB);
1101 case Mips::INSERT_B_VIDX_PSEUDO:
1102 case Mips::INSERT_B_VIDX64_PSEUDO:
1103 return emitINSERT_DF_VIDX(MI, BB, 1, false);
1104 case Mips::INSERT_H_VIDX_PSEUDO:
1105 case Mips::INSERT_H_VIDX64_PSEUDO:
1106 return emitINSERT_DF_VIDX(MI, BB, 2, false);
1107 case Mips::INSERT_W_VIDX_PSEUDO:
1108 case Mips::INSERT_W_VIDX64_PSEUDO:
1109 return emitINSERT_DF_VIDX(MI, BB, 4, false);
1110 case Mips::INSERT_D_VIDX_PSEUDO:
1111 case Mips::INSERT_D_VIDX64_PSEUDO:
1112 return emitINSERT_DF_VIDX(MI, BB, 8, false);
1113 case Mips::INSERT_FW_VIDX_PSEUDO:
1114 case Mips::INSERT_FW_VIDX64_PSEUDO:
1115 return emitINSERT_DF_VIDX(MI, BB, 4, true);
1116 case Mips::INSERT_FD_VIDX_PSEUDO:
1117 case Mips::INSERT_FD_VIDX64_PSEUDO:
1118 return emitINSERT_DF_VIDX(MI, BB, 8, true);
1119 case Mips::FILL_FW_PSEUDO:
1120 return emitFILL_FW(MI, BB);
1121 case Mips::FILL_FD_PSEUDO:
1122 return emitFILL_FD(MI, BB);
1123 case Mips::FEXP2_W_1_PSEUDO:
1124 return emitFEXP2_W_1(MI, BB);
1125 case Mips::FEXP2_D_1_PSEUDO:
1126 return emitFEXP2_D_1(MI, BB);
1127 case Mips::ST_F16:
1128 return emitST_F16_PSEUDO(MI, BB);
1129 case Mips::LD_F16:
1130 return emitLD_F16_PSEUDO(MI, BB);
1131 case Mips::MSA_FP_EXTEND_W_PSEUDO:
1132 return emitFPEXTEND_PSEUDO(MI, BB, false);
1133 case Mips::MSA_FP_ROUND_W_PSEUDO:
1134 return emitFPROUND_PSEUDO(MI, BB, false);
1135 case Mips::MSA_FP_EXTEND_D_PSEUDO:
1136 return emitFPEXTEND_PSEUDO(MI, BB, true);
1137 case Mips::MSA_FP_ROUND_D_PSEUDO:
1138 return emitFPROUND_PSEUDO(MI, BB, true);
1139 }
1140 }
1141
isEligibleForTailCallOptimization(const CCState & CCInfo,unsigned NextStackOffset,const MipsFunctionInfo & FI) const1142 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1143 const CCState &CCInfo, unsigned NextStackOffset,
1144 const MipsFunctionInfo &FI) const {
1145 if (!UseMipsTailCalls)
1146 return false;
1147
1148 // Exception has to be cleared with eret.
1149 if (FI.isISR())
1150 return false;
1151
1152 // Return false if either the callee or caller has a byval argument.
1153 if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1154 return false;
1155
1156 // Return true if the callee's argument area is no larger than the
1157 // caller's.
1158 return NextStackOffset <= FI.getIncomingArgSize();
1159 }
1160
1161 void MipsSETargetLowering::
getOpndList(SmallVectorImpl<SDValue> & Ops,std::deque<std::pair<unsigned,SDValue>> & RegsToPass,bool IsPICCall,bool GlobalOrExternal,bool InternalLinkage,bool IsCallReloc,CallLoweringInfo & CLI,SDValue Callee,SDValue Chain) const1162 getOpndList(SmallVectorImpl<SDValue> &Ops,
1163 std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1164 bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1165 bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1166 SDValue Chain) const {
1167 Ops.push_back(Callee);
1168 MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1169 InternalLinkage, IsCallReloc, CLI, Callee,
1170 Chain);
1171 }
1172
lowerLOAD(SDValue Op,SelectionDAG & DAG) const1173 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1174 LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1175
1176 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1177 return MipsTargetLowering::lowerLOAD(Op, DAG);
1178
1179 // Replace a double precision load with two i32 loads and a buildpair64.
1180 SDLoc DL(Op);
1181 SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1182 EVT PtrVT = Ptr.getValueType();
1183
1184 // i32 load from lower address.
1185 SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1186 Nd.getAlign(), Nd.getMemOperand()->getFlags());
1187
1188 // i32 load from higher address.
1189 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1190 SDValue Hi = DAG.getLoad(
1191 MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1192 commonAlignment(Nd.getAlign(), 4), Nd.getMemOperand()->getFlags());
1193
1194 if (!Subtarget.isLittle())
1195 std::swap(Lo, Hi);
1196
1197 SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1198 SDValue Ops[2] = {BP, Hi.getValue(1)};
1199 return DAG.getMergeValues(Ops, DL);
1200 }
1201
lowerSTORE(SDValue Op,SelectionDAG & DAG) const1202 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1203 StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1204
1205 if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1206 return MipsTargetLowering::lowerSTORE(Op, DAG);
1207
1208 // Replace a double precision store with two extractelement64s and i32 stores.
1209 SDLoc DL(Op);
1210 SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1211 EVT PtrVT = Ptr.getValueType();
1212 SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1213 Val, DAG.getConstant(0, DL, MVT::i32));
1214 SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1215 Val, DAG.getConstant(1, DL, MVT::i32));
1216
1217 if (!Subtarget.isLittle())
1218 std::swap(Lo, Hi);
1219
1220 // i32 store to lower address.
1221 Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlign(),
1222 Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1223
1224 // i32 store to higher address.
1225 Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1226 return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1227 commonAlignment(Nd.getAlign(), 4),
1228 Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1229 }
1230
lowerBITCAST(SDValue Op,SelectionDAG & DAG) const1231 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1232 SelectionDAG &DAG) const {
1233 SDLoc DL(Op);
1234 MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1235 MVT Dest = Op.getValueType().getSimpleVT();
1236
1237 // Bitcast i64 to double.
1238 if (Src == MVT::i64 && Dest == MVT::f64) {
1239 SDValue Lo, Hi;
1240 std::tie(Lo, Hi) =
1241 DAG.SplitScalar(Op.getOperand(0), DL, MVT::i32, MVT::i32);
1242 return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1243 }
1244
1245 // Bitcast double to i64.
1246 if (Src == MVT::f64 && Dest == MVT::i64) {
1247 SDValue Lo =
1248 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1249 DAG.getConstant(0, DL, MVT::i32));
1250 SDValue Hi =
1251 DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1252 DAG.getConstant(1, DL, MVT::i32));
1253 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1254 }
1255
1256 // Skip other cases of bitcast and use default lowering.
1257 return SDValue();
1258 }
1259
lowerMulDiv(SDValue Op,unsigned NewOpc,bool HasLo,bool HasHi,SelectionDAG & DAG) const1260 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1261 bool HasLo, bool HasHi,
1262 SelectionDAG &DAG) const {
1263 // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1264 assert(!Subtarget.hasMips32r6());
1265
1266 EVT Ty = Op.getOperand(0).getValueType();
1267 SDLoc DL(Op);
1268 SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1269 Op.getOperand(0), Op.getOperand(1));
1270 SDValue Lo, Hi;
1271
1272 if (HasLo)
1273 Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1274 if (HasHi)
1275 Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1276
1277 if (!HasLo || !HasHi)
1278 return HasLo ? Lo : Hi;
1279
1280 SDValue Vals[] = { Lo, Hi };
1281 return DAG.getMergeValues(Vals, DL);
1282 }
1283
initAccumulator(SDValue In,const SDLoc & DL,SelectionDAG & DAG)1284 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1285 SDValue InLo, InHi;
1286 std::tie(InLo, InHi) = DAG.SplitScalar(In, DL, MVT::i32, MVT::i32);
1287 return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1288 }
1289
extractLOHI(SDValue Op,const SDLoc & DL,SelectionDAG & DAG)1290 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1291 SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1292 SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1293 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1294 }
1295
1296 // This function expands mips intrinsic nodes which have 64-bit input operands
1297 // or output values.
1298 //
1299 // out64 = intrinsic-node in64
1300 // =>
1301 // lo = copy (extract-element (in64, 0))
1302 // hi = copy (extract-element (in64, 1))
1303 // mips-specific-node
1304 // v0 = copy lo
1305 // v1 = copy hi
1306 // out64 = merge-values (v0, v1)
1307 //
lowerDSPIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc)1308 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1309 SDLoc DL(Op);
1310 bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1311 SmallVector<SDValue, 3> Ops;
1312 unsigned OpNo = 0;
1313
1314 // See if Op has a chain input.
1315 if (HasChainIn)
1316 Ops.push_back(Op->getOperand(OpNo++));
1317
1318 // The next operand is the intrinsic opcode.
1319 assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1320
1321 // See if the next operand has type i64.
1322 SDValue Opnd = Op->getOperand(++OpNo), In64;
1323
1324 if (Opnd.getValueType() == MVT::i64)
1325 In64 = initAccumulator(Opnd, DL, DAG);
1326 else
1327 Ops.push_back(Opnd);
1328
1329 // Push the remaining operands.
1330 for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1331 Ops.push_back(Op->getOperand(OpNo));
1332
1333 // Add In64 to the end of the list.
1334 if (In64.getNode())
1335 Ops.push_back(In64);
1336
1337 // Scan output.
1338 SmallVector<EVT, 2> ResTys;
1339
1340 for (EVT Ty : Op->values())
1341 ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty);
1342
1343 // Create node.
1344 SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1345 SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1346
1347 if (!HasChainIn)
1348 return Out;
1349
1350 assert(Val->getValueType(1) == MVT::Other);
1351 SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1352 return DAG.getMergeValues(Vals, DL);
1353 }
1354
1355 // Lower an MSA copy intrinsic into the specified SelectionDAG node
lowerMSACopyIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc)1356 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1357 SDLoc DL(Op);
1358 SDValue Vec = Op->getOperand(1);
1359 SDValue Idx = Op->getOperand(2);
1360 EVT ResTy = Op->getValueType(0);
1361 EVT EltTy = Vec->getValueType(0).getVectorElementType();
1362
1363 SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1364 DAG.getValueType(EltTy));
1365
1366 return Result;
1367 }
1368
lowerMSASplatZExt(SDValue Op,unsigned OpNr,SelectionDAG & DAG)1369 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1370 EVT ResVecTy = Op->getValueType(0);
1371 EVT ViaVecTy = ResVecTy;
1372 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1373 SDLoc DL(Op);
1374
1375 // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1376 // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1377 // lanes.
1378 SDValue LaneA = Op->getOperand(OpNr);
1379 SDValue LaneB;
1380
1381 if (ResVecTy == MVT::v2i64) {
1382 // In case of the index being passed as an immediate value, set the upper
1383 // lane to 0 so that the splati.d instruction can be matched.
1384 if (isa<ConstantSDNode>(LaneA))
1385 LaneB = DAG.getConstant(0, DL, MVT::i32);
1386 // Having the index passed in a register, set the upper lane to the same
1387 // value as the lower - this results in the BUILD_VECTOR node not being
1388 // expanded through stack. This way we are able to pattern match the set of
1389 // nodes created here to splat.d.
1390 else
1391 LaneB = LaneA;
1392 ViaVecTy = MVT::v4i32;
1393 if(BigEndian)
1394 std::swap(LaneA, LaneB);
1395 } else
1396 LaneB = LaneA;
1397
1398 SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1399 LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1400
1401 SDValue Result = DAG.getBuildVector(
1402 ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1403
1404 if (ViaVecTy != ResVecTy) {
1405 SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1406 Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1407 DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1408 }
1409
1410 return Result;
1411 }
1412
lowerMSASplatImm(SDValue Op,unsigned ImmOp,SelectionDAG & DAG,bool IsSigned=false)1413 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1414 bool IsSigned = false) {
1415 auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1416 return DAG.getConstant(
1417 APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1418 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1419 SDLoc(Op), Op->getValueType(0));
1420 }
1421
getBuildVectorSplat(EVT VecTy,SDValue SplatValue,bool BigEndian,SelectionDAG & DAG)1422 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1423 bool BigEndian, SelectionDAG &DAG) {
1424 EVT ViaVecTy = VecTy;
1425 SDValue SplatValueA = SplatValue;
1426 SDValue SplatValueB = SplatValue;
1427 SDLoc DL(SplatValue);
1428
1429 if (VecTy == MVT::v2i64) {
1430 // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1431 ViaVecTy = MVT::v4i32;
1432
1433 SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1434 SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1435 DAG.getConstant(32, DL, MVT::i32));
1436 SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1437 }
1438
1439 // We currently hold the parts in little endian order. Swap them if
1440 // necessary.
