//===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Subclass of MipsTargetLowering specialized for mips32/64. // //===----------------------------------------------------------------------===// #include "MipsSEISelLowering.h" #include "MipsMachineFunction.h" #include "MipsRegisterInfo.h" #include "MipsSubtarget.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Triple.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsMips.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "mips-isel" static cl::opt UseMipsTailCalls("mips-tail-calls", cl::Hidden, cl::desc("MIPS: permit tail calls."), cl::init(false)); static cl::opt NoDPLoadStore("mno-ldc1-sdc1", cl::init(false), cl::desc("Expand double precision loads and " "stores to their single precision " "counterparts")); MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI) : MipsTargetLowering(TM, STI) { // Set up the register classes addRegisterClass(MVT::i32, &Mips::GPR32RegClass); if (Subtarget.isGP64bit()) addRegisterClass(MVT::i64, &Mips::GPR64RegClass); if (Subtarget.hasDSP() || Subtarget.hasMSA()) { // Expand all truncating stores and extending loads. for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) { for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) { setTruncStoreAction(VT0, VT1, Expand); setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand); setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand); } } } if (Subtarget.hasDSP()) { MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8}; for (unsigned i = 0; i < array_lengthof(VecTys); ++i) { addRegisterClass(VecTys[i], &Mips::DSPRRegClass); // Expand all builtin opcodes. for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) setOperationAction(Opc, VecTys[i], Expand); setOperationAction(ISD::ADD, VecTys[i], Legal); setOperationAction(ISD::SUB, VecTys[i], Legal); setOperationAction(ISD::LOAD, VecTys[i], Legal); setOperationAction(ISD::STORE, VecTys[i], Legal); setOperationAction(ISD::BITCAST, VecTys[i], Legal); } setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::SETCC); setTargetDAGCombine(ISD::VSELECT); if (Subtarget.hasMips32r2()) { setOperationAction(ISD::ADDC, MVT::i32, Legal); setOperationAction(ISD::ADDE, MVT::i32, Legal); } } if (Subtarget.hasDSPR2()) setOperationAction(ISD::MUL, MVT::v2i16, Legal); if (Subtarget.hasMSA()) { addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass); addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass); addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass); addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass); addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass); addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass); addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass); // f16 is a storage-only type, always promote it to f32. addRegisterClass(MVT::f16, &Mips::MSA128HRegClass); setOperationAction(ISD::SETCC, MVT::f16, Promote); setOperationAction(ISD::BR_CC, MVT::f16, Promote); setOperationAction(ISD::SELECT_CC, MVT::f16, Promote); setOperationAction(ISD::SELECT, MVT::f16, Promote); setOperationAction(ISD::FADD, MVT::f16, Promote); setOperationAction(ISD::FSUB, MVT::f16, Promote); setOperationAction(ISD::FMUL, MVT::f16, Promote); setOperationAction(ISD::FDIV, MVT::f16, Promote); setOperationAction(ISD::FREM, MVT::f16, Promote); setOperationAction(ISD::FMA, MVT::f16, Promote); setOperationAction(ISD::FNEG, MVT::f16, Promote); setOperationAction(ISD::FABS, MVT::f16, Promote); setOperationAction(ISD::FCEIL, MVT::f16, Promote); setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); setOperationAction(ISD::FCOS, MVT::f16, Promote); setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote); setOperationAction(ISD::FFLOOR, MVT::f16, Promote); setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote); setOperationAction(ISD::FPOW, MVT::f16, Promote); setOperationAction(ISD::FPOWI, MVT::f16, Promote); setOperationAction(ISD::FRINT, MVT::f16, Promote); setOperationAction(ISD::FSIN, MVT::f16, Promote); setOperationAction(ISD::FSINCOS, MVT::f16, Promote); setOperationAction(ISD::FSQRT, MVT::f16, Promote); setOperationAction(ISD::FEXP, MVT::f16, Promote); setOperationAction(ISD::FEXP2, MVT::f16, Promote); setOperationAction(ISD::FLOG, MVT::f16, Promote); setOperationAction(ISD::FLOG2, MVT::f16, Promote); setOperationAction(ISD::FLOG10, MVT::f16, Promote); setOperationAction(ISD::FROUND, MVT::f16, Promote); setOperationAction(ISD::FTRUNC, MVT::f16, Promote); setOperationAction(ISD::FMINNUM, MVT::f16, Promote); setOperationAction(ISD::FMAXNUM, MVT::f16, Promote); setOperationAction(ISD::FMINIMUM, MVT::f16, Promote); setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::VSELECT); setTargetDAGCombine(ISD::XOR); } if (!Subtarget.useSoftFloat()) { addRegisterClass(MVT::f32, &Mips::FGR32RegClass); // When dealing with single precision only, use libcalls if (!Subtarget.isSingleFloat()) { if (Subtarget.isFP64bit()) addRegisterClass(MVT::f64, &Mips::FGR64RegClass); else addRegisterClass(MVT::f64, &Mips::AFGR64RegClass); } } setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); setOperationAction(ISD::MULHS, MVT::i32, Custom); setOperationAction(ISD::MULHU, MVT::i32, Custom); if (Subtarget.hasCnMips()) setOperationAction(ISD::MUL, MVT::i64, Legal); else if (Subtarget.isGP64bit()) setOperationAction(ISD::MUL, MVT::i64, Custom); if (Subtarget.isGP64bit()) { setOperationAction(ISD::SMUL_LOHI, MVT::i64, Custom); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Custom); setOperationAction(ISD::MULHS, MVT::i64, Custom); setOperationAction(ISD::MULHU, MVT::i64, Custom); setOperationAction(ISD::SDIVREM, MVT::i64, Custom); setOperationAction(ISD::UDIVREM, MVT::i64, Custom); } setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); setOperationAction(ISD::SDIVREM, MVT::i32, Custom); setOperationAction(ISD::UDIVREM, MVT::i32, Custom); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); setOperationAction(ISD::LOAD, MVT::i32, Custom); setOperationAction(ISD::STORE, MVT::i32, Custom); setTargetDAGCombine(ISD::MUL); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() && !Subtarget.hasMips64()) { setOperationAction(ISD::BITCAST, MVT::i64, Custom); } if (NoDPLoadStore) { setOperationAction(ISD::LOAD, MVT::f64, Custom); setOperationAction(ISD::STORE, MVT::f64, Custom); } if (Subtarget.hasMips32r6()) { // MIPS32r6 replaces the accumulator-based multiplies with a three register // instruction setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::MUL, MVT::i32, Legal); setOperationAction(ISD::MULHS, MVT::i32, Legal); setOperationAction(ISD::MULHU, MVT::i32, Legal); // MIPS32r6 replaces the accumulator-based division/remainder with separate // three register division and remainder instructions. setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIV, MVT::i32, Legal); setOperationAction(ISD::UDIV, MVT::i32, Legal); setOperationAction(ISD::SREM, MVT::i32, Legal); setOperationAction(ISD::UREM, MVT::i32, Legal); // MIPS32r6 replaces conditional moves with an equivalent that removes the // need for three GPR read ports. setOperationAction(ISD::SETCC, MVT::i32, Legal); setOperationAction(ISD::SELECT, MVT::i32, Legal); setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); setOperationAction(ISD::SETCC, MVT::f32, Legal); setOperationAction(ISD::SELECT, MVT::f32, Legal); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6"); setOperationAction(ISD::SETCC, MVT::f64, Legal); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); setOperationAction(ISD::BRCOND, MVT::Other, Legal); // Floating point > and >= are supported via < and <= setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); setCondCodeAction(ISD::SETOGT, MVT::f32, Expand); setCondCodeAction(ISD::SETUGE, MVT::f32, Expand); setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); setCondCodeAction(ISD::SETOGT, MVT::f64, Expand); setCondCodeAction(ISD::SETUGE, MVT::f64, Expand); setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); } if (Subtarget.hasMips64r6()) { // MIPS64r6 replaces the accumulator-based multiplies with a three register // instruction setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::MUL, MVT::i64, Legal); setOperationAction(ISD::MULHS, MVT::i64, Legal); setOperationAction(ISD::MULHU, MVT::i64, Legal); // MIPS32r6 replaces the accumulator-based division/remainder with separate // three register division and remainder instructions. setOperationAction(ISD::SDIVREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::SDIV, MVT::i64, Legal); setOperationAction(ISD::UDIV, MVT::i64, Legal); setOperationAction(ISD::SREM, MVT::i64, Legal); setOperationAction(ISD::UREM, MVT::i64, Legal); // MIPS64r6 replaces conditional moves with an equivalent that removes the // need for three GPR read ports. setOperationAction(ISD::SETCC, MVT::i64, Legal); setOperationAction(ISD::SELECT, MVT::i64, Legal); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); } computeRegisterProperties(Subtarget.getRegisterInfo()); } const MipsTargetLowering * llvm::createMipsSETargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI) { return new MipsSETargetLowering(TM, STI); } const TargetRegisterClass * MipsSETargetLowering::getRepRegClassFor(MVT VT) const { if (VT == MVT::Untyped) return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass; return TargetLowering::getRepRegClassFor(VT); } // Enable MSA support for the given integer type and Register class. void MipsSETargetLowering:: addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { addRegisterClass(Ty, RC); // Expand all builtin opcodes. for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) setOperationAction(Opc, Ty, Expand); setOperationAction(ISD::BITCAST, Ty, Legal); setOperationAction(ISD::LOAD, Ty, Legal); setOperationAction(ISD::STORE, Ty, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal); setOperationAction(ISD::BUILD_VECTOR, Ty, Custom); setOperationAction(ISD::UNDEF, Ty, Legal); setOperationAction(ISD::ADD, Ty, Legal); setOperationAction(ISD::AND, Ty, Legal); setOperationAction(ISD::CTLZ, Ty, Legal); setOperationAction(ISD::CTPOP, Ty, Legal); setOperationAction(ISD::MUL, Ty, Legal); setOperationAction(ISD::OR, Ty, Legal); setOperationAction(ISD::SDIV, Ty, Legal); setOperationAction(ISD::SREM, Ty, Legal); setOperationAction(ISD::SHL, Ty, Legal); setOperationAction(ISD::SRA, Ty, Legal); setOperationAction(ISD::SRL, Ty, Legal); setOperationAction(ISD::SUB, Ty, Legal); setOperationAction(ISD::SMAX, Ty, Legal); setOperationAction(ISD::SMIN, Ty, Legal); setOperationAction(ISD::UDIV, Ty, Legal); setOperationAction(ISD::UREM, Ty, Legal); setOperationAction(ISD::UMAX, Ty, Legal); setOperationAction(ISD::UMIN, Ty, Legal); setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom); setOperationAction(ISD::VSELECT, Ty, Legal); setOperationAction(ISD::XOR, Ty, Legal); if (Ty == MVT::v4i32 || Ty == MVT::v2i64) { setOperationAction(ISD::FP_TO_SINT, Ty, Legal); setOperationAction(ISD::FP_TO_UINT, Ty, Legal); setOperationAction(ISD::SINT_TO_FP, Ty, Legal); setOperationAction(ISD::UINT_TO_FP, Ty, Legal); } setOperationAction(ISD::SETCC, Ty, Legal); setCondCodeAction(ISD::SETNE, Ty, Expand); setCondCodeAction(ISD::SETGE, Ty, Expand); setCondCodeAction(ISD::SETGT, Ty, Expand); setCondCodeAction(ISD::SETUGE, Ty, Expand); setCondCodeAction(ISD::SETUGT, Ty, Expand); } // Enable MSA support for the given floating-point type and Register class. void MipsSETargetLowering:: addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) { addRegisterClass(Ty, RC); // Expand all builtin opcodes. for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc) setOperationAction(Opc, Ty, Expand); setOperationAction(ISD::LOAD, Ty, Legal); setOperationAction(ISD::STORE, Ty, Legal); setOperationAction(ISD::BITCAST, Ty, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal); setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal); setOperationAction(ISD::BUILD_VECTOR, Ty, Custom); if (Ty != MVT::v8f16) { setOperationAction(ISD::FABS, Ty, Legal); setOperationAction(ISD::FADD, Ty, Legal); setOperationAction(ISD::FDIV, Ty, Legal); setOperationAction(ISD::FEXP2, Ty, Legal); setOperationAction(ISD::FLOG2, Ty, Legal); setOperationAction(ISD::FMA, Ty, Legal); setOperationAction(ISD::FMUL, Ty, Legal); setOperationAction(ISD::FRINT, Ty, Legal); setOperationAction(ISD::FSQRT, Ty, Legal); setOperationAction(ISD::FSUB, Ty, Legal); setOperationAction(ISD::VSELECT, Ty, Legal); setOperationAction(ISD::SETCC, Ty, Legal); setCondCodeAction(ISD::SETOGE, Ty, Expand); setCondCodeAction(ISD::SETOGT, Ty, Expand); setCondCodeAction(ISD::SETUGE, Ty, Expand); setCondCodeAction(ISD::SETUGT, Ty, Expand); setCondCodeAction(ISD::SETGE, Ty, Expand); setCondCodeAction(ISD::SETGT, Ty, Expand); } } SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const { if(!Subtarget.hasMips32r6()) return MipsTargetLowering::LowerOperation(Op, DAG); EVT ResTy = Op->getValueType(0); SDLoc DL(Op); // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the // floating point register are undefined. Not really an issue as sel.d, which // is produced from an FSELECT node, only looks at bit 0. SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0)); return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1), Op->getOperand(2)); } bool MipsSETargetLowering::allowsMisalignedMemoryAccesses( EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy; if (Subtarget.systemSupportsUnalignedAccess()) { // MIPS32r6/MIPS64r6 is required to support unaligned access. It's // implementation defined whether this is handled by hardware, software, or // a hybrid of the two but it's expected that most implementations will // handle the majority of cases in hardware. if (Fast) *Fast = true; return true; } switch (SVT) { case MVT::i64: case MVT::i32: if (Fast) *Fast = true; return true; default: return false; } } SDValue MipsSETargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch(Op.getOpcode()) { case