xref: /freebsd/contrib/arm-optimized-routines/math/aarch64/experimental/exp_inline.h (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 /*
2  * Double-precision e^x function.
3  *
4  * Copyright (c) 2018-2024, Arm Limited.
5  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6  */
7 
8 #ifndef PL_MATH_EXP_INLINE_H
9 #define PL_MATH_EXP_INLINE_H
10 
11 #include <float.h>
12 #include <math.h>
13 #include <stdint.h>
14 #include "math_config.h"
15 
16 #define N (1 << EXP_TABLE_BITS)
17 #define InvLn2N __exp_data.invln2N
18 #define NegLn2hiN __exp_data.negln2hiN
19 #define NegLn2loN __exp_data.negln2loN
20 #define Shift __exp_data.shift
21 #define T __exp_data.tab
22 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
23 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
24 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
25 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
26 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
27 
28 /* Handle cases that may overflow or underflow when computing the result that
29    is scale*(1+TMP) without intermediate rounding.  The bit representation of
30    scale is in SBITS, however it has a computed exponent that may have
31    overflown into the sign bit so that needs to be adjusted before using it as
32    a double.  (int32_t)KI is the k used in the argument reduction and exponent
33    adjustment of scale, positive k here means the result may overflow and
34    negative k means the result may underflow.  */
35 static inline double
exp_inline_special_case(double_t tmp,uint64_t sbits,uint64_t ki)36 exp_inline_special_case (double_t tmp, uint64_t sbits, uint64_t ki)
37 {
38   double_t scale, y;
39 
40   if ((ki & 0x80000000) == 0)
41     {
42       /* k > 0, the exponent of scale might have overflowed by <= 460.  */
43       sbits -= 1009ull << 52;
44       scale = asdouble (sbits);
45       y = 0x1p1009 * (scale + scale * tmp);
46       return check_oflow (eval_as_double (y));
47     }
48   /* k < 0, need special care in the subnormal range.  */
49   sbits += 1022ull << 52;
50   scale = asdouble (sbits);
51   y = scale + scale * tmp;
52   if (y < 1.0)
53     {
54       /* Round y to the right precision before scaling it into the subnormal
55 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
56 	 E is the worst-case ulp error outside the subnormal range.  So this
57 	 is only useful if the goal is better than 1 ulp worst-case error.  */
58       double_t hi, lo;
59       lo = scale - y + scale * tmp;
60       hi = 1.0 + y;
61       lo = 1.0 - hi + y + lo;
62       y = eval_as_double (hi + lo) - 1.0;
63       /* Avoid -0.0 with downward rounding.  */
64       if (WANT_ROUNDING && y == 0.0)
65 	y = 0.0;
66       /* The underflow exception needs to be signaled explicitly.  */
67       force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
68     }
69   y = 0x1p-1022 * y;
70   return check_uflow (eval_as_double (y));
71 }
72 
73 /* Top 12 bits of a double (sign and exponent bits).  */
74 static inline uint32_t
top12(double x)75 top12 (double x)
76 {
77   return asuint64 (x) >> 52;
78 }
79 
80 /* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
81    If hastail is 0 then xtail is assumed to be 0 too.  */
82 static inline double
exp_inline(double x,double xtail)83 exp_inline (double x, double xtail)
84 {
85   uint32_t abstop;
86   uint64_t ki, idx, top, sbits;
87   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
88   double_t kd, z, r, r2, scale, tail, tmp;
89 
90   abstop = top12 (x) & 0x7ff;
91   if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
92     {
93       if (abstop - top12 (0x1p-54) >= 0x80000000)
94 	/* Avoid spurious underflow for tiny x.  */
95 	/* Note: 0 is common input.  */
96 	return WANT_ROUNDING ? 1.0 + x : 1.0;
97       if (abstop >= top12 (1024.0))
98 	{
99 	  if (asuint64 (x) == asuint64 (-INFINITY))
100 	    return 0.0;
101 	  if (abstop >= top12 (INFINITY))
102 	    return 1.0 + x;
103 	  if (asuint64 (x) >> 63)
104 	    return __math_uflow (0);
105 	  else
106 	    return __math_oflow (0);
107 	}
108       /* Large x is special cased below.  */
109       abstop = 0;
110     }
111 
112   /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
113   /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N].  */
114   z = InvLn2N * x;
115 #if TOINT_INTRINSICS
116   kd = roundtoint (z);
117   ki = converttoint (z);
118 #elif EXP_USE_TOINT_NARROW
119   /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes.  */
120   kd = eval_as_double (z + Shift);
121   ki = asuint64 (kd) >> 16;
122   kd = (double_t) (int32_t) ki;
123 #else
124   /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
125   kd = eval_as_double (z + Shift);
126   ki = asuint64 (kd);
127   kd -= Shift;
128 #endif
129   r = x + kd * NegLn2hiN + kd * NegLn2loN;
130   /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
131   if (!__builtin_constant_p (xtail) || xtail != 0.0)
132     r += xtail;
133   /* 2^(k/N) ~= scale * (1 + tail).  */
134   idx = 2 * (ki % N);
135   top = ki << (52 - EXP_TABLE_BITS);
136   tail = asdouble (T[idx]);
137   /* This is only a valid scale when -1023*N < k < 1024*N.  */
138   sbits = T[idx + 1] + top;
139   /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1).  */
140   /* Evaluation is optimized assuming superscalar pipelined execution.  */
141   r2 = r * r;
142   /* Without fma the worst case error is 0.25/N ulp larger.  */
143   /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp.  */
144 #if EXP_POLY_ORDER == 4
145   tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4);
146 #elif EXP_POLY_ORDER == 5
147   tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
148 #elif EXP_POLY_ORDER == 6
149   tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
150 #endif
151   if (unlikely (abstop == 0))
152     return exp_inline_special_case (tmp, sbits, ki);
153   scale = asdouble (sbits);
154   /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
155      is no spurious underflow here even without fma.  */
156   return eval_as_double (scale + scale * tmp);
157 }
158 
159 #endif
160