1441 if (BigEndian)
1442 std::swap(SplatValueA, SplatValueB);
1443
1444 SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1445 SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1446 SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1447 SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1448
1449 SDValue Result = DAG.getBuildVector(
1450 ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1451
1452 if (VecTy != ViaVecTy)
1453 Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1454
1455 return Result;
1456 }
1457
lowerMSABinaryBitImmIntr(SDValue Op,SelectionDAG & DAG,unsigned Opc,SDValue Imm,bool BigEndian)1458 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1459 unsigned Opc, SDValue Imm,
1460 bool BigEndian) {
1461 EVT VecTy = Op->getValueType(0);
1462 SDValue Exp2Imm;
1463 SDLoc DL(Op);
1464
1465 // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1466 // here for now.
1467 if (VecTy == MVT::v2i64) {
1468 if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1469 APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1470
1471 SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1472 MVT::i32);
1473 SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1474
1475 if (BigEndian)
1476 std::swap(BitImmLoOp, BitImmHiOp);
1477
1478 Exp2Imm = DAG.getNode(
1479 ISD::BITCAST, DL, MVT::v2i64,
1480 DAG.getBuildVector(MVT::v4i32, DL,
1481 {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1482 }
1483 }
1484
1485 if (!Exp2Imm.getNode()) {
1486 // We couldnt constant fold, do a vector shift instead
1487
1488 // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1489 // only values 0-63 are valid.
1490 if (VecTy == MVT::v2i64)
1491 Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1492
1493 Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1494
1495 Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1496 Exp2Imm);
1497 }
1498
1499 return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1500 }
1501
truncateVecElts(SDValue Op,SelectionDAG & DAG)1502 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1503 SDLoc DL(Op);
1504 EVT ResTy = Op->getValueType(0);
1505 SDValue Vec = Op->getOperand(2);
1506 bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1507 MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1508 SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1509 DL, ResEltTy);
1510 SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1511
1512 return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1513 }
1514
lowerMSABitClear(SDValue Op,SelectionDAG & DAG)1515 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1516 EVT ResTy = Op->getValueType(0);
1517 SDLoc DL(Op);
1518 SDValue One = DAG.getConstant(1, DL, ResTy);
1519 SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1520
1521 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1522 DAG.getNOT(DL, Bit, ResTy));
1523 }
1524
lowerMSABitClearImm(SDValue Op,SelectionDAG & DAG)1525 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1526 SDLoc DL(Op);
1527 EVT ResTy = Op->getValueType(0);
1528 APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1529 << Op->getConstantOperandAPInt(2);
1530 SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1531
1532 return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1533 }
1534
lowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const1535 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1536 SelectionDAG &DAG) const {
1537 SDLoc DL(Op);
1538 unsigned Intrinsic = Op->getConstantOperandVal(0);
1539 switch (Intrinsic) {
1540 default:
1541 return SDValue();
1542 case Intrinsic::mips_shilo:
1543 return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1544 case Intrinsic::mips_dpau_h_qbl:
1545 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1546 case Intrinsic::mips_dpau_h_qbr:
1547 return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1548 case Intrinsic::mips_dpsu_h_qbl:
1549 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1550 case Intrinsic::mips_dpsu_h_qbr:
1551 return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1552 case Intrinsic::mips_dpa_w_ph:
1553 return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1554 case Intrinsic::mips_dps_w_ph:
1555 return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1556 case Intrinsic::mips_dpax_w_ph:
1557 return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1558 case Intrinsic::mips_dpsx_w_ph:
1559 return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1560 case Intrinsic::mips_mulsa_w_ph:
1561 return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1562 case Intrinsic::mips_mult:
1563 return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1564 case Intrinsic::mips_multu:
1565 return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1566 case Intrinsic::mips_madd:
1567 return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1568 case Intrinsic::mips_maddu:
1569 return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1570 case Intrinsic::mips_msub:
1571 return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1572 case Intrinsic::mips_msubu:
1573 return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1574 case Intrinsic::mips_addv_b:
1575 case Intrinsic::mips_addv_h:
1576 case Intrinsic::mips_addv_w:
1577 case Intrinsic::mips_addv_d:
1578 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1579 Op->getOperand(2));
1580 case Intrinsic::mips_addvi_b:
1581 case Intrinsic::mips_addvi_h:
1582 case Intrinsic::mips_addvi_w:
1583 case Intrinsic::mips_addvi_d:
1584 return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1585 lowerMSASplatImm(Op, 2, DAG));
1586 case Intrinsic::mips_and_v:
1587 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1588 Op->getOperand(2));
1589 case Intrinsic::mips_andi_b:
1590 return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1591 lowerMSASplatImm(Op, 2, DAG));
1592 case Intrinsic::mips_bclr_b:
1593 case Intrinsic::mips_bclr_h:
1594 case Intrinsic::mips_bclr_w:
1595 case Intrinsic::mips_bclr_d:
1596 return lowerMSABitClear(Op, DAG);
1597 case Intrinsic::mips_bclri_b:
1598 case Intrinsic::mips_bclri_h:
1599 case Intrinsic::mips_bclri_w:
1600 case Intrinsic::mips_bclri_d:
1601 return lowerMSABitClearImm(Op, DAG);
1602 case Intrinsic::mips_binsli_b:
1603 case Intrinsic::mips_binsli_h:
1604 case Intrinsic::mips_binsli_w:
1605 case Intrinsic::mips_binsli_d: {
1606 // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1607 EVT VecTy = Op->getValueType(0);
1608 EVT EltTy = VecTy.getVectorElementType();
1609 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1610 report_fatal_error("Immediate out of range");
1611 APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1612 Op->getConstantOperandVal(3) + 1);
1613 return DAG.getNode(ISD::VSELECT, DL, VecTy,
1614 DAG.getConstant(Mask, DL, VecTy, true),
1615 Op->getOperand(2), Op->getOperand(1));
1616 }
1617 case Intrinsic::mips_binsri_b:
1618 case Intrinsic::mips_binsri_h:
1619 case Intrinsic::mips_binsri_w:
1620 case Intrinsic::mips_binsri_d: {
1621 // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1622 EVT VecTy = Op->getValueType(0);
1623 EVT EltTy = VecTy.getVectorElementType();
1624 if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1625 report_fatal_error("Immediate out of range");
1626 APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1627 Op->getConstantOperandVal(3) + 1);
1628 return DAG.getNode(ISD::VSELECT, DL, VecTy,
1629 DAG.getConstant(Mask, DL, VecTy, true),
1630 Op->getOperand(2), Op->getOperand(1));
1631 }
1632 case Intrinsic::mips_bmnz_v:
1633 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1634 Op->getOperand(2), Op->getOperand(1));
1635 case Intrinsic::mips_bmnzi_b:
1636 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1637 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1638 Op->getOperand(1));
1639 case Intrinsic::mips_bmz_v:
1640 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1641 Op->getOperand(1), Op->getOperand(2));
1642 case Intrinsic::mips_bmzi_b:
1643 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1644 lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1645 Op->getOperand(2));
1646 case Intrinsic::mips_bneg_b:
1647 case Intrinsic::mips_bneg_h:
1648 case Intrinsic::mips_bneg_w:
1649 case Intrinsic::mips_bneg_d: {
1650 EVT VecTy = Op->getValueType(0);
1651 SDValue One = DAG.getConstant(1, DL, VecTy);
1652
1653 return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1654 DAG.getNode(ISD::SHL, DL, VecTy, One,
1655 truncateVecElts(Op, DAG)));
1656 }
1657 case Intrinsic::mips_bnegi_b:
1658 case Intrinsic::mips_bnegi_h:
1659 case Intrinsic::mips_bnegi_w:
1660 case Intrinsic::mips_bnegi_d:
1661 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1662 !Subtarget.isLittle());
1663 case Intrinsic::mips_bnz_b:
1664 case Intrinsic::mips_bnz_h:
1665 case Intrinsic::mips_bnz_w:
1666 case Intrinsic::mips_bnz_d:
1667 return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1668 Op->getOperand(1));
1669 case Intrinsic::mips_bnz_v:
1670 return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1671 Op->getOperand(1));
1672 case Intrinsic::mips_bsel_v:
1673 // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1674 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1675 Op->getOperand(1), Op->getOperand(3),
1676 Op->getOperand(2));
1677 case Intrinsic::mips_bseli_b:
1678 // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1679 return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1680 Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1681 Op->getOperand(2));
1682 case Intrinsic::mips_bset_b:
1683 case Intrinsic::mips_bset_h:
1684 case Intrinsic::mips_bset_w:
1685 case Intrinsic::mips_bset_d: {
1686 EVT VecTy = Op->getValueType(0);
1687 SDValue One = DAG.getConstant(1, DL, VecTy);
1688
1689 return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1690 DAG.getNode(ISD::SHL, DL, VecTy, One,
1691 truncateVecElts(Op, DAG)));
1692 }
1693 case Intrinsic::mips_bseti_b:
1694 case Intrinsic::mips_bseti_h:
1695 case Intrinsic::mips_bseti_w:
1696 case Intrinsic::mips_bseti_d:
1697 return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1698 !Subtarget.isLittle());
1699 case Intrinsic::mips_bz_b:
1700 case Intrinsic::mips_bz_h:
1701 case Intrinsic::mips_bz_w:
1702 case Intrinsic::mips_bz_d:
1703 return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1704 Op->getOperand(1));
1705 case Intrinsic::mips_bz_v:
1706 return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1707 Op->getOperand(1));
1708 case Intrinsic::mips_ceq_b:
1709 case Intrinsic::mips_ceq_h:
1710 case Intrinsic::mips_ceq_w:
1711 case Intrinsic::mips_ceq_d:
1712 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1713 Op->getOperand(2), ISD::SETEQ);
1714 case Intrinsic::mips_ceqi_b:
1715 case Intrinsic::mips_ceqi_h:
1716 case Intrinsic::mips_ceqi_w:
1717 case Intrinsic::mips_ceqi_d:
1718 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1719 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1720 case Intrinsic::mips_cle_s_b:
1721 case Intrinsic::mips_cle_s_h:
1722 case Intrinsic::mips_cle_s_w:
1723 case Intrinsic::mips_cle_s_d:
1724 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1725 Op->getOperand(2), ISD::SETLE);
1726 case Intrinsic::mips_clei_s_b:
1727 case Intrinsic::mips_clei_s_h:
1728 case Intrinsic::mips_clei_s_w:
1729 case Intrinsic::mips_clei_s_d:
1730 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1731 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1732 case Intrinsic::mips_cle_u_b:
1733 case Intrinsic::mips_cle_u_h:
1734 case Intrinsic::mips_cle_u_w:
1735 case Intrinsic::mips_cle_u_d:
1736 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1737 Op->getOperand(2), ISD::SETULE);
1738 case Intrinsic::mips_clei_u_b:
1739 case Intrinsic::mips_clei_u_h:
1740 case Intrinsic::mips_clei_u_w:
1741 case Intrinsic::mips_clei_u_d:
1742 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1743 lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1744 case Intrinsic::mips_clt_s_b:
1745 case Intrinsic::mips_clt_s_h:
1746 case Intrinsic::mips_clt_s_w:
1747 case Intrinsic::mips_clt_s_d:
1748 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1749 Op->getOperand(2), ISD::SETLT);
1750 case Intrinsic::mips_clti_s_b:
1751 case Intrinsic::mips_clti_s_h:
1752 case Intrinsic::mips_clti_s_w:
1753 case Intrinsic::mips_clti_s_d:
1754 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1755 lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1756 case Intrinsic::mips_clt_u_b:
1757 case Intrinsic::mips_clt_u_h:
1758 case Intrinsic::mips_clt_u_w:
1759 case Intrinsic::mips_clt_u_d:
1760 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1761 Op->getOperand(2), ISD::SETULT);
1762 case Intrinsic::mips_clti_u_b:
1763 case Intrinsic::mips_clti_u_h:
1764 case Intrinsic::mips_clti_u_w:
1765 case Intrinsic::mips_clti_u_d:
1766 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1767 lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1768 case Intrinsic::mips_copy_s_b:
1769 case Intrinsic::mips_copy_s_h:
1770 case Intrinsic::mips_copy_s_w:
1771 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1772 case Intrinsic::mips_copy_s_d:
1773 if (Subtarget.hasMips64())
1774 // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1775 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1776 else {
1777 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1778 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1779 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1780 Op->getValueType(0), Op->getOperand(1),
1781 Op->getOperand(2));
1782 }
1783 case Intrinsic::mips_copy_u_b:
1784 case Intrinsic::mips_copy_u_h:
1785 case Intrinsic::mips_copy_u_w:
1786 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1787 case Intrinsic::mips_copy_u_d:
1788 if (Subtarget.hasMips64())
1789 // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1790 return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1791 else {
1792 // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1793 // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1794 // Note: When i64 is illegal, this results in copy_s.w instructions
1795 // instead of copy_u.w instructions. This makes no difference to the
1796 // behaviour since i64 is only illegal when the register file is 32-bit.