ISD::LOAD: return lowerLOAD(Op, DAG); case ISD::STORE: return lowerSTORE(Op, DAG); case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG); case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG); case ISD::MULHS: return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG); case ISD::MULHU: return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG); case ISD::MUL: return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG); case ISD::SDIVREM: return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG); case ISD::UDIVREM: return lowerMulDiv(Op, MipsISD::DivRemU, true, true, DAG); case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return lowerINTRINSIC_W_CHAIN(Op, DAG); case ISD::INTRINSIC_VOID: return lowerINTRINSIC_VOID(Op, DAG); case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG); case ISD::BUILD_VECTOR: return lowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, DAG); case ISD::SELECT: return lowerSELECT(Op, DAG); case ISD::BITCAST: return lowerBITCAST(Op, DAG); } return MipsTargetLowering::LowerOperation(Op, DAG); } // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT // // Performs the following transformations: // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its // sign/zero-extension is completely overwritten by the new one performed by // the ISD::AND. // - Removes redundant zero extensions performed by an ISD::AND. static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { if (!Subtarget.hasMSA()) return SDValue(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); unsigned Op0Opcode = Op0->getOpcode(); // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d) // where $d + 1 == 2^n and n == 32 // or $d + 1 == 2^n and n <= 32 and ZExt // -> (MipsVExtractZExt $a, $b, $c) if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT || Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) { ConstantSDNode *Mask = dyn_cast(Op1); if (!Mask) return SDValue(); int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2(); if (Log2IfPositive <= 0) return SDValue(); // Mask+1 is not a power of 2 SDValue Op0Op2 = Op0->getOperand(2); EVT ExtendTy = cast(Op0Op2)->getVT(); unsigned ExtendTySize = ExtendTy.getSizeInBits(); unsigned Log2 = Log2IfPositive; if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) || Log2 == ExtendTySize) { SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 }; return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0), Op0->getVTList(), makeArrayRef(Ops, Op0->getNumOperands())); } } return SDValue(); } // Determine if the specified node is a constant vector splat. // // Returns true and sets Imm if: // * N is a ISD::BUILD_VECTOR representing a constant splat // // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The // differences are that it assumes the MSA has already been checked and the // arbitrary requirement for a maximum of 32-bit integers isn't applied (and // must not be in order for binsri.d to be selectable). static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) { BuildVectorSDNode *Node = dyn_cast(N.getNode()); if (!Node) return false; APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 8, !IsLittleEndian)) return false; Imm = SplatValue; return true; } // Test whether the given node is an all-ones build_vector. static bool isVectorAllOnes(SDValue N) { // Look through bitcasts. Endianness doesn't matter because we are looking // for an all-ones value. if (N->getOpcode() == ISD::BITCAST) N = N->getOperand(0); BuildVectorSDNode *BVN = dyn_cast(N); if (!BVN) return false; APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; // Endianness doesn't matter in this context because we are looking for // an all-ones value. if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs)) return SplatValue.isAllOnesValue(); return false; } // Test whether N is the bitwise inverse of OfNode. static bool isBitwiseInverse(SDValue N, SDValue OfNode) { if (N->getOpcode() != ISD::XOR) return false; if (isVectorAllOnes(N->getOperand(0))) return N->getOperand(1) == OfNode; if (isVectorAllOnes(N->getOperand(1))) return N->getOperand(0) == OfNode; return false; } // Perform combines where ISD::OR is the root node. // // Performs the following transformations: // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b) // where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit // vector type. static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { if (!Subtarget.hasMSA()) return SDValue(); EVT Ty = N->getValueType(0); if (!Ty.is128BitVector()) return SDValue(); SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) { SDValue Op0Op0 = Op0->getOperand(0); SDValue Op0Op1 = Op0->getOperand(1); SDValue Op1Op0 = Op1->getOperand(0); SDValue Op1Op1 = Op1->getOperand(1); bool IsLittleEndian = !Subtarget.isLittle(); SDValue IfSet, IfClr, Cond; bool IsConstantMask = false; APInt Mask, InvMask; // If Op0Op0 is an appropriate mask, try to find it's inverse in either // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while // looking. // IfClr will be set if we find a valid match. if (isVSplat(Op0Op0, Mask, IsLittleEndian)) { Cond = Op0Op0; IfSet = Op0Op1; if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) IfClr = Op1Op1; else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) IfClr = Op1Op0; IsConstantMask = true; } // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same // thing again using this mask. // IfClr will be set if we find a valid match. if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) { Cond = Op0Op1; IfSet = Op0Op0; if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) IfClr = Op1Op1; else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask) IfClr = Op1Op0; IsConstantMask = true; } // If IfClr is not yet set, try looking for a non-constant match. // IfClr will be set if we find a valid match amongst the eight // possibilities. if (!IfClr.getNode()) { if (isBitwiseInverse(Op0Op0, Op1Op0)) { Cond = Op1Op0; IfSet = Op1Op1; IfClr = Op0Op1; } else if (isBitwiseInverse(Op0Op1, Op1Op0)) { Cond = Op1Op0; IfSet = Op1Op1; IfClr = Op0Op0; } else if (isBitwiseInverse(Op0Op0, Op1Op1)) { Cond = Op1Op1; IfSet = Op1Op0; IfClr = Op0Op1; } else if (isBitwiseInverse(Op0Op1, Op1Op1)) { Cond = Op1Op1; IfSet = Op1Op0; IfClr = Op0Op0; } else if (isBitwiseInverse(Op1Op0, Op0Op0)) { Cond = Op0Op0; IfSet = Op0Op1; IfClr = Op1Op1; } else if (isBitwiseInverse(Op1Op1, Op0Op0)) { Cond = Op0Op0; IfSet = Op0Op1; IfClr = Op1Op0; } else if (isBitwiseInverse(Op1Op0, Op0Op1)) { Cond = Op0Op1; IfSet = Op0Op0; IfClr = Op1Op1; } else if (isBitwiseInverse(Op1Op1, Op0Op1)) { Cond = Op0Op1; IfSet = Op0Op0; IfClr = Op1Op0; } } // At this point, IfClr will be set if we have a valid match. if (!IfClr.getNode()) return SDValue(); assert(Cond.getNode() && IfSet.getNode()); // Fold degenerate cases. if (IsConstantMask) { if (Mask.isAllOnesValue()) return IfSet; else if (Mask == 0) return IfClr; } // Transform the DAG into an equivalent VSELECT. return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr); } return SDValue(); } static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT, SelectionDAG &DAG, const MipsSubtarget &Subtarget) { // Estimate the number of operations the below transform will turn a // constant multiply into. The number is approximately equal to the minimal // number of powers of two that constant can be broken down to by adding // or subtracting them. // // If we have taken more than 12[1] / 8[2] steps to attempt the // optimization for a native sized value, it is more than likely that this // optimization will make things worse. // // [1] MIPS64 requires 6 instructions at most to materialize any constant, // multiplication requires at least 4 cycles, but another cycle (or two) // to retrieve the result from the HI/LO registers. // // [2] For MIPS32, more than 8 steps is expensive as the constant could be // materialized in 2 instructions, multiplication requires at least 4 // cycles, but another cycle (or two) to retrieve the result from the // HI/LO registers. // // TODO: // - MaxSteps needs to consider the `VT` of the constant for the current // target. // - Consider to perform this optimization after type legalization. // That allows to remove a workaround for types not supported natively. // - Take in account `-Os, -Oz` flags because this optimization // increases code size. unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12; SmallVector WorkStack(1, C); unsigned Steps = 0; unsigned BitWidth = C.getBitWidth(); while (!WorkStack.empty()) { APInt Val = WorkStack.pop_back_val(); if (Val == 0 || Val == 1) continue; if (Steps >= MaxSteps) return false; if (Val.isPowerOf2()) { ++Steps; continue; } APInt Floor = APInt(BitWidth, 1) << Val.logBase2(); APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0) : APInt(BitWidth, 1) << C.ceilLogBase2(); if ((Val - Floor).ule(Ceil - Val)) { WorkStack.push_back(Floor); WorkStack.push_back(Val - Floor); } else { WorkStack.push_back(Ceil); WorkStack.push_back(Ceil - Val); } ++Steps; } // If the value being multiplied is not supported natively, we have to pay // an additional legalization cost, conservatively assume an increase in the // cost of 3 instructions per step. This values for this heuristic were // determined experimentally. unsigned RegisterSize = DAG.getTargetLoweringInfo() .getRegisterType(*DAG.getContext(), VT) .getSizeInBits(); Steps *= (VT.getSizeInBits() != RegisterSize) * 3; if (Steps > 27) return false; return true; } static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT, EVT ShiftTy, SelectionDAG &DAG) { // Return 0. if (C == 0) return DAG.getConstant(0, DL, VT); // Return x. if (C == 1) return X; // If c is power of 2, return (shl x, log2(c)). if (C.isPowerOf2()) return DAG.getNode(ISD::SHL, DL, VT, X, DAG.getConstant(C.logBase2(), DL, ShiftTy)); unsigned BitWidth = C.getBitWidth(); APInt Floor = APInt(BitWidth, 1) << C.logBase2(); APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) : APInt(BitWidth, 1) << C.ceilLogBase2(); // If |c - floor_c| <= |c - ceil_c|, // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))), // return (add constMult(x, floor_c), constMult(x, c - floor_c)). if ((C - Floor).ule(Ceil - C)) { SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG); SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG); return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); } // If |c - floor_c| > |c - ceil_c|, // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)). SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG); SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG); return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); } static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG, const TargetLowering::DAGCombinerInfo &DCI, const MipsSETargetLowering *TL, const MipsSubtarget &Subtarget) { EVT VT = N->getValueType(0); if (ConstantSDNode *C = dyn_cast(N->getOperand(1))) if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs( C->getAPIntValue(), VT, DAG, Subtarget)) return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT, TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT), DAG); return SDValue(N, 0); } static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty, SelectionDAG &DAG, const MipsSubtarget &Subtarget) { // See if this is a vector splat immediate node. APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; unsigned EltSize = Ty.getScalarSizeInBits(); BuildVectorSDNode *BV = dyn_cast(N->getOperand(1)); if (!Subtarget.hasDSP()) return SDValue(); if (!BV || !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, EltSize, !Subtarget.isLittle()) || (SplatBitSize != EltSize) || (SplatValue.getZExtValue() >= EltSize)) return SDValue(); SDLoc DL(N); return DAG.getNode(Opc, DL, Ty, N->getOperand(0), DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32)); } static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { EVT Ty = N->getValueType(0); if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) return SDValue(); return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget); } // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold // constant splats into MipsISD::SHRA_DSP for DSPr2. // // Performs the following transformations: // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its // sign/zero-extension is completely overwritten by the new one performed by // the ISD::SRA and ISD::SHL nodes. // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL // sequence. // // See performDSPShiftCombine for more information about the transformation // used for DSPr2. static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { EVT Ty = N->getValueType(0); if (Subtarget.hasMSA()) { SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d) // where $d + sizeof($c) == 32 // or $d + sizeof($c) <= 32 and SExt // -> (MipsVExtractSExt $a, $b, $c) if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) { SDValue Op0Op0 = Op0->getOperand(0); ConstantSDNode *ShAmount = dyn_cast(Op1); if (!ShAmount) return SDValue(); if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT && Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT) return SDValue(); EVT ExtendTy = cast(Op0Op0->getOperand(2))->getVT(); unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits(); if (TotalBits == 32 || (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT && TotalBits <= 32)) { SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1), Op0Op0->getOperand(2) }; return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0), Op0Op0->getVTList(), makeArrayRef(Ops, Op0Op0->getNumOperands())); } } } if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2())) return SDValue(); return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget); } static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { EVT Ty = N->getValueType(0); if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8)) return SDValue(); return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget); } static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) { bool IsV216 = (Ty == MVT::v2i16); switch (CC) { case ISD::SETEQ: case ISD::SETNE: return true; case ISD::SETLT: case ISD::SETLE: case ISD::SETGT: case ISD::SETGE: return IsV216; case ISD::SETULT: case ISD::SETULE: case ISD::SETUGT: case ISD::SETUGE: return !IsV216; default: return false; } } static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) { EVT Ty = N->getValueType(0); if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8)) return SDValue(); if (!isLegalDSPCondCode(Ty, cast(N->getOperand(2))->get())) return SDValue(); return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0), N->getOperand(1), N->getOperand(2)); } static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) { EVT Ty = N->getValueType(0); if (Ty == MVT::v2i16 || Ty == MVT::v4i8) { SDValue SetCC = N->getOperand(0); if (SetCC.getOpcode() != MipsISD::SETCC_DSP) return SDValue(); return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty, SetCC.getOperand(0), SetCC.getOperand(1), N->getOperand(1), N->getOperand(2), SetCC.getOperand(2)); } return SDValue(); } static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG, const MipsSubtarget &Subtarget) { EVT Ty = N->getValueType(0); if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) { // Try the following combines: // (xor (or $a, $b), (build_vector allones)) // (xor (or $a, $b), (bitcast (build_vector allones))) SDValue Op0 = N->getOperand(0); SDValue Op1 = N->getOperand(1); SDValue NotOp; if (ISD::isBuildVectorAllOnes(Op0.getNode())) NotOp = Op1; else if (ISD::isBuildVectorAllOnes(Op1.getNode())) NotOp = Op0; else return SDValue(); if (NotOp->getOpcode() == ISD::OR) return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0), NotOp->getOperand(1)); } return SDValue(); } SDValue MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDValue Val; switch (N->getOpcode()) { case ISD::AND: Val = performANDCombine(N, DAG, DCI, Subtarget); break; case ISD::OR: Val = performORCombine(N, DAG, DCI, Subtarget); break; case ISD::MUL: return performMULCombine(N, DAG, DCI, this, Subtarget); case ISD::SHL: Val = performSHLCombine(N, DAG, DCI, Subtarget); break; case ISD::SRA: return performSRACombine(N, DAG, DCI, Subtarget); case ISD::SRL: return performSRLCombine(N, DAG, DCI, Subtarget); case ISD::VSELECT: return performVSELECTCombine(N, DAG); case ISD::XOR: Val = performXORCombine(N, DAG, Subtarget); break; case ISD::SETCC: Val = performSETCCCombine(N, DAG); break; } if (Val.getNode()) { LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n"; N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n"; Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n"); return Val; } return MipsTargetLowering::PerformDAGCombine(N, DCI); } MachineBasicBlock * MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const { switch (MI.getOpcode()) { default: return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB); case Mips::BPOSGE32_PSEUDO: return emitBPOSGE32(MI, BB); case Mips::SNZ_B_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B); case Mips::SNZ_H_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H); case Mips::SNZ_W_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W); case Mips::SNZ_D_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D); case Mips::SNZ_V_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V); case Mips::SZ_B_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BZ_B); case Mips::SZ_H_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BZ_H); case Mips::SZ_W_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BZ_W); case Mips::SZ_D_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BZ_D); case Mips::SZ_V_PSEUDO: return emitMSACBranchPseudo(MI, BB, Mips::BZ_V); case Mips::COPY_FW_PSEUDO: return emitCOPY_FW(MI, BB); case Mips::COPY_FD_PSEUDO: return emitCOPY_FD(MI, BB); case Mips::INSERT_FW_PSEUDO: return emitINSERT_FW(MI, BB); case Mips::INSERT_FD_PSEUDO: return emitINSERT_FD(MI, BB); case Mips::INSERT_B_VIDX_PSEUDO: case Mips::INSERT_B_VIDX64_PSEUDO: return emitINSERT_DF_VIDX(MI, BB, 1, false); case Mips::INSERT_H_VIDX_PSEUDO: case Mips::INSERT_H_VIDX64_PSEUDO: return emitINSERT_DF_VIDX(MI, BB, 2, false); case Mips::INSERT_W_VIDX_PSEUDO: case Mips::INSERT_W_VIDX64_PSEUDO: return emitINSERT_DF_VIDX(MI, BB, 4, false); case Mips::INSERT_D_VIDX_PSEUDO: case Mips::INSERT_D_VIDX64_PSEUDO: return emitINSERT_DF_VIDX(MI, BB, 8, false); case Mips::INSERT_FW_VIDX_PSEUDO: case Mips::INSERT_FW_VIDX64_PSEUDO: return emitINSERT_DF_VIDX(MI, BB, 4, true); case Mips::INSERT_FD_VIDX_PSEUDO: case Mips::INSERT_FD_VIDX64_PSEUDO: return emitINSERT_DF_VIDX(MI, BB, 8, true); case Mips::FILL_FW_PSEUDO: return emitFILL_FW(MI, BB); case Mips::FILL_FD_PSEUDO: return emitFILL_FD(MI, BB); case Mips::FEXP2_W_1_PSEUDO: return emitFEXP2_W_1(MI, BB); case Mips::FEXP2_D_1_PSEUDO: return emitFEXP2_D_1(MI, BB); case Mips::ST_F16: return emitST_F16_PSEUDO(MI, BB); case Mips::LD_F16: return emitLD_F16_PSEUDO(MI, BB); case Mips::MSA_FP_EXTEND_W_PSEUDO: return emitFPEXTEND_PSEUDO(MI, BB, false); case Mips::MSA_FP_ROUND_W_PSEUDO: return emitFPROUND_PSEUDO(MI, BB, false); case Mips::MSA_FP_EXTEND_D_PSEUDO: return emitFPEXTEND_PSEUDO(MI, BB, true); case Mips::MSA_FP_ROUND_D_PSEUDO: return emitFPROUND_PSEUDO(MI, BB, true); } } bool MipsSETargetLowering::isEligibleForTailCallOptimization( const CCState &CCInfo, unsigned NextStackOffset, const MipsFunctionInfo &FI) const { if (!UseMipsTailCalls) return false; // Exception has to be cleared with eret. if (FI.isISR()) return false; // Return false if either the callee or caller has a byval argument. if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg()) return false; // Return true if the callee's argument area is no larger than the // caller's. return NextStackOffset <= FI.getIncomingArgSize(); } void MipsSETargetLowering:: getOpndList(SmallVectorImpl &Ops, std::deque> &RegsToPass, bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const { Ops.push_back(Callee); MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage, IsCallReloc, CLI, Callee, Chain); } SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { LoadSDNode &Nd = *cast(Op); if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) return MipsTargetLowering::lowerLOAD(Op, DAG); // Replace a double precision load with two i32 loads and a buildpair64. SDLoc DL(Op); SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); EVT PtrVT = Ptr.getValueType(); // i32 load from lower address. SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(), Nd.getAlignment(), Nd.getMemOperand()->getFlags()); // i32 load from higher address. Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT)); SDValue Hi = DAG.getLoad( MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(), std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags()); if (!Subtarget.isLittle()) std::swap(Lo, Hi); SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi); SDValue Ops[2] = {BP, Hi.getValue(1)}; return DAG.getMergeValues(Ops, DL); } SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { StoreSDNode &Nd = *cast(Op); if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore) return MipsTargetLowering::lowerSTORE(Op, DAG); // Replace a double precision store with two extractelement64s and i32 stores. SDLoc DL(Op); SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain(); EVT PtrVT = Ptr.getValueType(); SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Val, DAG.getConstant(0, DL, MVT::i32)); SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Val, DAG.getConstant(1, DL, MVT::i32)); if (!Subtarget.isLittle()) std::swap(Lo, Hi); // i32 store to lower address. Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlignment(), Nd.getMemOperand()->getFlags(), Nd.getAAInfo()); // i32 store to higher address. Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT)); return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(), std::min(Nd.getAlignment(), 4U), Nd.getMemOperand()->getFlags(), Nd.getAAInfo()); } SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); MVT Src = Op.getOperand(0).getValueType().getSimpleVT(); MVT Dest = Op.getValueType().getSimpleVT(); // Bitcast i64 to double. if (Src == MVT::i64 && Dest == MVT::f64) { SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op.getOperand(0), DAG.getIntPtrConstant(0, DL)); SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op.getOperand(0), DAG.getIntPtrConstant(1, DL)); return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi); } // Bitcast double to i64. if (Src == MVT::f64 && Dest == MVT::i64) { SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), DAG.getConstant(1, DL, MVT::i32)); return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); } // Skip other cases of bitcast and use default lowering. return SDValue(); } SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc, bool HasLo, bool HasHi, SelectionDAG &DAG) const { // MIPS32r6/MIPS64r6 removed accumulator based multiplies. assert(!Subtarget.hasMips32r6()); EVT Ty = Op.getOperand(0).getValueType(); SDLoc DL(Op); SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped, Op.getOperand(0), Op.getOperand(1)); SDValue Lo, Hi; if (HasLo) Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult); if (HasHi) Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult); if (!HasLo || !HasHi) return HasLo ? Lo : Hi; SDValue Vals[] = { Lo, Hi }; return DAG.getMergeValues(Vals, DL); } static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) { SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In, DAG.getConstant(0, DL, MVT::i32)); SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In, DAG.getConstant(1, DL, MVT::i32)); return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi); } static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) { SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op); SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op); return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); } // This function expands mips intrinsic nodes which have 64-bit input operands // or output values. // // out64 = intrinsic-node in64 // => // lo = copy (extract-element (in64, 0)) // hi = copy (extract-element (in64, 1)) // mips-specific-node // v0 = copy lo // v1 = copy hi // out64 = merge-values (v0, v1) // static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { SDLoc DL(Op); bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other; SmallVector Ops; unsigned OpNo = 0; // See if Op has a chain input. if (HasChainIn) Ops.push_back(Op->getOperand(OpNo++)); // The next operand is the intrinsic opcode. assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant); // See if the next operand has type i64. SDValue Opnd = Op->getOperand(++OpNo), In64; if (Opnd.getValueType() == MVT::i64) In64 = initAccumulator(Opnd, DL, DAG); else Ops.push_back(Opnd); // Push the remaining operands. for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo) Ops.push_back(Op->getOperand(OpNo)); // Add In64 to the end of the list. if (In64.getNode()) Ops.push_back(In64); // Scan output. SmallVector ResTys; for (EVT Ty : Op->values()) ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty); // Create node. SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops); SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val; if (!HasChainIn) return Out; assert(Val->getValueType(1) == MVT::Other); SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) }; return DAG.getMergeValues(Vals, DL); } // Lower an MSA copy intrinsic into the specified SelectionDAG node static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) { SDLoc DL(Op); SDValue Vec = Op->getOperand(1); SDValue Idx = Op->getOperand(2); EVT ResTy = Op->getValueType(0); EVT EltTy = Vec->getValueType(0).getVectorElementType(); SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx, DAG.getValueType(EltTy)); return Result; } static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) { EVT ResVecTy = Op->getValueType(0); EVT ViaVecTy = ResVecTy; bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); SDLoc DL(Op); // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating // lanes. SDValue LaneA = Op->getOperand(OpNr); SDValue LaneB; if (ResVecTy == MVT::v2i64) { // In case of the index being passed as an immediate value, set the upper // lane to 0 so that the splati.d instruction can be matched. if (isa(LaneA)) LaneB = DAG.getConstant(0, DL, MVT::i32); // Having the index passed in a register, set the upper lane to the same // value as the lower - this results in the BUILD_VECTOR node not being // expanded through stack. This way we are able to pattern match the set of // nodes created here to splat.d. else LaneB = LaneA; ViaVecTy = MVT::v4i32; if(BigEndian) std::swap(LaneA, LaneB); } else LaneB = LaneA; SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB }; SDValue Result = DAG.getBuildVector( ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements())); if (ViaVecTy != ResVecTy) { SDValue One = DAG.getConstant(1, DL, ViaVecTy); Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One)); } return Result; } static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned = false) { auto *CImm = cast(Op->getOperand(ImmOp)); return DAG.getConstant( APInt(Op->getValueType(0).getScalarType().getSizeInBits(), IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned), SDLoc(Op), Op->getValueType(0)); } static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue, bool BigEndian, SelectionDAG &DAG) { EVT ViaVecTy = VecTy; SDValue SplatValueA = SplatValue; SDValue SplatValueB = SplatValue; SDLoc DL(SplatValue); if (VecTy == MVT::v2i64) { // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's. ViaVecTy = MVT::v4i32; SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue); SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue, DAG.getConstant(32, DL, MVT::i32)); SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB); } // We