1797 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1798 Op->getValueType(0), Op->getOperand(1),
1799 Op->getOperand(2));
1800 }
1801 case Intrinsic::mips_div_s_b:
1802 case Intrinsic::mips_div_s_h:
1803 case Intrinsic::mips_div_s_w:
1804 case Intrinsic::mips_div_s_d:
1805 return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1806 Op->getOperand(2));
1807 case Intrinsic::mips_div_u_b:
1808 case Intrinsic::mips_div_u_h:
1809 case Intrinsic::mips_div_u_w:
1810 case Intrinsic::mips_div_u_d:
1811 return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1812 Op->getOperand(2));
1813 case Intrinsic::mips_fadd_w:
1814 case Intrinsic::mips_fadd_d:
1815 // TODO: If intrinsics have fast-math-flags, propagate them.
1816 return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1817 Op->getOperand(2));
1818 // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1819 case Intrinsic::mips_fceq_w:
1820 case Intrinsic::mips_fceq_d:
1821 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1822 Op->getOperand(2), ISD::SETOEQ);
1823 case Intrinsic::mips_fcle_w:
1824 case Intrinsic::mips_fcle_d:
1825 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1826 Op->getOperand(2), ISD::SETOLE);
1827 case Intrinsic::mips_fclt_w:
1828 case Intrinsic::mips_fclt_d:
1829 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1830 Op->getOperand(2), ISD::SETOLT);
1831 case Intrinsic::mips_fcne_w:
1832 case Intrinsic::mips_fcne_d:
1833 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1834 Op->getOperand(2), ISD::SETONE);
1835 case Intrinsic::mips_fcor_w:
1836 case Intrinsic::mips_fcor_d:
1837 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1838 Op->getOperand(2), ISD::SETO);
1839 case Intrinsic::mips_fcueq_w:
1840 case Intrinsic::mips_fcueq_d:
1841 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1842 Op->getOperand(2), ISD::SETUEQ);
1843 case Intrinsic::mips_fcule_w:
1844 case Intrinsic::mips_fcule_d:
1845 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1846 Op->getOperand(2), ISD::SETULE);
1847 case Intrinsic::mips_fcult_w:
1848 case Intrinsic::mips_fcult_d:
1849 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1850 Op->getOperand(2), ISD::SETULT);
1851 case Intrinsic::mips_fcun_w:
1852 case Intrinsic::mips_fcun_d:
1853 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1854 Op->getOperand(2), ISD::SETUO);
1855 case Intrinsic::mips_fcune_w:
1856 case Intrinsic::mips_fcune_d:
1857 return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1858 Op->getOperand(2), ISD::SETUNE);
1859 case Intrinsic::mips_fdiv_w:
1860 case Intrinsic::mips_fdiv_d:
1861 // TODO: If intrinsics have fast-math-flags, propagate them.
1862 return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1863 Op->getOperand(2));
1864 case Intrinsic::mips_ffint_u_w:
1865 case Intrinsic::mips_ffint_u_d:
1866 return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1867 Op->getOperand(1));
1868 case Intrinsic::mips_ffint_s_w:
1869 case Intrinsic::mips_ffint_s_d:
1870 return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1871 Op->getOperand(1));
1872 case Intrinsic::mips_fill_b:
1873 case Intrinsic::mips_fill_h:
1874 case Intrinsic::mips_fill_w:
1875 case Intrinsic::mips_fill_d: {
1876 EVT ResTy = Op->getValueType(0);
1877 SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1878 Op->getOperand(1));
1879
1880 // If ResTy is v2i64 then the type legalizer will break this node down into
1881 // an equivalent v4i32.
1882 return DAG.getBuildVector(ResTy, DL, Ops);
1883 }
1884 case Intrinsic::mips_fexp2_w:
1885 case Intrinsic::mips_fexp2_d: {
1886 // TODO: If intrinsics have fast-math-flags, propagate them.
1887 EVT ResTy = Op->getValueType(0);
1888 return DAG.getNode(
1889 ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1890 DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1891 }
1892 case Intrinsic::mips_flog2_w:
1893 case Intrinsic::mips_flog2_d:
1894 return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1895 case Intrinsic::mips_fmadd_w:
1896 case Intrinsic::mips_fmadd_d:
1897 return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1898 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1899 case Intrinsic::mips_fmul_w:
1900 case Intrinsic::mips_fmul_d:
1901 // TODO: If intrinsics have fast-math-flags, propagate them.
1902 return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1903 Op->getOperand(2));
1904 case Intrinsic::mips_fmsub_w:
1905 case Intrinsic::mips_fmsub_d: {
1906 // TODO: If intrinsics have fast-math-flags, propagate them.
1907 return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1908 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1909 }
1910 case Intrinsic::mips_frint_w:
1911 case Intrinsic::mips_frint_d:
1912 return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1913 case Intrinsic::mips_fsqrt_w:
1914 case Intrinsic::mips_fsqrt_d:
1915 return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1916 case Intrinsic::mips_fsub_w:
1917 case Intrinsic::mips_fsub_d:
1918 // TODO: If intrinsics have fast-math-flags, propagate them.
1919 return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1920 Op->getOperand(2));
1921 case Intrinsic::mips_ftrunc_u_w:
1922 case Intrinsic::mips_ftrunc_u_d:
1923 return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1924 Op->getOperand(1));
1925 case Intrinsic::mips_ftrunc_s_w:
1926 case Intrinsic::mips_ftrunc_s_d:
1927 return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1928 Op->getOperand(1));
1929 case Intrinsic::mips_ilvev_b:
1930 case Intrinsic::mips_ilvev_h:
1931 case Intrinsic::mips_ilvev_w:
1932 case Intrinsic::mips_ilvev_d:
1933 return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1934 Op->getOperand(1), Op->getOperand(2));
1935 case Intrinsic::mips_ilvl_b:
1936 case Intrinsic::mips_ilvl_h:
1937 case Intrinsic::mips_ilvl_w:
1938 case Intrinsic::mips_ilvl_d:
1939 return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1940 Op->getOperand(1), Op->getOperand(2));
1941 case Intrinsic::mips_ilvod_b:
1942 case Intrinsic::mips_ilvod_h:
1943 case Intrinsic::mips_ilvod_w:
1944 case Intrinsic::mips_ilvod_d:
1945 return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1946 Op->getOperand(1), Op->getOperand(2));
1947 case Intrinsic::mips_ilvr_b:
1948 case Intrinsic::mips_ilvr_h:
1949 case Intrinsic::mips_ilvr_w:
1950 case Intrinsic::mips_ilvr_d:
1951 return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1952 Op->getOperand(1), Op->getOperand(2));
1953 case Intrinsic::mips_insert_b:
1954 case Intrinsic::mips_insert_h:
1955 case Intrinsic::mips_insert_w:
1956 case Intrinsic::mips_insert_d:
1957 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1958 Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1959 case Intrinsic::mips_insve_b:
1960 case Intrinsic::mips_insve_h:
1961 case Intrinsic::mips_insve_w:
1962 case Intrinsic::mips_insve_d: {
1963 // Report an error for out of range values.
1964 int64_t Max;
1965 switch (Intrinsic) {
1966 case Intrinsic::mips_insve_b: Max = 15; break;
1967 case Intrinsic::mips_insve_h: Max = 7; break;
1968 case Intrinsic::mips_insve_w: Max = 3; break;
1969 case Intrinsic::mips_insve_d: Max = 1; break;
1970 default: llvm_unreachable("Unmatched intrinsic");
1971 }
1972 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
1973 if (Value < 0 || Value > Max)
1974 report_fatal_error("Immediate out of range");
1975 return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1976 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1977 DAG.getConstant(0, DL, MVT::i32));
1978 }
1979 case Intrinsic::mips_ldi_b:
1980 case Intrinsic::mips_ldi_h:
1981 case Intrinsic::mips_ldi_w:
1982 case Intrinsic::mips_ldi_d:
1983 return lowerMSASplatImm(Op, 1, DAG, true);
1984 case Intrinsic::mips_lsa:
1985 case Intrinsic::mips_dlsa: {
1986 EVT ResTy = Op->getValueType(0);
1987 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1988 DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1989 Op->getOperand(2), Op->getOperand(3)));
1990 }
1991 case Intrinsic::mips_maddv_b:
1992 case Intrinsic::mips_maddv_h:
1993 case Intrinsic::mips_maddv_w:
1994 case Intrinsic::mips_maddv_d: {
1995 EVT ResTy = Op->getValueType(0);
1996 return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1997 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1998 Op->getOperand(2), Op->getOperand(3)));
1999 }
2000 case Intrinsic::mips_max_s_b:
2001 case Intrinsic::mips_max_s_h:
2002 case Intrinsic::mips_max_s_w:
2003 case Intrinsic::mips_max_s_d:
2004 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2005 Op->getOperand(1), Op->getOperand(2));
2006 case Intrinsic::mips_max_u_b:
2007 case Intrinsic::mips_max_u_h:
2008 case Intrinsic::mips_max_u_w:
2009 case Intrinsic::mips_max_u_d:
2010 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2011 Op->getOperand(1), Op->getOperand(2));
2012 case Intrinsic::mips_maxi_s_b:
2013 case Intrinsic::mips_maxi_s_h:
2014 case Intrinsic::mips_maxi_s_w:
2015 case Intrinsic::mips_maxi_s_d:
2016 return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2017 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2018 case Intrinsic::mips_maxi_u_b:
2019 case Intrinsic::mips_maxi_u_h:
2020 case Intrinsic::mips_maxi_u_w:
2021 case Intrinsic::mips_maxi_u_d:
2022 return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2023 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2024 case Intrinsic::mips_min_s_b:
2025 case Intrinsic::mips_min_s_h:
2026 case Intrinsic::mips_min_s_w:
2027 case Intrinsic::mips_min_s_d:
2028 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2029 Op->getOperand(1), Op->getOperand(2));
2030 case Intrinsic::mips_min_u_b:
2031 case Intrinsic::mips_min_u_h:
2032 case Intrinsic::mips_min_u_w:
2033 case Intrinsic::mips_min_u_d:
2034 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2035 Op->getOperand(1), Op->getOperand(2));
2036 case Intrinsic::mips_mini_s_b:
2037 case Intrinsic::mips_mini_s_h:
2038 case Intrinsic::mips_mini_s_w:
2039 case Intrinsic::mips_mini_s_d:
2040 return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2041 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2042 case Intrinsic::mips_mini_u_b:
2043 case Intrinsic::mips_mini_u_h:
2044 case Intrinsic::mips_mini_u_w:
2045 case Intrinsic::mips_mini_u_d:
2046 return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2047 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2048 case Intrinsic::mips_mod_s_b:
2049 case Intrinsic::mips_mod_s_h:
2050 case Intrinsic::mips_mod_s_w:
2051 case Intrinsic::mips_mod_s_d:
2052 return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2053 Op->getOperand(2));
2054 case Intrinsic::mips_mod_u_b:
2055 case Intrinsic::mips_mod_u_h:
2056 case Intrinsic::mips_mod_u_w:
2057 case Intrinsic::mips_mod_u_d:
2058 return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2059 Op->getOperand(2));
2060 case Intrinsic::mips_mulv_b:
2061 case Intrinsic::mips_mulv_h:
2062 case Intrinsic::mips_mulv_w:
2063 case Intrinsic::mips_mulv_d:
2064 return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2065 Op->getOperand(2));
2066 case Intrinsic::mips_msubv_b:
2067 case Intrinsic::mips_msubv_h:
2068 case Intrinsic::mips_msubv_w:
2069 case Intrinsic::mips_msubv_d: {
2070 EVT ResTy = Op->getValueType(0);
2071 return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2072 DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2073 Op->getOperand(2), Op->getOperand(3)));
2074 }
2075 case Intrinsic::mips_nlzc_b:
2076 case Intrinsic::mips_nlzc_h:
2077 case Intrinsic::mips_nlzc_w:
2078 case Intrinsic::mips_nlzc_d:
2079 return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2080 case Intrinsic::mips_nor_v: {
2081 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2082 Op->getOperand(1), Op->getOperand(2));
2083 return DAG.getNOT(DL, Res, Res->getValueType(0));
2084 }
2085 case Intrinsic::mips_nori_b: {
2086 SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2087 Op->getOperand(1),
2088 lowerMSASplatImm(Op, 2, DAG));
2089 return DAG.getNOT(DL, Res, Res->getValueType(0));
2090 }
2091 case Intrinsic::mips_or_v:
2092 return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2093 Op->getOperand(2));
2094 case Intrinsic::mips_ori_b:
2095 return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2096 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2097 case Intrinsic::mips_pckev_b:
2098 case Intrinsic::mips_pckev_h:
2099 case Intrinsic::mips_pckev_w:
2100 case Intrinsic::mips_pckev_d:
2101 return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2102 Op->getOperand(1), Op->getOperand(2));
2103 case Intrinsic::mips_pckod_b:
2104 case Intrinsic::mips_pckod_h:
2105 case Intrinsic::mips_pckod_w:
2106 case Intrinsic::mips_pckod_d:
2107 return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2108 Op->getOperand(1), Op->getOperand(2));
2109 case Intrinsic::mips_pcnt_b:
2110 case Intrinsic::mips_pcnt_h:
2111 case Intrinsic::mips_pcnt_w:
2112 case Intrinsic::mips_pcnt_d:
2113 return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2114 case Intrinsic::mips_sat_s_b:
2115 case Intrinsic::mips_sat_s_h:
2116 case Intrinsic::mips_sat_s_w:
2117 case Intrinsic::mips_sat_s_d:
2118 case Intrinsic::mips_sat_u_b:
2119 case Intrinsic::mips_sat_u_h:
2120 case Intrinsic::mips_sat_u_w:
2121 case Intrinsic::mips_sat_u_d: {
2122 // Report an error for out of range values.