currently hold the parts in little endian order. Swap them if // necessary. if (BigEndian) std::swap(SplatValueA, SplatValueB); SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB, SplatValueA, SplatValueB, SplatValueA, SplatValueB, SplatValueA, SplatValueB, SplatValueA, SplatValueB, SplatValueA, SplatValueB, SplatValueA, SplatValueB }; SDValue Result = DAG.getBuildVector( ViaVecTy, DL, makeArrayRef(Ops, ViaVecTy.getVectorNumElements())); if (VecTy != ViaVecTy) Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result); return Result; } static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc, SDValue Imm, bool BigEndian) { EVT VecTy = Op->getValueType(0); SDValue Exp2Imm; SDLoc DL(Op); // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it // here for now. if (VecTy == MVT::v2i64) { if (ConstantSDNode *CImm = dyn_cast(Imm)) { APInt BitImm = APInt(64, 1) << CImm->getAPIntValue(); SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL, MVT::i32); SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32); if (BigEndian) std::swap(BitImmLoOp, BitImmHiOp); Exp2Imm = DAG.getNode( ISD::BITCAST, DL, MVT::v2i64, DAG.getBuildVector(MVT::v4i32, DL, {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp})); } } if (!Exp2Imm.getNode()) { // We couldnt constant fold, do a vector shift instead // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since // only values 0-63 are valid. if (VecTy == MVT::v2i64) Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm); Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG); Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy), Exp2Imm); } return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm); } static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT ResTy = Op->getValueType(0); SDValue Vec = Op->getOperand(2); bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian(); MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32; SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1, DL, ResEltTy); SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG); return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec); } static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) { EVT ResTy = Op->getValueType(0); SDLoc DL(Op); SDValue One = DAG.getConstant(1, DL, ResTy); SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG)); return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), DAG.getNOT(DL, Bit, ResTy)); } static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); EVT ResTy = Op->getValueType(0); APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1) << cast(Op->getOperand(2))->getAPIntValue(); SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy); return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask); } SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); unsigned Intrinsic = cast(Op->getOperand(0))->getZExtValue(); switch (Intrinsic) { default: return SDValue(); case Intrinsic::mips_shilo: return lowerDSPIntr(Op, DAG, MipsISD::SHILO); case Intrinsic::mips_dpau_h_qbl: return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL); case Intrinsic::mips_dpau_h_qbr: return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR); case Intrinsic::mips_dpsu_h_qbl: return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL); case Intrinsic::mips_dpsu_h_qbr: return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR); case Intrinsic::mips_dpa_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH); case Intrinsic::mips_dps_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH); case Intrinsic::mips_dpax_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH); case Intrinsic::mips_dpsx_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH); case Intrinsic::mips_mulsa_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH); case Intrinsic::mips_mult: return lowerDSPIntr(Op, DAG, MipsISD::Mult); case Intrinsic::mips_multu: return lowerDSPIntr(Op, DAG, MipsISD::Multu); case Intrinsic::mips_madd: return lowerDSPIntr(Op, DAG, MipsISD::MAdd); case Intrinsic::mips_maddu: return lowerDSPIntr(Op, DAG, MipsISD::MAddu); case Intrinsic::mips_msub: return lowerDSPIntr(Op, DAG, MipsISD::MSub); case Intrinsic::mips_msubu: return lowerDSPIntr(Op, DAG, MipsISD::MSubu); case Intrinsic::mips_addv_b: case Intrinsic::mips_addv_h: case Intrinsic::mips_addv_w: case Intrinsic::mips_addv_d: return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_addvi_b: case Intrinsic::mips_addvi_h: case Intrinsic::mips_addvi_w: case Intrinsic::mips_addvi_d: return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_and_v: return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_andi_b: return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_bclr_b: case Intrinsic::mips_bclr_h: case Intrinsic::mips_bclr_w: case Intrinsic::mips_bclr_d: return lowerMSABitClear(Op, DAG); case Intrinsic::mips_bclri_b: case Intrinsic::mips_bclri_h: case Intrinsic::mips_bclri_w: case Intrinsic::mips_bclri_d: return lowerMSABitClearImm(Op, DAG); case Intrinsic::mips_binsli_b: case Intrinsic::mips_binsli_h: case Intrinsic::mips_binsli_w: case Intrinsic::mips_binsli_d: { // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear) EVT VecTy = Op->getValueType(0); EVT EltTy = VecTy.getVectorElementType(); if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits()) report_fatal_error("Immediate out of range"); APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(), Op->getConstantOperandVal(3) + 1); return DAG.getNode(ISD::VSELECT, DL, VecTy, DAG.getConstant(Mask, DL, VecTy, true), Op->getOperand(2), Op->getOperand(1)); } case Intrinsic::mips_binsri_b: case Intrinsic::mips_binsri_h: case Intrinsic::mips_binsri_w: case Intrinsic::mips_binsri_d: { // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear) EVT VecTy = Op->getValueType(0); EVT EltTy = VecTy.getVectorElementType(); if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits()) report_fatal_error("Immediate out of range"); APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(), Op->getConstantOperandVal(3) + 1); return DAG.getNode(ISD::VSELECT, DL, VecTy, DAG.getConstant(Mask, DL, VecTy, true), Op->getOperand(2), Op->getOperand(1)); } case Intrinsic::mips_bmnz_v: return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3), Op->getOperand(2), Op->getOperand(1)); case Intrinsic::mips_bmnzi_b: return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2), Op->getOperand(1)); case Intrinsic::mips_bmz_v: return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_bmzi_b: return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_bneg_b: case Intrinsic::mips_bneg_h: case Intrinsic::mips_bneg_w: case Intrinsic::mips_bneg_d: { EVT VecTy = Op->getValueType(0); SDValue One = DAG.getConstant(1, DL, VecTy); return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1), DAG.getNode(ISD::SHL, DL, VecTy, One, truncateVecElts(Op, DAG))); } case Intrinsic::mips_bnegi_b: case Intrinsic::mips_bnegi_h: case Intrinsic::mips_bnegi_w: case Intrinsic::mips_bnegi_d: return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2), !Subtarget.isLittle()); case Intrinsic::mips_bnz_b: case Intrinsic::mips_bnz_h: case Intrinsic::mips_bnz_w: case Intrinsic::mips_bnz_d: return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_bnz_v: return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_bsel_v: // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(3), Op->getOperand(2)); case Intrinsic::mips_bseli_b: // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear) return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2)); case Intrinsic::mips_bset_b: case Intrinsic::mips_bset_h: case Intrinsic::mips_bset_w: case Intrinsic::mips_bset_d: { EVT VecTy = Op->getValueType(0); SDValue One = DAG.getConstant(1, DL, VecTy); return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1), DAG.getNode(ISD::SHL, DL, VecTy, One, truncateVecElts(Op, DAG))); } case Intrinsic::mips_bseti_b: case Intrinsic::mips_bseti_h: case Intrinsic::mips_bseti_w: case Intrinsic::mips_bseti_d: return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2), !Subtarget.isLittle()); case Intrinsic::mips_bz_b: case Intrinsic::mips_bz_h: case Intrinsic::mips_bz_w: case Intrinsic::mips_bz_d: return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_bz_v: return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_ceq_b: case Intrinsic::mips_ceq_h: case Intrinsic::mips_ceq_w: case Intrinsic::mips_ceq_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETEQ); case Intrinsic::mips_ceqi_b: case Intrinsic::mips_ceqi_h: case Intrinsic::mips_ceqi_w: case Intrinsic::mips_ceqi_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ); case Intrinsic::mips_cle_s_b: case Intrinsic::mips_cle_s_h: case Intrinsic::mips_cle_s_w: case Intrinsic::mips_cle_s_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETLE); case Intrinsic::mips_clei_s_b: case Intrinsic::mips_clei_s_h: case Intrinsic::mips_clei_s_w: case Intrinsic::mips_clei_s_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE); case Intrinsic::mips_cle_u_b: case Intrinsic::mips_cle_u_h: case Intrinsic::mips_cle_u_w: case Intrinsic::mips_cle_u_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETULE); case Intrinsic::mips_clei_u_b: case Intrinsic::mips_clei_u_h: case Intrinsic::mips_clei_u_w: case Intrinsic::mips_clei_u_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG), ISD::SETULE); case Intrinsic::mips_clt_s_b: case Intrinsic::mips_clt_s_h: case Intrinsic::mips_clt_s_w: case Intrinsic::mips_clt_s_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETLT); case Intrinsic::mips_clti_s_b: case Intrinsic::mips_clti_s_h: case Intrinsic::mips_clti_s_w: case Intrinsic::mips_clti_s_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT); case Intrinsic::mips_clt_u_b: case Intrinsic::mips_clt_u_h: case Intrinsic::mips_clt_u_w: case Intrinsic::mips_clt_u_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETULT); case Intrinsic::mips_clti_u_b: case Intrinsic::mips_clti_u_h: case Intrinsic::mips_clti_u_w: case Intrinsic::mips_clti_u_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG), ISD::SETULT); case Intrinsic::mips_copy_s_b: case Intrinsic::mips_copy_s_h: case Intrinsic::mips_copy_s_w: return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT); case Intrinsic::mips_copy_s_d: if (Subtarget.hasMips64()) // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64. return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT); else { // Lower into the generic EXTRACT_VECTOR_ELT node and let the type // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); } case Intrinsic::mips_copy_u_b: case Intrinsic::mips_copy_u_h: case Intrinsic::mips_copy_u_w: return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT); case Intrinsic::mips_copy_u_d: if (Subtarget.hasMips64()) // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64. return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT); else { // Lower into the generic EXTRACT_VECTOR_ELT node and let the type // legalizer and EXTRACT_VECTOR_ELT lowering sort it out. // Note: When i64 is illegal, this results in copy_s.w instructions // instead of copy_u.w instructions. This makes no difference to the // behaviour since i64 is only illegal when the register file is 32-bit. return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); } case Intrinsic::mips_div_s_b: case Intrinsic::mips_div_s_h: case Intrinsic::mips_div_s_w: case Intrinsic::mips_div_s_d: return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_div_u_b: case Intrinsic::mips_div_u_h: case Intrinsic::mips_div_u_w: case Intrinsic::mips_div_u_d: return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_fadd_w: case Intrinsic::mips_fadd_d: // TODO: If intrinsics have fast-math-flags, propagate them. return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away case Intrinsic::mips_fceq_w: case Intrinsic::mips_fceq_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETOEQ); case Intrinsic::mips_fcle_w: case Intrinsic::mips_fcle_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETOLE); case Intrinsic::mips_fclt_w: case Intrinsic::mips_fclt_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETOLT); case Intrinsic::mips_fcne_w: case Intrinsic::mips_fcne_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETONE); case Intrinsic::mips_fcor_w: case Intrinsic::mips_fcor_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETO); case Intrinsic::mips_fcueq_w: case Intrinsic::mips_fcueq_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETUEQ); case Intrinsic::mips_fcule_w: case Intrinsic::mips_fcule_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETULE); case Intrinsic::mips_fcult_w: case Intrinsic::mips_fcult_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETULT); case Intrinsic::mips_fcun_w: case Intrinsic::mips_fcun_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETUO); case Intrinsic::mips_fcune_w: case Intrinsic::mips_fcune_d: return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), ISD::SETUNE); case Intrinsic::mips_fdiv_w: case Intrinsic::mips_fdiv_d: // TODO: If intrinsics have fast-math-flags, propagate them. return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_ffint_u_w: case Intrinsic::mips_ffint_u_d: return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_ffint_s_w: case Intrinsic::mips_ffint_s_d: return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_fill_b: case Intrinsic::mips_fill_h: case Intrinsic::mips_fill_w: case Intrinsic::mips_fill_d: { EVT ResTy = Op->getValueType(0); SmallVector Ops(ResTy.getVectorNumElements(), Op->getOperand(1)); // If ResTy is v2i64 then the type legalizer will break this node down into // an equivalent v4i32. return DAG.getBuildVector(ResTy, DL, Ops); } case Intrinsic::mips_fexp2_w: case Intrinsic::mips_fexp2_d: { // TODO: If intrinsics have fast-math-flags, propagate them. EVT ResTy = Op->getValueType(0); return DAG.getNode( ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1), DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2))); } case Intrinsic::mips_flog2_w: case Intrinsic::mips_flog2_d: return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_fmadd_w: case Intrinsic::mips_fmadd_d: return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); case Intrinsic::mips_fmul_w: case Intrinsic::mips_fmul_d: // TODO: If intrinsics have fast-math-flags, propagate them. return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_fmsub_w: case Intrinsic::mips_fmsub_d: { // TODO: If intrinsics have fast-math-flags, propagate them. return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); } case Intrinsic::mips_frint_w: case Intrinsic::mips_frint_d: return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_fsqrt_w: case Intrinsic::mips_fsqrt_d: return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_fsub_w: case Intrinsic::mips_fsub_d: // TODO: If intrinsics have fast-math-flags, propagate them. return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_ftrunc_u_w: case Intrinsic::mips_ftrunc_u_d: return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_ftrunc_s_w: case Intrinsic::mips_ftrunc_s_d: return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_ilvev_b: case Intrinsic::mips_ilvev_h: case Intrinsic::mips_ilvev_w: case Intrinsic::mips_ilvev_d: return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_ilvl_b: case Intrinsic::mips_ilvl_h: case Intrinsic::mips_ilvl_w: case Intrinsic::mips_ilvl_d: return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_ilvod_b: case Intrinsic::mips_ilvod_h: case Intrinsic::mips_ilvod_w: case Intrinsic::mips_ilvod_d: return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_ilvr_b: case Intrinsic::mips_ilvr_h: case Intrinsic::mips_ilvr_w: case Intrinsic::mips_ilvr_d: return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_insert_b: case Intrinsic::mips_insert_h: case Intrinsic::mips_insert_w: case Intrinsic::mips_insert_d: return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0), Op->getOperand(1), Op->getOperand(3), Op->getOperand(2)); case Intrinsic::mips_insve_b: case Intrinsic::mips_insve_h: case Intrinsic::mips_insve_w: case Intrinsic::mips_insve_d: { // Report an error for out of range values. int64_t Max; switch (Intrinsic) { case Intrinsic::mips_insve_b: Max = 15; break; case Intrinsic::mips_insve_h: Max = 7; break; case Intrinsic::mips_insve_w: Max = 3; break; case Intrinsic::mips_insve_d: Max = 1; break; default: llvm_unreachable("Unmatched intrinsic"); } int64_t Value = cast(Op->getOperand(2))->getSExtValue(); if (Value < 0 || Value > Max) report_fatal_error("Immediate out of range"); return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), Op->getOperand(3), DAG.getConstant(0, DL, MVT::i32)); } case Intrinsic::mips_ldi_b: case Intrinsic::mips_ldi_h: case Intrinsic::mips_ldi_w: case Intrinsic::mips_ldi_d: return lowerMSASplatImm(Op, 1, DAG, true); case Intrinsic::mips_lsa: case Intrinsic::mips_dlsa: { EVT ResTy = Op->getValueType(0); return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1), DAG.getNode(ISD::SHL, SDLoc(Op), ResTy, Op->getOperand(2), Op->getOperand(3))); } case Intrinsic::mips_maddv_b: case Intrinsic::mips_maddv_h: case Intrinsic::mips_maddv_w: case Intrinsic::mips_maddv_d: { EVT ResTy = Op->getValueType(0); return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1), DAG.getNode(ISD::MUL, SDLoc(Op), ResTy, Op->getOperand(2), Op->getOperand(3))); } case Intrinsic::mips_max_s_b: case Intrinsic::mips_max_s_h: case Intrinsic::mips_max_s_w: case Intrinsic::mips_max_s_d: return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_max_u_b: case Intrinsic::mips_max_u_h: case Intrinsic::mips_max_u_w: case Intrinsic::mips_max_u_d: return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_maxi_s_b: case Intrinsic::mips_maxi_s_h: case Intrinsic::mips_maxi_s_w: case Intrinsic::mips_maxi_s_d: return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true)); case Intrinsic::mips_maxi_u_b: case Intrinsic::mips_maxi_u_h: case Intrinsic::mips_maxi_u_w: case Intrinsic::mips_maxi_u_d: return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_min_s_b: case Intrinsic::mips_min_s_h: case Intrinsic::mips_min_s_w: case Intrinsic::mips_min_s_d: return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_min_u_b: case Intrinsic::mips_min_u_h: case Intrinsic::mips_min_u_w: case Intrinsic::mips_min_u_d: return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_mini_s_b: case Intrinsic::mips_mini_s_h: case Intrinsic::mips_mini_s_w: case Intrinsic::mips_mini_s_d: return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true)); case Intrinsic::mips_mini_u_b: case Intrinsic::mips_mini_u_h: case Intrinsic::mips_mini_u_w: case Intrinsic::mips_mini_u_d: return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_mod_s_b: case Intrinsic::mips_mod_s_h: case Intrinsic::mips_mod_s_w: case Intrinsic::mips_mod_s_d: return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_mod_u_b: case Intrinsic::mips_mod_u_h: case Intrinsic::mips_mod_u_w: case Intrinsic::mips_mod_u_d: return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_mulv_b: case Intrinsic::mips_mulv_h: case Intrinsic::mips_mulv_w: case Intrinsic::mips_mulv_d: return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_msubv_b: case Intrinsic::mips_msubv_h: case Intrinsic::mips_msubv_w: case Intrinsic::mips_msubv_d: { EVT ResTy = Op->getValueType(0); return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1), DAG.getNode(ISD::MUL, SDLoc(Op), ResTy, Op->getOperand(2), Op->getOperand(3))); } case Intrinsic::mips_nlzc_b: case Intrinsic::mips_nlzc_h: case Intrinsic::mips_nlzc_w: case Intrinsic::mips_nlzc_d: return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_nor_v: { SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); return DAG.getNOT(DL, Res, Res->getValueType(0)); } case Intrinsic::mips_nori_b: { SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); return DAG.getNOT(DL, Res, Res->getValueType(0)); } case Intrinsic::mips_or_v: return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_ori_b: return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_pckev_b: case Intrinsic::mips_pckev_h: case Intrinsic::mips_pckev_w: case Intrinsic::mips_pckev_d: return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_pckod_b: case Intrinsic::mips_pckod_h: case Intrinsic::mips_pckod_w: case Intrinsic::mips_pckod_d: return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_pcnt_b: case Intrinsic::mips_pcnt_h: case Intrinsic::mips_pcnt_w: case Intrinsic::mips_pcnt_d: return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1)); case Intrinsic::mips_sat_s_b: case Intrinsic::mips_sat_s_h: case Intrinsic::mips_sat_s_w: case Intrinsic::mips_sat_s_d: case Intrinsic::mips_sat_u_b: case Intrinsic::mips_sat_u_h: case Intrinsic::mips_sat_u_w: case Intrinsic::mips_sat_u_d: { // Report an error for out of range values. int64_t Max; switch (Intrinsic) { case Intrinsic::mips_sat_s_b: case Intrinsic::mips_sat_u_b: Max = 7; break; case Intrinsic::mips_sat_s_h: case Intrinsic::mips_sat_u_h: Max = 15; break; case Intrinsic::mips_sat_s_w: case Intrinsic::mips_sat_u_w: Max = 31; break; case Intrinsic::mips_sat_s_d: case Intrinsic::mips_sat_u_d: Max = 63; break; default: llvm_unreachable("Unmatched intrinsic"); } int64_t Value = cast(Op->getOperand(2))->getSExtValue(); if (Value < 0 || Value > Max) report_fatal_error("Immediate out of range"); return SDValue(); } case Intrinsic::mips_shf_b: case Intrinsic::mips_shf_h: case Intrinsic::mips_shf_w: { int64_t Value = cast(Op->getOperand(2))->getSExtValue(); if (Value < 0 || Value > 255) report_fatal_error("Immediate out of range"); return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0), Op->getOperand(2), Op->getOperand(1)); } case Intrinsic::mips_sldi_b: case Intrinsic::mips_sldi_h: case Intrinsic::mips_sldi_w: case Intrinsic::mips_sldi_d: { // Report an error for out of range values. int64_t Max; switch (Intrinsic) { case Intrinsic::mips_sldi_b: Max = 15; break; case Intrinsic::mips_sldi_h: Max = 7; break; case Intrinsic::mips_sldi_w: Max = 3; break; case Intrinsic::mips_sldi_d: Max = 1; break; default: llvm_unreachable("Unmatched intrinsic"); } int64_t Value = cast(Op->getOperand(3))->getSExtValue(); if (Value < 0 || Value > Max) report_fatal_error("Immediate out of range"); return SDValue(); } case Intrinsic::mips_sll_b: case Intrinsic::mips_sll_h: case Intrinsic::mips_sll_w: case Intrinsic::mips_sll_d: return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1), truncateVecElts(Op, DAG)); case Intrinsic::mips_slli_b: case Intrinsic::mips_slli_h: case Intrinsic::mips_slli_w: case Intrinsic::mips_slli_d: return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_splat_b: case Intrinsic::mips_splat_h: case Intrinsic::mips_splat_w: case Intrinsic::mips_splat_d: // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32. // Instead we lower to MipsISD::VSHF and match from there. return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1), Op->getOperand(1)); case Intrinsic::mips_splati_b: case Intrinsic::mips_splati_h: case Intrinsic::mips_splati_w: case Intrinsic::mips_splati_d: return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1), Op->getOperand(1)); case Intrinsic::mips_sra_b: case Intrinsic::mips_sra_h: case Intrinsic::mips_sra_w: case Intrinsic::mips_sra_d: return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1), truncateVecElts(Op, DAG)); case Intrinsic::mips_srai_b: case Intrinsic::mips_srai_h: case Intrinsic::mips_srai_w: case Intrinsic::mips_srai_d: return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_srari_b: case Intrinsic::mips_srari_h: case Intrinsic::mips_srari_w: case Intrinsic::mips_srari_d: { // Report an error for out of range values. int64_t Max; switch (Intrinsic) { case Intrinsic::mips_srari_b: Max = 7; break; case Intrinsic::mips_srari_h: Max = 15; break; case Intrinsic::mips_srari_w: Max = 31; break; case Intrinsic::mips_srari_d: Max = 63; break; default: llvm_unreachable("Unmatched intrinsic"); } int64_t Value = cast(Op->getOperand(2))->getSExtValue(); if (Value < 0 || Value > Max) report_fatal_error("Immediate out of range"); return SDValue(); } case Intrinsic::mips_srl_b: case Intrinsic::mips_srl_h: case Intrinsic::mips_srl_w: case Intrinsic::mips_srl_d: return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1), truncateVecElts(Op, DAG)); case Intrinsic::mips_srli_b: case Intrinsic::mips_srli_h: case Intrinsic::mips_srli_w: case Intrinsic::mips_srli_d: return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_srlri_b: case Intrinsic::mips_srlri_h: case Intrinsic::mips_srlri_w: case Intrinsic::mips_srlri_d: { // Report an error for out of range values. int64_t Max; switch (Intrinsic) { case Intrinsic::mips_srlri_b: Max = 7; break; case Intrinsic::mips_srlri_h: Max = 15; break; case Intrinsic::mips_srlri_w: Max = 31; break; case Intrinsic::mips_srlri_d: Max = 63; break; default: llvm_unreachable("Unmatched intrinsic"); } int64_t Value = cast(Op->getOperand(2))->getSExtValue(); if (Value < 0 || Value > Max) report_fatal_error("Immediate out of range"); return SDValue(); } case Intrinsic::mips_subv_b: case Intrinsic::mips_subv_h: case Intrinsic::mips_subv_w: case Intrinsic::mips_subv_d: return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_subvi_b: case Intrinsic::mips_subvi_h: case Intrinsic::mips_subvi_w: case Intrinsic::mips_subvi_d: return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::mips_vshf_b: case Intrinsic::mips_vshf_h: case Intrinsic::mips_vshf_w: case Intrinsic::mips_vshf_d: return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2), Op->getOperand(3)); case Intrinsic::mips_xor_v: return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1), Op->getOperand(2)); case Intrinsic::mips_xori_b: return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG)); case Intrinsic::thread_pointer: { EVT PtrVT = getPointerTy(DAG.getDataLayout()); return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); } } } static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, const MipsSubtarget &Subtarget) { SDLoc DL(Op); SDValue ChainIn = Op->getOperand(0); SDValue Address = Op->getOperand(2); SDValue Offset = Op->getOperand(3); EVT ResTy = Op->getValueType(0); EVT PtrTy = Address->getValueType(0); // For N64 addresses have the underlying type MVT::i64. This intrinsic // however takes an i32 signed constant offset. The actual type of the // intrinsic is a scaled signed i10. if (Subtarget.isABI_N64()) Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset); Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset); return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), /* Alignment = */ 16); } SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned Intr = cast(Op->getOperand(1))->getZExtValue(); switch (Intr) { default: return SDValue(); case Intrinsic::mips_extp: return lowerDSPIntr(Op, DAG, MipsISD::EXTP); case Intrinsic::mips_extpdp: return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP); case Intrinsic::mips_extr_w: return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W); case Intrinsic::mips_extr_r_w: return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W); case Intrinsic::mips_extr_rs_w: return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W); case Intrinsic::mips_extr_s_h: return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H); case Intrinsic::mips_mthlip: return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP); case Intrinsic::mips_mulsaq_s_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH); case Intrinsic::mips_maq_s_w_phl: return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL); case Intrinsic::mips_maq_s_w_phr: return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR); case Intrinsic::mips_maq_sa_w_phl: return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL); case Intrinsic::mips_maq_sa_w_phr: return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR); case Intrinsic::mips_dpaq_s_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH); case Intrinsic::mips_dpsq_s_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH); case Intrinsic::mips_dpaq_sa_l_w: return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W); case Intrinsic::mips_dpsq_sa_l_w: return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W); case Intrinsic::mips_dpaqx_s_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH); case Intrinsic::mips_dpaqx_sa_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH); case Intrinsic::mips_dpsqx_s_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH); case Intrinsic::mips_dpsqx_sa_w_ph: return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH); case Intrinsic::mips_ld_b: case Intrinsic::mips_ld_h: case Intrinsic::mips_ld_w: case Intrinsic::mips_ld_d: return lowerMSALoadIntr(Op, DAG, Intr, Subtarget); } } static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr, const MipsSubtarget &Subtarget) { SDLoc DL(Op); SDValue ChainIn = Op->getOperand(0); SDValue Value = Op->getOperand(2); SDValue Address = Op->getOperand(3); SDValue Offset = Op->getOperand(4); EVT PtrTy = Address->getValueType(0); // For N64 addresses have the underlying type MVT::i64. This intrinsic // however takes an i32 signed constant offset. The actual type of the // intrinsic is a scaled signed i10. if (Subtarget.isABI_N64()) Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset); Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset); return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), /* Alignment = */ 16); } SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { unsigned Intr = cast(Op->getOperand(1))->getZExtValue(); switch (Intr) { default: return SDValue(); case Intrinsic::mips_st_b: case Intrinsic::mips_st_h: case Intrinsic::mips_st_w: case Intrinsic::mips_st_d: return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget); } } // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT. // // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We // choose to sign-extend but we could have equally chosen zero-extend. The // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT // result into this node later (possibly changing it to a zero-extend in the // process). SDValue MipsSETargetLowering:: lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT ResTy = Op->getValueType(0); SDValue Op0 = Op->getOperand(0); EVT VecTy = Op0->getValueType(0); if (!VecTy.is128BitVector()) return SDValue(); if (ResTy.isInteger()) { SDValue Op1 = Op->getOperand(1); EVT EltTy = VecTy.getVectorElementType(); return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1, DAG.getValueType(EltTy)); } return Op; } static bool isConstantOrUndef(const SDValue Op) { if (Op->isUndef()) return true; if (isa(Op)) return true; if (isa(Op)) return true; return false; } static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) { for (unsigned i = 0; i < Op->getNumOperands(); ++i) if (isConstantOrUndef(Op->getOperand(i))) return true; return false; } // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the // backend. // // Lowers according to the following rules: // - Constant splats are legal as-is as long as the SplatBitSize is a power of // 2 less than or equal to 64 and the value fits into a signed 10-bit // immediate // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize // is a power of 2 less than or equal to 64 and the value does not fit into a // signed 10-bit immediate // - Non-constant splats are legal as-is. // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT. // - All others are illegal and must be expanded. SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { BuildVectorSDNode *Node = cast(Op); EVT ResTy = Op->getValueType(0); SDLoc DL(Op); APInt SplatValue, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!Subtarget.hasMSA() || !ResTy.is128BitVector()) return SDValue(); if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs, 8, !Subtarget.isLittle()) && SplatBitSize <= 64) { // We can only cope with 8, 16, 32, or 64-bit elements if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 && SplatBitSize != 64) return SDValue(); // If the value isn't an integer type we will have to bitcast // from an integer type first. Also, if there are any undefs, we must // lower them to defined values first. if (ResTy.isInteger() && !HasAnyUndefs) return Op; EVT ViaVecTy; switch (SplatBitSize) { default: return SDValue(); case 8: ViaVecTy = MVT::v16i8; break; case 16: ViaVecTy = MVT::v8i16; break; case 32: ViaVecTy = MVT::v4i32; break; case 64: // There's no fill.d to fall back on for 64-bit values return SDValue(); } // SelectionDAG::getConstant will promote SplatValue appropriately. SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy); // Bitcast to the type we originally wanted if (ViaVecTy != ResTy) Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result); return Result; } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false)) return Op; else if (!isConstantOrUndefBUILD_VECTOR(Node)) { // Use INSERT_VECTOR_ELT operations rather than expand to stores. // The resulting code is the same length as the expansion, but it doesn't // use memory operations EVT ResTy = Node->getValueType(0); assert(ResTy.isVector()); unsigned NumElts = ResTy.getVectorNumElements(); SDValue Vector = DAG.getUNDEF(ResTy); for (unsigned i = 0; i < NumElts; ++i) { Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector, Node->getOperand(i), DAG.getConstant(i, DL, MVT::i32)); } return Vector; } return SDValue(); } // Lower VECTOR_SHUFFLE into SHF (if possible). // // SHF splits the vector into blocks of four elements, then shuffles these // elements according to a <4 x i2> constant (encoded as an integer immediate). // // It is therefore possible to lower into SHF when the mask takes the form: // // When undef's appear they are treated as if they were whatever value is // necessary in order to fit the above forms. // // For example: // %2 = shufflevector <8 x i16> %0, <8 x i16> undef, // <8 x i32> // is lowered to: // (SHF_H $w0, $w1, 27) // where the 27 comes from: // 3 + (2 << 2) + (1 << 4) + (0 << 6) static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { int SHFIndices[4] = { -1, -1, -1, -1 }; if (Indices.size() < 4) return SDValue(); for (unsigned i = 0; i < 4; ++i) { for (unsigned j = i; j < Indices.size(); j += 4) { int Idx = Indices[j]; // Convert from vector index to 4-element subvector index // If an index refers to an element outside of the subvector then give up if (Idx != -1) { Idx -= 4 * (j / 4); if (Idx < 0 || Idx >= 4) return SDValue(); } // If the mask has an undef, replace it with the current index. // Note that it might still be undef if the current index is also undef if (SHFIndices[i] == -1) SHFIndices[i] = Idx; // Check that non-undef values are the same as in the mask. If they // aren't then give up if (!(Idx == -1 || Idx == SHFIndices[i])) return SDValue(); } } // Calculate the immediate. Replace any remaining undefs with zero APInt Imm(32, 0); for (int i = 3; i >= 0; --i) { int Idx = SHFIndices[i]; if (Idx == -1) Idx = 0; Imm <<= 2; Imm |= Idx & 0x3; } SDLoc DL(Op); return DAG.getNode(MipsISD::SHF, DL, ResTy, DAG.getTargetConstant(Imm, DL, MVT::i32), Op->getOperand(0)); } /// Determine whether a range fits a regular pattern of values. /// This function accounts for the possibility of jumping over the End iterator. template static bool fitsRegularPattern(typename SmallVectorImpl::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride) { auto &I = Begin; while (I != End) { if (*I != -1 && *I != ExpectedIndex) return false; ExpectedIndex += ExpectedIndexStride; // Incrementing past End is undefined behaviour so we must increment one // step at a time and check for End at each step. for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I) ; // Empty loop body. } return true; } // Determine whether VECTOR_SHUFFLE is a SPLATI. // // It is a SPLATI when the mask is: // // where x is any valid index. // // When undef's appear in the mask they are treated as if they were whatever // value is necessary in order to fit the above form. static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { assert((Indices.size() % 2) == 0); int SplatIndex = -1; for (const auto &V : Indices) { if (V != -1) { SplatIndex = V; break; } } return fitsRegularPattern(Indices.begin(), 1, Indices.end(), SplatIndex, 0); } // Lower VECTOR_SHUFFLE into ILVEV (if possible). // // ILVEV interleaves the even elements from each vector. // // It is possible to lower into ILVEV when the mask consists of two of the // following forms interleaved: // <0, 2, 4, ...> // // where n is the number of elements in the vector. // For example: // <0, 0, 2, 2, 4, 4, ...> // <0, n, 2, n+2, 4, n+4, ...> // // When undef's appear in the mask they are treated as if they were whatever // value is necessary in order to fit the above forms. static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { assert((Indices.size() % 2) == 0); SDValue Wt; SDValue Ws; const auto &Begin = Indices.begin(); const auto &End = Indices.end(); // Check even elements are taken from the even elements of one half or the // other and pick an operand accordingly. if (fitsRegularPattern(Begin, 2, End, 0, 2)) Wt = Op->getOperand(0); else if (fitsRegularPattern(Begin, 2, End, Indices.size(), 2)) Wt = Op->getOperand(1); else return SDValue(); // Check odd elements are taken from the even elements of one half or the // other and pick an operand accordingly. if (fitsRegularPattern(Begin + 1, 2, End, 0, 2)) Ws = Op->getOperand(0); else if (fitsRegularPattern(Begin + 1, 2, End, Indices.size(), 2)) Ws = Op->getOperand(1); else return SDValue(); return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt); } // Lower VECTOR_SHUFFLE into ILVOD (if possible). // // ILVOD interleaves the odd elements from each vector. // // It is possible to lower into ILVOD when the mask consists of two of the // following forms interleaved: // <1, 3, 5, ...> // // where n is the number of elements in the vector. // For example: // <1, 1, 3, 3, 5, 5, ...> // <1, n+1, 3, n+3, 5, n+5, ...> // // When undef's appear in the mask they are treated as if they were whatever // value is necessary in order to fit the above forms. static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { assert((Indices.size() % 2) == 0); SDValue Wt; SDValue Ws; const auto &Begin = Indices.begin(); const auto &End = Indices.end(); // Check even elements are taken from the odd elements of one half or the // other and pick an operand accordingly. if (fitsRegularPattern(Begin, 2, End, 1, 2)) Wt = Op->getOperand(0); else if (fitsRegularPattern(Begin, 2, End, Indices.size() + 1, 2)) Wt = Op->getOperand(1); else return SDValue(); // Check odd elements are taken from the odd elements of one half or the // other and pick an operand accordingly. if (fitsRegularPattern(Begin + 1, 2, End, 1, 2)) Ws = Op->getOperand(0); else if (fitsRegularPattern(Begin + 1, 2, End, Indices.size() + 1, 2)) Ws = Op->getOperand(1); else return SDValue(); return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Wt, Ws); } // Lower VECTOR_SHUFFLE into ILVR (if possible). // // ILVR interleaves consecutive elements from the right (lowest-indexed) half of // each vector. // // It is possible to lower into ILVR when the mask consists of two of the // following forms interleaved: // <0, 1, 2, ...> // // where n is the number of elements in the vector. // For example: // <0, 0, 1, 1, 2, 2, ...> // <0, n, 1, n+1, 2, n+2, ...> // // When undef's appear in the mask they are treated as if they were whatever // value is necessary in order to fit the above forms. static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { assert((Indices.size() % 2) == 0); SDValue Wt; SDValue Ws; const auto &Begin = Indices.begin(); const auto &End = Indices.end(); // Check even elements are taken from the right (lowest-indexed) elements of // one half or the other and pick an operand accordingly. if (fitsRegularPattern(Begin, 2, End, 0, 1)) Wt = Op->getOperand(0); else if (fitsRegularPattern(Begin, 2, End, Indices.size(), 1)) Wt = Op->getOperand(1); else return SDValue(); // Check odd elements are taken from the right (lowest-indexed) elements of // one half or the other and pick an operand accordingly. if (fitsRegularPattern(Begin + 1, 2, End, 0, 1)) Ws = Op->getOperand(0); else if (fitsRegularPattern(Begin + 1, 2, End, Indices.size(), 1)) Ws = Op->getOperand(1); else return SDValue(); return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt); } // Lower VECTOR_SHUFFLE into ILVL (if possible). // // ILVL interleaves consecutive elements from the left (highest-indexed) half // of each vector. // // It is possible to lower into ILVL when the mask consists of two of the // following forms interleaved: // // // where n is the number of elements in the vector and x is half n. // For example: // // // // When undef's appear in the mask they are treated as if they were whatever // value is necessary in order to fit the above forms. static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { assert((Indices.size() % 2) == 0); unsigned HalfSize = Indices.size() / 2; SDValue Wt; SDValue Ws; const auto &Begin = Indices.begin(); const auto &End = Indices.end(); // Check even elements are taken from the left (highest-indexed) elements of // one half or the other and pick an operand accordingly. if (fitsRegularPattern(Begin, 2, End, HalfSize, 1)) Wt = Op->getOperand(0); else if (fitsRegularPattern(Begin, 2, End, Indices.size() + HalfSize, 1)) Wt = Op->getOperand(1); else return SDValue(); // Check odd elements are taken from the left (highest-indexed) elements of // one half or the other and pick an operand accordingly. if (fitsRegularPattern(Begin + 1, 2, End, HalfSize, 1)) Ws = Op->getOperand(0); else if (fitsRegularPattern(Begin + 1, 2, End, Indices.size() + HalfSize, 1)) Ws = Op->getOperand(1); else return SDValue(); return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt); } // Lower VECTOR_SHUFFLE into PCKEV (if possible). // // PCKEV copies the even elements of each vector into the result vector. // // It is possible to lower into PCKEV when the mask consists of two of the // following forms concatenated: // <0, 2, 4, ...