2123 int64_t Max;
2124 switch (Intrinsic) {
2125 case Intrinsic::mips_sat_s_b:
2126 case Intrinsic::mips_sat_u_b: Max = 7; break;
2127 case Intrinsic::mips_sat_s_h:
2128 case Intrinsic::mips_sat_u_h: Max = 15; break;
2129 case Intrinsic::mips_sat_s_w:
2130 case Intrinsic::mips_sat_u_w: Max = 31; break;
2131 case Intrinsic::mips_sat_s_d:
2132 case Intrinsic::mips_sat_u_d: Max = 63; break;
2133 default: llvm_unreachable("Unmatched intrinsic");
2134 }
2135 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2136 if (Value < 0 || Value > Max)
2137 report_fatal_error("Immediate out of range");
2138 return SDValue();
2139 }
2140 case Intrinsic::mips_shf_b:
2141 case Intrinsic::mips_shf_h:
2142 case Intrinsic::mips_shf_w: {
2143 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2144 if (Value < 0 || Value > 255)
2145 report_fatal_error("Immediate out of range");
2146 return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2147 Op->getOperand(2), Op->getOperand(1));
2148 }
2149 case Intrinsic::mips_sldi_b:
2150 case Intrinsic::mips_sldi_h:
2151 case Intrinsic::mips_sldi_w:
2152 case Intrinsic::mips_sldi_d: {
2153 // Report an error for out of range values.
2154 int64_t Max;
2155 switch (Intrinsic) {
2156 case Intrinsic::mips_sldi_b: Max = 15; break;
2157 case Intrinsic::mips_sldi_h: Max = 7; break;
2158 case Intrinsic::mips_sldi_w: Max = 3; break;
2159 case Intrinsic::mips_sldi_d: Max = 1; break;
2160 default: llvm_unreachable("Unmatched intrinsic");
2161 }
2162 int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2163 if (Value < 0 || Value > Max)
2164 report_fatal_error("Immediate out of range");
2165 return SDValue();
2166 }
2167 case Intrinsic::mips_sll_b:
2168 case Intrinsic::mips_sll_h:
2169 case Intrinsic::mips_sll_w:
2170 case Intrinsic::mips_sll_d:
2171 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2172 truncateVecElts(Op, DAG));
2173 case Intrinsic::mips_slli_b:
2174 case Intrinsic::mips_slli_h:
2175 case Intrinsic::mips_slli_w:
2176 case Intrinsic::mips_slli_d:
2177 return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2178 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2179 case Intrinsic::mips_splat_b:
2180 case Intrinsic::mips_splat_h:
2181 case Intrinsic::mips_splat_w:
2182 case Intrinsic::mips_splat_d:
2183 // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2184 // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2185 // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2186 // Instead we lower to MipsISD::VSHF and match from there.
2187 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2188 lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2189 Op->getOperand(1));
2190 case Intrinsic::mips_splati_b:
2191 case Intrinsic::mips_splati_h:
2192 case Intrinsic::mips_splati_w:
2193 case Intrinsic::mips_splati_d:
2194 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2195 lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2196 Op->getOperand(1));
2197 case Intrinsic::mips_sra_b:
2198 case Intrinsic::mips_sra_h:
2199 case Intrinsic::mips_sra_w:
2200 case Intrinsic::mips_sra_d:
2201 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2202 truncateVecElts(Op, DAG));
2203 case Intrinsic::mips_srai_b:
2204 case Intrinsic::mips_srai_h:
2205 case Intrinsic::mips_srai_w:
2206 case Intrinsic::mips_srai_d:
2207 return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2208 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2209 case Intrinsic::mips_srari_b:
2210 case Intrinsic::mips_srari_h:
2211 case Intrinsic::mips_srari_w:
2212 case Intrinsic::mips_srari_d: {
2213 // Report an error for out of range values.
2214 int64_t Max;
2215 switch (Intrinsic) {
2216 case Intrinsic::mips_srari_b: Max = 7; break;
2217 case Intrinsic::mips_srari_h: Max = 15; break;
2218 case Intrinsic::mips_srari_w: Max = 31; break;
2219 case Intrinsic::mips_srari_d: Max = 63; break;
2220 default: llvm_unreachable("Unmatched intrinsic");
2221 }
2222 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2223 if (Value < 0 || Value > Max)
2224 report_fatal_error("Immediate out of range");
2225 return SDValue();
2226 }
2227 case Intrinsic::mips_srl_b:
2228 case Intrinsic::mips_srl_h:
2229 case Intrinsic::mips_srl_w:
2230 case Intrinsic::mips_srl_d:
2231 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2232 truncateVecElts(Op, DAG));
2233 case Intrinsic::mips_srli_b:
2234 case Intrinsic::mips_srli_h:
2235 case Intrinsic::mips_srli_w:
2236 case Intrinsic::mips_srli_d:
2237 return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2238 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2239 case Intrinsic::mips_srlri_b:
2240 case Intrinsic::mips_srlri_h:
2241 case Intrinsic::mips_srlri_w:
2242 case Intrinsic::mips_srlri_d: {
2243 // Report an error for out of range values.
2244 int64_t Max;
2245 switch (Intrinsic) {
2246 case Intrinsic::mips_srlri_b: Max = 7; break;
2247 case Intrinsic::mips_srlri_h: Max = 15; break;
2248 case Intrinsic::mips_srlri_w: Max = 31; break;
2249 case Intrinsic::mips_srlri_d: Max = 63; break;
2250 default: llvm_unreachable("Unmatched intrinsic");
2251 }
2252 int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2253 if (Value < 0 || Value > Max)
2254 report_fatal_error("Immediate out of range");
2255 return SDValue();
2256 }
2257 case Intrinsic::mips_subv_b:
2258 case Intrinsic::mips_subv_h:
2259 case Intrinsic::mips_subv_w:
2260 case Intrinsic::mips_subv_d:
2261 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2262 Op->getOperand(2));
2263 case Intrinsic::mips_subvi_b:
2264 case Intrinsic::mips_subvi_h:
2265 case Intrinsic::mips_subvi_w:
2266 case Intrinsic::mips_subvi_d:
2267 return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2268 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2269 case Intrinsic::mips_vshf_b:
2270 case Intrinsic::mips_vshf_h:
2271 case Intrinsic::mips_vshf_w:
2272 case Intrinsic::mips_vshf_d:
2273 return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2274 Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2275 case Intrinsic::mips_xor_v:
2276 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2277 Op->getOperand(2));
2278 case Intrinsic::mips_xori_b:
2279 return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2280 Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2281 case Intrinsic::thread_pointer: {
2282 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2283 return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2284 }
2285 }
2286 }
2287
lowerMSALoadIntr(SDValue Op,SelectionDAG & DAG,unsigned Intr,const MipsSubtarget & Subtarget)2288 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2289 const MipsSubtarget &Subtarget) {
2290 SDLoc DL(Op);
2291 SDValue ChainIn = Op->getOperand(0);
2292 SDValue Address = Op->getOperand(2);
2293 SDValue Offset = Op->getOperand(3);
2294 EVT ResTy = Op->getValueType(0);
2295 EVT PtrTy = Address->getValueType(0);
2296
2297 // For N64 addresses have the underlying type MVT::i64. This intrinsic
2298 // however takes an i32 signed constant offset. The actual type of the
2299 // intrinsic is a scaled signed i10.
2300 if (Subtarget.isABI_N64())
2301 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2302
2303 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2304 return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2305 Align(16));
2306 }
2307
lowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const2308 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2309 SelectionDAG &DAG) const {
2310 unsigned Intr = Op->getConstantOperandVal(1);
2311 switch (Intr) {
2312 default:
2313 return SDValue();
2314 case Intrinsic::mips_extp:
2315 return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2316 case Intrinsic::mips_extpdp:
2317 return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2318 case Intrinsic::mips_extr_w:
2319 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2320 case Intrinsic::mips_extr_r_w:
2321 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2322 case Intrinsic::mips_extr_rs_w:
2323 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2324 case Intrinsic::mips_extr_s_h:
2325 return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2326 case Intrinsic::mips_mthlip:
2327 return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2328 case Intrinsic::mips_mulsaq_s_w_ph:
2329 return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2330 case Intrinsic::mips_maq_s_w_phl:
2331 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2332 case Intrinsic::mips_maq_s_w_phr:
2333 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2334 case Intrinsic::mips_maq_sa_w_phl:
2335 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2336 case Intrinsic::mips_maq_sa_w_phr:
2337 return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2338 case Intrinsic::mips_dpaq_s_w_ph:
2339 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2340 case Intrinsic::mips_dpsq_s_w_ph:
2341 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2342 case Intrinsic::mips_dpaq_sa_l_w:
2343 return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2344 case Intrinsic::mips_dpsq_sa_l_w:
2345 return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2346 case Intrinsic::mips_dpaqx_s_w_ph:
2347 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2348 case Intrinsic::mips_dpaqx_sa_w_ph:
2349 return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2350 case Intrinsic::mips_dpsqx_s_w_ph:
2351 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2352 case Intrinsic::mips_dpsqx_sa_w_ph:
2353 return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2354 case Intrinsic::mips_ld_b:
2355 case Intrinsic::mips_ld_h:
2356 case Intrinsic::mips_ld_w:
2357 case Intrinsic::mips_ld_d:
2358 return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2359 }
2360 }
2361
lowerMSAStoreIntr(SDValue Op,SelectionDAG & DAG,unsigned Intr,const MipsSubtarget & Subtarget)2362 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2363 const MipsSubtarget &Subtarget) {
2364 SDLoc DL(Op);
2365 SDValue ChainIn = Op->getOperand(0);
2366 SDValue Value = Op->getOperand(2);
2367 SDValue Address = Op->getOperand(3);
2368 SDValue Offset = Op->getOperand(4);
2369 EVT PtrTy = Address->getValueType(0);
2370
2371 // For N64 addresses have the underlying type MVT::i64. This intrinsic
2372 // however takes an i32 signed constant offset. The actual type of the
2373 // intrinsic is a scaled signed i10.
2374 if (Subtarget.isABI_N64())
2375 Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2376
2377 Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2378
2379 return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2380 Align(16));
2381 }
2382
lowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const2383 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2384 SelectionDAG &DAG) const {
2385 unsigned Intr = Op->getConstantOperandVal(1);
2386 switch (Intr) {
2387 default:
2388 return SDValue();
2389 case Intrinsic::mips_st_b:
2390 case Intrinsic::mips_st_h:
2391 case Intrinsic::mips_st_w:
2392 case Intrinsic::mips_st_d:
2393 return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2394 }
2395 }
2396
2397 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2398 //
2399 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2400 // choose to sign-extend but we could have equally chosen zero-extend. The
2401 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2402 // result into this node later (possibly changing it to a zero-extend in the
2403 // process).
2404 SDValue MipsSETargetLowering::
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2405 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2406 SDLoc DL(Op);
2407 EVT ResTy = Op->getValueType(0);
2408 SDValue Op0 = Op->getOperand(0);
2409 EVT VecTy = Op0->getValueType(0);
2410
2411 if (!VecTy.is128BitVector())
2412 return SDValue();
2413
2414 if (ResTy.isInteger()) {
2415 SDValue Op1 = Op->getOperand(1);
2416 EVT EltTy = VecTy.getVectorElementType();
2417 return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2418 DAG.getValueType(EltTy));
2419 }
2420
2421 return Op;
2422 }
2423
isConstantOrUndef(const SDValue Op)2424 static bool isConstantOrUndef(const SDValue Op) {
2425 if (Op->isUndef())
2426 return true;
2427 if (isa<ConstantSDNode>(Op))
2428 return true;
2429 if (isa<ConstantFPSDNode>(Op))
2430 return true;
2431 return false;
2432 }
2433
isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode * Op)2434 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2435 for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2436 if (isConstantOrUndef(Op->getOperand(i)))
2437 return true;
2438 return false;
2439 }
2440
2441 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2442 // backend.
2443 //
2444 // Lowers according to the following rules:
2445 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2446 // 2 less than or equal to 64 and the value fits into a signed 10-bit
2447 // immediate
2448 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2449 // is a power of 2 less than or equal to 64 and the value does not fit into a
2450 // signed 10-bit immediate
2451 // - Non-constant splats are legal as-is.
2452 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2453 // - All others are illegal and must be expanded.
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2454 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2455 SelectionDAG &DAG) const {
2456 BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2457 EVT ResTy = Op->getValueType(0);
2458 SDLoc DL(Op);
2459 APInt SplatValue, SplatUndef;
2460 unsigned SplatBitSize;
2461 bool HasAnyUndefs;
2462
2463 if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2464 return SDValue();
2465
2466 if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2467 HasAnyUndefs, 8,
2468 !Subtarget.isLittle()) && SplatBitSize <= 64) {
2469 // We can only cope with 8, 16, 32, or 64-bit elements
2470 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2471 SplatBitSize != 64)
2472 return SDValue();
2473
2474 // If the value isn't an integer type we will have to bitcast
2475 // from an integer type first. Also, if there are any undefs, we must
2476 // lower them to defined values first.
2477 if (ResTy.isInteger() && !HasAnyUndefs)
2478 return Op;
2479
2480 EVT ViaVecTy;
2481
2482 switch (SplatBitSize) {
2483 default:
2484 return SDValue();
2485 case 8:
2486 ViaVecTy = MVT::v16i8;
2487 break;
2488 case 16:
2489 ViaVecTy = MVT::v8i16;
2490 break;
2491 case 32:
2492 ViaVecTy = MVT::v4i32;
2493 break;
2494 case 64:
2495 // There's no fill.d to fall back on for 64-bit values
2496 return SDValue();
2497 }
2498
2499 // SelectionDAG::getConstant will promote SplatValue appropriately.
2500 SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2501
2502 // Bitcast to the type we originally wanted
2503 if (ViaVecTy != ResTy)
2504 Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2505
2506 return Result;
2507 } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2508 return Op;
2509 else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2510 // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2511 // The resulting code is the same length as the expansion, but it doesn't
2512 // use memory operations
2513 EVT ResTy = Node->getValueType(0);
2514
2515 assert(ResTy.isVector());
2516
2517 unsigned NumElts = ResTy.getVectorNumElements();
2518 SDValue Vector = DAG.getUNDEF(ResTy);
2519 for (unsigned i = 0; i < NumElts; ++i) {
2520 Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2521 Node->getOperand(i),
2522 DAG.getConstant(i, DL, MVT::i32));
2523 }
2524 return Vector;
2525 }
2526
2527 return SDValue();
2528 }
2529
2530 // Lower VECTOR_SHUFFLE into SHF (if possible).
2531 //
2532 // SHF splits the vector into blocks of four elements, then shuffles these
2533 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2534 //
2535 // It is therefore possible to lower into SHF when the mask takes the form:
2536 // <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2537 // When undef's appear they are treated as if they were whatever value is
2538 // necessary in order to fit the above forms.
2539 //
2540 // For example:
2541 // %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2542 // <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2543 // i32 7, i32 6, i32 5, i32 4>
2544 // is lowered to:
2545 // (SHF_H $w0, $w1, 27)
2546 // where the 27 comes from:
2547 // 3 + (2 << 2) + (1 << 4) + (0 << 6)
lowerVECTOR_SHUFFLE_SHF(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2548 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2549 SmallVector<int, 16> Indices,
2550 SelectionDAG &DAG) {
2551 int SHFIndices[4] = { -1, -1, -1, -1 };
2552
2553 if (Indices.size() < 4)
2554 return SDValue();
2555
2556 for (unsigned i = 0; i < 4; ++i) {
2557 for (unsigned j = i; j < Indices.size(); j += 4) {
2558 int Idx = Indices[j];
2559
2560 // Convert from vector index to 4-element subvector index
2561 // If an index refers to an element outside of the subvector then give up
2562 if (Idx != -1) {
2563 Idx -= 4 * (j / 4);
2564 if (Idx < 0 || Idx >= 4)
2565 return SDValue();
2566 }
2567
2568 // If the mask has an undef, replace it with the current index.
2569 // Note that it might still be undef if the current index is also undef
2570 if (SHFIndices[i] == -1)
2571 SHFIndices[i] = Idx;
2572
2573 // Check that non-undef values are the same as in the mask. If they
2574 // aren't then give up
2575 if (!(Idx == -1 || Idx == SHFIndices[i]))
2576 return SDValue();
2577 }
2578 }
2579
2580 // Calculate the immediate. Replace any remaining undefs with zero
2581 APInt Imm(32, 0);
2582 for (int i = 3; i >= 0; --i) {
2583 int Idx = SHFIndices[i];
2584
2585 if (Idx == -1)
2586 Idx = 0;
2587
2588 Imm <<= 2;
2589 Imm |= Idx & 0x3;
2590 }
2591
2592 SDLoc DL(Op);
2593 return DAG.getNode(MipsISD::SHF, DL, ResTy,
2594 DAG.getTargetConstant(Imm, DL, MVT::i32),
2595 Op->getOperand(0));
2596 }
2597
2598 /// Determine whether a range fits a regular pattern of values.
2599 /// This function accounts for the possibility of jumping over the End iterator.
2600 template <typename ValType>
2601 static bool
fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,unsigned CheckStride,typename SmallVectorImpl<ValType>::const_iterator End,ValType ExpectedIndex,unsigned ExpectedIndexStride)2602 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2603 unsigned CheckStride,
2604 typename SmallVectorImpl<ValType>::const_iterator End,
2605 ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2606 auto &I = Begin;
2607
2608 while (I != End) {
2609 if (*I != -1 && *I != ExpectedIndex)
2610 return false;
2611 ExpectedIndex += ExpectedIndexStride;
2612
2613 // Incrementing past End is undefined behaviour so we must increment one
2614 // step at a time and check for End at each step.
2615 for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2616 ; // Empty loop body.
2617 }
2618 return true;
2619 }
2620
2621 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2622 //
2623 // It is a SPLATI when the mask is:
2624 // <x, x, x, ...>
2625 // where x is any valid index.
2626 //
2627 // When undef's appear in the mask they are treated as if they were whatever
2628 // value is necessary in order to fit the above form.
isVECTOR_SHUFFLE_SPLATI(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2629 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2630 SmallVector<int, 16> Indices,
2631 SelectionDAG &DAG) {
2632 assert((Indices.size() % 2) == 0);
2633
2634 int SplatIndex = -1;
2635 for (const auto &V : Indices) {
2636 if (V != -1) {
2637 SplatIndex = V;
2638 break;
2639 }
2640 }
2641
2642 return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2643 0);
2644 }
2645
2646 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2647 //
2648 // ILVEV interleaves the even elements from each vector.
2649 //
2650 // It is possible to lower into ILVEV when the mask consists of two of the
2651 // following forms interleaved:
2652 // <0, 2, 4, ...>
2653 // <n, n+2, n+4, ...>
2654 // where n is the number of elements in the vector.
2655 // For example:
2656 // <0, 0, 2, 2, 4, 4, ...>
2657 // <0, n, 2, n+2, 4, n+4, ...>
2658 //
2659 // When undef's appear in the mask they are treated as if they were whatever
2660 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVEV(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2661 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2662 SmallVector<int, 16> Indices,
2663 SelectionDAG &DAG) {
2664 assert((Indices.size() % 2) == 0);
2665
2666 SDValue Wt;
2667 SDValue Ws;
2668 const auto &Begin = Indices.begin();
2669 const auto &End = Indices.end();
2670
2671 // Check even elements are taken from the even elements of one half or the
2672 // other and pick an operand accordingly.
2673 if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2674 Wt = Op->getOperand(0);
2675 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2676 Wt = Op->getOperand(1);
2677 else
2678 return SDValue();
2679
2680 // Check odd elements are taken from the even elements of one half or the
2681 // other and pick an operand accordingly.
2682 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2683 Ws = Op->getOperand(0);
2684 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2685 Ws = Op->getOperand(1);
2686 else
2687 return SDValue();
2688
2689 return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2690 }
2691
2692 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2693 //
2694 // ILVOD interleaves the odd elements from each vector.
2695 //
2696 // It is possible to lower into ILVOD when the mask consists of two of the
2697 // following forms interleaved:
2698 // <1, 3, 5, ...>
2699 // <n+1, n+3, n+5, ...>
2700 // where n is the number of elements in the vector.
2701 // For example:
2702 // <1, 1, 3, 3, 5, 5, ...>
2703 // <1, n+1, 3, n+3, 5, n+5, ...>
2704 //
2705 // When undef's appear in the mask they are treated as if they were whatever
2706 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVOD(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2707 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2708 SmallVector<int, 16> Indices,
2709 SelectionDAG &DAG) {
2710 assert((Indices.size() % 2) == 0);
2711
2712 SDValue Wt;
2713 SDValue Ws;
2714 const auto &Begin = Indices.begin();
2715 const auto &End = Indices.end();
2716
2717 // Check even elements are taken from the odd elements of one half or the
2718 // other and pick an operand accordingly.
2719 if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2720 Wt = Op->getOperand(0);
2721 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2722 Wt = Op->getOperand(1);
2723 else
2724 return SDValue();
2725
2726 // Check odd elements are taken from the odd elements of one half or the
2727 // other and pick an operand accordingly.