> // // where n is the number of elements in the vector. // For example: // <0, 2, 4, ..., 0, 2, 4, ...> // <0, 2, 4, ..., n, n+2, n+4, ...> // // When undef's appear in the mask they are treated as if they were whatever // value is necessary in order to fit the above forms. static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { assert((Indices.size() % 2) == 0); SDValue Wt; SDValue Ws; const auto &Begin = Indices.begin(); const auto &Mid = Indices.begin() + Indices.size() / 2; const auto &End = Indices.end(); if (fitsRegularPattern(Begin, 1, Mid, 0, 2)) Wt = Op->getOperand(0); else if (fitsRegularPattern(Begin, 1, Mid, Indices.size(), 2)) Wt = Op->getOperand(1); else return SDValue(); if (fitsRegularPattern(Mid, 1, End, 0, 2)) Ws = Op->getOperand(0); else if (fitsRegularPattern(Mid, 1, End, Indices.size(), 2)) Ws = Op->getOperand(1); else return SDValue(); return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt); } // Lower VECTOR_SHUFFLE into PCKOD (if possible). // // PCKOD copies the odd elements of each vector into the result vector. // // It is possible to lower into PCKOD when the mask consists of two of the // following forms concatenated: // <1, 3, 5, ...> // // where n is the number of elements in the vector. // For example: // <1, 3, 5, ..., 1, 3, 5, ...> // <1, 3, 5, ..., n+1, n+3, n+5, ...> // // When undef's appear in the mask they are treated as if they were whatever // value is necessary in order to fit the above forms. static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { assert((Indices.size() % 2) == 0); SDValue Wt; SDValue Ws; const auto &Begin = Indices.begin(); const auto &Mid = Indices.begin() + Indices.size() / 2; const auto &End = Indices.end(); if (fitsRegularPattern(Begin, 1, Mid, 1, 2)) Wt = Op->getOperand(0); else if (fitsRegularPattern(Begin, 1, Mid, Indices.size() + 1, 2)) Wt = Op->getOperand(1); else return SDValue(); if (fitsRegularPattern(Mid, 1, End, 1, 2)) Ws = Op->getOperand(0); else if (fitsRegularPattern(Mid, 1, End, Indices.size() + 1, 2)) Ws = Op->getOperand(1); else return SDValue(); return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt); } // Lower VECTOR_SHUFFLE into VSHF. // // This mostly consists of converting the shuffle indices in Indices into a // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example, // if the type is v8i16 and all the indices are less than 8 then the second // operand is unused and can be replaced with anything. We choose to replace it // with the used operand since this reduces the number of instructions overall. static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy, SmallVector Indices, SelectionDAG &DAG) { SmallVector Ops; SDValue Op0; SDValue Op1; EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger(); EVT MaskEltTy = MaskVecTy.getVectorElementType(); bool Using1stVec = false; bool Using2ndVec = false; SDLoc DL(Op); int ResTyNumElts = ResTy.getVectorNumElements(); for (int i = 0; i < ResTyNumElts; ++i) { // Idx == -1 means UNDEF int Idx = Indices[i]; if (0 <= Idx && Idx < ResTyNumElts) Using1stVec = true; if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2) Using2ndVec = true; } for (SmallVector::iterator I = Indices.begin(); I != Indices.end(); ++I) Ops.push_back(DAG.getTargetConstant(*I, DL, MaskEltTy)); SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops); if (Using1stVec && Using2ndVec) { Op0 = Op->getOperand(0); Op1 = Op->getOperand(1); } else if (Using1stVec) Op0 = Op1 = Op->getOperand(0); else if (Using2ndVec) Op0 = Op1 = Op->getOperand(1); else llvm_unreachable("shuffle vector mask references neither vector operand?"); // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion. // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11> // VSHF concatenates the vectors in a bitwise fashion: // <0b00, 0b01> + <0b10, 0b11> -> // 0b0100 + 0b1110 -> 0b01001110 // <0b10, 0b11, 0b00, 0b01> // We must therefore swap the operands to get the correct result. return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0); } // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the // indices in the shuffle. SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { ShuffleVectorSDNode *Node = cast(Op); EVT ResTy = Op->getValueType(0); if (!ResTy.is128BitVector()) return SDValue(); int ResTyNumElts = ResTy.getVectorNumElements(); SmallVector Indices; for (int i = 0; i < ResTyNumElts; ++i) Indices.push_back(Node->getMaskElt(i)); // splati.[bhwd] is preferable to the others but is matched from // MipsISD::VSHF. if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG)) return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG); SDValue Result; if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG))) return Result; if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG))) return Result; if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG))) return Result; if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG))) return Result; if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG))) return Result; if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG))) return Result; if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG))) return Result; return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG); } MachineBasicBlock * MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI, MachineBasicBlock *BB) const { // $bb: // bposge32_pseudo $vr0 // => // $bb: // bposge32 $tbb // $fbb: // li $vr2, 0 // b $sink // $tbb: // li $vr1, 1 // $sink: // $vr0 = phi($vr2, $fbb, $vr1, $tbb) MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); const TargetRegisterClass *RC = &Mips::GPR32RegClass; DebugLoc DL = MI.getDebugLoc(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = std::next(MachineFunction::iterator(BB)); MachineFunction *F = BB->getParent(); MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, FBB); F->insert(It, TBB); F->insert(It, Sink); // Transfer the remainder of BB and its successor edges to Sink. Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); Sink->transferSuccessorsAndUpdatePHIs(BB); // Add successors. BB->addSuccessor(FBB); BB->addSuccessor(TBB); FBB->addSuccessor(Sink); TBB->addSuccessor(Sink); // Insert the real bposge32 instruction to $BB. BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB); // Insert the real bposge32c instruction to $BB. BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB); // Fill $FBB. Register VR2 = RegInfo.createVirtualRegister(RC); BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2) .addReg(Mips::ZERO).addImm(0); BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink); // Fill $TBB. Register VR1 = RegInfo.createVirtualRegister(RC); BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1) .addReg(Mips::ZERO).addImm(1); // Insert phi function to $Sink. BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) .addReg(VR2) .addMBB(FBB) .addReg(VR1) .addMBB(TBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return Sink; } MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo( MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const { // $bb: // vany_nonzero $rd, $ws // => // $bb: // bnz.b $ws, $tbb // b $fbb // $fbb: // li $rd1, 0 // b $sink // $tbb: // li $rd2, 1 // $sink: // $rd = phi($rd1, $fbb, $rd2, $tbb) MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); const TargetRegisterClass *RC = &Mips::GPR32RegClass; DebugLoc DL = MI.getDebugLoc(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = std::next(MachineFunction::iterator(BB)); MachineFunction *F = BB->getParent(); MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, FBB); F->insert(It, TBB); F->insert(It, Sink); // Transfer the remainder of BB and its successor edges to Sink. Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); Sink->transferSuccessorsAndUpdatePHIs(BB); // Add successors. BB->addSuccessor(FBB); BB->addSuccessor(TBB); FBB->addSuccessor(Sink); TBB->addSuccessor(Sink); // Insert the real bnz.b instruction to $BB. BuildMI(BB, DL, TII->get(BranchOp)) .addReg(MI.getOperand(1).getReg()) .addMBB(TBB); // Fill $FBB. Register RD1 = RegInfo.createVirtualRegister(RC); BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1) .addReg(Mips::ZERO).addImm(0); BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink); // Fill $TBB. Register RD2 = RegInfo.createVirtualRegister(RC); BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2) .addReg(Mips::ZERO).addImm(1); // Insert phi function to $Sink. BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg()) .addReg(RD1) .addMBB(FBB) .addReg(RD2) .addMBB(TBB); MI.eraseFromParent(); // The pseudo instruction is gone now. return Sink; } // Emit the COPY_FW pseudo instruction. // // copy_fw_pseudo $fd, $ws, n // => // copy_u_w $rt, $ws, $n // mtc1 $rt, $fd // // When n is zero, the equivalent operation can be performed with (potentially) // zero instructions due to register overlaps. This optimization is never valid // for lane 1 because it would require FR=0 mode which isn't supported by MSA. MachineBasicBlock * MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Fd = MI.getOperand(0).getReg(); Register Ws = MI.getOperand(1).getReg(); unsigned Lane = MI.getOperand(2).getImm(); if (Lane == 0) { unsigned Wt = Ws; if (!Subtarget.useOddSPReg()) { // We must copy to an even-numbered MSA register so that the // single-precision sub-register is also guaranteed to be even-numbered. Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws); } BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo); } else { Register Wt = RegInfo.createVirtualRegister( Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass : &Mips::MSA128WEvensRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane); BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo); } MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the COPY_FD pseudo instruction. // // copy_fd_pseudo $fd, $ws, n // => // splati.d $wt, $ws, $n // copy $fd, $wt:sub_64 // // When n is zero, the equivalent operation can be performed with (potentially) // zero instructions due to register overlaps. This optimization is always // valid because FR=1 mode which is the only supported mode in MSA. MachineBasicBlock * MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI, MachineBasicBlock *BB) const { assert(Subtarget.isFP64bit()); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); Register Fd = MI.getOperand(0).getReg(); Register Ws = MI.getOperand(1).getReg(); unsigned Lane = MI.getOperand(2).getImm() * 2; DebugLoc DL = MI.getDebugLoc(); if (Lane == 0) BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64); else { Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1); BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64); } MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the INSERT_FW pseudo instruction. // // insert_fw_pseudo $wd, $wd_in, $n, $fs // => // subreg_to_reg $wt:sub_lo, $fs // insve_w $wd[$n], $wd_in, $wt[0] MachineBasicBlock * MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Wd = MI.getOperand(0).getReg(); Register Wd_in = MI.getOperand(1).getReg(); unsigned Lane = MI.getOperand(2).getImm(); Register Fs = MI.getOperand(3).getReg(); Register Wt = RegInfo.createVirtualRegister( Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass : &Mips::MSA128WEvensRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) .addImm(0) .addReg(Fs) .addImm(Mips::sub_lo); BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd) .addReg(Wd_in) .addImm(Lane) .addReg(Wt) .addImm(0); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the INSERT_FD pseudo instruction. // // insert_fd_pseudo $wd, $fs, n // => // subreg_to_reg $wt:sub_64, $fs // insve_d $wd[$n], $wd_in, $wt[0] MachineBasicBlock * MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI, MachineBasicBlock *BB) const { assert(Subtarget.isFP64bit()); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Wd = MI.getOperand(0).getReg(); Register Wd_in = MI.getOperand(1).getReg(); unsigned Lane = MI.getOperand(2).getImm(); Register Fs = MI.getOperand(3).getReg(); Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) .addImm(0) .addReg(Fs) .addImm(Mips::sub_64); BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd) .addReg(Wd_in) .addImm(Lane) .addReg(Wt) .addImm(0); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction. // // For integer: // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs) // => // (SLL $lanetmp1, $lane, // (SUBREG_TO_REG $wt, $fs, ) // (SLL $lanetmp1, $lane, getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Wd = MI.getOperand(0).getReg(); Register SrcVecReg = MI.getOperand(1).getReg(); Register LaneReg = MI.getOperand(2).getReg(); Register SrcValReg = MI.getOperand(3).getReg(); const TargetRegisterClass *VecRC = nullptr; // FIXME: This should be true for N32 too. const TargetRegisterClass *GPRRC = Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0; unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL; unsigned EltLog2Size; unsigned InsertOp = 0; unsigned InsveOp = 0; switch (EltSizeInBytes) { default: llvm_unreachable("Unexpected size"); case 1: EltLog2Size = 0; InsertOp = Mips::INSERT_B; InsveOp = Mips::INSVE_B; VecRC = &Mips::MSA128BRegClass; break; case 2: EltLog2Size = 1; InsertOp = Mips::INSERT_H; InsveOp = Mips::INSVE_H; VecRC = &Mips::MSA128HRegClass; break; case 4: EltLog2Size = 2; InsertOp = Mips::INSERT_W; InsveOp = Mips::INSVE_W; VecRC = &Mips::MSA128WRegClass; break; case 8: EltLog2Size = 3; InsertOp = Mips::INSERT_D; InsveOp = Mips::INSVE_D; VecRC = &Mips::MSA128DRegClass; break; } if (IsFP) { Register Wt = RegInfo.createVirtualRegister(VecRC); BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt) .addImm(0) .addReg(SrcValReg) .