2728 if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2729 Ws = Op->getOperand(0);
2730 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2731 Ws = Op->getOperand(1);
2732 else
2733 return SDValue();
2734
2735 return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws);
2736 }
2737
2738 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2739 //
2740 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2741 // each vector.
2742 //
2743 // It is possible to lower into ILVR when the mask consists of two of the
2744 // following forms interleaved:
2745 // <0, 1, 2, ...>
2746 // <n, n+1, n+2, ...>
2747 // where n is the number of elements in the vector.
2748 // For example:
2749 // <0, 0, 1, 1, 2, 2, ...>
2750 // <0, n, 1, n+1, 2, n+2, ...>
2751 //
2752 // When undef's appear in the mask they are treated as if they were whatever
2753 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVR(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2754 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2755 SmallVector<int, 16> Indices,
2756 SelectionDAG &DAG) {
2757 assert((Indices.size() % 2) == 0);
2758
2759 SDValue Wt;
2760 SDValue Ws;
2761 const auto &Begin = Indices.begin();
2762 const auto &End = Indices.end();
2763
2764 // Check even elements are taken from the right (lowest-indexed) elements of
2765 // one half or the other and pick an operand accordingly.
2766 if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2767 Wt = Op->getOperand(0);
2768 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2769 Wt = Op->getOperand(1);
2770 else
2771 return SDValue();
2772
2773 // Check odd elements are taken from the right (lowest-indexed) elements of
2774 // one half or the other and pick an operand accordingly.
2775 if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2776 Ws = Op->getOperand(0);
2777 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2778 Ws = Op->getOperand(1);
2779 else
2780 return SDValue();
2781
2782 return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2783 }
2784
2785 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2786 //
2787 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2788 // of each vector.
2789 //
2790 // It is possible to lower into ILVL when the mask consists of two of the
2791 // following forms interleaved:
2792 // <x, x+1, x+2, ...>
2793 // <n+x, n+x+1, n+x+2, ...>
2794 // where n is the number of elements in the vector and x is half n.
2795 // For example:
2796 // <x, x, x+1, x+1, x+2, x+2, ...>
2797 // <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2798 //
2799 // When undef's appear in the mask they are treated as if they were whatever
2800 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_ILVL(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2801 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2802 SmallVector<int, 16> Indices,
2803 SelectionDAG &DAG) {
2804 assert((Indices.size() % 2) == 0);
2805
2806 unsigned HalfSize = Indices.size() / 2;
2807 SDValue Wt;
2808 SDValue Ws;
2809 const auto &Begin = Indices.begin();
2810 const auto &End = Indices.end();
2811
2812 // Check even elements are taken from the left (highest-indexed) elements of
2813 // one half or the other and pick an operand accordingly.
2814 if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2815 Wt = Op->getOperand(0);
2816 else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2817 Wt = Op->getOperand(1);
2818 else
2819 return SDValue();
2820
2821 // Check odd elements are taken from the left (highest-indexed) elements of
2822 // one half or the other and pick an operand accordingly.
2823 if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2824 Ws = Op->getOperand(0);
2825 else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2826 1))
2827 Ws = Op->getOperand(1);
2828 else
2829 return SDValue();
2830
2831 return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2832 }
2833
2834 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2835 //
2836 // PCKEV copies the even elements of each vector into the result vector.
2837 //
2838 // It is possible to lower into PCKEV when the mask consists of two of the
2839 // following forms concatenated:
2840 // <0, 2, 4, ...>
2841 // <n, n+2, n+4, ...>
2842 // where n is the number of elements in the vector.
2843 // For example:
2844 // <0, 2, 4, ..., 0, 2, 4, ...>
2845 // <0, 2, 4, ..., n, n+2, n+4, ...>
2846 //
2847 // When undef's appear in the mask they are treated as if they were whatever
2848 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_PCKEV(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2849 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2850 SmallVector<int, 16> Indices,
2851 SelectionDAG &DAG) {
2852 assert((Indices.size() % 2) == 0);
2853
2854 SDValue Wt;
2855 SDValue Ws;
2856 const auto &Begin = Indices.begin();
2857 const auto &Mid = Indices.begin() + Indices.size() / 2;
2858 const auto &End = Indices.end();
2859
2860 if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2861 Wt = Op->getOperand(0);
2862 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2863 Wt = Op->getOperand(1);
2864 else
2865 return SDValue();
2866
2867 if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2868 Ws = Op->getOperand(0);
2869 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2870 Ws = Op->getOperand(1);
2871 else
2872 return SDValue();
2873
2874 return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2875 }
2876
2877 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2878 //
2879 // PCKOD copies the odd elements of each vector into the result vector.
2880 //
2881 // It is possible to lower into PCKOD when the mask consists of two of the
2882 // following forms concatenated:
2883 // <1, 3, 5, ...>
2884 // <n+1, n+3, n+5, ...>
2885 // where n is the number of elements in the vector.
2886 // For example:
2887 // <1, 3, 5, ..., 1, 3, 5, ...>
2888 // <1, 3, 5, ..., n+1, n+3, n+5, ...>
2889 //
2890 // When undef's appear in the mask they are treated as if they were whatever
2891 // value is necessary in order to fit the above forms.
lowerVECTOR_SHUFFLE_PCKOD(SDValue Op,EVT ResTy,SmallVector<int,16> Indices,SelectionDAG & DAG)2892 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2893 SmallVector<int, 16> Indices,
2894 SelectionDAG &DAG) {
2895 assert((Indices.size() % 2) == 0);
2896
2897 SDValue Wt;
2898 SDValue Ws;
2899 const auto &Begin = Indices.begin();
2900 const auto &Mid = Indices.begin() + Indices.size() / 2;
2901 const auto &End = Indices.end();
2902
2903 if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2904 Wt = Op->getOperand(0);
2905 else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2906 Wt = Op->getOperand(1);
2907 else
2908 return SDValue();
2909
2910 if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2911 Ws = Op->getOperand(0);
2912 else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2913 Ws = Op->getOperand(1);
2914 else
2915 return SDValue();
2916
2917 return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2918 }
2919
2920 // Lower VECTOR_SHUFFLE into VSHF.
2921 //
2922 // This mostly consists of converting the shuffle indices in Indices into a
2923 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2924 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2925 // if the type is v8i16 and all the indices are less than 8 then the second
2926 // operand is unused and can be replaced with anything. We choose to replace it
2927 // with the used operand since this reduces the number of instructions overall.
lowerVECTOR_SHUFFLE_VSHF(SDValue Op,EVT ResTy,const SmallVector<int,16> & Indices,SelectionDAG & DAG)2928 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2929 const SmallVector<int, 16> &Indices,
2930 SelectionDAG &DAG) {
2931 SmallVector<SDValue, 16> Ops;
2932 SDValue Op0;
2933 SDValue Op1;
2934 EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2935 EVT MaskEltTy = MaskVecTy.getVectorElementType();
2936 bool Using1stVec = false;
2937 bool Using2ndVec = false;
2938 SDLoc DL(Op);
2939 int ResTyNumElts = ResTy.getVectorNumElements();
2940
2941 for (int i = 0; i < ResTyNumElts; ++i) {
2942 // Idx == -1 means UNDEF
2943 int Idx = Indices[i];
2944
2945 if (0 <= Idx && Idx < ResTyNumElts)
2946 Using1stVec = true;
2947 if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2948 Using2ndVec = true;
2949 }
2950
2951 for (int Idx : Indices)
2952 Ops.push_back(DAG.getTargetConstant(Idx, DL, MaskEltTy));
2953
2954 SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
2955
2956 if (Using1stVec && Using2ndVec) {
2957 Op0 = Op->getOperand(0);
2958 Op1 = Op->getOperand(1);
2959 } else if (Using1stVec)
2960 Op0 = Op1 = Op->getOperand(0);
2961 else if (Using2ndVec)
2962 Op0 = Op1 = Op->getOperand(1);
2963 else
2964 llvm_unreachable("shuffle vector mask references neither vector operand?");
2965
2966 // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2967 // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2968 // VSHF concatenates the vectors in a bitwise fashion:
2969 // <0b00, 0b01> + <0b10, 0b11> ->
2970 // 0b0100 + 0b1110 -> 0b01001110
2971 // <0b10, 0b11, 0b00, 0b01>
2972 // We must therefore swap the operands to get the correct result.
2973 return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2974 }
2975
2976 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2977 // indices in the shuffle.
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2978 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2979 SelectionDAG &DAG) const {
2980 ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2981 EVT ResTy = Op->getValueType(0);
2982
2983 if (!ResTy.is128BitVector())
2984 return SDValue();
2985
2986 int ResTyNumElts = ResTy.getVectorNumElements();
2987 SmallVector<int, 16> Indices;
2988
2989 for (int i = 0; i < ResTyNumElts; ++i)
2990 Indices.push_back(Node->getMaskElt(i));
2991
2992 // splati.[bhwd] is preferable to the others but is matched from
2993 // MipsISD::VSHF.
2994 if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
2995 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2996 SDValue Result;
2997 if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
2998 return Result;
2999 if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
3000 return Result;
3001 if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
3002 return Result;
3003 if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
3004 return Result;
3005 if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
3006 return Result;
3007 if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3008 return Result;
3009 if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3010 return Result;
3011 return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
3012 }
3013
3014 MachineBasicBlock *
emitBPOSGE32(MachineInstr & MI,MachineBasicBlock * BB) const3015 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3016 MachineBasicBlock *BB) const {
3017 // $bb:
3018 // bposge32_pseudo $vr0
3019 // =>
3020 // $bb:
3021 // bposge32 $tbb
3022 // $fbb:
3023 // li $vr2, 0
3024 // b $sink
3025 // $tbb:
3026 // li $vr1, 1
3027 // $sink:
3028 // $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3029
3030 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3031 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3032 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3033 DebugLoc DL = MI.getDebugLoc();
3034 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3035 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3036 MachineFunction *F = BB->getParent();
3037 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3038 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3039 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
3040 F->insert(It, FBB);
3041 F->insert(It, TBB);
3042 F->insert(It, Sink);
3043
3044 // Transfer the remainder of BB and its successor edges to Sink.
3045 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3046 BB->end());
3047 Sink->transferSuccessorsAndUpdatePHIs(BB);
3048
3049 // Add successors.
3050 BB->addSuccessor(FBB);
3051 BB->addSuccessor(TBB);
3052 FBB->addSuccessor(Sink);
3053 TBB->addSuccessor(Sink);
3054
3055 // Insert the real bposge32 instruction to $BB.
3056 BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3057 // Insert the real bposge32c instruction to $BB.
3058 BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3059
3060 // Fill $FBB.
3061 Register VR2 = RegInfo.createVirtualRegister(RC);
3062 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3063 .addReg(Mips::ZERO).addImm(0);
3064 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3065
3066 // Fill $TBB.
3067 Register VR1 = RegInfo.createVirtualRegister(RC);
3068 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3069 .addReg(Mips::ZERO).addImm(1);
3070
3071 // Insert phi function to $Sink.
3072 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3073 MI.getOperand(0).getReg())
3074 .addReg(VR2)
3075 .addMBB(FBB)
3076 .addReg(VR1)
3077 .addMBB(TBB);
3078
3079 MI.eraseFromParent(); // The pseudo instruction is gone now.
3080 return Sink;
3081 }
3082
emitMSACBranchPseudo(MachineInstr & MI,MachineBasicBlock * BB,unsigned BranchOp) const3083 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3084 MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3085 // $bb:
3086 // vany_nonzero $rd, $ws
3087 // =>
3088 // $bb:
3089 // bnz.b $ws, $tbb
3090 // b $fbb
3091 // $fbb:
3092 // li $rd1, 0
3093 // b $sink
3094 // $tbb:
3095 // li $rd2, 1
3096 // $sink:
3097 // $rd = phi($rd1, $fbb, $rd2, $tbb)
3098
3099 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3100 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3101 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3102 DebugLoc DL = MI.getDebugLoc();
3103 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3104 MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3105 MachineFunction *F = BB->getParent();
3106 MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3107 MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3108 MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
3109 F->insert(It, FBB);
3110 F->insert(It, TBB);
3111 F->insert(It, Sink);
3112
3113 // Transfer the remainder of BB and its successor edges to Sink.
3114 Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3115 BB->end());
3116 Sink->transferSuccessorsAndUpdatePHIs(BB);
3117
3118 // Add successors.
3119 BB->addSuccessor(FBB);
3120 BB->addSuccessor(TBB);
3121 FBB->addSuccessor(Sink);
3122 TBB->addSuccessor(Sink);
3123
3124 // Insert the real bnz.b instruction to $BB.
3125 BuildMI(BB, DL, TII->get(BranchOp))
3126 .addReg(MI.getOperand(1).getReg())
3127 .addMBB(TBB);
3128
3129 // Fill $FBB.
3130 Register RD1 = RegInfo.createVirtualRegister(RC);
3131 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3132 .addReg(Mips::ZERO).addImm(0);
3133 BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3134
3135 // Fill $TBB.
3136 Register RD2 = RegInfo.createVirtualRegister(RC);
3137 BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3138 .addReg(Mips::ZERO).addImm(1);
3139
3140 // Insert phi function to $Sink.
3141 BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3142 MI.getOperand(0).getReg())
3143 .addReg(RD1)
3144 .addMBB(FBB)
3145 .addReg(RD2)
3146 .addMBB(TBB);
3147
3148 MI.eraseFromParent(); // The pseudo instruction is gone now.
3149 return Sink;
3150 }
3151
3152 // Emit the COPY_FW pseudo instruction.
3153 //
3154 // copy_fw_pseudo $fd, $ws, n
3155 // =>
3156 // copy_u_w $rt, $ws, $n
3157 // mtc1 $rt, $fd
3158 //
3159 // When n is zero, the equivalent operation can be performed with (potentially)
3160 // zero instructions due to register overlaps. This optimization is never valid
3161 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3162 MachineBasicBlock *
emitCOPY_FW(MachineInstr & MI,MachineBasicBlock * BB) const3163 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3164 MachineBasicBlock *BB) const {
3165 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3166 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3167 DebugLoc DL = MI.getDebugLoc();
3168 Register Fd = MI.getOperand(0).getReg();
3169 Register Ws = MI.getOperand(1).getReg();
3170 unsigned Lane = MI.getOperand(2).getImm();
3171
3172 if (Lane == 0) {
3173 unsigned Wt = Ws;
3174 if (!Subtarget.useOddSPReg()) {
3175 // We must copy to an even-numbered MSA register so that the
3176 // single-precision sub-register is also guaranteed to be even-numbered.
3177 Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3178
3179 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3180 }
3181
3182 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3183 } else {
3184 Register Wt = RegInfo.createVirtualRegister(
3185 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3186 : &Mips::MSA128WEvensRegClass);
3187
3188 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3189 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3190 }
3191
3192 MI.eraseFromParent(); // The pseudo instruction is gone now.
3193 return BB;
3194 }
3195
3196 // Emit the COPY_FD pseudo instruction.
3197 //
3198 // copy_fd_pseudo $fd, $ws, n
3199 // =>
3200 // splati.d $wt, $ws, $n
3201 // copy $fd, $wt:sub_64
3202 //
3203 // When n is zero, the equivalent operation can be performed with (potentially)
3204 // zero instructions due to register overlaps. This optimization is always
3205 // valid because FR=1 mode which is the only supported mode in MSA.
3206 MachineBasicBlock *
emitCOPY_FD(MachineInstr & MI,MachineBasicBlock * BB) const3207 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3208 MachineBasicBlock *BB) const {
3209 assert(Subtarget.isFP64bit());
3210
3211 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3212 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3213 Register Fd = MI.getOperand(0).getReg();
3214 Register Ws = MI.getOperand(1).getReg();
3215 unsigned Lane = MI.getOperand(2).getImm() * 2;
3216 DebugLoc DL = MI.getDebugLoc();
3217
3218 if (Lane == 0)
3219 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3220 else {
3221 Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3222
3223 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3224 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3225 }
3226
3227 MI.eraseFromParent(); // The pseudo instruction is gone now.
3228 return BB;
3229 }
3230
3231 // Emit the INSERT_FW pseudo instruction.
3232 //
3233 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3234 // =>
3235 // subreg_to_reg $wt:sub_lo, $fs
3236 // insve_w $wd[$n], $wd_in, $wt[0]
3237 MachineBasicBlock *
emitINSERT_FW(MachineInstr & MI,MachineBasicBlock * BB) const3238 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3239 MachineBasicBlock *BB) const {
3240 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3241 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3242 DebugLoc DL = MI.getDebugLoc();
3243 Register Wd = MI.getOperand(0).getReg();
3244 Register Wd_in = MI.getOperand(1).getReg();
3245 unsigned Lane = MI.getOperand(2).getImm();
3246 Register Fs = MI.getOperand(3).getReg();
3247 Register Wt = RegInfo.createVirtualRegister(
3248 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3249 : &Mips::MSA128WEvensRegClass);
3250
3251 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3252 .addImm(0)
3253 .addReg(Fs)
3254 .addImm(Mips::sub_lo);
3255 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3256 .addReg(Wd_in)
3257 .addImm(Lane)
3258 .addReg(Wt)
3259 .addImm(0);
3260
3261 MI.eraseFromParent(); // The pseudo instruction is gone now.
3262 return BB;
3263 }
3264
3265 // Emit the INSERT_FD pseudo instruction.
3266 //
3267 // insert_fd_pseudo $wd, $fs, n
3268 // =>
3269 // subreg_to_reg $wt:sub_64, $fs
3270 // insve_d $wd[$n], $wd_in, $wt[0]
3271 MachineBasicBlock *
emitINSERT_FD(MachineInstr & MI,MachineBasicBlock * BB) const3272 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3273 MachineBasicBlock *BB) const {
3274 assert(Subtarget.isFP64bit());
3275
3276 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3277 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3278 DebugLoc DL = MI.getDebugLoc();
3279 Register Wd = MI.getOperand(0).getReg();
3280 Register Wd_in = MI.getOperand(1).getReg();
3281 unsigned Lane = MI.getOperand(2).getImm();
3282 Register Fs = MI.getOperand(3).getReg();
3283 Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3284
3285 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3286 .addImm(0)
3287 .addReg(Fs)
3288 .addImm(Mips::sub_64);
3289 BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3290 .addReg(Wd_in)
3291 .addImm(Lane)
3292 .addReg(Wt)
3293 .addImm(0);
3294
3295 MI.eraseFromParent(); // The pseudo instruction is gone now.
3296 return BB;
3297 }
3298
3299 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3300 //
3301 // For integer:
3302 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3303 // =>
3304 // (SLL $lanetmp1, $lane, <log2size)
3305 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3306 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3307 // (NEG $lanetmp2, $lanetmp1)
3308 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
3309 //
3310 // For floating point:
3311 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3312 // =>
3313 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3314 // (SLL $lanetmp1, $lane, <log2size)
3315 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3316 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3317 // (NEG $lanetmp2, $lanetmp1)
3318 // (SLD_B $wd, $wdtmp2, $wdtmp2, $lanetmp2)
emitINSERT_DF_VIDX(MachineInstr & MI,MachineBasicBlock * BB,unsigned EltSizeInBytes,bool IsFP) const3319 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3320 MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3321 bool IsFP) const {
3322 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3323 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3324 DebugLoc DL = MI.getDebugLoc();
3325 Register Wd = MI.getOperand(0).getReg();
3326 Register SrcVecReg = MI.getOperand(1).getReg();
3327 Register LaneReg = MI.getOperand(2).getReg();
3328 Register SrcValReg = MI.getOperand(3).getReg();
3329
3330 const TargetRegisterClass *VecRC = nullptr;
3331 // FIXME: This should be true for N32 too.
3332 const TargetRegisterClass *GPRRC =
3333 Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3334 unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3335 unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3336 unsigned EltLog2Size;
3337 unsigned InsertOp = 0;
3338 unsigned InsveOp = 0;
3339 switch (EltSizeInBytes) {
3340 default:
3341 llvm_unreachable("Unexpected size");
3342 case 1:
3343 EltLog2Size = 0;
3344 InsertOp = Mips::INSERT_B;
3345 InsveOp = Mips::INSVE_B;
3346 VecRC = &Mips::MSA128BRegClass;
3347 break;
3348 case 2:
3349 EltLog2Size = 1;
3350 InsertOp = Mips::INSERT_H;
3351 InsveOp = Mips::INSVE_H;
3352 VecRC = &Mips::MSA128HRegClass;
3353 break;
3354 case 4:
3355 EltLog2Size = 2;
3356 InsertOp = Mips::INSERT_W;
3357 InsveOp = Mips::INSVE_W;
3358 VecRC = &Mips::MSA128WRegClass;
3359 break;
3360 case 8:
3361 EltLog2Size = 3;
3362 InsertOp = Mips::INSERT_D;
3363 InsveOp = Mips::INSVE_D;
3364 VecRC = &Mips::MSA128DRegClass;
3365 break;
3366 }
3367
3368 if (IsFP) {
3369 Register Wt = RegInfo.createVirtualRegister(VecRC);
3370 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3371 .addImm(0)
3372 .addReg(SrcValReg)
3373 .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3374 SrcValReg = Wt;
3375 }
3376
3377 // Convert the lane index into a byte index
3378 if (EltSizeInBytes != 1) {
3379 Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3380 BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3381 .addReg(LaneReg)
3382 .addImm(EltLog2Size);
3383 LaneReg = LaneTmp1;
3384 }
3385
3386 // Rotate bytes around so that the desired lane is element zero
3387 Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3388 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3389 .addReg(SrcVecReg)
3390 .addReg(SrcVecReg)
3391 .addReg(LaneReg, 0, SubRegIdx);
3392
3393 Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3394 if (IsFP) {
3395 // Use insve.df to insert to element zero
3396 BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3397 .addReg(WdTmp1)
3398 .addImm(0)
3399 .addReg(SrcValReg)
3400 .addImm(0);
3401 } else {
3402 // Use insert.df to insert to element zero
3403 BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3404 .addReg(WdTmp1)
3405 .addReg(SrcValReg)
3406 .addImm(0);
3407 }
3408
3409 // Rotate elements the rest of the way for a full rotation.
3410 // sld.df inteprets $rt modulo the number of columns so we only need to negate
3411 // the lane index to do this.
3412 Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3413 BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3414 LaneTmp2)
3415 .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3416 .addReg(LaneReg);
3417 BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3418 .addReg(WdTmp2)
3419 .addReg(WdTmp2)
3420 .addReg(LaneTmp2, 0, SubRegIdx);
3421
3422 MI.eraseFromParent(); // The pseudo instruction is gone now.
3423 return BB;
3424 }
3425
3426 // Emit the FILL_FW pseudo instruction.
3427 //
3428 // fill_fw_pseudo $wd, $fs
3429 // =>
3430 // implicit_def $wt1
3431 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3432 // splati.w $wd, $wt2[0]
3433 MachineBasicBlock *
emitFILL_FW(MachineInstr & MI,MachineBasicBlock * BB) const3434 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3435 MachineBasicBlock *BB) const {
3436 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3437 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3438 DebugLoc DL = MI.getDebugLoc();
3439 Register Wd = MI.getOperand(0).getReg();
3440 Register Fs = MI.getOperand(1).getReg();
3441 Register Wt1 = RegInfo.createVirtualRegister(
3442 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3443 : &Mips::MSA128WEvensRegClass);
3444 Register Wt2 = RegInfo.createVirtualRegister(
3445 Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3446 : &Mips::MSA128WEvensRegClass);
3447
3448 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3449 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3450 .addReg(Wt1)
3451 .addReg(Fs)
3452 .addImm(Mips::sub_lo);
3453 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3454
3455 MI.eraseFromParent(); // The pseudo instruction is gone now.
3456 return BB;
3457 }
3458
3459 // Emit the FILL_FD pseudo instruction.