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo); SrcValReg = Wt; } // Convert the lane index into a byte index if (EltSizeInBytes != 1) { Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC); BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1) .addReg(LaneReg) .addImm(EltLog2Size); LaneReg = LaneTmp1; } // Rotate bytes around so that the desired lane is element zero Register WdTmp1 = RegInfo.createVirtualRegister(VecRC); BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1) .addReg(SrcVecReg) .addReg(SrcVecReg) .addReg(LaneReg, 0, SubRegIdx); Register WdTmp2 = RegInfo.createVirtualRegister(VecRC); if (IsFP) { // Use insve.df to insert to element zero BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2) .addReg(WdTmp1) .addImm(0) .addReg(SrcValReg) .addImm(0); } else { // Use insert.df to insert to element zero BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2) .addReg(WdTmp1) .addReg(SrcValReg) .addImm(0); } // Rotate elements the rest of the way for a full rotation. // sld.df inteprets $rt modulo the number of columns so we only need to negate // the lane index to do this. Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC); BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB), LaneTmp2) .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO) .addReg(LaneReg); BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd) .addReg(WdTmp2) .addReg(WdTmp2) .addReg(LaneTmp2, 0, SubRegIdx); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the FILL_FW pseudo instruction. // // fill_fw_pseudo $wd, $fs // => // implicit_def $wt1 // insert_subreg $wt2:subreg_lo, $wt1, $fs // splati.w $wd, $wt2[0] MachineBasicBlock * MipsSETargetLowering::emitFILL_FW(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Wd = MI.getOperand(0).getReg(); Register Fs = MI.getOperand(1).getReg(); Register Wt1 = RegInfo.createVirtualRegister( Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass : &Mips::MSA128WEvensRegClass); Register Wt2 = RegInfo.createVirtualRegister( Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass : &Mips::MSA128WEvensRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1); BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2) .addReg(Wt1) .addReg(Fs) .addImm(Mips::sub_lo); BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the FILL_FD pseudo instruction. // // fill_fd_pseudo $wd, $fs // => // implicit_def $wt1 // insert_subreg $wt2:subreg_64, $wt1, $fs // splati.d $wd, $wt2[0] MachineBasicBlock * MipsSETargetLowering::emitFILL_FD(MachineInstr &MI, MachineBasicBlock *BB) const { assert(Subtarget.isFP64bit()); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Wd = MI.getOperand(0).getReg(); Register Fs = MI.getOperand(1).getReg(); Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1); BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2) .addReg(Wt1) .addReg(Fs) .addImm(Mips::sub_64); BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA // register. // // STF16 MSA128F16:$wd, mem_simm10:$addr // => // copy_u.h $rtemp,$wd[0] // sh $rtemp, $addr // // Safety: We can't use st.h & co as they would over write the memory after // the destination. It would require half floats be allocated 16 bytes(!) of // space. MachineBasicBlock * MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Ws = MI.getOperand(0).getReg(); Register Rt = MI.getOperand(1).getReg(); const MachineMemOperand &MMO = **MI.memoperands_begin(); unsigned Imm = MMO.getOffset(); // Caution: A load via the GOT can expand to a GPR32 operand, a load via // spill and reload can expand as a GPR64 operand. Examine the // operand in detail and default to ABI. const TargetRegisterClass *RC = MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg()) : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass : &Mips::GPR64RegClass); const bool UsingMips32 = RC == &Mips::GPR32RegClass; Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass); BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0); if(!UsingMips32) { Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass); BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp) .addImm(0) .addReg(Rs) .addImm(Mips::sub_32); Rs = Tmp; } BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64)) .addReg(Rs) .addReg(Rt) .addImm(Imm) .addMemOperand(BB->getParent()->getMachineMemOperand( &MMO, MMO.getOffset(), MMO.getSize())); MI.eraseFromParent(); return BB; } // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register. // // LD_F16 MSA128F16:$wd, mem_simm10:$addr // => // lh $rtemp, $addr // fill.h $wd, $rtemp // // Safety: We can't use ld.h & co as they over-read from the source. // Additionally, if the address is not modulo 16, 2 cases can occur: // a) Segmentation fault as the load instruction reads from a memory page // memory it's not supposed to. // b) The load crosses an implementation specific boundary, requiring OS // intervention. MachineBasicBlock * MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); DebugLoc DL = MI.getDebugLoc(); Register Wd = MI.getOperand(0).getReg(); // Caution: A load via the GOT can expand to a GPR32 operand, a load via // spill and reload can expand as a GPR64 operand. Examine the // operand in detail and default to ABI. const TargetRegisterClass *RC = MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg()) : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass : &Mips::GPR64RegClass); const bool UsingMips32 = RC == &Mips::GPR32RegClass; Register Rt = RegInfo.createVirtualRegister(RC); MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt); for (unsigned i = 1; i < MI.getNumOperands(); i++) MIB.add(MI.getOperand(i)); if(!UsingMips32) { Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass); BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32); Rt = Tmp; } BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt); MI.eraseFromParent(); return BB; } // Emit the FPROUND_PSEUDO instruction. // // Round an FGR64Opnd, FGR32Opnd to an f16. // // Safety: Cycle the operand through the GPRs so the result always ends up // the correct MSA register. // // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs // / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register // (which they can be, as the MSA registers are defined to alias the // FPU's 64 bit and 32 bit registers) the result can be accessed using // the correct register class. That requires operands be tie-able across // register classes which have a sub/super register class relationship. // // For FPG32Opnd: // // FPROUND MSA128F16:$wd, FGR32Opnd:$fs // => // mfc1 $rtemp, $fs // fill.w $rtemp, $wtemp // fexdo.w $wd, $wtemp, $wtemp // // For FPG64Opnd on mips32r2+: // // FPROUND MSA128F16:$wd, FGR64Opnd:$fs // => // mfc1 $rtemp, $fs // fill.w $rtemp, $wtemp // mfhc1 $rtemp2, $fs // insert.w $wtemp[1], $rtemp2 // insert.w $wtemp[3], $rtemp2 // fexdo.w $wtemp2, $wtemp, $wtemp // fexdo.h $wd, $temp2, $temp2 // // For FGR64Opnd on mips64r2+: // // FPROUND MSA128F16:$wd, FGR64Opnd:$fs // => // dmfc1 $rtemp, $fs // fill.d $rtemp, $wtemp // fexdo.w $wtemp2, $wtemp, $wtemp // fexdo.h $wd, $wtemp2, $wtemp2 // // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the // undef bits are "just right" and the exception enable bits are // set. By using fill.w to replicate $fs into all elements over // insert.w for one element, we avoid that potiential case. If // fexdo.[hw] causes an exception in, the exception is valid and it // occurs for all elements. MachineBasicBlock * MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI, MachineBasicBlock *BB, bool IsFGR64) const { // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous // here. It's technically doable to support MIPS32 here, but the ISA forbids // it. assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; const TargetInstrInfo *TII = Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); Register Wd = MI.getOperand(0).getReg(); Register Fs = MI.getOperand(1).getReg(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); const TargetRegisterClass *GPRRC = IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; unsigned MFC1Opc = IsFGR64onMips64 ? Mips::DMFC1 : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1); unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W; // Perform the register class copy as mentioned above. Register Rtemp = RegInfo.createVirtualRegister(GPRRC); BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs); BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp); unsigned WPHI = Wtemp; if (IsFGR64onMips32) { Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC); BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs); Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2) .addReg(Wtemp) .addReg(Rtemp2) .addImm(1); BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3) .addReg(Wtemp2) .addReg(Rtemp2) .addImm(3); WPHI = Wtemp3; } if (IsFGR64) { Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2) .addReg(WPHI) .addReg(WPHI); WPHI = Wtemp2; } BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI); MI.eraseFromParent(); return BB; } // Emit the FPEXTEND_PSEUDO instruction. // // Expand an f16 to either a FGR32Opnd or FGR64Opnd. // // Safety: Cycle the result through the GPRs so the result always ends up // the correct floating point register. // // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd // / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register // (which they can be, as the MSA registers are defined to alias the // FPU's 64 bit and 32 bit registers) the result can be accessed using // the correct register class. That requires operands be tie-able across // register classes which have a sub/super register class relationship. I // haven't checked. // // For FGR32Opnd: // // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws // => // fexupr.w $wtemp, $ws // copy_s.w $rtemp, $ws[0] // mtc1 $rtemp, $fd // // For FGR64Opnd on Mips64: // // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws // => // fexupr.w $wtemp, $ws // fexupr.d $wtemp2, $wtemp // copy_s.d $rtemp, $wtemp2s[0] // dmtc1 $rtemp, $fd // // For FGR64Opnd on Mips32: // // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws // => // fexupr.w $wtemp, $ws // fexupr.d $wtemp2, $wtemp // copy_s.w $rtemp, $wtemp2[0] // mtc1 $rtemp, $ftemp // copy_s.w $rtemp2, $wtemp2[1] // $fd = mthc1 $rtemp2, $ftemp MachineBasicBlock * MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI, MachineBasicBlock *BB, bool IsFGR64) const { // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous // here. It's technically doable to support MIPS32 here, but the ISA forbids // it. assert(Subtarget.hasMSA() && Subtarget.hasMips32r2()); bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64; bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64; const TargetInstrInfo *TII = Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); Register Fd = MI.getOperand(0).getReg(); Register Ws = MI.getOperand(1).getReg(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); const TargetRegisterClass *GPRRC = IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass; unsigned MTC1Opc = IsFGR64onMips64 ? Mips::DMTC1 : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1); Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W; Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass); Register WPHI = Wtemp; BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws); if (IsFGR64) { WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass); BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp); } // Perform the safety regclass copy mentioned above. Register Rtemp = RegInfo.createVirtualRegister(GPRRC); Register FPRPHI = IsFGR64onMips32 ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass) : Fd; BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0); BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp); if (IsFGR64onMips32) { Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC); BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2) .addReg(WPHI) .addImm(1); BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd) .addReg(FPRPHI) .addReg(Rtemp2); } MI.eraseFromParent(); return BB; } // Emit the FEXP2_W_1 pseudo instructions. // // fexp2_w_1_pseudo $wd, $wt // => // ldi.w $ws, 1 // fexp2.w $wd, $ws, $wt MachineBasicBlock * MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); const TargetRegisterClass *RC = &Mips::MSA128WRegClass; Register Ws1 = RegInfo.createVirtualRegister(RC); Register Ws2 = RegInfo.createVirtualRegister(RC); DebugLoc DL = MI.getDebugLoc(); // Splat 1.0 into a vector BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1); BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1); // Emit 1.0 * fexp2(Wt) BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg()) .addReg(Ws2) .addReg(MI.getOperand(1).getReg()); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } // Emit the FEXP2_D_1 pseudo instructions. // // fexp2_d_1_pseudo $wd, $wt // => // ldi.d $ws, 1 // fexp2.d $wd, $ws, $wt MachineBasicBlock * MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI, MachineBasicBlock *BB) const { const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo(); const TargetRegisterClass *RC = &Mips::MSA128DRegClass; Register Ws1 = RegInfo.createVirtualRegister(RC); Register Ws2 = RegInfo.createVirtualRegister(RC); DebugLoc DL = MI.getDebugLoc(); // Splat 1.0 into a vector BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1); BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1); // Emit 1.0 * fexp2(Wt) BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg()) .addReg(Ws2) .addReg(MI.getOperand(1).getReg()); MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; }