3460 //
3461 // fill_fd_pseudo $wd, $fs
3462 // =>
3463 // implicit_def $wt1
3464 // insert_subreg $wt2:subreg_64, $wt1, $fs
3465 // splati.d $wd, $wt2[0]
3466 MachineBasicBlock *
emitFILL_FD(MachineInstr & MI,MachineBasicBlock * BB) const3467 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3468 MachineBasicBlock *BB) const {
3469 assert(Subtarget.isFP64bit());
3470
3471 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3472 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3473 DebugLoc DL = MI.getDebugLoc();
3474 Register Wd = MI.getOperand(0).getReg();
3475 Register Fs = MI.getOperand(1).getReg();
3476 Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3477 Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3478
3479 BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3480 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3481 .addReg(Wt1)
3482 .addReg(Fs)
3483 .addImm(Mips::sub_64);
3484 BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3485
3486 MI.eraseFromParent(); // The pseudo instruction is gone now.
3487 return BB;
3488 }
3489
3490 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3491 // register.
3492 //
3493 // STF16 MSA128F16:$wd, mem_simm10:$addr
3494 // =>
3495 // copy_u.h $rtemp,$wd[0]
3496 // sh $rtemp, $addr
3497 //
3498 // Safety: We can't use st.h & co as they would over write the memory after
3499 // the destination. It would require half floats be allocated 16 bytes(!) of
3500 // space.
3501 MachineBasicBlock *
emitST_F16_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB) const3502 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3503 MachineBasicBlock *BB) const {
3504
3505 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3506 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3507 DebugLoc DL = MI.getDebugLoc();
3508 Register Ws = MI.getOperand(0).getReg();
3509 Register Rt = MI.getOperand(1).getReg();
3510 const MachineMemOperand &MMO = **MI.memoperands_begin();
3511 unsigned Imm = MMO.getOffset();
3512
3513 // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3514 // spill and reload can expand as a GPR64 operand. Examine the
3515 // operand in detail and default to ABI.
3516 const TargetRegisterClass *RC =
3517 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3518 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3519 : &Mips::GPR64RegClass);
3520 const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3521 Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3522
3523 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3524 if(!UsingMips32) {
3525 Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3526 BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3527 .addImm(0)
3528 .addReg(Rs)
3529 .addImm(Mips::sub_32);
3530 Rs = Tmp;
3531 }
3532 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3533 .addReg(Rs)
3534 .addReg(Rt)
3535 .addImm(Imm)
3536 .addMemOperand(BB->getParent()->getMachineMemOperand(
3537 &MMO, MMO.getOffset(), MMO.getSize()));
3538
3539 MI.eraseFromParent();
3540 return BB;
3541 }
3542
3543 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3544 //
3545 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3546 // =>
3547 // lh $rtemp, $addr
3548 // fill.h $wd, $rtemp
3549 //
3550 // Safety: We can't use ld.h & co as they over-read from the source.
3551 // Additionally, if the address is not modulo 16, 2 cases can occur:
3552 // a) Segmentation fault as the load instruction reads from a memory page
3553 // memory it's not supposed to.
3554 // b) The load crosses an implementation specific boundary, requiring OS
3555 // intervention.
3556 MachineBasicBlock *
emitLD_F16_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB) const3557 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3558 MachineBasicBlock *BB) const {
3559
3560 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3561 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3562 DebugLoc DL = MI.getDebugLoc();
3563 Register Wd = MI.getOperand(0).getReg();
3564
3565 // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3566 // spill and reload can expand as a GPR64 operand. Examine the
3567 // operand in detail and default to ABI.
3568 const TargetRegisterClass *RC =
3569 MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3570 : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3571 : &Mips::GPR64RegClass);
3572
3573 const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3574 Register Rt = RegInfo.createVirtualRegister(RC);
3575
3576 MachineInstrBuilder MIB =
3577 BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3578 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
3579 MIB.add(MO);
3580
3581 if(!UsingMips32) {
3582 Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3583 BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3584 Rt = Tmp;
3585 }
3586
3587 BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3588
3589 MI.eraseFromParent();
3590 return BB;
3591 }
3592
3593 // Emit the FPROUND_PSEUDO instruction.
3594 //
3595 // Round an FGR64Opnd, FGR32Opnd to an f16.
3596 //
3597 // Safety: Cycle the operand through the GPRs so the result always ends up
3598 // the correct MSA register.
3599 //
3600 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3601 // / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3602 // (which they can be, as the MSA registers are defined to alias the
3603 // FPU's 64 bit and 32 bit registers) the result can be accessed using
3604 // the correct register class. That requires operands be tie-able across
3605 // register classes which have a sub/super register class relationship.
3606 //
3607 // For FPG32Opnd:
3608 //
3609 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3610 // =>
3611 // mfc1 $rtemp, $fs
3612 // fill.w $rtemp, $wtemp
3613 // fexdo.w $wd, $wtemp, $wtemp
3614 //
3615 // For FPG64Opnd on mips32r2+:
3616 //
3617 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3618 // =>
3619 // mfc1 $rtemp, $fs
3620 // fill.w $rtemp, $wtemp
3621 // mfhc1 $rtemp2, $fs
3622 // insert.w $wtemp[1], $rtemp2
3623 // insert.w $wtemp[3], $rtemp2
3624 // fexdo.w $wtemp2, $wtemp, $wtemp
3625 // fexdo.h $wd, $temp2, $temp2
3626 //
3627 // For FGR64Opnd on mips64r2+:
3628 //
3629 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3630 // =>
3631 // dmfc1 $rtemp, $fs
3632 // fill.d $rtemp, $wtemp
3633 // fexdo.w $wtemp2, $wtemp, $wtemp
3634 // fexdo.h $wd, $wtemp2, $wtemp2
3635 //
3636 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3637 // undef bits are "just right" and the exception enable bits are
3638 // set. By using fill.w to replicate $fs into all elements over
3639 // insert.w for one element, we avoid that potiential case. If
3640 // fexdo.[hw] causes an exception in, the exception is valid and it
3641 // occurs for all elements.
3642 MachineBasicBlock *
emitFPROUND_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB,bool IsFGR64) const3643 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3644 MachineBasicBlock *BB,
3645 bool IsFGR64) const {
3646
3647 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3648 // here. It's technically doable to support MIPS32 here, but the ISA forbids
3649 // it.
3650 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3651
3652 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3653 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3654
3655 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3656 DebugLoc DL = MI.getDebugLoc();
3657 Register Wd = MI.getOperand(0).getReg();
3658 Register Fs = MI.getOperand(1).getReg();
3659
3660 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3661 Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3662 const TargetRegisterClass *GPRRC =
3663 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3664 unsigned MFC1Opc = IsFGR64onMips64
3665 ? Mips::DMFC1
3666 : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3667 unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3668
3669 // Perform the register class copy as mentioned above.
3670 Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3671 BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3672 BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3673 unsigned WPHI = Wtemp;
3674
3675 if (IsFGR64onMips32) {
3676 Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3677 BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3678 Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3679 Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3680 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3681 .addReg(Wtemp)
3682 .addReg(Rtemp2)
3683 .addImm(1);
3684 BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3685 .addReg(Wtemp2)
3686 .addReg(Rtemp2)
3687 .addImm(3);
3688 WPHI = Wtemp3;
3689 }
3690
3691 if (IsFGR64) {
3692 Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3693 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3694 .addReg(WPHI)
3695 .addReg(WPHI);
3696 WPHI = Wtemp2;
3697 }
3698
3699 BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3700
3701 MI.eraseFromParent();
3702 return BB;
3703 }
3704
3705 // Emit the FPEXTEND_PSEUDO instruction.
3706 //
3707 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3708 //
3709 // Safety: Cycle the result through the GPRs so the result always ends up
3710 // the correct floating point register.
3711 //
3712 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3713 // / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3714 // (which they can be, as the MSA registers are defined to alias the
3715 // FPU's 64 bit and 32 bit registers) the result can be accessed using
3716 // the correct register class. That requires operands be tie-able across
3717 // register classes which have a sub/super register class relationship. I
3718 // haven't checked.
3719 //
3720 // For FGR32Opnd:
3721 //
3722 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3723 // =>
3724 // fexupr.w $wtemp, $ws
3725 // copy_s.w $rtemp, $ws[0]
3726 // mtc1 $rtemp, $fd
3727 //
3728 // For FGR64Opnd on Mips64:
3729 //
3730 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3731 // =>
3732 // fexupr.w $wtemp, $ws
3733 // fexupr.d $wtemp2, $wtemp
3734 // copy_s.d $rtemp, $wtemp2s[0]
3735 // dmtc1 $rtemp, $fd
3736 //
3737 // For FGR64Opnd on Mips32:
3738 //
3739 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3740 // =>
3741 // fexupr.w $wtemp, $ws
3742 // fexupr.d $wtemp2, $wtemp
3743 // copy_s.w $rtemp, $wtemp2[0]
3744 // mtc1 $rtemp, $ftemp
3745 // copy_s.w $rtemp2, $wtemp2[1]
3746 // $fd = mthc1 $rtemp2, $ftemp
3747 MachineBasicBlock *
emitFPEXTEND_PSEUDO(MachineInstr & MI,MachineBasicBlock * BB,bool IsFGR64) const3748 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3749 MachineBasicBlock *BB,
3750 bool IsFGR64) const {
3751
3752 // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3753 // here. It's technically doable to support MIPS32 here, but the ISA forbids
3754 // it.
3755 assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3756
3757 bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3758 bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3759
3760 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3761 DebugLoc DL = MI.getDebugLoc();
3762 Register Fd = MI.getOperand(0).getReg();
3763 Register Ws = MI.getOperand(1).getReg();
3764
3765 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3766 const TargetRegisterClass *GPRRC =
3767 IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3768 unsigned MTC1Opc = IsFGR64onMips64
3769 ? Mips::DMTC1
3770 : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3771 Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3772
3773 Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3774 Register WPHI = Wtemp;
3775
3776 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3777 if (IsFGR64) {
3778 WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3779 BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3780 }
3781
3782 // Perform the safety regclass copy mentioned above.
3783 Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3784 Register FPRPHI = IsFGR64onMips32
3785 ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3786 : Fd;
3787 BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3788 BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3789
3790 if (IsFGR64onMips32) {
3791 Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3792 BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3793 .addReg(WPHI)
3794 .addImm(1);
3795 BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3796 .addReg(FPRPHI)
3797 .addReg(Rtemp2);
3798 }
3799
3800 MI.eraseFromParent();
3801 return BB;
3802 }
3803
3804 // Emit the FEXP2_W_1 pseudo instructions.
3805 //
3806 // fexp2_w_1_pseudo $wd, $wt
3807 // =>
3808 // ldi.w $ws, 1
3809 // fexp2.w $wd, $ws, $wt
3810 MachineBasicBlock *
emitFEXP2_W_1(MachineInstr & MI,MachineBasicBlock * BB) const3811 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3812 MachineBasicBlock *BB) const {
3813 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3814 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3815 const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3816 Register Ws1 = RegInfo.createVirtualRegister(RC);
3817 Register Ws2 = RegInfo.createVirtualRegister(RC);
3818 DebugLoc DL = MI.getDebugLoc();
3819
3820 // Splat 1.0 into a vector
3821 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3822 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3823
3824 // Emit 1.0 * fexp2(Wt)
3825 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3826 .addReg(Ws2)
3827 .addReg(MI.getOperand(1).getReg());
3828
3829 MI.eraseFromParent(); // The pseudo instruction is gone now.
3830 return BB;
3831 }
3832
3833 // Emit the FEXP2_D_1 pseudo instructions.
3834 //
3835 // fexp2_d_1_pseudo $wd, $wt
3836 // =>
3837 // ldi.d $ws, 1
3838 // fexp2.d $wd, $ws, $wt
3839 MachineBasicBlock *
emitFEXP2_D_1(MachineInstr & MI,MachineBasicBlock * BB) const3840 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3841 MachineBasicBlock *BB) const {
3842 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3843 MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3844 const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3845 Register Ws1 = RegInfo.createVirtualRegister(RC);
3846 Register Ws2 = RegInfo.createVirtualRegister(RC);
3847 DebugLoc DL = MI.getDebugLoc();
3848
3849 // Splat 1.0 into a vector
3850 BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3851 BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3852
3853 // Emit 1.0 * fexp2(Wt)
3854 BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3855 .addReg(Ws2)
3856 .addReg(MI.getOperand(1).getReg());
3857
3858 MI.eraseFromParent(); // The pseudo instruction is gone now.
3859 return BB;
3860 }
3861